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Abstract
We presentMathematics for Machine Learning, a one-semester math-
ematics course designed to strengthen students’ foundations before
further study and research in machine learning (ML) and data sci-
ence. Oftentimes, the mathematical prerequisites needed for serious
study of ML are taught in a disjointed manner. Our course is de-
signed to bridge this gap and provide emphasis on concepts heavily
employed in modern ML, such as spectral analysis in linear alge-
bra or convex optimization in calculus. We structured our course
around the three “pillars” of math that underlie much of modern
ML: (i) linear algebra, (ii) calculus and optimization, and (iii) prob-
ability and statistics. Weaving each of these together is a central
story — all concepts, ideas, and proofs are introduced relative to two
ubiquitous concepts in machine learning: least squares regression
and gradient descent, providing a consistent anchoring narrative
and constant motivation for mathematical ideas.
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1 Introduction
In this poster, we outlineMathematics for Machine Learning (M4ML),
a one-semester course with the goal of strengthening students’
mathematical foundations for rigorous study of machine learning
and data science at the advanced undergraduate or graduate level.
This course was piloted in an initial six week iteration in the sum-
mer of 2024 for undergraduates and masters students at Columbia
University, with very positive feedback (see Section 4).

The goal of this course is to give students the preparation and
confidence to pursue machine learning at our institution by ad-
dressing a root issue: lack of sufficient mathematical preparation. A
prevalent issue in upper-division machine learning courses in our
department, felt by both instructors and students, is that, even if
they have formally completed the prerequisites, students coming
into such courses lack sufficient foundations in the three mathemat-
ical “pillars” of machine learning: (i) linear algebra, (ii) multivariable
calculus, and (iii) probability and statistics. This is particularly felt
in our core machine learning course, where there is a steep jump
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in mathematical maturity. This course remedies this issue by pro-
viding a second exposure to these prerequisites, focusing on each
of these mathematical “pillars” with a view towards developing
fluency in the topics that matter specifically for machine learning.

The course is aimed at advancing undergraduates who have al-
ready completed (but not necessarily mastered) undergraduate level
linear algebra, probability and statistics, and multivariable calculus
courses. Optional (but recommended) prerequisites include an in-
troductory programming course (for light programming problems
in Python) and a first course in reading and writing proofs (at the
level of, say, discrete mathematics).

2 Main Issues
There are several main issues we see our course addressing. Al-
though we found these as issues at our institution, we anticipate the
same issues cropping up in other computer science departments.

Variance in prerequisite courses. Our department allows stu-
dents to take multivariable calculus, linear algebra, and probability
and statistics in different departments, with different professors
and syllabi. This introduces much variance in what students might
learn in these courses, and knowledge gaps in any of these three
areas can lead to downstream confusion. This course aims to have
a consistent syllabus that patches up such potential holes.

Insufficient focus on core ML concepts. Due to being “of-
floaded” to different departments, the prerequisite courses may
not focus on specific techniques and concepts that have particular
importance in machine learning. For example, a multivariable cal-
culus course may focus on line and path integrals while a student
interested in machine learning may need more time learning about
optimization and the implications of convexity. This course aims
to focus on the core topics from each prerequisite in greater detail
than their coverage in prerequisite undergraduate courses.

Lack of motivation for theory. Prerequisite undergraduate
math courses often present theory without sufficient motivation
in why a student might need that theory, especially with an eye
towards more applied domains. Our course revolves around two
main concepts in machine learning (least squares regression and
gradient descent) that are motivated early on as realistic and ubiqui-
tous throughout the field of machine learning. With an eye towards
understanding these two concepts with as much rigor and depth as
possible, we develop the theory in order to deepen our understand-
ing of regression and gradient descent, which gives the course a
coherent narrative and scaffolding, all while motivating each new
piece of theory we introduce. And, because regression and gradient
descent are mathematically deep and interesting in their own right,
we are able to flesh out many different perspectives of least squares
and gradient descent as students acquire new mathematical tools.
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3 Course Overview
Wenowprovide a brief overview of our course, whichwill be fleshed
out more fully in the poster when we may share the full course
webpage, graphics, and materials. In Sections 3.2, 3.3, and 3.4, we
present the modules of the course, where each module corresponds,
roughly, to three hours of lecture.

3.1 Course “Story”
We designed our course to have an overarching story. The course
is structured around two main ideas that underlie modern machine
learning: least squares regression and gradient descent. Very infor-
mally, least squares regression is a classic way of modeling prob-
lems in machine learning (the “what”), and gradient descent is the
workhorse algorithm that drives much of modern machine learning
(the “how”). Every week, we develop and motivate these two ideas
in lecture with the tools and concepts students learn from each
part of the course. As the class goes on, students develop different
perspectives on these two ideas from each “pillar” of mathematics.
The hope is that, by the end of the course, students develop a deep
understanding of both these ideas in ML while also having two
concrete “applications” to motivate all the abstract mathematical
tools and concepts they learn in the course.

To emphasize the development of these parallel “stories,” we
centered each module around accessible 3D renderings for the
students to interact with that guide the development of each lecture.
Due to space restrictions, examples will be shown in the full poster,
along with an extended description of each module.

3.2 Part 1: Linear Algebra
The course begins with a tour of linear algebra with specific fo-
cus on building geometric intuition with least squares regression
as analogous to projection onto a subspace spanned by data. In
Module 1 (vectors, matrices, and least squares) and Module 2
(bases subspaces, and orthogonality), students learn how data
is represented in matrices and vectors in machine learning, and
they culminate in a geometric proof from purely linear algebraic
principles of ordinary least squares. Module 3 (singular value
decomposition) gives students the tool of the pseudoinverse to get
a more general solution to ordinary least squares when the number
of equations is less than or greater than the number of unknowns.
Module 4 (Eigenvalues and eigenvectors) introduce diagonaliza-
tion and the all-important positive semidefinite matrix, motivating
quadratic forms and demonstrating that the least squares objective,
all along, was a quadratic form. We hint at optimizing such objects
in rough analogy to optimizing quadratics in single-variable calcu-
lus, which leads smoothly to Part 2: Calculus and Optimization.

3.3 Part 2: Calculus and Optimization
Picking up from the understanding that the least squares objective
can be seen as a positive semidefinite quadratic form, Module 5
(differentiation and vector calculus) reviews multivariable dif-
ferentiation and arrives at the same ordinary least squares solution
as in Part 1 but from an entirely different perspective and proof:
optimization of a quadratic function.Module 6 (Taylor series and
linearization) re-introduces the Taylor series and multivariable
calculus as the art of taking linear or quadratic approximations of

possibly unwieldy functions, and this motivates and allows us to
introduce gradient descent, the second parallel story of the course.
After using Taylor series to prove a basic local convergence the-
orem for gradient descent, Module 7 (Optimization and the
Lagrangian) tours local optimization and constrained optimiza-
tion, bolstering the regression story with constrained optimization,
which naturally leads to the discussion of regularization and ridge
regression. Module 8 (Convex Optimization) brings the two sto-
ries together — students now have the machinery to prove that least
squares regression admits a convex function, so applying gradient
descent to solve the problem will provably converge to a global
optimum. This gives a third, iterative solution to least squares re-
gression, bringing our course full circle.

3.4 Part 3: Probability and Statistics
Finally, we motivate the final third of the course on probability
and statistics in Module 9 (Probability Theory, Models, and
Data) by grounding the epistemological assumptions of machine
learning in probability theory, with an eye towards analyzing the
statistical properties of least squares. The language of probability
allows us to posit a statistical error model, and we prove that,
under this model, least squares’ conditional expectation is the true
parameter vector, and its conditional expectation is the a function
of the noise variance. Module 10 (Law of large numbers and
statistical estimation) reintroduces the law of large numbers and
the notion of a statistical estimator, and students see the Gauss-
Markov Theorem — that least squares is also, in a formal sense, an
optimal unbiased estimator. The notion of statistical estimation also
gives us language to talk about stochastic gradient descent, the main
workhorse algorithm that powers most of modernmachine learning.
Module 11 (Central Limit Theorem, Distributions, and MLE)
and Module 12 (Multivariate Gaussian Distribution) finally
connect least squares back to perhaps the most familiar statistical
distribution, the Gaussian, by showing that it arises both from
the statistical paradigm of maximum likelihood estimation with
Gaussianity assumptions and as a sampling distribution.

4 Initial Student Experiences
We piloted this course in the summer of 2024 in a six-week for-
mat, and we received overwhelmingly positive evaluations and
feedback, albeit from a small sample of 14 students. At the end
of the course, students received an anonymous evaluation survey,
where questions had categorical answer choices from (1) Poor, (2)
Fair, (3) Good, (4) Very Good, and (5) Excellent. The two relevant
questions were Amount Learned and Overall Course Quality, which
both received 8 votes of (5) Excellent and 1 vote of (4) Very Good
from 9 total responders.

Additional student evaluations and feedback will be present in
the poster, when more space is permitted.
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