

Problem Setup

Cast of characters. Consider an input space \mathcal{X} and a label space $\mathcal{Y} = \{0, 1\}$...

- Arbitrary joint distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$.
- "Benchmark" hypothesis class \mathcal{H} of functions $h: \mathcal{X} \to \{0, 1\}$.
- $\mathcal{G} \subseteq \mathcal{X}$ is a collection subsets of the input space (groups).
- Can assume that \mathcal{H} is an arbitrary class with finite VC dimension $d_{\mathcal{H}}$; \mathcal{G} is finite and exponentially large or has VC dimension $d_{\mathcal{G}}$.
- Our notion of test/generalization error:

$$L_{\mathcal{D}}(f) := \mathbb{E}_{(x,y)\sim\mathcal{D}}[\mathbf{1}\left\{f(x)\neq y\right\}] = \mathbb{P}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$$

Our notion of empirical/sample error over dataset $S = \{(x_i, y_i)\}_{i=1}^n$:

$$L_{S}(f) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ f(x_{i}) \neq y_{i} \}$$

NOTE: In this poster, we focus on zero-one loss, but this generalizes to arbitrary bounded loss functions. **Motivation.** Traditional learning theory is concerned with *aggregate* performance over \mathcal{D} . No assurance for *indvidual-level* guarantees:

 $\mathbb{P}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]<\epsilon \quad \text{where } (x,y)\sim\mathcal{D}.$

A middle-ground between on-average and individual-level guarantees: consider a rich collection of subsets of the input space, $\mathcal{G} \subseteq \mathcal{X}$, and ensure:

$$L_{\mathcal{D}}(f \mid g) := \mathbb{P}_{(x,y)\sim\mathcal{D}}[f(x) \neq y \mid x \in g] < \epsilon_g \quad \text{ for all } g \in \mathcal{G}$$

In agnostic (PAC) learning, for any $\epsilon \in (0,1)$, given $n = \text{poly}\left(\frac{1}{\epsilon}, d_{\mathcal{H}}\right)$ i.i.d. training examples $(x_i, y_i) \sim 1$ \mathcal{D} , goal is to find $\hat{f}: \mathcal{X} \to \{0, 1\}$ such that, with high probability over the i.i.d. training examples,

$$L_{\mathcal{D}}(\hat{f}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon.$$

Learning theory 101: For finite VC classes, empirical risk minimization (ERM) is necessary and sufficent, with optimal sample complexity $d_{\mathcal{H}}/\epsilon^2$.

Multi-group (agnostic PAC) learning

For any $\epsilon \in (0,1), \gamma \in (0,1)$, given $n = \text{poly}\left(\frac{1}{\epsilon}, \frac{1}{\gamma}, d_{\mathcal{H}}, d_{\mathcal{G}}\right)$ i.i.d. examples $(x_i, y_i) \sim \mathcal{D}$, goal is to find $\hat{f}: \mathcal{X} \to \{0, 1\}$ such that, with high probability over the i.i.d. training examples, $L_{\mathcal{D}}(\hat{f} \mid g) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h \mid g) + \epsilon_g \quad \text{for all } g \in \mathcal{G}.$

Why is this interesting? We can no longer resort to ERM over all the data! There may be no single $h \in \mathcal{H}$ that is good for all groups simultaneously!

No best h for all groups simultaneously. Letting \mathcal{H} be the class of halfspaces, the groups g_1 (indicated by the green solid line) and g_2 (indicated by the red dotted line) overlap, but their optimal predictors h_{q_1} and h_{q_2} are much different.

Multi-group Learning for Hierarchical Groups

Samuel Deng¹ Daniel Hsu¹

¹Department of Computer Science, Columbia University

Hierarchically structured groups

Our main assumption. A collection of groups \mathcal{G} is hierarchically structured or laminar if, for every pair of distinct groups $g, g' \in \mathcal{G}$, exactly one of the following holds:

- 1. $g \cap g' = \emptyset$ (g and g' are disjoint).
- 2. $g \subset g'$ (g is contained in g').
- 3. $g' \subset g$ (g' is contained in g).

. Example of a hierarchically structured tree. Each level of the tree above corresponds to a demographic attribute (race, sex, and age). Proceeding down the tree yields increasingly granular subgroups. The leaves are the most granular level, with subgroups such as R6+ \wedge male \wedge age < 35.

Goal and existing results

Goal: We want an interpretable (simple), computationally efficient, and statistically efficient classifier. Previous work traded off between these goals:

• Rothblum & Yona (2021) [2]: Boosting-style algorithm with sample complexity of

$$n = \frac{1}{\epsilon^8 \gamma} \text{polylog}\left(\frac{|\mathcal{H}|}{\epsilon}\right)$$

• Tosh & Hsu (2022) [3] and Globus-Harris, Kearns, Roth (2022) [1]: (Non-optimal) decision list algorithm with sample complexity of

$$a = \frac{d_{\mathcal{H}} + d_{\mathcal{G}}}{\epsilon^3 \gamma^2} \log\left(\right)$$

• Tosh & Hsu (2022) [3]: Complex, uninterpretable online-to-batch algorithm ensembling n base classifiers, with sample complexity of

$$n = \frac{1}{\epsilon^2 \gamma} \left(d_{\mathcal{H}} \log \frac{1}{\epsilon} + \log |\mathcal{G}| \right)$$

Theorem: Near-optimal sample complexity with hierarchical groups

Suppose \mathcal{H} is a benchmark hypothesis class \mathcal{H} with VC dimension $d_{\mathcal{H}}$ and $\mathcal{G} \subseteq \mathcal{X}$ is a collection of hierarchically structured groups. Let $\epsilon_g \in (0,1)$ be a desired level of accuracy for each group $g \in \mathcal{G}$. There exists a learning algorithm requiring

$$n_g := \frac{1}{\epsilon_q^2} \left(d_{\mathcal{H}} \log \frac{1}{\epsilon} + \log |\mathcal{G}| \right)$$

samples for each $g \in \mathcal{G}$ that achieves **multi-group agnostic PAC learning**.

$$\left| \mathcal{G} \right|$$

$$\left(\frac{1}{\epsilon}\right)$$
.

Alge	orithm 1 MGL-T
Require:	
1:	S, a training data
2:	Collection of hie
3:	Error rates $\epsilon_n(g)$
Ens	ure: Decision tr
4:	Order \mathcal{G} into a <i>hi</i>
5:	Initialize the roo
6:	for each node g
7:	Compute the I
	Ĵ

8:	if $L_S(f^g(x) \mid g)$
9:	Set $f^g := \hat{h}^g$.
10:	else
11:	Set $f^g := f^{\operatorname{ps}}$
	node of g .
12:	end if
13:	end for
14:	return $f: \mathcal{X} \to \{$

The appropriate setting of $\epsilon_n(g)$ for each group comes from the Theorem (possibly conservative):

 $\epsilon_n(g)$

Figure 3. Test accuracy on race-sex-age groups for CA Employment (top row) and CA Income (bottom row). Each point in the plot represents the test error on a specific group. The y = x line represents equal error between our algorithm and the competing method; points above the y = x line are groups where our algorithm exhibits better generalization.

COLUMBIA UNIVERSITY

Algorithm

Iree

taset.

erarchically structured groups $\mathcal{G} \subseteq 2^{\mathcal{X}}$. $\in (0,1)$ for all $g \in \mathcal{G}$ ree $f: \mathcal{X} \to \{0, 1\}.$ ierarchical tree $\mathcal{T}_{\mathcal{G}}$. ot: $f^{\mathcal{X}} := \hat{h}^{\mathcal{X}}$. $\in \mathcal{T}_{\mathcal{G}} \setminus \{\mathcal{X}\}$ in breadth-first order **do** ERM classifier $h \in \mathcal{H}$ for g: $\hat{h}^g \in \arg\min L_S(h \mid g).$

$$h \in \mathcal{H}$$

 $\hat{g} - L_S(\hat{h}^g \mid g) - \epsilon_n(g) \geq 0$ then

 $f^{\mathrm{pa}(g)}$, where $\mathrm{pa}(g)$ denotes the parent

$\rightarrow \{0, 1\}$, a decision tree predictor.

$$) = 18 \sqrt{\frac{2d \log(16|\mathcal{G}|n/\delta)}{n_g}}$$

Some experimental results