
Teaching Portfolio
Samuel Deng
samdeng@cs.columbia.edu
samuel-deng.github.io

In this document, I’ve collected a range of representative artifacts that I believe represent my
teaching. In particular, I’ve attempted to collect material that I feel encapsulate the core
principles of my teaching philosophy:

1. A driving and cohesive narrative should propel all parts of a course.
2. Ideas should be presented as if the student could’ve discovered them themselves.
3. An instructor should never forget how they first struggled when learning the same

ideas.

Table of Contents
This document is quite large, so please sample whatever you find relevant and ignore whatever
you do not. It should operate a bit like a webpage. All blue links lead to other parts of this
document. All orange links lead to external links.

I. Evaluations
A. Summary of Courses and Evaluations
B. Summary of Teaching Awards and Certifications
C. Student Evaluations: Math for Machine Learning
D. Additional Feedback: Math for Machine Learning
E. Student Evaluations: Computational Linear Algebra
F. Student Evaluations: Natural and Artificial Neural Networks
G. Student Evaluations: Discrete Mathematics
H. Student Evaluations: Machine Learning

II. Representative Recorded Lectures
A. Math for ML Lectures
B. Computational Linear Algebra Recitations and Guest Lecture

III. Example Syllabi
A. Math for Machine Learning Syllabus
B. Natural and Artificial Neural Networks Syllabus

IV. Example Lecture Material
A. Lecture Slides: Math for ML (Subspaces, bases, orthogonality)
B. Lecture Notes: Computational Linear Algebra (Eigenvalues/Eigenvectors)

V. Example Assignments
A. Problem Set: Math for ML
B. Python Lab: Natural and Artificial Neural Networks
C. Python Programming Assignment: Computational Linear Algebra 

mailto:samdeng@cs.columbia.edu
https://samuel-deng.github.io/
https://samuel-deng.github.io/assets/teaching_statement_short.pdf

Evaluations of 2 50

Summary of Courses and Evaluations

Below is a table that contains my “Overall Instructor Quality” for all the courses that I’ve TA’d or
taught. These all come from end-of-semester anonymous teaching evaluations solicited by
Columbia, and the scale given is: (1) Poor (2) Fair (3) Good (4) Very Good (5) Excellent.

• All courses I’ve designed have their materials all available online; just click the orange links
to view all the materials.

• The orange link for Computational Linear Algebra directs to a YouTube playlist complete
with recordings of all the weekly recitations I designed and taught throughout the semester,
as well as a guest lecture I did on eigenvectors and eigenvalues.

• Click the blue links to be directed to the full set of evaluations for that semester’s class.

• The greyed out boxes were evaluations that I unfortunately couldn’t find in the system. The

Spring 2020 in particular had no final evaluations because of the COVID-19 pandemic.

• * The Spring 2022 semester of Natural and Artificial Neural Networks was a companion “lab”

session to a seminar titled Natural and Artificial Neural Networks. The instructors never
figured out how to separate the lab session and list us as “Instructors” on the official listing,
which is why our official evaluation designates us as “TAs.” 

Course Semester Role Overall
Instructor
Quality

Number of
Respondents

Number of
Students

Math for ML Summer
2024

Course
Designer/
Insructor

4.83/5 7 30

Computational
Linear Algebra

Fall 2022 Head TA 4.63/5 51 130

Natural and
Artificial Neural
Networks (Lab)

Spring 2022 Co-Course
Designer/Co-
Instructor *

5/5 3 15

Machine Learning Summer 2020 Head TA

Discrete Math Spring 2020 Head TA

Discrete Math Fall 2019 Head TA 4.21/5 38 287

Machine Learning Spring 2019 TA 4.83/5
 18 259

Discrete Math Fall 2018 TA

Jump To: Table of Contents

https://www.youtube.com/playlist?list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd
https://samuel-deng.github.io/math4ml_su24/
https://www.youtube.com/playlist?list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/

Evaluations of 3 50

Summary of Teaching Awards, Certification, and Other Service

Awards
My work as a teacher has been recognized over the years by various awards and fellowships:

• Teaching Assistant Fellowship (2019). Awarded to “exceptional” teaching assistants in the
computer science department, providing full funding for several semesters of my M.S.

• Andrew P. Kosoresow Award for Excellence in Teaching and Service (2021). Our
computer science department’s highest award for teaching, awarded to students “for
outstanding contributions to teaching [and exemplary service] in the Department.

• SEAS Doctoral Teaching Fellowship (2024). School-wide, faculty-nominated fellowship
awarded to PhD students who who have demonstrated “excellence in teaching,” meant to
allow students to further develop their pedagogy.

Six of the seven anonymous respondents in Math for ML also elected to nominate me for a
SEAS Distinguished Faculty Award:

Teaching Certification
Over the past four years, I’ve participated in Columbia’s Center for Teaching and Learning’s
Teaching Development Program (TDP), an evidence-based, multi-year teaching certification
program for PhD students across the university. The TDP focuses on cultivating, documenting,
and reflecting upon evidence-based, student-centered teaching. I have completed the
requirements for the fundamental Foundational Track and am slated to complete the
Advanced Track early Summer 2025. The Advanced Track is the CTL’s highest certification.

Teaching-related Service
My proudest service contribution has been my five semesters coordinating the Emerging
Scholars Program (ESP), Columbia’s peer-led workshop and discussion seminar for first-year
undergraduates. ESP provides introductory computer science students an opportunity to learn
about a wide range of computer science topics beyond programming, build problem-solving
confidence, receive personalized mentorship, and form close-knit peer groups. Its motivation
stems from the recognition that computer science students come from a plethora of academic
and personal backgrounds, and large introductory courses lack the close-knit environment that
fosters connections with peers and group problem-solving. Alongside fellow PhD student
Hadleigh Schwartz, each semester I led a team of eight to ten undergraduate teaching
assistants and coordinated the program across as many as ten sessions of 100 total students. 

Jump To: Table of Contents

https://tdp.ctl.columbia.edu/
https://tdp.ctl.columbia.edu/about/overview/
https://tdp.ctl.columbia.edu/about/overview/
https://www.cs.columbia.edu/esp/
https://www.cs.columbia.edu/esp/

Evaluations of 4 50

Student Evaluations: Math for Machine Learning

Course: Mathematics for Machine Learning (click to access all materials)
Semester: Summer 2024
Role: Instructor/Course Designer

Course Size: 30

I have condensed all the responses into tables to save space; the original evaluation is available upon request.

Responses to “Enter any additional comments here:”

• Sam is a tremendous lecturer; he is extremely knowledgeable, prepared, energetic, engaged,
and accessible. This is course is marketed to students preparing for COMS 4771, but I think
its value far exceeds just that individual course. Make no mistake, there is a ton of content
covered in this course and it is probably better suited for a 12-week session, but this course
is a tremendous value in that it cuts through the filler of at least three other standalone
courses and gets us straight to the most important, fundamental aspects of ML math. With
that said, in large part the course is manageable because of Sam - I really appreciate how
thoroughly prepared he is, and the course website is among the best that I've seen. We were
sort of guinea pigs in this inaugural cohort of ours, so naturally there were some typos and

Prompt (1) Poor (2) Fair (3) Good (4) Very
Good

(5)
Excellent

Mean Resp.
Rate

Course: Amount
Learned

0 0 0 1 6 4.86/5 7

Course:
Appropriateness
of Workload

0 0 0 1 6 4.86/5 7

Course: Fairness
of Grading
Process

0 0 1 1 5 4.57/5 7

Course: Overall
Quality

0 0 0 1 6 4.86/5 7

Instructor:
Organization
and Preparation

0 0 0 1 6 4.86/5 7

Instructor:
Classroom
Delivery

0 0 0 1 6 4.86/5 7

Instructor:
Approachability

0 0 1 1 5 4.57/5
 7

Instructor:
Overall Quality

0 0 0 1 6 4.86/5 7

Jump To: Table of Contents

https://samuel-deng.github.io/math4ml_su24/

Evaluations of 5 50

errors in problem sets that needed to be cleaned up on the go, but Sam is approachable and
it never felt burdensome to ask clarifying questions or make suggestions on the content,
problem sets, or his delivery. He's a great lecturer, math courses can be hit or miss and often
tedious - that was not the case, and if you missed lectures his recordings are just as clear
and engaging as if you were in the classroom. All around, just a great job - he's going to be
an awesome Professor, someday!

• The class was extremely well organized, starting from basics and leading to an overall
understanding of bigger math concepts. All HW problems were helpful and well-guided - the
problem sets were long but they were divided into smaller sections which reduced
unnecessary time spent going the wrong way (it was very clear if I was going in the right
direction). The coding assignments were also very clear and we could immediately see the
results and learn from it. Unlike some other classes were coding homework feels distanced
from the content, the coding part here well-matched the concepts discussed and the way it
had explanations in between each sections of the coding helped with understanding the
features we are building.

• This course have bolstered my confidence in approaching the material covered in machine
learning.

• Sam is an excellent instructor, and this class was extremely enjoyable. I look forward to
taking any other courses Sam prepares.

Additional question for this course was “Would you nominate this professor for the SEAS
Distinguished Faculty Award?”

The answers to: “If so, please explain why”:

• He brings both energy and clear expectations to the classroom.

• Sam's as good as it gets and he's genuinely interested in how we're doing, what we're

interested in, and how he can help us along our journey.

• It really felt like the instructor was prepared to teach the class - the contents were not only

organized but it had story to it. It worked up its way to a bigger concept. He had amazing
slides and each concepts were supported with examples that he clearly worked through in
class. Since it was a summer class and not many people took it (thus had only one TA), there
were not many office hours available compared to some other CS classes during the regular
semesters. However, he was always available through Ed and scheduled extra office hours if
students requested.

Jump To: Table of Contents

Evaluations of 6 50

• Sam is a fantastic instructor, in and out of the classroom. His lectures are excellent, his
course is interesting and necessary, and his is prepared with information beyond the scope of
the class.

Additional Feedback: Math for Machine Learning

I have also included additional feedback I’ve received in the form of emails, an anonymous
end-of-course survey I used to solicit more course-specific feedback, and even a reddit post.

Emails

Jump To: Table of Contents

https://www.reddit.com/r/columbia/comments/1esdnyw/if_offered_again_dont_pass_up_on_coms_math_for_ml/

Evaluations of 7 50

Jump To: Table of Contents

Evaluations of 8 50

Jump To: Table of Contents

Evaluations of 9 50

End-of-course Survey

Jump To: Table of Contents

Evaluations of 10 50

Reddit Post
 

Jump To: Table of Contents

https://www.reddit.com/r/columbia/comments/1esdnyw/if_offered_again_dont_pass_up_on_coms_math_for_ml/

Evaluations of 11 50

Student Evaluations: Computational Linear Algebra
Course: Computational Linear Algebra (click to access recitations and guest lecture)
Semester: Fall 2022
Role: Head TA

Course Size: 130

I have condensed all the responses into tables to save space; the original evaluation is available upon request.

Responses to “Comments:”

• Sam was easily one of the best TAs I've had at Columbia. He explained things in a clear and
concise manner and was clearly very passionate about the subject. Attending his recitations
was my favorite part of this class!

• Sam is a superstar. He was great in his recitations and the guest lecture he did. He's patient
and a great communicator. If he's not on a professorial track, I hope he considers it. Also, as
a commuting GS student, I was appreciative to have recitations available on Zoom and
recorded.

• Excellent lecturer and very good at explaining tricky concepts in recitation

• Probably the best instructor and TA that I've had the pleasure of learning from. Very rarely

does an instructor (professor or otherwise) come as well prepared in terms of lesson
materials and knowledge whilst maintaining approachability and affability. Very responsive to
questions and shares his thought process regarding topics at hand. If there is a TA of the year
sticker Sam should definitely get it.

• TA Sam is the reason that I understood half of the material in this course. His explanations
always made the most sense, and he really went above and beyond to make sure that we
understood everything, through extra videos and lengthy Ed responses. I can't explain how
grateful I am to have had Sam to help me understand CLA.

• Samuel is really good at teaching. Not only does he have the knowledge base, but he also
has a very good energy about him while he's teaching that draws you into the material. Also,
he can dumb things down "simple stupid" which make it easier to broadly grasp a concept
before building upon its intricacies that make it complex.

• Informally, Sam is the best. I literally might have pulled the chute on this course if I didn't
have him to pull me through this course kicking and screaming. Sam and I spent no less then

Prompt (1) Poor (2) Fair (3) Good (4) Very
Good

(5)
Excellent

Mean Resp.
Rate

Overall Quality 0 0 4 11 36 4.63/5 51

Knowledgeability 0 0 3 11 37 4.67/5 51

Approachability 0 1 3 11 36 4.67/5 51

Availability 0 3 5 10 32 4.42/5 50

Communication 0 1 6 8 35 4.54/5 50

Jump To: Table of Contents

https://www.youtube.com/playlist?list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd

Evaluations of 12 50

3ish hours every Friday going over course material. Don't get me wrong Daniel Hsu is great,
but Sam could have absolutely taught this course for Daniel without an issue. 9.7/10.

• nice

• Very well prepared and patient!

• Always explained everything really well!

• Sam has been an incredible TA. He is super caring and knowledgeable, providing multiple

ways to understand a topic.

• This man went above and beyond as a TA. He saw lots of messages on the Ed that a

particular Problem Set was hard so he made a video giving a high level overview of the
homework. Another Problem Set was hard and no one really understood the solutions
(because Hsu releases solutions without work/explanation) so Deng made a video of him
going through the solutions with work. Great TA. Was very responsive to the needs of the
students!

• He's so knowledgeable, approachable, and friendly -- like no matter how silly a question may
seem, he will answer it with patience and do his best to make sure you understand. His
review sessions were life savers and he organizes his office hours so well so everyone who
needs help will get help in a timely manner - overall one of the best TAs I've learned from!

• king

• INCREDIBLE! An amazing teacher. I wouldn’t have understood the material nearly as well if

not for Sam. Thank you Sam!!! It was a pleasure!  

Jump To: Table of Contents

Evaluations of 13 50

Student Evaluations: Natural and Artificial Neural Networks Lab

Course: Natural and Artificial Neural Networks Lab (click to access all materials)
Semester: Spring 2022
Role: Co-Instructor/Co-Course Designer/TA
1

Course Size: 15

I have condensed all the responses into tables to save space; the original evaluation is available upon request.

Responses to Comments:

• great TA. really knows his stuff.

Prompt (1) Poor (2) Fair (3) Good (4) Very
Good

(5)
Excellent

Mean Resp.
Rate

Overall Quality 0 0 0 0 3 5/5 3

Knowledgeability 0 0 0 0 3 5/5 3

Approachability 0 0 0 0 3 5/5 3

Availability 0 0 0 0 3 5/5 3

Communication 0 0 0 0 3 5/5 3

 With fellow PhD student Clayton Sanford. This was a companion two-hour “lab” course that we created all the materials and 1

taught every week. Every session involved a short lecture and then an interactive Python “lab.” We also served as TAs to the main
seminar course.

Jump To: Table of Contents

https://samuel-deng.github.io/coms4995-nat-art-neural-nets/

Evaluations of 14 50

Student Evaluations: Discrete Mathematics

Course: Discrete Mathematics
Semester: Fall 2019
Role: Head TA

Course Size: 287

I have condensed all the responses into tables to save space; the original evaluation is available upon request.

Responses to Comments:

• Very good at giving hints that don't give the answers away, very helpful and great teacher, all
around cool guy

• Best TA ever!!

• He answered questions on piazza well. 

Prompt (1) Poor (2) Fair (3) Good (4) Very
Good

(5)
Excellent

Mean Resp.
Rate

Overall Quality 1 0 9 8 20 4.21/5 38

Knowledgeability 0 1 7 6 21 4.34/5 35

Approachability 1 0 9 4 21 4.26/5 35

Availability 1 0 6 6 20 4.33/5 33

Communication 1 0 8 4 20 4.27/5 33

Jump To: Table of Contents

Evaluations of 15 50

Student Evaluations: Machine Learning

Course: Machine Learning
Semester: Spring 2019
Role: TA

Course Size: 259

I have condensed all the responses into tables to save space; the original evaluation is available upon request.

Responses to Comments:

• Thank you!!!

• Good

• Thanks for helping with the homework!

• sammy d is my homie g five stars

• He was super friendly and approachable, always willing to help at office hours or even

outside of class 

Prompt (1) Poor (2) Fair (3) Good (4) Very
Good

(5)
Excellent

Mean Resp.
Rate

Overall Quality 0 0 1 1 16 4.83/5 18

Knowledgeability 0 0 1 2 15 4.78/5 18

Approachability 0 0 1 1 16 4.83/5 18

Availability 0 0 1 1 16 4.83/5 18

Communication 0 0 1 1 16 4.83/5 18

Jump To: Table of Contents

Representative Recorded Lectures of 16 50

Math for Machine Learning Lectures
In this section, I present a 15 minute representative lecture of my teaching and give a broad
overview of three representative lectures of Math for ML that exhibit my teaching principle: (1) 2

A driving and cohesive narrative should propel all parts of a course. If you’d like to access
my course in its entirety:

• All lecture slides are available here.
• A complete YouTube playlist including all the recorded lectures is available here.

Red-light, yellow-light, green-light system
During lectures, one practice that embodies my teaching principle (3) An instructor should
never forget how they first struggled when learning the same ideas is a “red-light, yellow-
light, green-light system” I’ve developed for students.

This system comes from the understanding that, oftentimes, students may be insecure or shy
about expressing confusion. It’s greatly helped me calibrate the pacing during difficult sections
of the class.

 Because this was a summer course, the classes were 3 hours long and included the content of two traditional class sessions. 2

Jump To: Table of Contents

I make this poll
available at the
start of each
lecture for students
to access on their
phones.

On my PC, a
synchronously
updated version of
this poll is within
sight at all times.

https://samuel-deng.github.io/math4ml_su24/content/
https://youtube.com/playlist?list=PLNm9W-YkOtpMgKhBj8sc1CMHxUPcqHsRM&si=jozd8RivJ7L-0-1S

Representative Recorded Lectures of 17 50

15-minute Representative Lecture
Here is a link to a 15-minute representative lecture that was a part of my final session of Math
for ML Summer 2024, Lecture 6.2: Multivariate Gaussian and Finale. This clip reviews the
motivation behind the course and the key developments in the first third on linear algebra. The
full 3 hour lecture video can be found here.

Overview: Three Representative Lectures

For more detail, I’ll present a broad overview of three representative lectures that show how I
spin a narrative around a central idea of the course: ordinary least squares. From the syllabus:

This is a course with a loose story. The course is structured around two main ideas that
underlie modern machine learning: least squares regression and gradient descent. Very
informally, least squares regression is a classic way of modeling problems in machine
learning (the “what”), and gradient descent is the workhorse algorithm that drives much
of modern machine learning (the “how”). Every week, we’ll develop and motivate these
two ideas in lecture with the tools and concepts you learn from each part of the course.
As the class goes on, you’ll develop different perspectives on these two ideas from, first,
what we learn in linear algebra, then calculus and optimization, and, finally, probability
and statistics. The hope is that, by the end of the course, you’ll have a deep
understanding of both these ideas in ML while also having two concrete “applications” to
motivate all the abstract mathematical tools and concepts you learn in the course.

The three representative lectures are:

1. Lecture 1.1: Vectors, Matrices, and Least Squares (video, slides)
2. Lecture 3.1: Differentiation and Vector Calculus (video, slides)
3. Lecture 4.2: Convexity and Convex Optimization (video, slides) 

Jump To: Table of Contents

https://youtu.be/QRKl5xlIgIQ?si=aVtluQUWLvV1p2yY
https://youtu.be/SHweC31c37w?si=XVJ_23Eaa1wePiY2
https://youtu.be/SHweC31c37w?si=XVJ_23Eaa1wePiY2
https://youtu.be/p6K-kRm7WkM?si=fZNBrjqoz5ihK6H8
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.1_linalgandols.pdf
https://www.youtube.com/watch?v=BibhhpeI6p4&list=PLNm9W-YkOtpMgKhBj8sc1CMHxUPcqHsRM&index=5
https://samuel-deng.github.io/math4ml_su24/assets/slides/3.1_derivatives.pdf
https://youtu.be/y7BRVS7hV9U?si=tT0LbdArEShcibO2
https://samuel-deng.github.io/math4ml_su24/assets/slides/4.2_convexity.pdf

Representative Recorded Lectures of 18 50

Jump To: Table of Contents

Lecture 1.1: Vectors,
Matrices, and Least Squares
is the very first lecture.

Every lesson begins
with an updated “big
picture” of the two main
narratives of the course:
least squares and gradient
descent.

All of the 3D renderings are
available for students to play
with in the “Story Thus Far”
sections of Course Content.

In this lesson, students
prove a solution to ordinary
least squares purely from
geometric intuition and linear
algebra.

To arrive at this, I continually
reference this 3D rendering.

I close every lesson
with a recap of the important
concepts learned. These are
tracked in an ongoing
course skeleton.

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/content/
https://samuel-deng.github.io/math4ml_su24/skeleton/
https://youtu.be/p6K-kRm7WkM?si=9LuLQBccnkoJlyY3
https://youtu.be/p6K-kRm7WkM?si=9LuLQBccnkoJlyY3

Representative Recorded Lectures of 19 50

‘

Jump To: Table of Contents

Lecture 3.1:
Differentiation and Vector
Calculus is the first lecture
of the second third of the
course on calculus and
optimization.

At this point, the linear
algebra third of the course
has finished. I’ve hinted at
this “bowl-shaped”
representation of the least
squares error function, but
students don’t have the
formal tools (yet) to analyze
it. This lecture will give them
these tools.

The first “narrative” of the
course takes a twist: least
squares can be solved
either: completely linear
algebraically using pure
geometric intuition or using
the tools of calculus!

By the end of the course,
the goal is for students to be
able to see least squares
and gradient descent from
as many perspectives as
possible.

These perspectives motivate
which “characters” I
introduce each lecture: they
see a gradient for the first
time in service of
discovering a bit more about
least squares.

https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html

Representative Recorded Lectures of 20 50

 

Jump To: Table of Contents

Lecture 4.2: Convexity and
Convex Optimization is the
final lecture of the calculus
and optimization unit of the
course.

The big picture slides now
hint that our least squares
picture is showing up in a
“crossover” with gradient
descent.

The second third of the
course culminates in the two
stories of the course coming
together: gradient descent
applied to least squares.

From the very first
lecture, I hinted at the
algorithm of gradient
descent purely with hand-
wavy intuition: “rolling a
marble down a bowl.”

This lecture gives students
the mathematical tools to
prove why gradient descent
converges, and, specifically,
why it works so well with
least squares. Students
investigate this connection
further in Problem Set 4.

One student reported that
their “mind was blown” at
this, which is all I can ask for.

https://samuel-deng.github.io/math4ml_su24/assets/files/ps4.pdf
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be

Representative Recorded Lectures of 21 50

This philosophy that (1) A driving and cohesive narrative should propel all parts of a course
was well-received by students in an end-of-semester anonymous survey. All four respondents
appreciated this overarching narrative.

This was a broad overview of three lectures at various points through the semester. For more
details on how I structure my material for an individual lecture, jump to Lecture Slides: Math
for ML (Subspaces, bases, orthogonality).

Jump To: Table of Contents

Representative Recorded Lectures of 22 50

Computational Linear Algebra Recitations and Guest Lecture
This section includes some video recordings of my teaching during Computational Linear
Algebra (CLA), where I held a weekly recitation session and delivered a guest lecture. A playlist
of all my CLA teaching can be found here.

I’m particularly proud of my final recitation lecture for CLA, where I tied together each unit of
the class into an overarching “big picture” revolving around the four fundamental subspaces.

I also took the opportunity to have my teaching observed and critiqued from the Center for
Teaching and Learning as part of their Teaching Development Program’s observation
requirement. This happened during my guest lecture on eigenvalues and eigenvectors.
Unfortunately, the sound didn’t pick up in lecture, so this is a re-recording of the same content.

 

Jump To: Table of Contents

https://www.youtube.com/playlist?list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd
https://www.youtube.com/playlist?list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd
https://youtu.be/lOADPrhy8nI?si=1W1HNtlCGRcmLOy7
https://youtu.be/Hpa2rl4Euyo?si=BikyBlYG7I45GSZ8

Example Syllabi of 23 50

Math for Machine Learning Syllabus
This section includes a few annotated snippets of my syllabus and course website for Math
for ML. A couple details on how this course came to be:

• I actually had the inkling of an idea for this course in my undergraduate senior year, Fall 2018,
after I somehow hobbled through our Machine Learning course without ever taking
probability and statistics. It was brutal, and conversations with peers from that point on
showed me that I was not alone: many undergraduates and Master’s students at Columbia
felt that the jump from math prerequisites to our flagship ML course is too steep.

• Recognizing this as a pain point in our curriculum, I began constructing the course in earnest
in Fall 2023, eventually ending up with this rationale.

• When I proposed this rationale to some faculty responsible for the undergraduate curriculum
in the department, I was pleasantly surprised that this has been on their mind for a while, but
no one had taken the initiative to do it.

• I decided to take the leap and create the course through Fall 2023 and Spring 2024, and I
piloted the course during Summer 2024 under the SEAS Teaching Fellowship.

I didn’t quite have the words then to express this, but, upon reflecting on this now, I was really
motivated by my third teaching principle pervades every design decision in this course: (3) An
instructor should never forget how they first struggled when learning the same ideas. I
figured: if I could go from not knowing what an expectation is while taking Machine Learning to
finishing a PhD in theoretical machine learning, I’m sure others could too. They just need the
right preparation.

Jump To: Table of Contents

My full syllabus and content
is available online. This has
actually led to some
fortuitous consequences:
educators at other
institutions have reached out
to talk about the course and
its use at their schools.

I make sure that the
philosophy in designing the
course is clear to the
students.

An anonymous feedback
form is open from day one to
make sure I can adjust to the
backgrounds of the class.

https://samuel-deng.github.io/math4ml_su24/syllabus/
https://samuel-deng.github.io/math4ml_su24/
https://samuel-deng.github.io/math4ml_su24/assets/files/rationale.pdf

Example Syllabi of 24 50

 

Jump To: Table of Contents

The course is divided into
three main parts: linear
algebra, calculus and
optimization, and probability
and statistics.

Each lecture develops the
two driving narratives of the
course: least squares and
gradient descent.

I visually summarize how the
concept develops with a 3D
rendered “big picture” that
each lecture centers around.

To my delight, these 3D
renderings were quite
popular. One student even
was able to spontaneously
come up with the idea of a
saddle point and better
understand Lagrangian
duality by playing with this
visualization in office hours.

The second third on
calculus and optimization
builds on linear algebra by
first showing that least
squares can also be solved
via optimization, and, by
lecture 4.2, with gradient
descent.

See the representative video
lectures in the Math for ML
Lectures section for more
details on this progression.

https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html

Example Syllabi of 25 50

 

Jump To: Table of Contents

In the last third of the
course on probability and
statistics, students finally
gain the tools to ground the
epistemic assumption of
“random” data in the
machine learning setup
they’ve examined all class.

The summer version of this
course involves a paper
reading project.

Conveniently, least
squares is a pretty deep
concept statistically: it
shows up as maximum
likelihood estimation under
certain assumptions, and it
provides nice analytic
solutions that demonstrate
key concepts like bias and
variance.

This “inevitability” of least
squares drives the last third

of the class.

The intended goal of this
project is to show students
how far they’ve come with
mathematical maturity.

One student emailed me: I
was actually amazed by how
much more of the paper I
understood. In the beginning
it all truly looked like
gibberish. But now, I could
honestly follow what the
authors were talking about
and understand what
computations were being
made.

https://samuel-deng.github.io/math4ml_su24/project/
https://samuel-deng.github.io/math4ml_su24/project/

Example Syllabi of 26 50

 

Jump To: Table of Contents

I created a course-specific
feedback survey at the end
of the course to solicit
feedback on each part of the
course.

Example Syllabi of 27 50

 

Jump To: Table of Contents

I also made sure to get
students’ opinions on what
might change in a future
iteration.

A particular point that came
up multiple times was that
the accelerated summer
schedule (4 full-length
lectures a week in two 3-
hour sessions) made the
course particularly intense.

In future summer iterations,
I will take this feedback to
heart and adjust pacing to
skip some content that’s less
crucial.

Example Syllabi of 28 50

Natural and Artificial Neural Networks Syllabus
This section includes a syllabus for Natural and Artificial Neural Networks Lab, the
companion course I co-designed and co-taught with PhD student Clayton Sanford. Some
points that made this course unique were:

• This was an optional, graded companion course to a widely interdisciplinary seminar, Natural
and Artificial Neural Networks, taught jointly by Christos Papadimitriou from the computer
science department and John Morrison from the philosophy department.

• This course was cross-listed in many different departments, so students came from
backgrounds as diverse as philosophy, computer science, law, biology, and neuroscience.

• The seminar had about 50 total students, and our lab enrolled 15 of those students.

• The purpose of the lab was to supplement the seminar with hands-on experience and build

students up from potentially zero Python experience to being able to implement and play
with basic neural network models with keras and scikit-learn.

Jump To: Table of Contents

Our course was hosted
publicly online and all
materials still live there now:
Natural and Artificial Neural
Networks Lab.

A main challenge of the
course was to teach difficult
concepts to students with a
very wide range of
backgrounds.

To design this course,
Clayton and I had to
constantly exercise a
“beginner’s mind” as PhD
students in machine
learning: what parts of this
might be hard to someone
with little to no programming
or technical background?

https://samuel-deng.github.io/coms4995-nat-art-neural-nets/
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/

Example Syllabi of 29 50

 

Jump To: Table of Contents

Each class session
consisted of a short lecture
and a hands-on interactive
Python programming
session.

These can all be found here.

The short lecture introduces
the idea at a high level with
many visuals and non-
technical intuition.

The Python programming
session is the focus of each
session. Students step
through a machine learning
concept through supportive
exposition and hands-on
exercises. Because the
course was small, Clayton
and I were able to
individually help students
with these labs and provide
one-on-one instructional
feedback in a “flipped
classroom” setting.

https://drive.google.com/file/d/1Shdge8Zx7jdV5irf1P8lillYqgQS8XHW/view
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/calendar/
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing

Example Lecture Material of 30 50

Lecture Slides: Math for ML (Subspaces, bases, orthogonality)
In this section, I go over snippets of a single lecture in Math for ML that illustrate two of my
core teaching principles at the level of an individual lecture.

1. A driving and cohesive narrative should propel all parts of a course.
2. Ideas should be presented as if the student could’ve discovered them themselves.

The lecture video can be found here, and the lecture slides can be found here. 

Jump To: Table of Contents

In a normal semester, this
lesson takes place in the
second week after students
review basic linear algebra
(vectors, matrices, dot
products, etc.)

I begin every lesson with a
lesson overview that
includes all the core
concepts of the lecture.
These get compiled week-
to-week in an evolving
course skeleton.

Each lesson also begins
with two big picture 3D
visualizations that
summarize the lesson in
view of the main narratives
of the course: least squares
and gradient descent.

Students learn exactly all
the tools (no more, no less)
they need to develop the
main picture, so everything
is well-motivated and can be
recalled in context.

I call this “teaching with
Chekhov’s gun.”

https://youtu.be/m1f3y1gUKmo?si=fZ7wj4NXGRjH9uUo
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf
https://samuel-deng.github.io/math4ml_su24/skeleton/

Example Lecture Material of 31 50

 

Jump To: Table of Contents

The lecture then moves to a
review of the previous
lecture’s material with some
simple sketched examples.

Every math concept in the
class is taught in service of
the ML setup of regression,
so I try to re-introduce it in
these early lectures to make
sure it’s crystal clear.

Example Lecture Material of 32 50

 

Jump To: Table of Contents

At the end of the previous
lecture, students learned the
statement of the first main
theorem for least squares,
but two main parts were
missing.

All the individual math
concepts should be
motivated by the need to
understand the bigger
picture.

This structures the lectures
as if students were
discovering these ideas
themselves.

Now for the new material,
and the usual cadence of
how I teach. I begin by
motivating why we need the
math of the lesson. In this
case, it’s to plug up the
holes needed to completely
prove their first major
theorem.

To understand the first
missing item, we need
concepts of rank,
invertibility, and subspace.

Whenever possible, I also
always try to give a “plain
English” description of
mathematical facts.

Example Lecture Material of 33 50

 

Jump To: Table of Contents

To get to the bottom of the
first missing item, one
mathematical concept we
need is subspace.

Whenever introducing an
individual mathematical
concept, I start with the
idea: a “plain English”
description of its high-level
intuition.

Then, I move onto the formal
definition, making sure to
emphasize how it expresses
the idea.

Finally, I present several
simple examples to make
the concept concrete.

This isn’t rocket science or
anything particularly
innovative — some variant of
this is usually how math
classes go.

However, I try to present
these ideas with as little
visual clutter and as many
intuitive means (3D
renderings, etc.) as possible.

Example Lecture Material of 34 50

 

Jump To: Table of Contents

After learning the
appropriate mathematical
concepts in sequence, we
bring it back to prove the
“first missing item.” It should
be clear how everything fits
into the broader puzzle.

I make sure to loop back
around to what statements
are still pending, indicating
in green what we have
proven, and in red the
component that remains.

I very frequently call back
and show the “big picture”
3D renderings to orient
students. The renderings are
clickable and interactive on
the slide PDF itself, so
students can interact with it.

See how I do this in the
lecture video or try it
yourself!

I then repeat the process
with the other missing piece.

https://youtu.be/m1f3y1gUKmo?si=tYAiztuuMkNgtWNt&t=7173
https://youtu.be/m1f3y1gUKmo?si=tYAiztuuMkNgtWNt&t=7173
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf

Example Lecture Material of 35 50

 

Jump To: Table of Contents

We’ve proven both pieces
of our puzzle! Students now
hopefully feel the
satisfaction that all of the
abstract math they learned
was in service of a broader
story.

Hopefully they also feel
that they could’ve
discovered this themselves
by emulating how I broke
this nontrivial statement into
two modular chunks.

Most theorem statements
then add something to the
“big picture” 3D renderings.
This example didn’t but, later
in the same lecture, it gets
slightly updated when
students learn an
orthonormal basis.

The lesson always ends with
a recap of the main ideas
again.

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html

Example Lecture Material of 36 50

Lecture Notes: Computational Linear Algebra
Another example of an individual lecture is my guest lecture on eigenvalues and
eigenvectors for Computational Linear Algebra. This was a more traditional mathematics
lecture that I gave on my iPad.  

Jump To: Table of Contents

The lesson begins with two
key pictures that I
continually reference. I didn’t
have the 3D rendering chops
in Fall 2022, but these 2D
doodles served the same
purpose.

I motivate why they need to
learn arguably one of the
most abstract parts of linear
algebra: eigenvectors and
diagonalization.

https://youtu.be/Hpa2rl4Euyo?si=lh-TwU9XtAmgp-Gn
https://youtu.be/Hpa2rl4Euyo?si=lh-TwU9XtAmgp-Gn

Example Assignments of 37 50

 

Jump To: Table of Contents

A previous problem set
“seeded” this idea early on.

I recap this problem that
students already solved and
how it relates to
eigenvectors, giving a
concrete example about
population change from New
York to California.

Finally, after providing the
requisite motivation and
intuition, I give the definition.

I try to emphasize that this
definition seems inevitable if
we want to think of the
“fixed point” of
transformations, or the
“vectors that stay on their
span.”

I stress how this definition is
natural after the motivation
and intuition, leading
students to think that they
could’ve formalized these
intuitive ideas themselves.

Example Assignments of 38 50

 

Jump To: Table of Contents

With a topic as abstract as
eigenvalues and
eigenvectors, it helps
tremendously to step
through a representative
simple example.

In this case, I drew on my
third teaching principle: (3)
An instructor should never
forget how they first
struggled when learning the
same ideas. For me, a
simple 2D example helps
tremendously when learning
a new theorem or definition.

Walking through this
example should be an active
experience: I frequently stop
and ask students if they
know the “next step” in the
computations.

I close the lecture with a
very nontrivial application of
eigenvalues and
eigenvectors to
convolutions, which
motivates and connects it to
concepts earlier in the class
(in particular, abstract vector
spaces).

Example Assignments of 39 50

Problem Set: Math for ML
In this section, I present a representative problem from Problem Set 1 of Math for ML. They all
abide by my second teaching principle: (2) Ideas should be presented as if the student
could’ve discovered them themselves.

All the problems sets in the course aren't just sequences of exercises: they model the process
of mathematical discovery by giving a nontrivial result or theorem as a problem, but then
guiding students through the process of: (i) testing it on simple examples (ii) proving key
lemmas (iii) piecing the lemmas together to complete the theorem.

My other problem sets can be found at this link (under PS #). 

Jump To: Table of Contents

Most problems begin with a
motivating example that the
student can easily step
through mechanically. The
example should capture the
essence of the idea for this
particular problem — in this
case, linearity.

Problem 2(a) and Problem
2(b) are easy points but
make sure that the student
has taken time to play with
the example. In proving a
new theorem for my
research, I find this is usually
the first step.

The problem is interlaced
with exposition and a loose
“narrative” that drives the
discovery. The course
doesn’t have an official
textbook, so this is a good
way to have students
actively read supporting
material.

https://samuel-deng.github.io/math4ml_su24/assets/files/ps1.pdf
https://samuel-deng.github.io/math4ml_su24/content/

Example Assignments of 40 50

 

Jump To: Table of Contents

The problems gradually
ramp up in difficulty.
Problem 2(c) is easy but no
longer purely mechanical,
and it asks for short proofs.

A learning goal of this
course is to develop
students’ mathematical
maturity, broadly speaking.
The problem sets attempt to
do this by modeling
problem-solving skills such
as experimenting with simple
examples and proving helper
lemmas.

Text like “this is important”
and “surprisingly” liven the
problem’s exposition and
point out the gut feelings a
student should be feeling.

Example Assignments of 41 50

 

Jump To: Table of Contents

We move onto proving the
surprising fact that any linear
transformation has an
associated matrix. Again,
start with simple examples
to get a feel.

Hints point students toward
what intuitive “next steps”
might be in a proof or
derivation.

Another key skill in
discovering and proving
results in math is going from
the specific to the general.
By guiding students to do
this, students first “get a
feel” for the proof and then
can “take off the training
wheels” to prove the
abstract, general result.

It turns out that Problem
2(g), which the students
have now done themselves,
was important to a “central
theorem of linear algebra” all
along!

Example Assignments of 42 50

 

Jump To: Table of Contents

Some more expository
text emphasizes that the
student has shown
something nontrivial.

The problem closes by
connecting the statement
the student has just proven
back to lecture — in this
case, Problems 2(h) and 2(i)
walk the student through the
theorem’s relation to
projection from Lecture 1.2.

Finally, the hope is that, by
proving the theorem bit-by-
bit, the student comes away
feeling like they own the
statement. Recalling
something you truly
understand and own is much
easier.

This problem also connects
back to the idea of rank from
lecture. Most of the
problems in the problem sets
do something similar, re-
contextualizing ideas
students have learned in the
slides.

Example Assignments of 43 50

 

Jump To: Table of Contents

This particular problem set
was well-received by
students in a mid-course
survey.

Overall, students seemed to
find the problem sets a
highlight of the course.

https://samuel-deng.github.io/math4ml_su24/assets/files/ps1.pdf

Example Assignments of 44 50

Python Lab: Natural and Artificial Neural Networks
As an example of a programming assignment I co-designed with my co-instructor Clayton
Sanford, this section steps through a mid-semester programming lab that introduces students
to the Perceptron algorithm. These labs were done in-class, over two hours of “flipped
classroom” instruction. One thing to note is that students came from a very wide range of
backgrounds and programming experience.

All the Python labs for Natural and Artificial Neural Networks can be found here. 

Jump To: Table of Contents

The labs begin with
motivation and exposition
for the upcoming concepts,
with a view that students in
this course come from a very
wide range of backgrounds
in programming, math
prerequisites, and academic
discipline.

Some students were at a
higher base level
mathematically, so we were
able to put some notation in
the exposition. Because the
course was small (15
students), Clayton and I were
also able to give one-on-one
guidance to students without
the same math background,
pointing out which parts
were “fine to gloss over” or
providing more concrete
examples.

https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/calendar/

Example Assignments of 45 50

 

Jump To: Table of Contents

The Python labs all followed
the structure of: exposition,
simple coded examples, and
exercises for students to do
themselves.

For the exercise parts,
students all worked on their
own laptops as Clayton and I
walked around to make sure
everyone could pass the
exercise and receive
individualized attention.

Example Assignments of 46 50

 

Jump To: Table of Contents

An important design
principle in the labs was to
build up to a relatively
advanced concept related to
neural networks from simple
modular exercises.

In this case, the example is
the Perceptron algorithm,
the simplest building block
of a neural network.

Interactive Python code
allows students to
experiment and test various
cases to understand an
abstract idea better.

In this case, students code
to try Perceptron on simple
small datasets.

The one-on-one
instructional aspect of the
class also allowed Clayton
and I to have exercises that
gave students the chance to
verbally “explain what this is
doing.” This was helpful to
know where each student
was at, and to develop a
closer instructor-student
relationship. Clayton and I
would go onto provide
mentorship to several of our
students!

Example Assignments of 47 50

 

Jump To: Table of Contents

Most of the labs
concluded with an
application of the machine
learning tool of the week to a
real dataset. In this case,
students applied their
Perceptron algorithm to a
simplified MNIST dataset of
0’s and 1’s. MNIST is a
handwriting classification
dataset where the examples
are images of digits.

Students found it
fascinating that they could
go from zero programming
experience to building a
“simple neural network” that
accurately classifies
handwritten digits.

Example Assignments of 48 50

Python Programming Assignment: Computational Linear Algebra
I designed this example programming assignment as a homework assignment for students
in Computational Linear Algebra. Students in this class have experience coding, but possibly
not in Python. At this point, they have gotten the hang of basic scientific computing libraries,
so this programming assignment brought their new knowledge of Python to bear on a concrete
demonstration of some abstract linear algebra ideas from class: linear transformations, bases,
and change-of-bases.

 

Jump To: Table of Contents

The point of this assignment
is to connect the abstract
ideas of change-of-basis
from class to being able to
play with the perspective of
points in matplotlib and
some digital images.

This programming
assignment was dense, so
my recitation for that week
attempted to clarify student
questions and provide an
overview and hints to this
assignment.

The lab begins with some
interactive plotting to make
sure students can grasp the
inherently 3D idea at hand
from as many different
perspectives as possible.

https://colab.research.google.com/drive/1RJr5x-AW9J_Te_DT-YI6GN0ZgpImxQj3?usp=sharing
https://www.youtube.com/watch?v=QG-rIO5hxa8&list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd&index=12

Example Assignments of 49 50

 

Jump To: Table of Contents

The exercises that
students were responsible
for in the lab were modular
functions that each
implemented a key linear
transformation.

The modularity was
important to my design
principle: I wanted students
to get the sense that, by
constructing the correct
building blocks, they were
able to do something very
nontrivial by putting them
together.

Like my Problem Set: Math
for ML, the driving
philosophy behind this
programming assignment is
giving students a chance to
discover something
themselves.

Example Assignments of 50 50

Jump To: Table of Contents

Many of the coding
assignments in CLA
culminated in doing
something to actual images,
which gives students a
visceral real world example
of the techniques of linear
algebra in action.

In this lab, students use the
modular functions they
implemented (each
corresponding to a specific
linear transformation) to
“flatten” the image of a
whiteboard. Pretty nontrivial!

	Summary of Courses and Evaluations
	Summary of Teaching Awards, Certification, and Other Service
	Student Evaluations: Math for Machine Learning
	Additional Feedback: Math for Machine Learning
	Student Evaluations: Natural and Artificial Neural Networks Lab
	Student Evaluations: Discrete Mathematics
	Student Evaluations: Machine Learning

