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In this document, I’ve collected a range of representative artifacts that I believe represent my 
teaching. In particular, I’ve attempted to collect material that I feel encapsulate the core 
principles of my teaching philosophy:


1. A driving and cohesive narrative should propel all parts of a course.  
2. Ideas should be presented as if the student could’ve discovered them themselves. 
3. An instructor should never forget how they first struggled when learning the same 

ideas. 
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Summary of Courses and Evaluations 

Below is a table that contains my “Overall Instructor Quality” for all the courses that I’ve TA’d or 
taught. These all come from end-of-semester anonymous teaching evaluations solicited by 
Columbia, and the scale given is: (1) Poor (2) Fair (3) Good (4) Very Good (5) Excellent.


• All courses I’ve designed have their materials all available online; just click the orange links 
to view all the materials. 


• The orange link for Computational Linear Algebra directs to a YouTube playlist complete 
with recordings of all the weekly recitations I designed and taught throughout the semester, 
as well as a guest lecture I did on eigenvectors and eigenvalues.


• Click the blue links to be directed to the full set of evaluations for that semester’s class.

• The greyed out boxes were evaluations that I unfortunately couldn’t find in the system. The 

Spring 2020 in particular had no final evaluations because of the COVID-19 pandemic.

• * The Spring 2022 semester of Natural and Artificial Neural Networks was a companion “lab” 

session to a seminar titled Natural and Artificial Neural Networks. The instructors never 
figured out how to separate the lab session and list us as “Instructors” on the official listing, 
which is why our official evaluation designates us as “TAs.” 

Course Semester Role Overall 
Instructor 
Quality

Number of 
Respondents

Number of 
Students

Math for ML Summer 
2024

Course 
Designer/
Insructor

4.83/5 7 30

Computational 
Linear Algebra

Fall 2022 Head TA 4.63/5 51 130

Natural and 
Artificial Neural 
Networks (Lab)

Spring 2022 Co-Course 
Designer/Co-
Instructor *

5/5 3 15

Machine Learning Summer 2020 Head TA

Discrete Math Spring 2020 Head TA

Discrete Math Fall 2019 Head TA 4.21/5 38 287

Machine Learning Spring 2019 TA 4.83/5
 18 259

Discrete Math Fall 2018 TA
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Summary of Teaching Awards, Certification, and Other Service 

Awards 
My work as a teacher has been recognized over the years by various awards and fellowships:


• Teaching Assistant Fellowship (2019). Awarded to “exceptional” teaching assistants in the 
computer science department, providing full funding for several semesters of my M.S.


• Andrew P. Kosoresow Award for Excellence in Teaching and Service (2021). Our 
computer science department’s highest award for teaching, awarded to students “for 
outstanding contributions to teaching [and exemplary service] in the Department. 

• SEAS Doctoral Teaching Fellowship (2024). School-wide, faculty-nominated fellowship 
awarded to PhD students who who have demonstrated “excellence in teaching,” meant to 
allow students to further develop their pedagogy. 

Six of the seven anonymous respondents in Math for ML also elected to nominate me for a 
SEAS Distinguished Faculty Award:


Teaching Certification 
Over the past four years, I’ve participated in Columbia’s Center for Teaching and Learning’s 
Teaching Development Program (TDP), an evidence-based, multi-year teaching certification 
program for PhD students across the university. The TDP focuses on cultivating, documenting, 
and reflecting upon evidence-based, student-centered teaching. I have completed the 
requirements for the fundamental Foundational Track and am slated to complete the 
Advanced Track early Summer 2025. The Advanced Track is the CTL’s highest certification.


Teaching-related Service 
My proudest service contribution has been my five semesters coordinating the Emerging 
Scholars Program (ESP), Columbia’s peer-led workshop and discussion seminar for first-year 
undergraduates. ESP provides introductory computer science students an opportunity to learn 
about a wide range of computer science topics beyond programming, build problem-solving 
confidence, receive personalized mentorship, and form close-knit peer groups. Its motivation 
stems from the recognition that computer science students come from a plethora of academic 
and personal backgrounds, and large introductory courses lack the close-knit environment that 
fosters connections with peers and group problem-solving. Alongside fellow PhD student 
Hadleigh Schwartz, each semester I led a team of eight to ten undergraduate teaching 
assistants and coordinated the program across as many as ten sessions of 100 total students. 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Student Evaluations: Math for Machine Learning 

Course: Mathematics for Machine Learning (click to access all materials) 
Semester: Summer 2024 
Role: Instructor/Course Designer

Course Size: 30


I have condensed all the responses into tables to save space; the original evaluation is available upon request. 

Responses to “Enter any additional comments here:”


• Sam is a tremendous lecturer; he is extremely knowledgeable, prepared, energetic, engaged, 
and accessible. This is course is marketed to students preparing for COMS 4771, but I think 
its value far exceeds just that individual course. Make no mistake, there is a ton of content 
covered in this course and it is probably better suited for a 12-week session, but this course 
is a tremendous value in that it cuts through the filler of at least three other standalone 
courses and gets us straight to the most important, fundamental aspects of ML math. With 
that said, in large part the course is manageable because of Sam - I really appreciate how 
thoroughly prepared he is, and the course website is among the best that I've seen. We were 
sort of guinea pigs in this inaugural cohort of ours, so naturally there were some typos and 

Prompt (1) Poor (2) Fair (3) Good (4) Very 
Good

(5) 
Excellent

Mean Resp. 
Rate

Course: Amount 
Learned

0 0 0 1 6 4.86/5 7

Course: 
Appropriateness 
of Workload

0 0 0 1 6 4.86/5 7

Course: Fairness 
of Grading 
Process

0 0 1 1 5 4.57/5 7

Course: Overall 
Quality

0 0 0 1 6 4.86/5 7

Instructor: 
Organization 
and Preparation

0 0 0 1 6 4.86/5 7

Instructor: 
Classroom 
Delivery

0 0 0 1 6 4.86/5 7

Instructor: 
Approachability

0 0 1 1 5 4.57/5
 7

Instructor: 
Overall Quality

0 0 0 1 6 4.86/5 7
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errors in problem sets that needed to be cleaned up on the go, but Sam is approachable and 
it never felt burdensome to ask clarifying questions or make suggestions on the content, 
problem sets, or his delivery. He's a great lecturer, math courses can be hit or miss and often 
tedious - that was not the case, and if you missed lectures his recordings are just as clear 
and engaging as if you were in the classroom. All around, just a great job - he's going to be 
an awesome Professor, someday!


• The class was extremely well organized, starting from basics and leading to an overall 
understanding of bigger math concepts. All HW problems were helpful and well-guided - the 
problem sets were long but they were divided into smaller sections which reduced 
unnecessary time spent going the wrong way (it was very clear if I was going in the right 
direction). The coding assignments were also very clear and we could immediately see the 
results and learn from it. Unlike some other classes were coding homework feels distanced 
from the content, the coding part here well-matched the concepts discussed and the way it 
had explanations in between each sections of the coding helped with understanding the 
features we are building.


• This course have bolstered my confidence in approaching the material covered in machine 
learning. 


• Sam is an excellent instructor, and this class was extremely enjoyable. I look forward to 
taking any other courses Sam prepares. 


Additional question for this course was “Would you nominate this professor for the SEAS 
Distinguished Faculty Award?”


The answers to: “If so, please explain why”:


• He brings both energy and clear expectations to the classroom. 

• Sam's as good as it gets and he's genuinely interested in how we're doing, what we're 

interested in, and how he can help us along our journey. 

• It really felt like the instructor was prepared to teach the class - the contents were not only 

organized but it had story to it. It worked up its way to a bigger concept. He had amazing 
slides and each concepts were supported with examples that he clearly worked through in 
class. Since it was a summer class and not many people took it (thus had only one TA), there 
were not many office hours available compared to some other CS classes during the regular 
semesters. However, he was always available through Ed and scheduled extra office hours if 
students requested. 


Jump To: Table of Contents
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• Sam is a fantastic instructor, in and out of the classroom. His lectures are excellent, his 
course is interesting and necessary, and his is prepared with information beyond the scope of 
the class. 


Additional Feedback: Math for Machine Learning 

I have also included additional feedback I’ve received in the form of emails, an anonymous 
end-of-course survey I used to solicit more course-specific feedback, and even a reddit post.


Emails 
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End-of-course Survey 

 

Jump To: Table of Contents



Evaluations  of 10 50

Reddit Post 
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Student Evaluations: Computational Linear Algebra 
Course: Computational Linear Algebra (click to access recitations and guest lecture) 
Semester: Fall 2022 
Role: Head TA

Course Size: 130


I have condensed all the responses into tables to save space; the original evaluation is available upon request. 

Responses to “Comments:”


• Sam was easily one of the best TAs I've had at Columbia. He explained things in a clear and 
concise manner and was clearly very passionate about the subject. Attending his recitations 
was my favorite part of this class! 


• Sam is a superstar. He was great in his recitations and the guest lecture he did. He's patient 
and a great communicator. If he's not on a professorial track, I hope he considers it. Also, as 
a commuting GS student, I was appreciative to have recitations available on Zoom and 
recorded.


• Excellent lecturer and very good at explaining tricky concepts in recitation 

• Probably the best instructor and TA that I've had the pleasure of learning from. Very rarely 

does an instructor (professor or otherwise) come as well prepared in terms of lesson 
materials and knowledge whilst maintaining approachability and affability. Very responsive to 
questions and shares his thought process regarding topics at hand. If there is a TA of the year 
sticker Sam should definitely get it. 


• TA Sam is the reason that I understood half of the material in this course. His explanations 
always made the most sense, and he really went above and beyond to make sure that we 
understood everything, through extra videos and lengthy Ed responses. I can't explain how 
grateful I am to have had Sam to help me understand CLA. 


• Samuel is really good at teaching. Not only does he have the knowledge base, but he also 
has a very good energy about him while he's teaching that draws you into the material. Also, 
he can dumb things down "simple stupid" which make it easier to broadly grasp a concept 
before building upon its intricacies that make it complex. 


• Informally, Sam is the best. I literally might have pulled the chute on this course if I didn't 
have him to pull me through this course kicking and screaming. Sam and I spent no less then 

Prompt (1) Poor (2) Fair (3) Good (4) Very 
Good

(5) 
Excellent

Mean Resp. 
Rate

Overall Quality 0 0 4 11 36 4.63/5 51

Knowledgeability 0 0 3 11 37 4.67/5 51

Approachability 0 1 3 11 36 4.67/5 51

Availability 0 3 5 10 32 4.42/5 50

Communication 0 1 6 8 35 4.54/5 50

Jump To: Table of Contents
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3ish hours every Friday going over course material. Don't get me wrong Daniel Hsu is great, 
but Sam could have absolutely taught this course for Daniel without an issue. 9.7/10. 


• nice

• Very well prepared and patient!

• Always explained everything really well! 

• Sam has been an incredible TA. He is super caring and knowledgeable, providing multiple 

ways to understand a topic. 

• This man went above and beyond as a TA. He saw lots of messages on the Ed that a 

particular Problem Set was hard so he made a video giving a high level overview of the 
homework. Another Problem Set was hard and no one really understood the solutions 
(because Hsu releases solutions without work/explanation) so Deng made a video of him 
going through the solutions with work. Great TA. Was very responsive to the needs of the 
students! 


• He's so knowledgeable, approachable, and friendly -- like no matter how silly a question may 
seem, he will answer it with patience and do his best to make sure you understand. His 
review sessions were life savers and he organizes his office hours so well so everyone who 
needs help will get help in a timely manner - overall one of the best TAs I've learned from! 


• king

• INCREDIBLE! An amazing teacher. I wouldn’t have understood the material nearly as well if 

not for Sam. Thank you Sam!!! It was a pleasure!  

Jump To: Table of Contents
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Student Evaluations: Natural and Artificial Neural Networks Lab 

Course: Natural and Artificial Neural Networks Lab (click to access all materials) 
Semester: Spring 2022 
Role: Co-Instructor/Co-Course Designer/TA 
1

Course Size: 15


I have condensed all the responses into tables to save space; the original evaluation is available upon request. 

Responses to Comments: 

• great TA. really knows his stuff.


Prompt (1) Poor (2) Fair (3) Good (4) Very 
Good

(5) 
Excellent

Mean Resp. 
Rate

Overall Quality 0 0 0 0 3 5/5 3

Knowledgeability 0 0 0 0 3 5/5 3

Approachability 0 0 0 0 3 5/5 3

Availability 0 0 0 0 3 5/5 3

Communication 0 0 0 0 3 5/5 3

 With fellow PhD student Clayton Sanford. This was a companion two-hour “lab” course that we created all the materials and 1

taught every week. Every session involved a short lecture and then an interactive Python “lab.” We also served as TAs to the main 
seminar course.

Jump To: Table of Contents
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Student Evaluations: Discrete Mathematics 

Course: Discrete Mathematics 
Semester: Fall 2019 
Role: Head TA

Course Size: 287


I have condensed all the responses into tables to save space; the original evaluation is available upon request. 

Responses to Comments: 

• Very good at giving hints that don't give the answers away, very helpful and great teacher, all 
around cool guy 


• Best TA ever!!

• He answered questions on piazza well. 

Prompt (1) Poor (2) Fair (3) Good (4) Very 
Good

(5) 
Excellent

Mean Resp. 
Rate

Overall Quality 1 0 9 8 20 4.21/5 38

Knowledgeability 0 1 7 6 21 4.34/5 35

Approachability 1 0 9 4 21 4.26/5 35

Availability 1 0 6 6 20 4.33/5 33

Communication 1 0 8 4 20 4.27/5 33

Jump To: Table of Contents
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Student Evaluations: Machine Learning 

Course: Machine Learning 
Semester: Spring 2019 
Role: TA

Course Size: 259


I have condensed all the responses into tables to save space; the original evaluation is available upon request. 

Responses to Comments: 

• Thank you!!!

• Good

• Thanks for helping with the homework!

• sammy d is my homie g five stars

• He was super friendly and approachable, always willing to help at office hours or even 

outside of class 

Prompt (1) Poor (2) Fair (3) Good (4) Very 
Good

(5) 
Excellent

Mean Resp. 
Rate

Overall Quality 0 0 1 1 16 4.83/5 18

Knowledgeability 0 0 1 2 15 4.78/5 18

Approachability 0 0 1 1 16 4.83/5 18

Availability 0 0 1 1 16 4.83/5 18

Communication 0 0 1 1 16 4.83/5 18

Jump To: Table of Contents
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Math for Machine Learning Lectures 
In this section, I present a 15 minute representative lecture of my teaching and give a broad 
overview of three representative lectures  of Math for ML that exhibit my teaching principle: (1) 2

A driving and cohesive narrative should propel all parts of a course. If you’d like to access 
my course in its entirety: 

• All lecture slides are available here. 
• A complete YouTube playlist including all the recorded lectures is available here. 

Red-light, yellow-light, green-light system 
During lectures, one practice that embodies my teaching principle (3) An instructor should 
never forget how they first struggled when learning the same ideas is a “red-light, yellow-
light, green-light system” I’ve developed for students.








This system comes from the understanding that, oftentimes, students may be insecure or shy 
about expressing confusion. It’s greatly helped me calibrate the pacing during difficult sections 
of the class.


 Because this was a summer course, the classes were 3 hours long and included the content of two traditional class sessions. 2

Jump To: Table of Contents

I make this poll 
available at the 
start of each 
lecture for students 
to access on their 
phones.  

On my PC, a 
synchronously 
updated version of 
this poll is within 
sight at all times. 

https://samuel-deng.github.io/math4ml_su24/content/
https://youtube.com/playlist?list=PLNm9W-YkOtpMgKhBj8sc1CMHxUPcqHsRM&si=jozd8RivJ7L-0-1S
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15-minute Representative Lecture 
Here is a link to a 15-minute representative lecture that was a part of my final session of Math 
for ML Summer 2024, Lecture 6.2: Multivariate Gaussian and Finale. This clip reviews the 
motivation behind the course and the key developments in the first third on linear algebra. The 
full 3 hour lecture video can be found here.





Overview: Three Representative Lectures

For more detail, I’ll present a broad overview of three representative lectures that show how I 
spin a narrative around a central idea of the course: ordinary least squares. From the syllabus:


This is a course with a loose story. The course is structured around two main ideas that 
underlie modern machine learning: least squares regression and gradient descent. Very 
informally, least squares regression is a classic way of modeling problems in machine 
learning (the “what”), and gradient descent is the workhorse algorithm that drives much 
of modern machine learning (the “how”). Every week, we’ll develop and motivate these 
two ideas in lecture with the tools and concepts you learn from each part of the course. 
As the class goes on, you’ll develop different perspectives on these two ideas from, first, 
what we learn in linear algebra, then calculus and optimization, and, finally, probability 
and statistics. The hope is that, by the end of the course, you’ll have a deep 
understanding of both these ideas in ML while also having two concrete “applications” to 
motivate all the abstract mathematical tools and concepts you learn in the course.

The three representative lectures are:

1. Lecture 1.1: Vectors, Matrices, and Least Squares (video, slides)
2. Lecture 3.1: Differentiation and Vector Calculus (video, slides)
3. Lecture 4.2: Convexity and Convex Optimization (video, slides) 

Jump To: Table of Contents
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Lecture 1.1: Vectors, 
Matrices, and Least Squares 
is the very first lecture. 

Every lesson begins 
with an updated “big 
picture” of the two main 
narratives of the course: 
least squares and gradient 
descent. 

All of the 3D renderings are 
available for students to play 
with in the “Story Thus Far” 
sections of Course Content. 

In this lesson, students 
prove a solution to ordinary 
least squares purely from 
geometric intuition and linear 
algebra. 

To arrive at this, I continually 
reference this 3D rendering. 

I close every lesson 
with a recap of the important 
concepts learned. These are 
tracked in an ongoing 
course skeleton. 

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/content/
https://samuel-deng.github.io/math4ml_su24/skeleton/
https://youtu.be/p6K-kRm7WkM?si=9LuLQBccnkoJlyY3
https://youtu.be/p6K-kRm7WkM?si=9LuLQBccnkoJlyY3
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Lecture 3.1: 
Differentiation and Vector 
Calculus is the first lecture 
of the second third of the 
course on calculus and 
optimization. 

At this point, the linear 
algebra third of the course 
has finished. I’ve hinted at 
this “bowl-shaped” 
representation of the least 
squares error function, but 
students don’t have the 
formal tools (yet) to analyze 
it. This lecture will give them 
these tools. 

The first “narrative” of the 
course takes a twist: least 
squares can be solved 
either: completely linear 
algebraically using pure 
geometric intuition or using 
the tools of calculus! 

By the end of the course, 
the goal is for students to be 
able to see least squares 
and gradient descent from 
as many perspectives as 
possible.  

These perspectives motivate 
which “characters” I 
introduce each lecture: they 
see a gradient for the first 
time in service of 
discovering a bit more about 
least squares. 

https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Lecture 4.2: Convexity and 
Convex Optimization is the 
final lecture of the calculus 
and optimization unit of the 
course. 

The big picture slides now 
hint that our least squares 
picture is showing up in a 
“crossover” with gradient 
descent. 

The second third of the 
course culminates in the two 
stories of the course coming 
together: gradient descent 
applied to least squares. 

From the very first 
lecture, I hinted at the 
algorithm of gradient 
descent purely with hand-
wavy intuition: “rolling a 
marble down a bowl.” 

This lecture gives students 
the mathematical tools to 
prove why gradient descent 
converges, and, specifically, 
why it works so well with 
least squares. Students 
investigate this connection 
further in Problem Set 4. 

One student reported that 
their “mind was blown” at 
this, which is all I can ask for. 

https://samuel-deng.github.io/math4ml_su24/assets/files/ps4.pdf
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be
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This philosophy that (1) A driving and cohesive narrative should propel all parts of a course 
was well-received by students in an end-of-semester anonymous survey. All four respondents 
appreciated this overarching narrative.


 

This was a broad overview of three lectures at various points through the semester. For more 
details on how I structure my material for an individual lecture, jump to Lecture Slides: Math 
for ML (Subspaces, bases, orthogonality).


Jump To: Table of Contents
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Computational Linear Algebra Recitations and Guest Lecture 
This section includes some video recordings of my teaching during Computational Linear 
Algebra (CLA), where I held a weekly recitation session and delivered a guest lecture. A playlist 
of all my CLA teaching can be found here.


I’m particularly proud of my final recitation lecture for CLA, where I tied together each unit of 
the class into an overarching “big picture” revolving around the four fundamental subspaces.





I also took the opportunity to have my teaching observed and critiqued from the Center for 
Teaching and Learning as part of their Teaching Development Program’s observation 
requirement. This happened during my guest lecture on eigenvalues and eigenvectors. 
Unfortunately, the sound didn’t pick up in lecture, so this is a re-recording of the same content.
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Math for Machine Learning Syllabus 
This section includes a few annotated snippets of my syllabus and course website for Math 
for ML. A couple details on how this course came to be: 


• I actually had the inkling of an idea for this course in my undergraduate senior year, Fall 2018, 
after I somehow hobbled through our Machine Learning course without ever taking 
probability and statistics. It was brutal, and conversations with peers from that point on 
showed me that I was not alone: many undergraduates and Master’s students at Columbia 
felt that the jump from math prerequisites to our flagship ML course is too steep.


• Recognizing this as a pain point in our curriculum, I began constructing the course in earnest 
in Fall 2023, eventually ending up with this rationale. 


• When I proposed this rationale to some faculty responsible for the undergraduate curriculum 
in the department, I was pleasantly surprised that this has been on their mind for a while, but 
no one had taken the initiative to do it. 


• I decided to take the leap and create the course through Fall 2023 and Spring 2024, and I 
piloted the course during Summer 2024 under the SEAS Teaching Fellowship.


I didn’t quite have the words then to express this, but, upon reflecting on this now, I was really 
motivated by my third teaching principle pervades every design decision in this course: (3) An 
instructor should never forget how they first struggled when learning the same ideas. I 
figured: if I could go from not knowing what an expectation is while taking Machine Learning to 
finishing a PhD in theoretical machine learning, I’m sure others could too. They just need the 
right preparation.
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My full syllabus and content 
is available online. This has 
actually led to some 
fortuitous consequences: 
educators at other 
institutions have reached out 
to talk about the course and 
its use at their schools. 

I make sure that the 
philosophy in designing the 
course is clear to the 
students. 

An anonymous feedback 
form is open from day one to 
make sure I can adjust to the 
backgrounds of the class. 

https://samuel-deng.github.io/math4ml_su24/syllabus/
https://samuel-deng.github.io/math4ml_su24/
https://samuel-deng.github.io/math4ml_su24/assets/files/rationale.pdf
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The course is divided into 
three main parts: linear 
algebra, calculus and 
optimization, and probability 
and statistics. 

Each lecture develops the 
two driving narratives of the 
course: least squares and 
gradient descent. 

I visually summarize how the 
concept develops with a 3D 
rendered “big picture” that 
each lecture centers around. 

To my delight, these 3D 
renderings were quite 
popular. One student even 
was able to spontaneously 
come up with the idea of a 
saddle point and better 
understand Lagrangian 
duality by playing with this 
visualization in office hours.

The second third on 
calculus and optimization 
builds on linear algebra by 
first showing that least 
squares can also be solved 
via optimization, and, by 
lecture 4.2, with gradient 
descent.  

See the representative video 
lectures in the Math for ML 
Lectures section for more 
details on this progression.

https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
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In the last third of the 
course on probability and 
statistics, students finally 
gain the tools to ground the 
epistemic assumption of 
“random” data in the 
machine learning setup 
they’ve examined all class. 

The summer version of this 
course involves a paper 
reading project. 

Conveniently, least 
squares is a pretty deep 
concept statistically: it 
shows up as maximum 
likelihood estimation under 
certain assumptions, and it 
provides nice analytic 
solutions that demonstrate 
key concepts like bias and 
variance. 

This “inevitability” of least 
squares drives the last third 

of the class.

The intended goal of this 
project is to show students 
how far they’ve come with 
mathematical maturity.

One student emailed me: I 
was actually amazed by how 
much more of the paper I 
understood. In the beginning 
it all truly looked like 
gibberish. But now, I could 
honestly follow what the 
authors were talking about 
and understand what 
computations were being 
made.

https://samuel-deng.github.io/math4ml_su24/project/
https://samuel-deng.github.io/math4ml_su24/project/
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I created a course-specific 
feedback survey at the end 
of the course to solicit 
feedback on each part of the 
course. 
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I also made sure to get 
students’ opinions on what 
might change in a future 
iteration. 

A particular point that came 
up multiple times was that 
the accelerated summer 
schedule (4 full-length 
lectures a week in two 3-
hour sessions) made the 
course particularly intense.

In future summer iterations, 
I will take this feedback to 
heart and adjust pacing to 
skip some content that’s less 
crucial.
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Natural and Artificial Neural Networks Syllabus 
This section includes a syllabus for Natural and Artificial Neural Networks Lab, the 
companion course I co-designed and co-taught with PhD student Clayton Sanford. Some 
points that made this course unique were:


• This was an optional, graded companion course to a widely interdisciplinary seminar, Natural 
and Artificial Neural Networks, taught jointly by Christos Papadimitriou from the computer 
science department and John Morrison from the philosophy department.


• This course was cross-listed in many different departments, so students came from 
backgrounds as diverse as philosophy, computer science, law, biology, and neuroscience.


• The seminar had about 50 total students, and our lab enrolled 15 of those students.

• The purpose of the lab was to supplement the seminar with hands-on experience and build 

students up from potentially zero Python experience to being able to implement and play 
with basic neural network models with keras and scikit-learn.
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Our course was hosted 
publicly online and all 
materials still live there now: 
Natural and Artificial Neural 
Networks Lab.

A main challenge of the 
course was to teach difficult 
concepts to students with a 
very wide range of 
backgrounds.

To design this course, 
Clayton and I had to 
constantly exercise a 
“beginner’s mind” as PhD 
students in machine 
learning: what parts of this 
might be hard to someone 
with little to no programming 
or technical background?

https://samuel-deng.github.io/coms4995-nat-art-neural-nets/
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/
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Each class session 
consisted of a short lecture 
and a hands-on interactive 
Python programming 
session. 

These can all be found here.

The short lecture introduces 
the idea at a high level with 
many visuals and non-
technical intuition.

The Python programming 
session is the focus of each 
session. Students step 
through a machine learning 
concept through supportive 
exposition and hands-on 
exercises. Because the 
course was small, Clayton 
and I were able to 
individually help students 
with these labs and provide 
one-on-one instructional 
feedback in a “flipped 
classroom” setting.

https://drive.google.com/file/d/1Shdge8Zx7jdV5irf1P8lillYqgQS8XHW/view
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/calendar/
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
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Lecture Slides: Math for ML (Subspaces, bases, orthogonality) 
In this section, I go over snippets of a single lecture in Math for ML that illustrate two of my 
core teaching principles at the level of an individual lecture.


1. A driving and cohesive narrative should propel all parts of a course.  
2. Ideas should be presented as if the student could’ve discovered them themselves. 

The lecture video can be found here, and the lecture slides can be found here. 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In a normal semester, this 
lesson takes place in the 
second week after students 
review basic linear algebra 
(vectors, matrices, dot 
products, etc.)

I begin every lesson with a 
lesson overview that 
includes all the core 
concepts of the lecture. 
These get compiled week-
to-week in an evolving 
course skeleton.

Each lesson also begins 
with two big picture 3D 
visualizations that 
summarize the lesson in 
view of the main narratives 
of the course: least squares 
and gradient descent.

Students learn exactly all 
the tools (no more, no less) 
they need to develop the 
main picture, so everything 
is well-motivated and can be 
recalled in context. 

I call this “teaching with 
Chekhov’s gun.”

https://youtu.be/m1f3y1gUKmo?si=fZ7wj4NXGRjH9uUo
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf
https://samuel-deng.github.io/math4ml_su24/skeleton/
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The lecture then moves to a 
review of the previous 
lecture’s material with some 
simple sketched examples.

Every math concept in the 
class is taught in service of 
the ML setup of regression, 
so I try to re-introduce it in 
these early lectures to make 
sure it’s crystal clear.



Example Lecture Material  of 32 50

 

Jump To: Table of Contents

At the end of the previous 
lecture, students learned the 
statement of the first main 
theorem for least squares, 
but two main parts were 
missing.

All the individual math 
concepts should be 
motivated by the need to 
understand the bigger 
picture.  

This structures the lectures 
as if students were 
discovering these ideas 
themselves.

Now for the new material, 
and the usual cadence of 
how I teach. I begin by 
motivating why we need the 
math of the lesson. In this 
case, it’s to plug up the 
holes needed to completely 
prove their first major 
theorem.

To understand the first 
missing item, we need 
concepts of rank, 
invertibility, and subspace. 

Whenever possible, I also 
always try to give a “plain 
English” description of 
mathematical facts. 
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To get to the bottom of the 
first missing item, one 
mathematical concept we 
need is subspace. 

Whenever introducing an 
individual mathematical 
concept, I start with the 
idea: a “plain English” 
description of its high-level 
intuition. 

Then, I move onto the formal 
definition, making sure to 
emphasize how it expresses 
the idea. 

Finally, I present several 
simple examples to make 
the concept concrete. 

This isn’t rocket science or 
anything particularly 
innovative — some variant of 
this is usually how math  
classes go. 

However, I try to present 
these ideas with as little 
visual clutter and as many 
intuitive means (3D 
renderings, etc.) as possible.
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After learning the 
appropriate mathematical 
concepts in sequence, we 
bring it back to prove the 
“first missing item.” It should 
be clear how everything fits 
into the broader puzzle.

I make sure to loop back 
around to what statements 
are still pending, indicating 
in green what we have 
proven, and in red the 
component that remains.

I very frequently call back 
and show the “big picture” 
3D renderings to orient 
students. The renderings are 
clickable and interactive on 
the slide PDF itself, so 
students can interact with it. 

See how I do this in the 
lecture video or try it 
yourself!

I then repeat the process 
with the other missing piece.

https://youtu.be/m1f3y1gUKmo?si=tYAiztuuMkNgtWNt&t=7173
https://youtu.be/m1f3y1gUKmo?si=tYAiztuuMkNgtWNt&t=7173
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf
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We’ve proven both pieces 
of our puzzle! Students now 
hopefully feel the 
satisfaction that all of the 
abstract math they learned 
was in service of a broader 
story.

Hopefully they also feel 
that they could’ve 
discovered this themselves 
by emulating how I broke 
this nontrivial statement into 
two modular chunks.

Most theorem statements 
then add something to the 
“big picture” 3D renderings. 
This example didn’t but, later 
in the same lecture, it gets 
slightly updated when 
students learn an 
orthonormal basis.

The lesson always ends with 
a recap of the main ideas 
again.

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
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Lecture Notes: Computational Linear Algebra 
Another example of an individual lecture is my guest lecture on eigenvalues and 
eigenvectors for Computational Linear Algebra. This was a more traditional mathematics 
lecture that I gave on my iPad.  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The lesson begins with two 
key pictures that I 
continually reference. I didn’t 
have the 3D rendering chops 
in Fall 2022, but these 2D 
doodles served the same 
purpose.

I motivate why they need to 
learn arguably one of the 
most abstract parts of linear 
algebra: eigenvectors and 
diagonalization.

https://youtu.be/Hpa2rl4Euyo?si=lh-TwU9XtAmgp-Gn
https://youtu.be/Hpa2rl4Euyo?si=lh-TwU9XtAmgp-Gn
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A previous problem set 
“seeded” this idea early on.  

I recap this problem that 
students already solved and 
how it relates to 
eigenvectors, giving a 
concrete example about 
population change from New 
York to California.

Finally, after providing the 
requisite motivation and 
intuition, I give the definition.

I try to emphasize that this 
definition seems inevitable if 
we want to think of the 
“fixed point” of 
transformations, or the 
“vectors that stay on their 
span.” 

I stress how this definition is 
natural after the motivation 
and intuition, leading 
students to think that they 
could’ve formalized these 
intuitive ideas themselves.
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With a topic as abstract as 
eigenvalues and 
eigenvectors, it helps 
tremendously to step 
through a representative 
simple example. 

In this case, I drew on my 
third teaching principle: (3) 
An instructor should never 
forget how they first 
struggled when learning the 
same ideas. For me, a 
simple 2D example helps 
tremendously when learning 
a new theorem or definition.

Walking through this 
example should be an active 
experience: I frequently stop 
and ask students if they 
know the “next step” in the 
computations.

I close the lecture with a 
very nontrivial application of 
eigenvalues and 
eigenvectors to 
convolutions, which 
motivates and connects it to 
concepts earlier in the class 
(in particular, abstract vector 
spaces).
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Problem Set: Math for ML 
In this section, I present a representative problem from Problem Set 1 of Math for ML. They all 
abide by my second teaching principle: (2) Ideas should be presented as if the student 
could’ve discovered them themselves. 


All the problems sets in the course aren't just sequences of exercises: they model the process 
of mathematical discovery by giving a nontrivial result or theorem as a problem, but then 
guiding students through the process of: (i) testing it on simple examples (ii) proving key 
lemmas (iii) piecing the lemmas together to complete the theorem.


My other problem sets can be found at this link (under PS #). 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Most problems begin with a 
motivating example that the 
student can easily step 
through mechanically. The 
example should capture the 
essence of the idea for this 
particular problem — in this 
case, linearity.

Problem 2(a) and Problem 
2(b) are easy points but 
make sure that the student 
has taken time to play with 
the example. In proving a 
new theorem for my 
research, I find this is usually 
the first step.

The problem is interlaced 
with exposition and a loose 
“narrative” that drives the 
discovery. The course 
doesn’t have an official 
textbook, so this is a good 
way to have students 
actively read supporting 
material.

https://samuel-deng.github.io/math4ml_su24/assets/files/ps1.pdf
https://samuel-deng.github.io/math4ml_su24/content/
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The problems gradually 
ramp up in difficulty. 
Problem 2(c) is easy but no 
longer purely mechanical, 
and it asks for short proofs.

A learning goal of this 
course is to develop 
students’ mathematical 
maturity, broadly speaking. 
The problem sets attempt to 
do this by modeling 
problem-solving skills such 
as experimenting with simple 
examples and proving helper 
lemmas. 

Text like “this is important” 
and “surprisingly” liven the 
problem’s exposition and 
point out the gut feelings a 
student should be feeling.
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We move onto proving the 
surprising fact that any linear 
transformation has an 
associated matrix. Again, 
start with simple examples 
to get a feel.

Hints point students toward 
what intuitive “next steps” 
might be in a proof or 
derivation.

Another key skill in 
discovering and proving 
results in math is going from 
the specific to the general. 
By guiding students to do 
this, students first “get a 
feel” for the proof and then 
can “take off the training 
wheels” to prove the 
abstract, general result.

It turns out that Problem 
2(g), which the students 
have now done themselves, 
was important to a “central 
theorem of linear algebra” all 
along! 
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Some more expository 
text emphasizes that the 
student has shown 
something nontrivial.

The problem closes by 
connecting the statement 
the student has just proven 
back to lecture — in this 
case, Problems 2(h) and 2(i) 
walk the student through the 
theorem’s relation to 
projection from Lecture 1.2.

Finally, the hope is that, by 
proving the theorem bit-by-
bit, the student comes away 
feeling like they own the 
statement. Recalling 
something you truly 
understand and own is much 
easier.

This problem also connects 
back to the idea of rank from 
lecture. Most of the 
problems in the problem sets 
do something similar, re-
contextualizing ideas 
students have learned in the 
slides.
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This particular problem set 
was well-received by 
students in a mid-course 
survey.

Overall, students seemed to 
find the problem sets a 
highlight of the course.

https://samuel-deng.github.io/math4ml_su24/assets/files/ps1.pdf
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Python Lab: Natural and Artificial Neural Networks 
As an example of a programming assignment I co-designed with my co-instructor Clayton 
Sanford, this section steps through a mid-semester programming lab that introduces students 
to the Perceptron algorithm. These labs were done in-class, over two hours of “flipped 
classroom” instruction. One thing to note is that students came from a very wide range of 
backgrounds and programming experience.


All the Python labs for Natural and Artificial Neural Networks can be found here. 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The labs begin with 
motivation and exposition 
for the upcoming concepts, 
with a view that students in 
this course come from a very 
wide range of backgrounds 
in programming, math 
prerequisites, and academic 
discipline.

Some students were at a 
higher base level 
mathematically, so we were 
able to put some notation in 
the exposition. Because the 
course was small (15 
students), Clayton and I were 
also able to give one-on-one 
guidance to students without 
the same math background, 
pointing out which parts 
were “fine to gloss over” or 
providing more concrete 
examples.

https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/calendar/
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The Python labs all followed 
the structure of: exposition, 
simple coded examples, and 
exercises for students to do 
themselves.  

For the exercise parts, 
students all worked on their 
own laptops as Clayton and I 
walked around to make sure 
everyone could pass the 
exercise and receive 
individualized attention.
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An important design 
principle in the labs was to 
build up to a relatively 
advanced concept related to 
neural networks from simple 
modular exercises. 

In this case, the example is 
the Perceptron algorithm, 
the simplest building block 
of a neural network.

Interactive Python code 
allows students to 
experiment and test various 
cases to understand an 
abstract idea better. 

In this case, students code 
to try Perceptron on simple 
small datasets.

The one-on-one 
instructional aspect of the 
class also allowed Clayton 
and I to have exercises that 
gave students the chance to 
verbally “explain what this is 
doing.” This was helpful to 
know where each student 
was at, and to develop a 
closer instructor-student 
relationship. Clayton and I 
would go onto provide 
mentorship to several of our 
students!
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Most of the labs 
concluded with an 
application of the machine 
learning tool of the week to a 
real dataset. In this case, 
students applied their 
Perceptron algorithm to a 
simplified MNIST dataset of 
0’s and 1’s. MNIST is a 
handwriting classification 
dataset where the examples 
are images of digits.

Students found it 
fascinating that they could 
go from zero programming 
experience to building a 
“simple neural network” that 
accurately  classifies 
handwritten digits.
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Python Programming Assignment: Computational Linear Algebra 
I designed this example programming assignment as a homework assignment for students 
in Computational Linear Algebra. Students in this class have experience coding, but possibly 
not in Python. At this point, they have gotten the hang of basic scientific computing libraries, 
so this programming assignment brought their new knowledge of Python to bear on a concrete 
demonstration of some abstract linear algebra ideas from class: linear transformations, bases, 
and change-of-bases.
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The point of this assignment 
is to connect the abstract 
ideas of change-of-basis 
from class to being able to 
play with the perspective of 
points in matplotlib and 
some digital images.

This programming 
assignment was dense, so 
my recitation for that week 
attempted to clarify student 
questions and provide an 
overview and hints to this 
assignment.

The lab begins with some 
interactive plotting to make 
sure students can grasp the 
inherently 3D idea at hand 
from as many different 
perspectives as possible.

https://colab.research.google.com/drive/1RJr5x-AW9J_Te_DT-YI6GN0ZgpImxQj3?usp=sharing
https://www.youtube.com/watch?v=QG-rIO5hxa8&list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd&index=12
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The exercises that 
students were responsible 
for in the lab were modular 
functions that each 
implemented a key linear 
transformation. 

The modularity was 
important to my design 
principle: I wanted students 
to get the sense that, by 
constructing the correct 
building blocks, they were 
able to do something very 
nontrivial by putting them 
together. 

Like my Problem Set: Math 
for ML, the driving 
philosophy behind this 
programming assignment is 
giving students a chance to 
discover something 
themselves. 
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Many of the coding 
assignments in CLA 
culminated in doing 
something to actual images, 
which gives students a 
visceral real world example 
of the techniques of linear 
algebra in action. 

In this lab, students use the 
modular functions they 
implemented (each 
corresponding to a specific 
linear transformation) to 
“flatten” the image of a 
whiteboard. Pretty nontrivial! 
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