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Problem Setup

Hierarchically structured groups

Cast of characters. Consider an input space X and a label space Y = {0, 1}...

= Arbitrary joint distribution D over X x {0, 1}.
= “Benchmark” hypothesis class ‘H of functions h : X — {0, 1}.
= G C X is a collection subsets of the input space (groups).

= Can assume that H is an arbitrary class with finite VC dimension dy; G is finite and
exponentially large or has VC dimension dg.

= Qur notion of test/generalization error:

Lp(f) = E(x,y)ND[l {f(z) #y}t = P(x,y)wD[f@ﬁ # yl.

Our notion of empirical/sample error over dataset S = {(x;, y;)}7"
1 n
Ls(f) =~ 1{f(x) # v}
i=1

NOTE: In this poster, we focus on zero-one loss, but this generalizes to arbitrary bounded loss functions.

Motivation. Traditional learning theory is concerned with aggregate performance over D. No
assurance for indvidual-level guarantees:

P(x,y)ND[f(x) #y|l <e where (z,y) ~D.

A middle-ground between on-average and individual-level guarantees: consider a rich collection
of subsets of the input space, G C X, and ensure:

Lp(f | 9) = Plyplfe) #y s gl <e foralgeg.

In agnostic (PAC) learning, for any e € (0,1), given n = poly (£, dy) 1.i.d. training examples (z;, y;) ~
D, goal isto find f: X — {0, 1} such that, with high probability over the i.i.d. training examples,

A

Lp(f) < inf Lp(h) +e.

Learning theory 101: For finite VC classes, empirical risk minimization (ERM) is necessary and
suffiicent, with optimal sample complexity dH/eQ.

Multi-group (agnostic PAC) learning

Our main assumption. A collection of groups G is hierarchically structured or laminar if, for every
pair of distinct groups g, ¢’ € G, exactly one of the following holds:

1. gNng =0(gand ¢ are disjoint).
2. g C ¢ (gis contained in ¢').
3. ¢ C g(qd"is contained in g).
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~icure 2. Example of a hierarchically structured tree. Each level of the tree above corresponds to a demographic
attribute (race, sex, and age). Proceeding down the tree yields increasingly granular subgroups. The leaves are the
most granular level, with subgroups such as R6+ A male A age < 35.

Goal and existing results

Algorithm

11
€’ /)/7
find f: X — {0, 1} such that, with high probability over the i.i.d. training examples,

Lp(f|g) < inf Lp(h|g) +e€4 forallged.
heH

Forany e € (0,1),v € (0,1), given n = poly ( day, dg) .I.d. examples (x;,y;) ~ D, goal is to

Why is this interesting? \We can no longer resort to ERM over all the data!

There may be no single h € H that is good for all groups simultaneously!
g1

~loure 1 No best h for all groups simultaneously. Letting H be the class of halfspaces, the groups ¢; (indicated
by the green solid line) and g, (indicated by the red dotted line) overlap, but their optimal predictors h,, and hy,
are much different.

https.//arxiv.org/abs/2402.00258

Goal: We want an interpretable (simple), computationally efficient, and statistically efficient classifier.
Previous work traded off between these goals:

= Rothblum & Yona (2021) [2]: Boosting-style algorithm with sample complexity of

1 H| < |9
n = ——polylog :
ey

€

= Tosh & Hsu (2022) [3] and Globus-Harris, Kearns, Roth (2022) [1]: (Non-optimal) decision list
algorithm with sample complexity of

d d
n = 7—[3"‘2 g log <1> :
€27y €

= Tosh & Hsu (2022) [3]: Complex, uninterpretable online-to-batch algorithm ensembling n
base classifiers, with sample complexity of

| |
n = 2 (dﬂlogz—l—log|g|)

Theorem: Near-optimal sample complexity with hierarchical groups

Suppose H is a benchmark hypothesis class ‘H with VC dimension dyy and G C X is a collection
of hierarchically structured groups. Let ¢, € (0,1) be a desired level of accuracy for each group
g € G. There exists a learning algorithm requiring

1 1
ng = % (dH logg + log |Q|)

samples for each g € G that achieves multi-group agnostic PAC learning.
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Algorithm 1 MGL-Tree
Require:
1: S, a training dataset.
2: Collection of hierarchically structured groups G C 2,
3: Error rates €,(g) € (0,1) forallg € G
Ensure: Decision tree f : X — {0,1}.
4: Order G into a hierarchical tree Tg.
5: Initialize the root: f% := h¥.
6: for each node g € 7g \ { X'} in breadth-first order do
7.  Compute the ERM classifier h € H for g:

h9 € argmin Lg(h | g).
heH

8:  if Ls(f9(z) | g) — Ls(h? | g) — €n(g) > O then
9: Set f9 .= h¥Y.

10:  else

11: Set f9 := fP2(9) where pa(g) denotes the parent
node of g.

12:  endif

13: end for

14: return f : X — {0, 1}, a decision tree predictor.

The appropriate setting of €,(g) for each group comes from the Theorem (possibly conservative):

enlg) = 18\/2d10g<16|g”/5).

Ng

Some experimental results
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~igure 3. Test accuracy on race-sex-age groups for CA Employment (top row) and CA Income (bottom row). Each
point in the plot represents the test error on a specific group. The y = x line represents equal error between our
algorithm and the competing method; points above the y = x line are groups where our algorithm exhibits better
generalization.
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