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1. Introduction 

In our current age of technological progress, artificial intelligence (AI) and machine 

learning (ML) technologies have become increasingly integrated into decisions previously made 

by humans. Though the original purpose of integrating ML technology into high stakes decision-

making was to rid certain important decisions such as hiring or judicial procedures from human 

error and biases, it was soon clear that ML oftentimes proliferated and increased bias in 

decision-making (Hardt and Barocas). This spurred a surge in the machine learning research 

community to explore “fair machine learning,” the paradigm of creating ML systems that detect 

and mitigate the hidden biases in ML-reliant decision-making. My aim in this paper is to explore 

the current state of “fair machine learning” from a philosophical point of view in order to tease 

out certain methodological “blind spots” that may benefit from philosophical investigation.  

 First, I must provide some standard definitions of the technical terms at hand. Though  

AI is an extremely broad and rapidly developing field in computer science, we borrow a simple 

definition from Russel and Norvig’s classic computer science textbook on the subject: 

“[Artificial intelligence] is concerned with intelligent behavior in artifacts” (2). We might even 

narrow this definition to say that artificial intelligence is the capability of an artifact to seemingly 

perform cognitive tasks normally associated with human intelligence, such as visual perception 

or problem solving. With this definition, we can characterize the many subfields of AI with their 

human analogues: for instance, computer vision allows machines to perceive the visual world, or 

natural language processing allows machines to understand human language. However, I focus 

on one particular subfield of AI that drives most of its applications and research today: machine 

learning.  
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 Machine learning (ML) is the specific subfield of AI focused on using datasets from the 

real world to allow machines to generalize, recognize patterns, and make inferences without 

specific and explicit instructions. That is, however, not to say that machine learning systems are 

autonomous or “conscious” – machine learning systems are mathematical models from real 

world data that, if made correctly, can generalize to new, unseen data using the patterns from 

seen data. For instance, suppose all of your interactions on an online shopping website are 

recorded as data – these include what you purchase, your viewed items, and the items you view 

but do not purchase. Using all this data, the website might implement an ML algorithm that, 

given all your previous clicks and views, shows you what product you might be interested in. 

This differs from the traditional notion of an algorithm in computer science (essentially, a set of 

human-made rules given to a computer to accomplish a specific goal) because the “rules” are not 

explicitly programmed from the start; instead, the “rules” are learned from the data. Instead of 

explicit instructions such as, “if user X clicked ‘Gardening Supplies’ more than 5 times, suggest 

‘Garden Hose,’” machine learning algorithms “learn” these unique rules for each dataset. Despite 

this distinction, the term “algorithmic decision-making” will, in this paper, refer to decisions 

made by ML algorithms, as those will drive our main concerns for fairness. 

 So, what is the “fair machine learning” problem? In the contemporary boom of ML 

research and applications, algorithmic decision-making was once thought of as a solution to 

replace humans in different scenarios prone to human error and bias. News feeds, social 

networks, and online shopping sites, to name a few, populate before us with tailor-made 

recommendations that grow more and more uncanny. Hiring managers and job recruiters have 

begun delegating work to ML algorithms in efforts to reduce human error and increase efficiency 

(Whittaker et. al. 38). Even decisions once made by human judges are moving into the hands of 
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algorithms, on the grounds that human judges have their own racial or social biases that may 

conflict with a just decision (Angwin et. al.). However, the adverse effects of algorithmic 

decision-making also go unnoticed. In each case, algorithmic decision-making proved to be 

flawed: the very recommendations designed to enrich social network participant experience end 

up biasing against women (Martineau 1), Amazon’s AI hiring algorithm was found to be sexist 

(Whittaker et. al. 38), and tools in courts proved to be more random and discriminatory towards 

African Americans than human judges (Angwin et. al). These cases result from a variety of 

reasons, but the main reason these biases exist is because ML systems are made by humans, after 

all. Human bias exists in ML design, data, and the entire pipeline and, because of this, ML 

systems generalize to fit those biases. Machine bias stems from human bias. In a sense, ML 

holds a mirror up to humanity’s own decision-making proclivities. 

  One particular case that was particularly well-noted in the machine learning community 

and broke into general news was the COMPAS tool (Angwin et. al.). In an article that galvanized 

much of the current research in fair machine learning, ProPublica released reports that 

COMPAS, a software used to predict a risk score for recidivism (likelihood of committing a 

future crime), falsely labelled African American defendants as future criminals at twice the rate 

of white defendants. It simultaneously mislabeled white defendants as low risk more often than 

African American defendants. ProPublica found that the predictions were, indeed, false positives 

and false negatives from examining who actually recidivated two years after COMPAS gave 

these scores. These risk scores are meant to be unbiased, mathematically valid predictors of later 

behavior, and, thus, are used as brute fact by judges in many states in the US. Instead, COMPAS 

seemingly encoded an already prevalent racial bias into its decision making.  
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Because ML algorithms are increasingly implemented to deal with consequential 

decisions such as hiring, legal judgment, and policing, a nascent subfield in the technical 

machine learning community has developed, researching what it means for a machine learning 

algorithm to be fair. In recent computer science literature, varying definitions of fairness in 

mathematical terms have arisen as constraints on these algorithms. Reuben Binns argues in 

“Fairness in Machine Learning: Lessons from Political Philosophy” that, despite being internally 

and logically consistent through the math, each mathematical definition assumes a different 

philosophical view on what “fairness” means (1). For instance, should algorithms give every 

possible group the same probability for certain outputs? Should algorithms strive to reduce and 

minimize the negative impacts on more disadvantaged groups? Or maybe algorithms should 

make use of some ideal state where no discrimination or unfair disadvantages exist? From these 

varying definitions, we are reminded of much older thought in ethics and political philosophy on 

what exactly the terms fairness, discrimination, or justice mean in the first place (Binns 2). So, it 

seems that, in order to create fair ML algorithms, it may be helpful to study these definitions 

through the lens of philosophy. However, though Binns’ characterizations of these various 

fairness criteria (more in Section 2) from the perspective of moral and political philosophy are 

certainly promising and eye-opening, I take inspiration to use philosophy in a different scope – 

examining the methodological assumptions for fairness in ML in the first place.  

Therefore, in this paper, I will explore three main methodological assumptions in ML 

worth examining if we aim to achieve fairness. First, I provide a brief survey of the very basics 

of ML and the fairness definitions in the technical literature, explaining technical terms in the 

current state of ML fairness alongside brief non-technical analogues (Section 2). We will learn 

two important lessons from this: “the impossibility theorem” that states that it is mathematically 
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impossible to implement more than one fairness definition at once, and the fact that attempting to 

solve the fair-ML problem through choosing a fairness definition necessarily forces us to commit 

to a strong normative view on fairness. This teases out a need for a shift in thinking for fair-ML – 

focus on the methodology instead of the existing solutions. I then argue that, instead of looking at 

the existing solutions and fairness criteria, it may be fruitful to turn our eyes to the methodology 

of the ML paradigm, design process, and implementation through the lens of philosophy (Section 

3). In order to embark on this philosophical investigation, I make an argument that fairness is a 

context-sensitive value, an intuitive assumption that underlies the paper (Section 4). From this 

assumption, I propose three main methodological components of ML that, through philosophical 

scrutiny via the philosophy of science and computer science, conflict with context-sensitive 

fairness: abstraction, induction, and measurement (Sections 5, 6, 7). I argue that these are often 

overlooked and taken-for-granted “blind spots” for ML practitioners and the current field of fair-

ML. Finally, I propose some very nascent suggestions for the field of fair-ML to address these 

latent blind spots (Section 8). The purpose of this paper is thus to use philosophy, an often-

overlooked perspective in technical fields, to better understand and tease out latent issues in ML 

that might only see the light of day through philosophical investigation. Nonetheless, these latent 

issues have a serious impact on philosophers and non-philosophers, ML practitioners and non-

practitioners, alike as algorithmic decision-making and ML systems grow more ubiquitous in the 

Digital Age.   
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2. Overview of ML and Fairness Definitions 

In this section, I will provide a brief introduction to ML and survey the current definitions 

of fairness in the ML community to contextualize the rest of this paper, using some basic 

mathematics and probability. I will classify the existing group fairness definitions (where most 

of the research has been so far) into three main general classes: Independence, Separation, and 

Sufficiency. Though this is by no means exhaustive, many fairness definitions in the literature 

fall into these three main categories. I attempt to briefly survey two more main definitions after 

this: counterfactual fairness and individual fairness. I will conclude the section by explaining the 

“impossibility theorem,” a mathematical constraint that states, roughly, that no two definitions 

can simultaneously hold for any nontrivial ML problem. From this survey, we gleam our first 

basic philosophical observation: each fairness definition poses a strong normative view on what 

fairness means in the philosophical sense, and, due to their incompatibility from the 

“impossibility theorem,” any machine learning algorithm interested in fairness must necessarily 

include a normative decision on the nature of fairness. 

 Before surveying the fairness definitions, it is important to understand the main goal of 

ML and how a basic classification problem works. At the heart of machine learning is the task of 

using observed random variables X to predict the value of an unknown random variable Y. For 

instance, if we are given a loan applicant’s credit history, credit score, and income (X variables), 

the algorithm gives some score or likelihood 𝑌"  on how likely that applicant will pay off their 

loan. If we make a decision based on a certain threshold (“give loan if 𝑌"  > 75% and reject 

otherwise”), then we have the basic binary classification problem – for every X, we output a 

result from the discrete set {-1, 1} (reject or accept). The goal of machine learning is to create a 
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function 𝑌" = 𝑓(𝑋) (a classifier) where 𝑌" predicts Y (the true target variable) accurately. A 

“good” 𝑌"  is precisely the 𝑌"  that maximizes: 

Pr	[𝑌 = 𝑌"] 

the probability of the true target variable Y matching the predicted value 𝑌". In our loan example, 

our machine learning algorithm thus gives us some function 𝑌" = 𝑓(𝑋) learned from the data X 

about the applicant’s financial history, and the closer 𝑌" (our prediction on whether the applicant 

pays off their loan) is to Y (whether the applicant actually pays off their loan or not), the better. 

In the binary case, if 𝑌" = 𝑌 then our ML algorithm succeeds for that particular applicant. We 

define Pr	[𝑌 = 𝑌"] to be the predictive accuracy of our classifier. Thus, the goal for any ML 

algorithm or ML practitioner is to maximize predictive accuracy on the given data X.  We will 

return to this notion later, but it is important to note here that ML practitioners focus on the 

standard of accuracy which, in itself, assumes that the desired outcome in all cases is ensuring 

that our predicted results match up with the patterns seen in already observed data.  

 Our formal fairness problem arises when algorithms use certain observed traits (let us 

denote them 𝐴) to maximize predictive accuracy of a classifier while human-made decisions that 

take these traits into account are seen as discriminatory or unjust (Barocas et. al.). In our loan 

example, we can take  𝐴 to be race of the applicant and our classifier might be able to maximize 

Pr	[𝑌 = 𝑌"] by strongly considering 𝐴 in its decision-making process. This could result in 

rejecting a large number of a certain race of loan applicants while accepting a large number from 

another race. Why does this happen? An ML classifier can only learn from training data (the set 

of past labelled data), and if the training data contain a disproportionate rate of rejection for a 

certain race of loan applicants, the classifier will pick up on that pattern and generalize to 

classify future examples similarly. This disproportion in the training data comes from human 
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biases – in our hypothetical example, loan applicants may have historically been rejected due to 

race, leading to the disproportion in the training data, leading to the classifier exhibiting the 

human bias. Thus, at the heart of the fairness problem lies this bottom line: a machine learning 

algorithm is necessarily only as good as the data you use to train it. The common misconception 

of ML and AI as objective is untrue – it is objective only in the sense of learning what the human 

behind it teaches (Zhong).  

 So, knowing this framework, we can arrive at a very naïve fairness definition: remove or 

ignore the attribute 𝐴 in the dataset, and our ML classifier will be fair. This corresponds to our 

intuition that “justice is blind.” However, this can result in no improvement to our machine 

learning task at best, and, at worst, can worsen the results (Hardt and Barocas). Because the 

datasets we work with in ML are necessarily huge (the larger the dataset, the more generalization 

a classifier can achieve), other features that correlate with attribute 𝐴 encode the same human 

bias just as well as 𝐴 may have. In our example, we may naively believe that we have arrived at 

a fair algorithm through simply discarding the race attribute 𝐴, but, in reality, attributes such as 

geographic location or income allow ML classification to achieve the same results. The failure 

of naively removing the attribute 𝐴 in order to create a fair machine learning algorithm motivates 

the following fairness definitions. 

 The first formal fairness definition is Independence (also known as demographic parity), 

which, mathematically speaking, requires the sensitive attribute 𝐴 to be statistically independent 

of the predicted value 𝑌"  (Barocas et. al. 43): 

Pr/𝑌" = 𝑦1	2 	𝐴 = 𝑎] = 	 Pr	[𝑌" = 𝑦1|	𝐴 = 𝑏]				∀𝑦1 ∈ {−1, 1} 

𝑌" 	⊥ 𝐴 
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The first equation above is the definition of Independence for a simple binary classification 

problem, and the second expression is an alternative way to phrase Independence: the predicted 

value 𝑌"  is independent of 𝐴. Simply put, Independence requires that, given any two values of 𝐴, 

the probability of our classifier returning either -1 or 1 (acceptance or denial, yes or no) is equal. 

For our loan example, this means that our classifier is constrained to have the same probability of 

denying applicants for all individuals that are black as the probability of denying applicants for 

all individuals that are white (the same applies for accepting applicants). This fairness definition 

allows group fairness – for any two groups of the sensitive attribute 𝐴, we equalize the odds of 

acceptance. Already, we see a normative claim on fairness – fairness works on the level of entire 

group attributes. If the rate of acceptance for all groups of a certain attribute are equal, then we 

have fair decision-making. This echoes the collectivist egalitarian motive behind affirmative 

action and similar practices that equalize rates of acceptance for various groups of people 

(Gajane and Pechenizkiy 3). This leads to our main problem with Independence – by 

constraining the rates of entire groups to be equal, we forego an intuitive sense of individual 

fairness or meritocracy. For instance, suppose we have two groups a and b. Then, suppose a 

company carefully hires from group a at some rate p > 0, keeping in mind attributes that likely 

allow individuals from group a to perform well on the job. To achieve the constraint for 

Independence, the company can carelessly and “lazily” select applicants from group b without 

much thought at rate p as well (Barocas et. al. 44). Acceptance rates are completely identical, 

fulfilling Independence and group fairness, but group b likely will perform much worse. This 

collectivist egalitarianism goes against our intuitions of meritocracy and efficiency (Gajane and 

Pechenizkiy 3), should we buy into those normative stances.  
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  The second formal fairness condition is Separation (also known as equalized odds or 

equality of opportunity), where the predicted value 𝑌"  is independent of the sensitive attribute 𝐴, 

given the actual value 𝑌 (Barocas et. al. 45): 

Pr/𝑌" = 𝑦1	2 	𝑌 = 𝑦, 𝐴 = 𝑎]=𝑃𝑟/𝑌" = 𝑦12 𝑌 = 𝑦, 𝐴 = 𝑏]				∀𝑦1 ∈ {−1, 1}, ∀𝑦 ∈ {−1, 1} 

𝑌" ⊥ 𝐴	|	𝑌 

The first equation above is the definition of Separation for a simple binary classification 

problem, and the second expression is an alternative way to phrase Separation: the predicted 

value 𝑌"  is independent of 𝐴 given the true value 𝑌. Because we add in the random variable 𝑌 for 

the true value now, we judge a subtly different scope of possibilities – where Independence had 

no regard for the true value, Separation assumes we have the true value 𝑌. And, while 

Independence constrained only the predicted values 𝑌"  to be equivalent across any two sensitive 

groups, sufficiency constrains the false positive rates and false negative rates to be equivalent 

across any two sensitive groups (Barocas et. al. 46). That is, sufficiency has the following two 

constraints:	

Pr/𝑌" = −12 	𝑌 = 1, 𝐴 = 𝑎]=𝑃𝑟/𝑌" = −12 𝑌 = 1, 𝐴 = 𝑏] 

Pr/𝑌" = 1	2 	𝑌 = −1, 𝐴 = 𝑎]=𝑃𝑟/𝑌" = 12 𝑌 = −1, 𝐴 = 𝑏] 

Separation thus focuses on the classifier’s results insofar as we know the actual results of the 

candidates. For example, the Separation constraint on our loan problem would measure all the 

candidates that actually defaulted on their loans for both races (say, after observing their 

payments on a loan for a year or two) and then ensure that the classifier’s rate of mistakes on 

those candidates (where the classifier predicted they would not default) is equal across the two 

groups. These are the false positive rates. The same applies for the candidates that actually did 

not default on their loans. Those are the false negative rates. Thus, this penalizes the “lazy” 
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classification seen in Independence, as the constraints are not as easily achieved as in 

Independence. However, the added constraint goes against our possible intuitions of a “positive” 

justice where social gaps are closed over time (Zhong). To exemplify this, suppose again that we 

have two groups a and b and our task is to hire applicants for a job. Suppose that group a has 100 

applicants with 58 qualified applicants. Group b has 100 applicants with only 2 qualified 

applicants. To satisfy the Separation constraint, the company can hire 30 applicants total, with 29 

applicants from group a but only 1 applicant from group b. If we subscribe to a “positive” notion 

of justice where disadvantaged groups should gain advantages over time, Separation allows the 

opposite – instead, Separation pays close attention to the gaps between groups and seeks to 

reproduce the gap in its classification. Thus, in cases where there is already a correlation 

(perhaps from preexisting historical or social conditions) of the positive outcome with a certain 

group more than another, Separation acknowledges that correlation and continues to mirror it. 

This echoes the famous argument from Rawls for fair equality of opportunity, where positions 

are formally open and meritocratically allocated (Arneson).  

 The third formal definition of fairness is Sufficiency (also known as predictive rate 

parity), where the actual value 𝑌 is independent of the sensitive attribute 𝐴, given the predicted 

value 𝑌"  (Barocas et. al. 48):   

Pr[𝑌 = 𝑦	|	𝑌" = 𝑦1, 𝐴 = 𝑎]=𝑃𝑟[𝑌 = 𝑦| 𝑌" = 𝑦1, 𝐴 = 𝑏]				∀𝑦1 ∈ {−1, 1}, ∀𝑦 ∈ {−1, 1} 

𝑌 ⊥ 𝐴	|	𝑌@  

This relates to the idea of calibration, the notion that, between two groups, the rate of actual 

positive examples in the positively classified portion are equal (Barocas et. al. 48). In our 

example, if we take all the loan applicants of group a that our classifier predicted would not 

default and compare them to all the loan applicants in group b that our classifier predicted would 
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not default, the actual percentage of applicants that did not default (say, after waiting a couple of 

years and checking) would be equal. Sufficiency tries to constrain the prediction from our 

classifier for a candidate to accurately reflect their true value. In a similar argument to 

Separation, sufficiency also goes against our intuitive notion of “positive” justice, possibly 

widening the gap between two groups a and b (Zhong).  

 Each of the above three definitions of fairness are definitions for “group fairness” (also 

called “observational fairness”) in the machine learning literature (Zhong). These fall into the 

category of “group fairness” because the constraints imposed on the classification task work on 

the level of  𝐴 = 𝑎 or 𝐴 = 𝑏. Regardless of the individual applicants in each group, if the final 

rates are somehow balanced at the group level, we deem our classifier “fair.” However, we saw 

in each example that, upon closer inspection of the individual applicants in each definition with 

some concrete numbers (the hiring illustrations), these classifiers could still make decisions that 

go against some notion of fairness or another. Recent literature has proposed a definition for 

individual fairness which attempts to address this (Dwork et. al.), on the basic principle that 

similar people should be treated similarly. This seems intuitive, but the major problem is that we 

must somehow quantify similarity in people; individual fairness requires us to somehow measure 

the “closeness” of two individuals in a mathematical space, which becomes an even hairier 

problem when we introduce the notion of the sensitive attribute 𝐴. Another alternative to the 

“group fairness” paradigm is counterfactual fairness which leverages the notion of a causal 

graph (Russel et. al.). Essentially, counterfactual fairness allows us to see the effects of 

eliminating sensitive attribute 𝐴 and the counterfactual “world” it produces. However, 

counterfactual fairness is also far from being a panacea to the issue. It imposes the daunting task 

in practice of creating an accurate causal graph of the variables at play, which would involve the 
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task of indicating hard-to-find and complex causal connections between human factors such as 

race, income, and gender, to say the least.  

 So, this discussion naturally leads to the question – why can we not simply try satisfying 

all three fairness definitions at once? If we can satisfy all three of the intuitive normative 

assumptions in the “group fairness” definitions by imposing each constraint, why do we not just 

solve our problem with imposing all three constraints? As it turns out, the literature proves an 

“impossibility theorem” – no two fairness criteria could hold at the once for a particular problem, 

unless under very trivial, unrealistic conditions (Kleinberg et. al.). It is because of this 

“impossibility theorem” that designing an ML algorithm ultimately ends with a normative 

choice. Indeed, in response to ProPublica’s article on the COMPAS recidivism algorithm, those 

responsible for COMPAS claimed that COMPAS followed the fair measure of “predictive 

parity,” which was in tension with ProPublica’s conception of fairness (Courtland). By creating 

an ML algorithm, one assumes a definition of fairness (or, possibly, the lack thereof), which 

carries along its normative baggage. This brings the technical ML problem into the realm of 

philosophy – if the choice of fairness definition on a machine learning algorithm is a normative 

question, then how do notions such as justice, fairness, egalitarianism and discrimination in the 

philosophical realm address algorithmic decision-making (Binns 1)? And, more broadly, what 

other philosophical implications must be considered aside from this normative choice of 

definition?  
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3. Intermission: Turning Towards Methodology 

 In the previous section, we saw that fairness in machine learning is predominantly 

composed of “fairness definitions” that ultimately lead to a strong commitment to a normative 

choice on the definition of fairness. These choices each have their philosophical counterparts – 

for instance, the definition of separation entails equality of opportunity while independence 

proceeds from a commitment to collectivist egalitarianism (Gajane and Pechenizkiy). At this 

point of this paper, we reach a juncture in our philosophical evaluation of fairness in ML. 

 On one hand, we may go the route of grappling with political and moral philosophy, an 

approach excellently taken by Reuben Binns in “Fairness in Machine Learning: Lessons from 

Political Philosophy.” In this case, the approach may be to identify analogues to the various 

existing fairness definitions in the philosophy, law, or social science literature and to tease out 

insights that may exist through such comparisons. The previous section may have very briefly 

introduced such ideas but furthering this approach to find a “philosophically best” definition for 

fairness in ML is far beyond the scope of this paper. For this, we would have to synthesize ages 

of debate from philosophers, legal scholars, and other literature on the nature of contested ideas 

such as fairness, justice, or discrimination and then, essentially, settle on a definition compatible 

with all applications of ML. Because these very notions are still debated, embarking on this 

approach might be too unwieldy for a single paper, and, some would argue, any amount of 

philosophizing. 

 On the other hand, we may critically evaluate the methodology of fairness in machine 

learning itself. Although the technical literature has been increasingly prolific in finding new 

mathematical formalizations, technical solutions, and algorithms to this ethical problem in 

machine learning, perhaps the process itself has been too hasty. Evaluating ML’s methodology 
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and questioning its assumptions brings us into the realm of philosophy. In this paper, I follow 

this second route instead, arguing that a closer look at some root assumptions that underscore 

fairness in machine learning, as it currently stands, have serious methodological issues that may 

prevent further progress towards truly fair machine learning. I conclude that fairness in machine 

learning, in its current form, is rife with blind spots. 

 In the second half of this paper, I first propose an intuitive way to think of fairness as a 

context-sensitive value, loosely related to value incommensurability in value theory (Hsieh). I 

argue that this allows us to adopt a view of fairness as dependent on context without committing 

to a staunch anti-realist or relativist stance. I also argue that it is safer to work under this 

assumption in the specific field of fairness in machine learning than to rely on an absolute notion 

of fairness. Then, with this assumption on fairness in hand, I propose three methodological 

“blind spots” in the ML process drawn from the philosophy of computer science and the 

philosophy of science: abstraction, induction, and measurement. I argue that, without addressing 

the issues each of these philosophical concepts pose to machine learning, the methodology 

towards obtaining some sort of “fairness in machine learning” is ultimately flawed. Finally, I 

propose some nascent solutions that may alleviate these issues by framing the methodology of 

fair-ML with context-sensitivity in mind. By reframing the methodology as such, we adopt a 

more holistic approach to fairness that keeps in mind necessary human and societal actors. This, 

in turn, might invite broader and more productive reflection in the effectiveness of certain 

attempts at implementing fairness in machine learning. 
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4. Fairness as a Context-Sensitive Value 

 Before exploring the methodological blind spots in applying fairness to machine learning, 

I first make an assumption on the nature of fairness as a value. This initial assumption stems 

from the intuition in the field of fair-ML that implementing a “fair” ML system must take into 

account its context and environment (Selbst et. al.). In order to make this assumption, I first 

briefly overview the theory of value. Then, I will introduce and motivate the term context-

sensitive value. Finally, I will argue that, at least in the field of fair-ML, fairness is one of these 

context-sensitive values.  

 First, I provide background for the term context-sensitive values by briefly exploring the 

theory of value. The theory of value in moral philosophy is broadly concerned with “which 

things are good or bad, how good or bad are they, and what is it for a thing to be good or bad” 

(Hirose and Olson 1). However, the theory of value need not pertain to moral philosophy – all 

varieties of values can be said to fall into the domain of value theory. The objects of study in 

value theory simply need to be evaluative in nature (Schroeder). For instance, while moral 

philosophy may be concerned with the values of justice, goodness, and truth, the theory of 

aesthetics is concerned with the value of beauty. In most cases, a value X should conform to 

questioning how X something is (How beautiful is this painting? How just is this law?). To 

evaluate some object with respect to a value is to make a value judgment. One might make the 

value judgment “That painting is very beautiful,” with respect to the value of beauty, or “This 

law is unjust,” with respect to the value of justice. 

 With this conception of value in mind, it is intuitive, then, to discuss whether values can 

be compared or measured. In value theory, this is the notion of commensurability, where two 

values are said to be incommensurable if they cannot be reduced to a common measure (Hsieh). 
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In an example from Joseph Raz, a person faces the choice between two equally successful 

careers: a lawyer or a clarinetist. Here, neither appears to be better than the other, but the careers 

do not seem to be equally good. Raz argues that if they were of equal value, a slightly improved 

version of the legal career would be better than the musical one (Raz 342). But that judgment 

appears to be incorrect in this case (Hsieh). Thus, the incommensurable values here might be the 

value of serving one’s fellow citizens through study of the law and the aesthetic value of musical 

performance. In this essay, however, I will focus on a related property – the sensitivity to 

different contexts for evaluating a certain value. This is the property of a single value (as 

opposed to two separate values, as in incommensurability) which we call context-sensitivity. We 

shall call the particular values that obtain this property context-sensitive values.  

 To motivate and exemplify this term, I draw attention to a couple values: usefulness and 

dangerousness. When we say something is useful, it seems intuitive that how useful that thing is 

depends on the surrounding context. For instance, suppose we compare the usefulness of a chair 

in a bare room by itself to the last open chair at a table during a holiday dinner. In the latter 

context, the chair is clearly more useful, and we seem to be talking about the same value in both 

contexts. The same can be said of a chef’s knife. Suppose we compare a sheathed chef’s knife in 

a kitchen to an unsheathed knife on the edge of a table. In the second case, all else equal, the 

knife seems to be more dangerous. One might object that this conception is missing a frame of 

reference to truly evaluate it. However, if we take the most intuitive frame of reference – oneself 

– and place oneself in each scenario, the same difference in usefulness or dangerousness obtains. 

For instance, if I compare being in a bare, empty room with a chair with being at a holiday 

dinner with my family where there is a single spare chair, the latter chair is clearly more useful 

from my perspective. However, there are values that might be more difficult for one to justify as 
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context-sensitive without also committing to some version of relativism – justice or truth 

immediately come to mind. It is important to note here that deeming some values such as 

usefulness or dangerousness as context-sensitive does not necessitate a commitment to 

relativism. One can still be a realist (or a relativist, for that matter) while accepting context-

sensitivity. Thus, I argue that some (not all) values can be said to have this intuitive property of 

context-sensitivity. 

  In the domain of fair-ML, I argue that fairness is also one of these context-sensitive 

values because of ML’s main goal – prediction or classification of phenomena via mathematical 

formalization on large amounts of data. More precisely, the “contexts” we consider when 

implementing a fair ML algorithm include, but are not limited to, the societal context, the 

timeframe, the application domain, the data acted upon, the stakeholders involved, and the 

algorithms and implementations involved – that is, the entire pipeline of an ML task. Though the 

“context” here might be more difficult to parse than in our trivial chair and knife examples, an 

example from Section 2 might help. This example draws inspiration from a similar one from 

“Fairness and Abstraction in Sociotechnical Systems” by Andrew Selbst et. al. Suppose that we 

implement a fair-ML algorithm with the fairness definition of Separation, which, recall, 

constrains false positive or false negative rates between two groups to be equal. Then, suppose 

two contexts: Separation-constrained classification with equalized false-positive rates for hiring 

and Separation-constrained classification with equalized false-positive rates for criminal 

recidivism. In the former case, a false-positive (someone unfit for the job is employed) is less 

harmful than a false-negative (someone fit for the job is denied). An unfit but accepted applicant 

might just get fired in a couple months, while there is no “second chance” for a fit but 

unaccepted applicant. However, in the latter case, equalized false-positives might keep more of a 
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minority population wrongly in jail, propagating an already existing injustice. Instead, we might 

use a different fairness definition or approach altogether for the latter case. This stems from the 

intuition that our single mathematical formalization fails to generalize to different social contexts 

(Selbst et. al. 6). Fairness might also change over the context of time. Our intuitive notions of 

what is fair drastically evolve over time periods or eras in a society. Thus, we see that fairness in 

the specific domain of fair-ML is a context-sensitive value, and ignoring the context surrounding 

the implementation of a certain approach to fairness in ML is a serious methodological error. 

Finally, to be precise, I am committed that fairness in the domain of fair-ML is context-

sensitive. I do not make assumptions of fairness as a value in general, irrespective of its domain 

application. There are two reason to make this assumption clear. First, it seems methodologically 

safer and more intuitive for our later exploration to not work under the assumption that there is a 

notion of fairness that is absolute in all contexts. Certainly, this is a sentiment that is increasingly 

reflected in the fair-ML research community as more researchers begin to realize that writing yet 

another mathematical definition of fairness will not be sufficient in all cases (Selbst et. al. 6). 

Second, accepting the existence of context-sensitive values does not necessitate us to accept the 

strong commitments of moral relativism or realism. The existence of some context-sensitive 

values does not necessitate that all values are context-sensitive, and we leave trickier values such 

as truth, justice, or fairness in the general domain (unconstrained by ML) on the table.  

Motivated by this characterization of fairness as a context-sensitive value, I will provide 

three methodological blind spots (Sections 5, 6, 7) present in the current state of ML from the 

domains of philosophy of computer science and philosophy of science worth critically engaging 

with if we desire establishing fairness in ML.  
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5. Abstraction 

 In the practice and philosophy of computer science, abstraction is a fundamental concept 

underlying the field (Turner). It is basic knowledge to any computer scientist that abstraction 

drives the process beginning with physical hardware to electrical signals to 0’s and 1’s to a fully 

specified computer program. However, this does not begin and end with hardware and 

programming – mathematical abstractions and formalizations drive the practice of machine 

learning. For instance, an ML algorithm in the business of processing natural language might 

represent a word as a “word-embedding,” a geometric representation of words as vectors in high-

dimensional space that have a level of “closeness” to other words in a vocabulary. In this section, 

I argue that current computer science and ML paradigms regarding abstraction have tension with 

the notion that fairness is a context-sensitive value. In particular, the paradigms of specifications 

and black-box “portability” conflict with context-sensitivity. Thus, abstraction is the first “blind 

spot” methodological assumption in developing fair-ML systems. 

    Before the very beginning of the abstraction process, specification is crucial to 

designing any algorithm or program in computer science (Turner), but I argue that current 

notions of specification in applications of fair-ML are too vague and context agnostic to truly fit 

the bill of context-sensitive fairness. In order to design any algorithm or program, the computer 

scientist begins with a specification, a description describing how inputs to an algorithm should 

result in certain outputs. A specification describes what an algorithm does but not how it does it. 

For instance, the specification “take the square root of input x” might yield an algorithm that first 

checks if x is a nonnegative number, attempts multiplying multiple instances of an arbitrary 

number by itself before converging to a correct one, and then outputs that number (Turner). 

Nowhere in the specification are the considerations of checking for nonnegativity (a precondition 
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for a real square root) or the process of running through possible square roots before arriving at a 

suitable output. Specification merely concerns input and output, and, thus, allows us to package 

our algorithm in a black-box and label it with its specification designating what it accomplishes. 

 However, in the case of fair-ML, the notion of specification should be reevaluated if a 

fair-ML algorithm is to meet the context-sensitivity of fairness. Though the history of computer 

science has developed from pure vernacular specifications to more rigorous ones, the field of 

fair-ML calls not just for mathematical rigor in specifications, but for normative values. Suppose 

we create a vanilla ML algorithm with some initial specification S, typically maximizing 

predictive accuracy on some dataset. Then, suppose that we also add the constraint that the ML 

algorithm be fair, constraint F. This F might be one of our mathematical formalizations of 

fairness. Regardless, the specification S + F should carry the assurance that a certain program 

does S and is fair – if it is specified as so, then its inputs must produce fair outputs.  

However, whereas specifications such as “take the square root of the input x” might be 

easily fulfilled with the algorithm above for all x, our specification S + F can only be achieved in 

the same way syntactically with respect to F. That is, our algorithm might successfully model all 

the constraints of fairness that definition F imposes, but that output is only “fair” with respect to 

the “mathematical language” of F. It does not have a notion of actual normativity, as any notion 

of its social or political context is independent of this specification. It might fulfill equalized 

false positive rates brilliantly while also fulfilling S, but I argue that this is missing a crucial 

dimension. This relates to Searle’s famous Chinese Room Argument – while machines might use 

syntactic rules to manipulate symbols, they have no understanding of the meaning or semantics 

of those symbols (Searle 418). So long as F is properly defined, we might assume our machine 
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fits the constraint F perfectly, but we cannot say it is truly “fair” until we take the context in 

mind. Essentially, the machine is just “symbol-crunching” the notion of fairness encoded in F.  

I am not arguing that we need to have conscious machines or machines capable of actual 

understanding of our semantics of fairness, as one might think because of the reference to Searle. 

Instead, I am arguing for better specifications so humans in the ML process are able to 

understand the semantics of fairness in a given context. Until we incorporate normative 

assumptions based on our context, we cannot, in any meaningful sense, call an algorithm from an 

S + F specification truly “fair.” Thus, in order to embed context-sensitivity to specifications of 

fairness, I argue that all normative assumptions N1, N2, … Nn must somehow be incorporated in a 

non-technical manner for humans in the process, resulting in a specification S + F + N1 + N2 + 

… + Nn to better incorporate our intended meaning of “fair” into the specification. When we say 

we want an algorithm to be “fair,” we do not mean we want it to “follow a fairness definition” – 

we want it to actually be fair in the sense that it complies to whatever normative assumptions on 

fairness are specific to the context of our application. For instance, an S + F specification might 

be, “Recommend whether to hire or not hire applicants with constraint of equalized group rates 

between group a and group b” while an S + F + N specification might add, “assuming that false 

positive rates are more acceptable due to the moral motivation to equalize long-run diversity 

between group a and b.” Though this kind of value-laden, normative specification might be less 

amenable to strict computational checks or tests, I argue that interdisciplinary checks from 

humans in the loop (possibly from domain experts in each context to check for fairness based on 

assumption N) would better achieve the shared goal of actual fairness, not just “following the 

math” of a specification. 
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 The second concern with the abstraction methodology in fair-ML is the notion of 

portability, which also runs counter to our intuitive notion of context-sensitivity. In “Fairness and 

Abstraction in Sociotechnical Systems,” Sebst et. al call this the Portability Trap. Abstraction 

demands algorithms to be portable – it is core to any computer scientist’s skillset to be able to 

create modularized functions with well-defined inputs and outputs that can be imported and 

exported to other applications. ML is no exception to this paradigm. In ML, problems are 

categorized by their nature of learning task (e.g. classification, clustering, reinforcement 

learning, regression), which is then applied to all kinds of different real-world problems (Sebst 

et. al. 4). For instance, we might apply binary classification to medicine to determine whether a 

patient has a disease, or to images, to predict whether an image is a cat or a dog. Regardless of 

instance, the same algorithms for binary classification get optimized (SVM, nearest neighbors, 

perceptron), though the actual task from a human perspective is remarkably different. This 

portability then transfers to machine learning in practice, where actual coding tools or platforms 

(scikit-learn, PyTorch, tensorflow, etc.) are designed precisely for the means of portability (Sebst 

et. al. 4). Though the current state of fair-ML literature has moved beyond a purely algorithmic 

focus, it still embraces portability as a core value: some fix definitions of fairness as portable 

modules and then optimize, while others focus on building a “fair wrapper” around a classifier to 

make all outputs fair (Sebst et. al 4). The preoccupation with the value of portability still 

underscores the current ML paradigm, as well as the fair-ML research community.  

 Although portability and the abstraction that comes from portability are not inherently 

harmful, I argue that it is counter to the notion of context-sensitive fairness. Suppose we were to 

build an ML system that incorporated all notions of fairness in a certain context satisfactorily. 

Upon an audit from relevant ethicists and domain experts, the system is specified correctly, and 
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the abstractions do not abstract away relevant normative assumptions. Then, upon completion, 

the system relies necessarily on its context, but, if so, loses the value of portability. We cannot 

simply “ship” this system to another context and expect that it will also be fair. That is, by 

ensuring fairness with respect to all of the normative assumptions and specifications in one 

context, it loses the ability to be fair in another. To draw on a previous example, by settling on a 

fair system that equalizes false positive rates for hiring by fulfilling all the normative 

assumptions for fairness in hiring, we cannot simply “export” this system to the domain of 

criminal justice, as the normative assumptions for criminal justice must then be fulfilled as well. 

Pure portability and context-sensitive fairness are therefore mutually exclusive. 

 Thus, I conclude that the core paradigm of abstraction is a methodological blind spot 

when it comes to the field of fair-ML. Specifically, the notions of specification and portability 

are in tension with the context-sensitivity of fairness. This is not an attack against the enterprise 

of abstraction in fair-ML, but, rather, a call to be wary of the dangers of following an abstraction 

paradigm in developing fair ML systems. I propose that deeper reflection on the nature of 

abstraction and its relevant notions of specification and portability is needed by ML practitioners 

in the current state of fair-ML, with more concrete suggestions in Section 8.  
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6. Induction 

 In the philosophy of science, the principle of induction – while crucial to the enterprise of 

science – is a fundamental problem. To quote Hume, induction is the principle that allows us to 

predict that “instances of which we have had no experience resemble those of which we have had 

experience” (Hume 1.3.6.10). For instance, suppose letting go of some ball has reliably led to 

that ball falling downward and hitting the ground. We predict future instances of letting go of 

that ball will also lead to the ball falling and hitting the ground. However, in one of philosophy’s 

most famous arguments, David Hume posed the problem of induction – put simply, that 

inductive inferences are no more than “habits of the mind,” and there is no necessary connection 

from observations to unseen events, despite how strong our inductive intuition might be. In this 

section, I first focus on Nelson Goodman’s “new riddle of induction,” the successor to Hume’s 

problem of induction, to explain the learning-theoretic conception of induction that drives the 

theory behind machine learning applications today. Then, I show that the current state of ML 

ignores the problem of learning-theoretic induction in applications to human contexts, giving 

three instances: inductive patterns from historical trends in data, nonsensical trends in data, and 

fed-back data. Finally, I argue that faulty inductive patterns in ML data often avoid detection, 

hearkening to Hume’s epistemological problem of induction – how do we tell good inductions 

from bad ones? Thus, induction poses a second methodological blind spot in ML that conflicts 

seriously with context-sensitive fairness. 

 First, I outline Goodman’s “new riddle of induction” in order to provide insight into the 

learning-theoretic conception of induction relevant to ML (Goodman 74). In the “new riddle of 

induction,” we suppose that, up to time t, we have observed many emeralds to be green and no 

emeralds to be any color other than green. We might have a series of observations of the form 
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“Emerald x at time a was green,” where a < t. Then, at t, our hypothesis “all emeralds are green” 

is supported by inductive reasoning. Goodman then introduces the predicate “grue,” which 

applies to all things that are observed to be green before a future time t but applies to all things 

observed to be blue at or after a future time t. So, with the same set of observations that allowed 

us the hypothesis “all emeralds are green,” there are a series of equivalent observations “Emerald 

x at time a was grue” where a < t. Thus, we can also take these observations together to make the 

general hypothesis “all emeralds are grue.” Further, the two statements (1) “The next emerald 

observed at or after time t will be green” and (2) “The next emerald observed at or after time t 

will be grue” both are confirmed to the same degree under inductive reasoning. However, they 

are mutually incompatible, for the emerald denoted in (1) will be the color green and the emerald 

denoted in (2) will be the color blue. Therein lies the problem. For this essay, this problem 

fundamentally concerns the crucial distinction that Goodman argues Hume misses in his original 

problem of induction – how do we distinguish good (“lawlike,” in Nelson’s words) from bad 

inductions (Cohnitz and Rossberg 5.3)? Intuitively, it seems that “all emeralds are green” is a 

better inductive generalization than “all emeralds are grue,” but, by merely observing the data 

and hypotheses at hand, there is nothing to show that is the case.  

 The field of algorithmic learning theory (the theory behind ML) answers that the correct 

hypothesis corresponds to the simplest one: “all emeralds are green.” One might recognize this as 

Occam’s Razor, the principle that one should choose the simplest explanation of a phenomenon 

compatible with one’s experiences (Harizanov et. al.16). Then, because algorithmic learning 

theory (and, thus, ML’s applications in general) is the study of “computational strategies for 

converging to the truth,” (Harizanov et. al. 1) the assumption of Occam’s Razor necessitates that 

the most truth-conducive hypothesis is the simplest one. In fact, “no strategy that violates 
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Occam’s Razor is optimally truth-conducive” (Harizanov et. al. 16). This embeds a crucial 

philosophical assumption deep into the theoretical underpinnings of ML – optimization for the 

truth must also optimize for simplicity of explanation. Then, despite the data we feed into an ML 

system, we can rest assured that the output hypothesis on the data is the simplest and most 

efficient convergence to some “truth” about the data. However, in the field of fair-ML, we do not 

merely want some simple “truth” about the data – depending on our context and the data at hand, 

we also want a “fair” hypothesis. In a wide range of applications, this learning-theoretic 

assumption of Occam’s Razor conflicts with our notions of context-sensitive fairness. 

 The first instance where Occam’s Razor might fail us is when ML systems generalize 

historical trends in data that may have a sociologically or normatively charged context. As 

explained in Section 2, the old adage of ML goes, “Garbage in, garbage out” – an ML system is 

only as good as the data you feed into it. The “truth” obtained from learning-theoretic induction 

on historical data might run counter to our notions of fairness if the historical data is biased in 

some significantly unfair way. For instance, consider a binary resume screening application in 

ML, where we simply classify resumes as “give interview” or “deny interview.” Suppose our 

training data is a historical collection of resumes from people at our company with indication of 

good or bad performance over the past twenty years. However, if the past twenty years at this 

company was wrought with gender discrimination against females in the workplace, the training 

data might indicate that gender is an expressive signal of performance. Then, following our 

principle of learning-theoretic induction with Occam’s Razor, our ML algorithm should also 

learn the hypothesis (put loosely): “females perform worse in this workplace.” We might even 

extrapolate and assume that these historical trends in data are society-wide, not simply company-

wide. This may be the case for attributes such as race or gender, and, thus, our learning algorithm 
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would learn society-wide biases in data. These clearly conflict with our notion of context-

sensitive fairness, where the context might be a society where we value equal treatment on the 

basis of gender. To compare to Goodman’s new riddle of induction, we might actually want the 

“grue” hypothesis (a more complicated violation of Occam’s Razor) over the “green” hypothesis. 

However, the methodology of ML denies us that hypothesis.  

 Another instance where learning-theoretic induction might fail is finding trends in the 

data where they simply do not exist. In a recent paper, an ML system showed that “faces contain 

much more information about sexual orientation than can be perceived and interpreted by the 

human brain” (Kosinski and Wang 1). Using a labeled dataset of images of heterosexual and 

homosexual male and female faces, researchers developed an ML system that correctly 

distinguished between homosexual and heterosexual males in 81% of cases and females in 74% 

of cases. Skepticism and controversy arose from this study, as it was claimed to be a new form of 

physiognomy (the pseudoscientific practice of distinguishing character traits from facial features 

or shape). In a rebuttal, researchers showed that the system actually picked up on patterns 

concerning glasses, makeup, eyeshadow, and image angle – contingent features of faces clearly 

not inherent in one’s facial structure (Arcas y, Blaise Aguera et. al.). In a similar case, an ML 

system deemed capable of “classifying criminals with high accuracy through facial features” just 

picked up on a pattern that criminals in the dataset frowned more often in their portraits (Wu and 

Zhang 1). In both these cases, it is no longer about historical trends in data. Instead, Occam’s 

Razor forces us to reach a potentially unfair (“criminal classifier” facial recognition software 

might be implemented in policing, for instance) hypothesis through nonsensical trends in data. 

Not every inductive pattern is a meaningful one. Further understanding the context and 

intricacies of the training data prevents us from folding to the simplest hypothesis. 
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 A third instance where learning-theoretic induction betrays notions of context-sensitive 

fairness is the case of emergent bias or feedback loops. In one of the earlier works on bias in 

computer systems, Friedman describes emergent bias as bias in computer systems arising 

“…only in a context of use by real users […] as result of a change in societal knowledge, user 

population, or cultural values” (Friedman and Nissenbaum 335). Here, we refer to cases in which 

the ML system acts on the environment through “decisions, control actions, or interventions” 

(Dobbe, et. al. 3). In a well-known example, predictive policing might use discovered crime data 

(e.g. arrest records) to predict the location of new crimes and determine police deployment, 

causing increased surveillance of neighborhoods based on the data. But because arrest records 

correlate with increased surveillance, feeding the data back into the system might then cause 

even more surveillance and more arrests (Barocas et. al. 23). These “closed loop” ML systems 

can then easily validate their own learning-theoretic hypotheses by actually impacting the real 

world, enforcing the hypotheses on every subsequent iteration. In these cases, the hypothesis is 

generated not on a controlled set of observations, but a set that increases in fairness-violating 

measures because of the hypotheses themselves. Thus, feedback loops may force ML systems to 

pick up on the simplest, feedback-amplified hypothesis H from the data, but the more complex 

hypothesis, C (that there is a feedback loop) avoids detection until human thought on the context. 

 I conclude that the Occam’s Razor assumption to learning-theoretic induction -- while 

conducive to the enormous progress in ML – is at tension with the methodology of fair-ML and 

context-sensitive fairness. Further, unfair inductive patterns like the ones above cannot be 

distinguished by a machine – the “simplest” pattern is always the best. Thus, I argue in Section 8 

that human domain experts should be wary of the Occam’s Razor assumption and manually look 

for hypotheses other than the simplest one. 
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7. Measurement 

 In the philosophy of science and epistemology, the nature of measurement and the 

various issues that arise from measuring the empirical world are rich grounds for philosophical 

inquiry. Though questions of measurement might evade immediate thought on how to make an 

ML system fair, it is obvious that data is the lifeblood of an ML system. The crucial question, 

then, is: how did we get this data? I suggest that the philosophy of measurement and discussions 

of the epistemology and methodology of measurement show that the question of context-

sensitive fairness begins much before an ML system is even designed for the data. First, I explain 

the most influential framework of measurement – the representational theory of measurement – 

to formalize the concept. I argue that all measurements already incorporate some assumption 

about the empirical world that we cannot always “stasticize.” Then, I show how this 

understanding of measurement factors into the data of an ML system, which takes these 

measurements and liberally plays with them as both features and (in most applications) labels of 

a model. I propose that measurement is a third methodological blind spot in ML that conflicts 

with context-sensitive fairness.  

 I first attempt to outline the representational theory of measurement (RTM), the most 

influential theory of measurement that formalizes measurement as a concept. In RTM, there is a 

distinction between empirical relationship structures (empirical objects to be measured) and 

formal relationship structures (the quantitative and mathematical relations for these empirical 

objects) (Tal 3.4). Put simply, measurement is then the construction of mappings from the 

empirical relationship structures to the formal relationship structures. A certain mapping is a 

scale, which specifies a certain many-to-one mapping (a homomorphism) from the empirical to 

the formal (Tal 3.4). For instance, I might try to measure a couple of wooden rods, A and B. To 
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construct a rudimentary scale, I might say that rod A is longer than rod B if, when the ends on 

one side of each rod are aligned with each other, the other end of rod A extends past the other 

end of rod B. This is the empirical relationship of longer. Then, by assigning real numbers to the 

rods and assigning the symbol “>” to the relationship longer we can write A > B as the formal 

relationship in this scale. Here, our assumption in the empirical mapping is a relatively harmless 

procedure to distinguish the relationship of longer – namely, putting the rods flush to each other 

– but it is an empirical assumption, nonetheless. In RTM, these assumptions are necessary.  

 With RTM in mind, I argue that the first methodological tension is that not all scales can 

be liberally “statisticized” and, ultimately, some common ML operations become category errors 

on the measured data at hand. Because a scale is just a mapping from the empirical to the formal, 

different empirical relationships admit different formal ones. Types of scales include nominal, 

ordinal, interval, and ratio. In many cases, however, the scales themselves do not admit of 

common statistical techniques (Hardt and Barocas). For instance, suppose we measure a variety 

of restaurant reviews on an ordinal scale from 1 to 5. In an ordinal scale, the numbers have 

meaning in that a 2 is better than a 1, a 3 is better than a 2, and so forth, but just how much better 

is an undefined quantity. All the information we receive from an ordinal scale is the ordering of 

objects. Because of this, taking basic statistical operations such as the mean or standard deviation 

of an ordinally-scaled set is fundamentally a category error (Hardt and Barocas), as they work 

with more than just ordering. Despite this, data in all kinds of ML applications might be on an 

ordinal scale; restaurant reviews, movie ratings, or clinical surveys of “how much pain are you 

feeling” all come immediately to mind. I introduce this issue to argue that, by imposing a scale 

on empirical phenomena, assumptions are made that do not immediately lend themselves to 

machine learning compatible applications, and, by applying invalid operations on these already 
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biased assumptions, fair-ML systems face a serious methodological issue. Here, the context to be 

sensitive to is at the very inception of how we get our data, but it is important context to context-

sensitive fairness, nonetheless. 

 Second, I argue that methodological error in measuring data features is another obstacle 

to fair-ML because of the measurement of often elusive empirical concepts. Recall that the 

features of a dataset describe the various attributes given by each sample in the set. If we are 

designing an ML system to classify risk for heart disease, for instance, we might have the 

features: weight, age, past diseases, and whether heart disease runs in the family. As RTM 

claims, the empirical relationship structures are distinct from formal relationship structures, and 

only through certain mappings can we obtain a formal measurement of empirical things. In the 

case of the two wooden rods, this was simple, but ML is often concerned with measuring 

relatively elusive concepts. Further, when we work in the context of fairness, these concepts are 

typically related to humans. For instance, an ML system for hiring may want to measure features 

such as intelligence or communicability, but the only measurements for these empirical qualities 

might be IQ test and a scored writing sample. But who decides, and how do we know if IQ test is 

a good measurement of intelligence? And how do we score a writing sample without allowing 

some sort of reader bias? Thus, in many cases, the very data features that we use to make 

predictions in the first place already incorporate context dependent, sometimes subjective 

assumptions, before any sort of system is even built. This, of course, reinforces the idea of 

fairness as context-sensitive in fair-ML – without better knowledge of the measurements used to 

form our data, how can we ever truly assure fairness? As Moritz Hardt brilliantly put it in his 

NIPS 2017 talk on “Fairness in Machine Learning,” “every feature is a model.” That is, features 
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incorporate important normative and subjective context-dependent assumptions about the 

measurements, but all features initially look the same to an ML system.  

 Third, in supervised learning (the most prevalent form of ML), the labels of data 

incorporate even a greater degree of subjectivity than the features (Barocas et. al. 16). Recall that 

supervised learning involves taking labelled examples of training data, where labels represent 

some “ground truth” about the samples in the training data. In a training set of images for 

cancerous tissue, each image has either label 0 for non-cancerous or 1 for cancerous. A panel of 

certified doctors or domain experts might provide these labels. In any supervised learning 

problem, these training data are then fed into the ML system for the system to learn and 

generalize to predict on new, unlabeled examples. However, oftentimes, these labels are even 

more nebulous than our features, as they are often constructs created for the purpose at hand 

(Barocas et. al. 16). Whereas features might be real, empirical properties in the world, the labels 

are oftentimes entirely subjective measurements. For example, one might need to choose a label 

for job performance, but the only existing proxies are historical performance reviews (Barocas 

et. al. 17). However, historical performance reviews may admit all sorts of biases such as those 

of past managers or of different teams in the workplace. In another well-cited example in the 

fair-ML literature, we might be in the business of predicting crime, but instead of measuring 

which training samples have actually committed crimes, we might only have access to arrest 

records (Barocas et. al. 17). Yet, arrests are certainly not equivalent to actually committing 

crimes, and using arrests as a proxy admits possible misinformation or misrepresentation about 

the samples. In both these cases, context is crucial to understanding the measurements involved, 

but, above all else, the training data is taken as given “ground truth” for our ML systems to learn 

from. There is no encoding of the context surrounding the choice of proxy, only the proxy itself. 
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More importantly, there is no encoding of the context of subjective choices that went into 

choosing some label-construct. Thus, measuring the labels of training data are context insensitive 

and violate the context-sensitivity of fairness. 

 I conclude that the measurement of empirical phenomena in order to generate training 

data for an ML system is, in its current form, context insensitive, disagreeing with our 

characterization of context-sensitive fairness. In the case of features, the translation from 

empirical relationship structures to formal relationship structures often includes a normative 

judgment or assumption on how to measure an empirical quality. In the case of labels, proxies 

for the actual empirical object are often measured instead of the object itself. Indeed, Cartwright 

and Bradburn argue that some concepts might be “too multifaceted to be measured on a single 

metric without loss of meaning and must be represented as a matrix of indices or by several 

different measures of what goals or values are at play.” This characterization of measured 

concepts suggests a possible start of a solution – somehow encoding normative or subjective 

assumptions into the data upon measurement along with the actual measurement.  Following this 

intuition, I argue in Section 8 that a greater focus on the sources and measurement of data before 

its acceptance as a given, “ground truth” in ML systems is crucial to fit a context-sensitive 

methodology to fairness.  
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8. Suggestions 

 At this point, we have shown three methodological obstacles to implementing fairness in 

ML from the philosophy of computer science and the philosophy of science: abstraction, 

induction, and measurement. These objections stem from the realization that fairness is a 

context-sensitive value, and, as such, avoids capture through methods such as simply specifying a 

“one-size-fits-all” definition of fairness (abstraction) or assuming we have well-measured data 

(measurement). However, this is not to say that fair-ML is a lost cause. Instead, the purpose of 

this paper is to provide a closer look, from a philosophical lens, at these three fundamental 

components of the ML process to reframe current research to embrace broader solutions. In one 

sense, this paper advises against “losing the forest for the trees.” Because of this, I provide three 

suggestions in this section for ways in which ML researchers, philosophers, and domain experts 

alike might better approach fair-ML in a way that embraces the context-sensitivity of fairness and 

begins to assuage these deeper-rooted, philosophical issues. Though these suggestions are by no 

means technical solutions, I intend for them to be guidelines for researchers to avoid 

methodological blunders that betray the understanding that fairness is context-sensitive.  

 First, abstraction of a fair-ML system should necessarily contain consideration of the 

values and context that surround it as fundamental to the iterative process. Design in machine 

learning and computer science is oftentimes iterative. However, I argue that design methodology 

must change if we want to align with the context-sensitivity of fairness. Our ML systems cannot 

iterate simply on the technical portion of the process, driving up accuracy as a specification until 

we notice some societally unfavorable result. In this view, each single iteration of design focuses 

on the technical, and fairness is added later, usually also in a technical sense. Instead, each single 

iteration should include, as pointed out in “Value Sensitive Design and Information Systems,” 
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three parts: conceptual investigations, empirical investigations, and technical investigations 

(Friedman et. al.). Instead of checking for normative assumptions of fairness at the end of the 

pipeline, domain experts and ML practitioners must incorporate context-dependent normative 

assumptions into the initial specifications of the system. This more interdisciplinary approach 

integrates domain experts who truly understand the context of the system, ensuring that values 

are not lost in the process before abstraction takes place. 

 Second, when fairness is involved in induction, the simplest inductive patterns are not 

always the best. As seen in Section 6, learning-theoretic systems are fundamentally inductive, 

using the principle of Occam’s Razor to efficiently converge on the “simplest” hypothesis. 

However, this may lead to inductive hypotheses on nonsensical or historically biased trends in 

data. By better understanding that the simplest induction is not always the fairest induction when 

we review the context of the case, ML practitioners and domain experts alike must engage in 

dialogue about possible alternative hypotheses on the data. This requires an open-mindedness to 

the wide universe of “not-so-simple” hypotheses and cases where (as proposed in Section 6) 

emeralds are actually “grue” instead of “green.”  

 Third, take a closer look at the measurement of data, the representation of those 

measurements, and question “ground truth.” A huge blind spot in the current ML pipeline exists 

even before data is fed into an ML system – the inception of that data. Based on the context, 

measurements might be wrongly scaled, misused, or proxies for irrelevant or unrepresentative 

qualities. A better understanding of measurement as a subjective mapping from the empirical to 

the formal might inspire deeper inquisition into the representativeness of certain labels or 

features in data. In the domain of fair-ML, this is especially important, as, oftentimes, the traits 

we must measure are human or social traits that elude simple schemas. Again, open dialogue is 
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needed between domain experts, ML practitioners, and, very importantly, social scientists (who 

have better understanding of how human qualities can be quantified) to take a closer look at the 

representativeness or abuse of how we get our data and come up with ways to improve. 
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9. Conclusion 

 In conclusion, I argue that, to ensure that the ML community truly develops fair ML 

systems, we must first address three main philosophical issues: abstraction, induction, and 

measurement. These exist as blind spots in the current design of ML systems, and knowledge of 

their existence might spur future research into how to find concrete solutions to each.  

To reach this conclusion, I first provided an overview of the basic process of ML and a 

broad survey of the current main definitions of fairness in the fair-ML literature. Then, I argued 

the importance of focusing on methodological objections to the fair-ML field, revealing three 

blind spots from the philosophy of computer science and philosophy of science. In order to 

motivate these blind spots and show that they are, indeed, problems, I presented an intuitive 

assumption – recognizing that fairness is a context-sensitive value in the specific field of fair-

ML. Importantly, the question of whether this claim holds in the general case with fairness is left 

on the table. With this characterization in hand, I moved on to each of the three blind spots. 

Abstraction, from the philosophy of computer science, conflicts with fairness as context-sensitive 

because it requires portability and concrete specifications. Induction, from the philosophy of 

science, might fail to provide the fairest hypothesis because of the principle of Occam’s Razor in 

learning-theoretic systems; oftentimes the simplest hypothesis is not the fairest when the context 

of fairness is involved. Measurement, also from the philosophy of science, often provides 

overlooked context that is hidden in formal representations of the data, such as assumptions that 

certain human traits can be easily quantified, or proxies of complex empirical phenomena are 

sufficiently representative. 

 Although the fair-ML field has grown tremendously in recent years as ML technologies 

become ubiquitous and increasingly consequential in our daily lives, perspectives from 
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philosophy have been sparse. My hope is that this paper, at the very least, teases out serious 

philosophical issues in fair-ML to inspire further reflection from those in the field of ML and 

further philosophical investigation from those in the field of philosophy. While technical and 

concrete solutions await, the advantage of philosophy is that it allows us to revisit our 

assumptions, see our blind spots, and recognize when we might be “losing the forest for the 

trees.” I can only hope that, moving forward, philosophy is a more widely used tool in machine 

learning to tease out and question its most basic assumptions.  
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