

Problem Setup

Cast of characters. Consider a context space \mathcal{X} and an action space $\mathcal{Y} = \{-1, 1\}$...

- "Benchmark" hypothesis class $\mathcal{H} \subseteq \{-1,1\}^{\mathcal{X}}$ comprised of functions $h: \mathcal{X} \to \{-1,1\}$.
- Collection of groups $\mathcal{G} \subseteq 2^{\mathcal{X}}$ comprised of functions $g: \mathcal{X} \to \{0, 1\}$ denoting membership for some subset of \mathcal{X} .
- Arbitrary bounded loss function $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow [0, 1]$.

NOTE: In this poster, we focus on binary actions, but this generalizes to discrete action spaces. **Online learning game.** For rounds $t = 1, 2, 3, \ldots, T$:

- 1. Nature chooses $(x_t, y_t) \in \mathcal{X} \times \mathcal{Y}$ and reveals x_t .
- 2. Learner chooses an action $\hat{y}_t \in \mathcal{Y}$.
- 3. Nature reveals $y_t \in \mathcal{Y}$.
- 4. Learner incurs loss $\ell(\hat{y}_t, y_t) \in [0, 1]$.

Motivation. Traditional online learning is concerned with *aggregate* o(T) regret over the T rounds.

$$\operatorname{Reg}_{T}(\mathcal{H}) := \sum_{t=1}^{T} \ell(\hat{y}_{t}, y_{t}) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \ell(h(x_{t}), y_{t}).$$

"Individual-level" regret guarantees are too strong to be feasible:

$$\operatorname{Reg}_{T}(\mathcal{H}, \{x\}) := \sum_{t=1}^{T} \mathbf{1} \{x_{t} = x\} \,\ell(\hat{y}_{t}, y_{t}) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \mathbf{1} \{x_{t} = x\} \,\ell(h(x_{t} = x)) \}$$

Online multi-group learning

A middle-ground between on-average and individual-level guarantees: consider a rich (possibly exponetnially large/infinite) collection of subsets of the input space, $\mathcal{G} \subseteq \mathcal{X}$, and consider:

$$\operatorname{Reg}_{T}(\mathcal{H},g) := \sum_{t=1}^{T} g(x_{t})\ell(\hat{y}_{t}, y_{t}) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} g(x_{t})\ell(h(x_{t}), y_{t})$$

Goal. Ensure that $\operatorname{Reg}_T(\mathcal{H}, g) = o(T)$ for all groups $g \in \mathcal{G}$ simultaneously.

Why is this interesting? The best hypothesis for different groups may differ. The groups may intersect in arbitrary ways, precluding running a separate no-regret algorithm on each $g \in \mathcal{G}$.

Group-wise oracle-efficient algorithms for online multi-group learning

Samuel Deng¹ Daniel Hsu¹ Jingwen Liu¹

¹Department of Computer Science, Columbia University

Infinite or Large Collections of Groups

Existing results for online multi-group learning assume finiteness/enumerability of either \mathcal{H} or \mathcal{G} :

- Blum & Lykouris (2020): $\operatorname{Reg}_T(\mathcal{H}, g) = o(T)$ for all $g \in \mathcal{G}$ for finite \mathcal{H} and \mathcal{G} .
- Acharya et al. (2023): $\operatorname{Reg}_T(\mathcal{H}, g) = o(T)$ for all $g \in \mathcal{G}$ with finite \mathcal{G} and oracle for (infinite) \mathcal{H} .

Our main question. Can we ensure $\operatorname{Reg}_T(\mathcal{H}, g) = o(T)$ for all $g \in \mathcal{G}$ that is oracle-efficient in both \mathcal{H} and \mathcal{G} ? Can we deal with cases in which \mathcal{G} is too large to possibly enumerate?

Assumptions

Assumption 0: Access to oracle. For $\alpha \geq 0$ and a sequence of m loss functions $\ell_i : (\{0,1\} \times$ $\{-1,1\}$ × $\{-1,1\}$ × $\{-1,1\}$ → [-1,1] and weights $w_1,\ldots,w_m \in \mathbb{R}$, an α -approximate $(\mathcal{G},\mathcal{H})$ optimization oracle $OPT^{\alpha}_{(\mathcal{C},\mathcal{H})}$ outputs a pair $(\tilde{g}, \tilde{h}) \in \mathcal{G} \times \mathcal{H}$ satisfying:

$$\sum_{i=1}^{m} w_i \ell_i((\tilde{g}(x_i), \tilde{h}(x_i)), (y_i, y'_i)) \ge \sup_{(g^*, h^*) \in \mathcal{G} \times \mathcal{H}} \sum_{i=1}^{m} u_i$$

Assumption 1: Smoothed adversary. Let \mathcal{B} be a base measure on \mathcal{X} . A σ -smooth distribution μ on \mathcal{X} is absolutely continuous with respect to \mathcal{B} and satisfies

$$\operatorname{ess\,sup} \frac{d\mu}{d\mathcal{B}} \leq \frac{1}{\sigma}.$$

At each round $t \in [T]$, Nature fixes a σ -smooth distribution μ_t and samples $x_t \sim \mu_t$, still choosing $y_t \in \mathcal{Y}$ adversarially.

Assumption 2: Existence of good perturbation matrix. Let $\gamma > 0$. For finite \mathcal{G} and \mathcal{H} , there exists a matrix $\Gamma \in [-1, 1]^{|\mathcal{G}||\mathcal{H}| \times N}$, such that:

1. γ -approximable. For all $(g,h) \in \mathcal{G} \times \mathcal{H}$ and $(x,y',y) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Y}$, there exists $s \in \mathbb{R}^N$ with $\|s\|_1 \leq \gamma$ such that

$$\langle \Gamma^{(g,h)} - \Gamma^{(g',h')}, s \rangle \ge \tilde{\ell}_x((g,h),(y',y)) - \tilde{\ell}_x((g',h'))$$

2. γ -implementable. For each column $j \in [N]$, there exists a dataset S_j with $|S_j| \leq M$ such that, for all pairs of rows $(g,h), (g',h') \in \mathcal{G} \times \mathcal{H}$,

$$\Gamma^{((g,h),j)} - \Gamma^{((g',h'),j)} = \sum_{(w,(x,y,y'))\in S_j} w\left(\tilde{\ell}_x((g,h),(y',y)) - \tilde{\ell}_x((g',h'),(y',y))\right)$$

Main Theorems

Theorem (Smoothed Setting). Under Assumption 1 and \mathcal{H} and \mathcal{G} with VC dimension $d < \infty$, with M = poly(T), $n = \text{poly}(T/\sigma)$, and $\eta = \text{poly}(T/\sigma)$, Algorithm 1 achieves, for each $g \in \mathcal{G}$: $\mathbb{E}[\operatorname{Reg}_T(\mathcal{H}, g)] \le O\left(\sqrt{\frac{dT\log T}{\sigma}}\right)$

Theorem (Existence of approximable and implementable perturbations). Under a $\Gamma \in$ $[-1,1]^{|\mathcal{G}||\mathcal{H}|\times N}$ with $\gamma > 0$ in **Assumption 2** and finite \mathcal{H} and \mathcal{G} , there exists an algorithm that achieves, for each $g \in \mathcal{G}$:

$$\mathbb{E}[\operatorname{Reg}_{T}(\mathcal{H},g)] \leq O\left(\sqrt{T_{g}}\max\left\{\gamma,\log|\mathcal{H}||\mathcal{G}|,\sqrt{N\log|\mathcal{H}||\mathcal{G}|}\right\} + \alpha T\right)$$

 $u(x_t), y_t).$

 $w_i \ell_i((g^*(x_i), h^*(x_i)), (y_i, y'_i)) - \alpha.$

(y', y) for all $(g', h') \in \mathcal{G} \times \mathcal{H}$.

$$\frac{\overline{T}}{-} + \alpha T
ight).$$

Algorithm (for the smoothed setting)

Main idea. For any $x \in \mathcal{X}$, the single-round regret of the Learner on group g to the hypothesis h is $\tilde{\ell}_x((g,h),(y',y)) := g(x) \left(\ell(y',y) - \ell(h(x),y) \right).$

The algorithm is a sequential game between two competing players:

- \mathcal{H} -player. Maintains an *implicit* distribution on $\mathcal{G} \times \mathcal{H}$ through FTPL.
- solves an LP to choose \hat{y}_t randomly.

The perturbations for the $(\mathcal{G}, \mathcal{H})$ -player in Algorithm 1 are:

$$\pi_{t,n}^{\text{bin}}(g,h,\eta) := \sum_{j=1}^{n} \frac{\eta \gamma_{t,j} g(z_{t,j}) h(z_{t,j})}{\sqrt{n}}, \quad \text{where } z_{t,j} \sim \mathcal{B} \text{ and } \gamma_{t,j} \sim N(0,1)$$

- for $t = 1, 2, 3, \ldots, T$ do
- Receive a context $x_t \sim \mu_t$ from Nature.
- for $i = 1, 2, 3, \ldots, M$ do
- 5. $(\tilde{g}_t^{(i)}, \tilde{h}_t^{(i)}) \in \mathcal{G} \times \mathcal{H}$ satisfying:

$$\sum_{s=1}^{t-1} \tilde{\ell}_{x_s}((\tilde{g}_t^{(i)}, \tilde{h}_t^{(i)}), (\hat{y}_s, y_s)) + \pi_{t,n}^{\text{bin}}(\tilde{g}_t^{(i)}, \tilde{h}_t^{(i)}, \eta)$$
$$t-1$$

 \geq SU (g^*, h^*)

- end for
- loss, obtaining:

$$h'_1 \in \operatorname*{arg\,min}_{h^* \in \mathcal{H}} \mathbf{1} \left\{ h^*(x_t) \neq 1 \right\}, \quad h'_{-1} \in \operatorname*{arg\,min}_{h^* \in \mathcal{H}} \mathbf{1} \left\{ h^*(x_t) \neq -1 \right\}.$$

 \mathcal{H} -player: Solve the linear program 8:

$$\begin{split} \min_{p,\lambda \in \mathbb{R}} & \lambda \\ \text{subj. to} & \sum_{i=1}^{M} p \tilde{\ell}_{x_t}((\tilde{g}_t^{(i)}, \tilde{h}_t^{(i)}), (h_1'(x_t), y)) + (1-p) \tilde{\ell}_{x_t}((\tilde{g}_t^{(i)}, \tilde{h}_t^{(i)}), (h_{-1}'(x_t), y)) \leq \lambda \\ & \forall y \in \{-1, 1\} \\ & 0 \leq p \leq 1. \end{split}$$

- Sample $b \sim Ber(p)$ where $b \in \{-1, 1\}$, let $h_t = h'_b$.
- Learner commits to the action $\hat{y}_t = h_t(x_t)$; Nature reveals y_t .
- Learner incurs the loss $\ell(\hat{y}_t, y_t)$.
- 12: **end for**

GE COLUMBIA UNIVERSITY

• $(\mathcal{G}, \mathcal{H})$ -player. Employs $(\mathcal{G}, \mathcal{H})$ -optimization oracle and follow-the-perturbed-leader (FTPL) style algorithm to play a distribution over $\mathcal{G} \times \mathcal{H}$ that maximizes single-round regret of the

• \mathcal{H} -player. Receives (an approximation of a) distribution over $\mathcal{G} \times \mathcal{H}$ from $(\mathcal{G}, \mathcal{H})$ -player and

Algorithm 1 Algorithm for Group-wise Oracle Efficiency (for smoothed online learning) **Input:** Perturbation strength $\eta > 0$; perturbation count $n \in \mathbb{N}$; number of oracle calls $M \in \mathbb{N}$.

 $(\mathcal{G}, \mathcal{H})$ -player: Draw *n* hallucinated examples as in Equation (4) to construct $\pi_{t,n}^{\text{bin}}$. $(\mathcal{G},\mathcal{H})$ -player: Using the entire history $\{(\hat{y}_s,y_s)\}_{s=1}^{t-1}$ so far, call $OPT^{\alpha}_{(\mathcal{G},\mathcal{H})}$ to obtain

$$\sup_{0 \in \mathcal{G} \times \mathcal{H}} \sum_{s=1}^{t-1} \tilde{\ell}_{x_s}((g^*, h^*), (\hat{y}_s, y_s)) + \pi_{t,n}^{\min}(g^*, h^*, \eta) - \alpha \quad (5)$$

 \mathcal{H} -player: Call OPT_{\mathcal{H}} twice on the singleton datasets $\{(x_t, 1)\}$ and $\{(x_t, -1)\}$, with the 0-1