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Problem Setup

Cast of characters. Consider an input space X and a label space Y = {0, 1}...

Arbitrary joint distribution D over X × {0, 1}.

“Benchmark” hypothesis class H of functions h : X → {0, 1}.

G ⊆ X is a collection subsets of the input space (groups).

Can assume that H is an arbitrary class with finite VC dimension dH; G is finite and

exponentially large or has VC dimension dG.

Our notion of test/generalization error:

LD(f ) := E(x,y)∼D[1 {f (x) 6= y}] = P(x,y)∼D[f (x) 6= y].

Our notion of empirical/sample error over dataset S = {(xi, yi)}n
i=1:

LS(f ) := 1
n

n∑
i=1

1 {f (xi) 6= yi}

NOTE: In this poster, we focus on zero-one loss, but this generalizes to arbitrary bounded loss functions.

Motivation. Traditional learning theory is concerned with aggregate performance over D. No

assurance for indvidual-level guarantees:

P(x,y)∼D[f (x) 6= y] < ε where (x, y) ∼ D.

A middle-ground between on-average and individual-level guarantees: consider a rich collection

of subsets of the input space, G ⊆ X , and ensure:

LD(f | g) := P(x,y)∼D[f (x) 6= y | x ∈ g] < εg for all g ∈ G.

In agnostic (PAC) learning, for any ε ∈ (0, 1), given n = poly
(1

ε, dH
)
i.i.d. training examples (xi, yi) ∼

D, goal is to find f̂ : X → {0, 1} such that, with high probability over the i.i.d. training examples,

LD(f̂ ) ≤ inf
h∈H

LD(h) + ε.

Learning theory 101: For finite VC classes, empirical risk minimization (ERM) is necessary and

suffiicent, with optimal sample complexity dH/ε2.

Multi-group (agnostic PAC) learning

For any ε ∈ (0, 1), γ ∈ (0, 1), given n = poly
(

1
ε,

1
γ , dH, dG

)
i.i.d. examples (xi, yi) ∼ D, goal is to

find f̂ : X → {0, 1} such that, with high probability over the i.i.d. training examples,

LD(f̂ | g) ≤ inf
h∈H

LD(h | g) + εg for all g ∈ G.

Why is this interesting? We can no longer resort to ERM over all the data!

There may be no single h ∈ H that is good for all groups simultaneously!
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Figure 1. No best h for all groups simultaneously. Letting H be the class of halfspaces, the groups g1 (indicated
by the green solid line) and g2 (indicated by the red dotted line) overlap, but their optimal predictors hg1 and hg2
are much different.

Hierarchically structured groups

Our main assumption. A collection of groups G is hierarchically structured or laminar if, for every

pair of distinct groups g, g′ ∈ G, exactly one of the following holds:

1. g ∩ g′ = ∅ (g and g′ are disjoint).

2. g ⊂ g′ (g is contained in g′).

3. g′ ⊂ g (g′ is contained in g).
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Figure 2. Example of a hierarchically structured tree. Each level of the tree above corresponds to a demographic

attribute (race, sex, and age). Proceeding down the tree yields increasingly granular subgroups. The leaves are the

most granular level, with subgroups such as R6+ ∧ male ∧ age < 35.

Goal and existing results

Goal: Wewant an interpretable (simple), computationally efficient, and statistically efficient classifier.

Previous work traded off between these goals:

Rothblum & Yona (2021) [2]: Boosting-style algorithm with sample complexity of

n = 1
ε8γ

polylog
(

|H| × |G|
ε

)
.

Tosh & Hsu (2022) [3] and Globus-Harris, Kearns, Roth (2022) [1]: (Non-optimal) decision list

algorithm with sample complexity of

n =
dH + dG

ε3γ2 log
(

1
ε

)
.

Tosh & Hsu (2022) [3]: Complex, uninterpretable online-to-batch algorithm ensembling n
base classifiers, with sample complexity of

n = 1
ε2γ

(
dH log 1

ε
+ log |G|

)

Theorem: Near-optimal sample complexitywith hierarchical groups

Suppose H is a benchmark hypothesis class H with VC dimension dH and G ⊆ X is a collection

of hierarchically structured groups. Let εg ∈ (0, 1) be a desired level of accuracy for each group

g ∈ G. There exists a learning algorithm requiring

ng := 1
ε2
g

(
dH log 1

ε
+ log |G|

)
samples for each g ∈ G that achieves multi-group agnostic PAC learning.

Algorithm

The appropriate setting of εn(g) for each group comes from the Theorem (possibly conservative):

εn(g) = 18

√
2d log(16|G|n/δ)

ng
.

Some experimental results
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Figure 3. Test accuracy on race-sex-age groups for CA Employment (top row) and CA Income (bottom row). Each

point in the plot represents the test error on a specific group. The y = x line represents equal error between our

algorithm and the competing method; points above the y = x line are groups where our algorithm exhibits better

generalization.
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