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In this document, I’ve collected a range of representative artifacts that | believe represent my
teaching. In particular, I've attempted to collect material that | feel encapsulate the core
principles of my teaching philosophy:

. A driving and cohesive narrative should propel all parts of a course.

Ideas should be presented as if the student could’ve discovered them themselves.
3. An instructor should never forget how they first struggled when learning the same
ideas.
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Evaluations

Summary of Courses and Evaluations

2 of 50

Below is a table that contains my “Overall Instructor Quality” for all the courses that I've TA'd or
taught. These all come from end-of-semester anonymous teaching evaluations solicited by
Columbia, and the scale given is: (1) Poor (2) Fair (3) Good (4) Very Good (5) Excellent.

Course Semester

Math for ML Summer
2024

Computational Fall 2022

Linear Algebra

Natural and Spring 2022

Artificial Neural

Networks (Lab)

Machine Learning Summer 2020

Discrete Math Spring 2020

Discrete Math Fall 2019

Machine Learning Spring 2019

Discrete Math Fall 2018

Role

Course
Designer/
Insructor

Head TA

Co-Course
Designer/Co-
Instructor *

Head TA
Head TA
Head TA

TA

TA

Overall Number of Number of
Instructor Respondents Students
Quality

4.83/5 7 30
4.63/5 51 130
5/5 3 15

4.21/5 38 287

4.83/5 18 259

* All courses I’'ve designed have their materials all available online; just click the orange links

to view all the materials.

* The orange link for Computational Linear Algebra directs to a YouTube playlist complete
with recordings of all the weekly recitations | designed and taught throughout the semester,
as well as a guest lecture | did on eigenvectors and eigenvalues.

*» Click the blue links to be directed to the full set of evaluations for that semester’s class.

* The greyed out boxes were evaluations that | unfortunately couldn’t find in the system. The
Spring 2020 in particular had no final evaluations because of the COVID-19 pandemic.

* * The Spring 2022 semester of Natural and Artificial Neural Networks was a companion “lab”
session to a seminar titled Natural and Artificial Neural Networks. The instructors never
figured out how to separate the lab session and list us as “Instructors” on the official listing,
which is why our official evaluation designates us as “TAs.”
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Summary of Teaching Awards, Certification, and Other Service

Awards
My work as a teacher has been recognized over the years by various awards and fellowships:

+ Teaching Assistant Fellowship (2019). Awarded to “exceptional” teaching assistants in the
computer science department, providing full funding for several semesters of my M.S.

« Andrew P. Kosoresow Award for Excellence in Teaching and Service (2021). Our
computer science department’s highest award for teaching, awarded to students “for
outstanding contributions to teaching [and exemplary service] in the Department.

+ SEAS Doctoral Teaching Fellowship (2024). School-wide, faculty-nominated fellowship
awarded to PhD students who who have demonstrated “excellence in teaching,” meant to
allow students to further develop their pedagogy.

Six of the seven anonymous respondents in Math for ML also elected to nominate me for a
SEAS Distinguished Faculty Award:

10 - Would you nominate this professor for the SEAS Distinguished Faculty Award?

Samuel Deng

Response Option Weight Frequency Percent Percent Responses Means

Yes (1) 6 85.71% | I
1.14

No 2) 1 14.29% | Il -

0 25 50 100 Question | [
Response Rate | Mean | STD | Median
7/30 (23.33%) | 1.14 [ 0.38 | 1.00

Teaching Certification
Over the past four years, I've participated in Columbia’s Center for Teaching and Learning’s
, an evidence-based, multi-year teaching certification
program for PhD students across the university. The TDP focuses on cultivating, documenting,
and reflecting upon evidence-based, student-centered teaching. | have completed the
requirements for the fundamental and am slated to complete the
early Summer 2025. The Advanced Track is the CTL’s highest certification.

Teaching-related Service
My proudest service contribution has been my five semesters coordinating the

, Columbia’s peer-led workshop and discussion seminar for first-year
undergraduates. ESP provides introductory computer science students an opportunity to learn
about a wide range of computer science topics beyond programming, build problem-solving
confidence, receive personalized mentorship, and form close-knit peer groups. lts motivation
stems from the recognition that computer science students come from a plethora of academic
and personal backgrounds, and large introductory courses lack the close-knit environment that
fosters connections with peers and group problem-solving. Alongside fellow PhD student
Hadleigh Schwartz, each semester | led a team of eight to ten undergraduate teaching
assistants and coordinated the program across as many as ten sessions of 100 total students.
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Student Evaluations: Math for Machine Learning

Course: (click to access all materials)

Semester: Summer 2024
Role: Instructor/Course Designer
Course Size: 30

4 of 50

| have condensed all the responses into tables to save space; the original evaluation is available upon request.

Prompt (1) Poor  (2) Fair (3) Good (4) Very (5)

Good Excellent
Course: Amount 0 0 0 1 6
Learned
Course: 0 0 0 1 6
Appropriateness
of Workload
Course: Fairness 0 0 1 1 5
of Grading
Process
Course: Overall 0 0 0 1 6
Quality
Instructor: 0 0 0 1 6

Organization
and Preparation

Instructor: 0 0 0 1 6
Classroom

Delivery

Instructor: 0 0 1 1 5

Approachability

Instructor: 0 0 0 1 6
Overall Quality

Responses to “Enter any additional comments here:”

Mean

4.86/5

4.86/5

4.57/5

4.86/5

4.86/5

4.86/5

4.57/5

4.86/5

Resp.
Rate

+ Sam is a tremendous lecturer; he is extremely knowledgeable, prepared, energetic, engaged,
and accessible. This is course is marketed to students preparing for COMS 4771, but | think
its value far exceeds just that individual course. Make no mistake, there is a ton of content
covered in this course and it is probably better suited for a 12-week session, but this course
is a tremendous value in that it cuts through the filler of at least three other standalone
courses and gets us straight to the most important, fundamental aspects of ML math. With
that said, in large part the course is manageable because of Sam - | really appreciate how
thoroughly prepared he is, and the course website is among the best that I've seen. We were
sort of guinea pigs in this inaugural cohort of ours, so naturally there were some typos and
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errors in problem sets that needed to be cleaned up on the go, but Sam is approachable and
it never felt burdensome to ask clarifying questions or make suggestions on the content,
problem sets, or his delivery. He's a great lecturer, math courses can be hit or miss and often
tedious - that was not the case, and if you missed lectures his recordings are just as clear
and engaging as if you were in the classroom. All around, just a great job - he's going to be
an awesome Professor, someday!

+ The class was extremely well organized, starting from basics and leading to an overall
understanding of bigger math concepts. All HW problems were helpful and well-guided - the
problem sets were long but they were divided into smaller sections which reduced
unnecessary time spent going the wrong way (it was very clear if | was going in the right
direction). The coding assignments were also very clear and we could immediately see the
results and learn from it. Unlike some other classes were coding homework feels distanced
from the content, the coding part here well-matched the concepts discussed and the way it
had explanations in between each sections of the coding helped with understanding the
features we are building.

+ This course have bolstered my confidence in approaching the material covered in machine
learning.

+ Sam is an excellent instructor, and this class was extremely enjoyable. | look forward to
taking any other courses Sam prepares.

Additional question for this course was “Would you nominate this professor for the SEAS
Distinguished Faculty Award?”

10 - Would you nominate this professor for the SEAS Distinguished Faculty Award?

Samuel Deng

Response Option Weight Frequency Percent Percent Responses Means
Yes (1) 6 85.71% | N

1.14
No 2) 1 14.29% | Il

0 25 50 100 Question | [
Response Rate | Mean | STD | Median
7/30 (23.33%) | 1.14 [ 0.38 | 1.00

The answers to: “If so, please explain why”:

* He brings both energy and clear expectations to the classroom.

+ Sam's as good as it gets and he's genuinely interested in how we're doing, what we're
interested in, and how he can help us along our journey.

« It really felt like the instructor was prepared to teach the class - the contents were not only
organized but it had story to it. It worked up its way to a bigger concept. He had amazing
slides and each concepts were supported with examples that he clearly worked through in
class. Since it was a summer class and not many people took it (thus had only one TA), there
were not many office hours available compared to some other CS classes during the regular
semesters. However, he was always available through Ed and scheduled extra office hours if
students requested.
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« Sam is a fantastic instructor, in and out of the classroom. His lectures are excellent, his
course is interesting and necessary, and his is prepared with information beyond the scope of
the class.

Additional Feedback: Math for Machine Learning

| have also included additional feedback I've received in the form of emails, an anonymous
end-of-course survey | used to solicit more course-specific feedback, and even a

Emails

LIONMAIIL

COLUMBIA Samuel Deng <sd3013@columbia.edu>

Thank you for the course!
2 messages

Wed, Aug 7, 2024 at 5:39 PM
To: Samuel Deng <samdeng@cs.columbia.edu>

Hi Sam,
Just wanted to send a quick note to say thank you for an extremely well-designed and executed course. | haven't
been able to audit in-person in the last few weeks of the course because of my internship, but I've been following

along online. | can clearly see the dedication you put into your teaching --- and it's very much appreciated!

If you're amenable, I'd love to grab a coffee on or near campus to discuss future study opportunities and to get to
know you better. Please let me know what your schedule looks like say, next week?

I've answered the SEAS survey.

Thanks so much!

LIONMAIL
COLUMBIA

Samuel Deng <sd3013@columbia.edu>

Thank you

2 messages

Mon, Aug 12, 2024 at 5:19 PM
To: Samuel Deng <samdeng@cs.columbia.edu>

Hello Samuel,

| hope you are doing well given the end of the summer semester and the number of papers that need to be graded.

| wanted to send this email to thank you for this class. | really enjoyed it and thought that | learned a lot. While writing
my final evaluation, | was actually amazed by how much more of the paper | understood. In the beginning it all

truly looked like gibberish. But now, | could honestly follow what the authors were talking about and understand what

computations were being made. | am more confident in my Linear Algebra, Calculus, and Probability and Statistics.

I'm sorry | couldn't see you during the last couple weeks. | got very sick after coming back from DC when we had the
online week.

Hope to see you on campus sometime. Enjoy the rest of your summer.

Thank you again,
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LIONMAIL

COLUMBIA Samuel Deng <sd3013@columbia.edu>

Updates

3 messages

Wed, Dec 4, 2024 at 12:24 PM
To: Samuel Deng <samdeng@cs.columbia.edu>

Hey Sam!

Saw your email about checking in. | didn't take 4771 but | am taking Foundations of Optimization with Santiago
following your suggestion.

| can confidently say | would not have survived this class without preparation in Mathematics for ML. Without the time
we spent formalizing and visualizing convexity, the material | am tackling now might as well be hieroglyphics. | think
your emphasis on the intuition and visualization of convexity paid the biggest dividends.

How is your research at Berkeley going?

Cheers,

LIONMAIL

COLUMBIA Samuel Deng <sd3013@columbia.edu>

ML feedback

2 messages

Wed, Dec 4, 2024 at 4:13 PM
To: Samuel Deng <samdeng@cs.columbia.edu>

Hi Sam,
Thanks for reaching out!

I'd love to give feedback on your Math for ML course's prep for the COMS 4771 course.
| took it this semester with Prof. Verma. My high-level comments would be:

1. | think your course actually covered a lot more mathematical material than what was strictly required for COMS
4771 --- this may be because Prof. Verma skipped dimensionality reduction and graphical models units in its entirety.
Either way, | think it's actually a positive that | felt "over-prepared” in terms of mathematical breadth.

2. Specifically, | think your course went into a lot more detail with regards to multivariate calculus and OLS than what
was necessary for this semester's COMS 4771 course. Again, | think that's a good thing. Your probability and stats
unit was just about right in terms of breadth and depth.

3. Overall, | think your course was incredibly good prep for ML. | definitely felt a lot more prepared mathematically,
although some of Verma's problems were way too hard...

I'd love to fill out the survey.

Thanks!
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Math For Machine Learning - COMS4995

5 messages

Mon, Jul 22, 2024 at 11:50 AM
To: Robert Kramer <rk3281@columbia.edu>
Cc: Samuel Deng <sd3013@columbia.edu>

Hi Robert,

| hope you are doing well. | am reaching out to share my positive experience auditing the "Math for Machine Learning"
course with Professor Samuel Deng.

This course has been incredible in helping me understand many foundational concepts necessary for "Machine
Learning for Data Science". It would be an excellent recommendation for students with no solid mathematical
foundation or those like me who took Linear Algebra, Calculus and Optimization over a decade ago.

The best part of the course is that it focuses on developing intuition, which helps students go deeper into other
classes of the MS in Data Science Program. Professor Verma could even go much deeper in his lectures, as this
course already covers many technical aspects that he had to spend time on.

I've copied Professor Deng, to whom | am grateful for allowing me to audit the course. | believe it's an outstanding
recommendation for upcoming students.

Kind reiards,

Robert Kramer <rk3281%columbia.edu> Mon, Jul 22, 2024 at 4:16 PM

Cc: Samuel Deng <sd3013@columbia.edu>

Hi I

Thank you for your email and for letting me know; | am very glad to hear the course went well!

Samuel, please feel free to let me know if you will be teaching the course in the future. | am happy to inform our
students if you ever have any open seats, as | think some of our MS Data Science students would be very interested
in possibly taking the class during the Fall semester, prior to taking their Machine Learning course.

Kindly,
Rob

[Quoted text hidden]

Best,
Robert Kramer (he/his)
Associate Director of Admissions and Academic Affairs

Jump To: Table of Contents
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End-of-course Survey

My foundations in linear algebra have improved.
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My foundations in probability and statistics have improved.
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« @i
If offered again, don't pass up on COMS 'Math for ML'

This is a PSA for potential future MSCS students interested in ML. If you ever have the opportunity to take Math
for ML taught by Samuel Deng, do not pass up on it. | was among a lucky few to take this class over this summer,
and I'll explain below. Sam might offer this class in 2025/2026.

Course Overview:

This is probably one of the best courses | have taken to develop a solid introductory understanding in convex
optimization, and the groundwork for the math you will need to excel in any other machine learning class. Simply
put, there is nothing like it. In fact, Sam created this class with the express goal of helping strengthen the core
fundamentals you need for classes like 4771. While this course is meant to help 'prime' you with the necessary
theory needed to excel in more advanced classes, it is not to be underestimated. It is rigorous in its coverage of
fundamental concepts. Those concepts are the bedrock for building up to all the advanced ML in future classes.
Sam goes into extensive detail about connecting several pillars in ML together to paint a cohesive picture on why
we do what we do with models. What made the course special, was that Sam was there to guide us throughout
the process. This class was the ideal balance of being challenging in a manner that is justified, motivated,
inspiring, and (with a good work ethic) very doable.

As an instructor:

At the time of writing this, Sam is a PhD student. | can say quite confidently that he is probably of the best
instructors | have personally encountered. | always found him super approachable and incredibly passionate. He
went out of his way to help us understand concepts , going so far as to re-derive entire theorems in OH. The
course itself is very well organized. It definitely puts you into a better position to understand how to approach
things like research papers. To give you an idea of how committed he is, his lectures are accompanied with
interactive 3D renderings of graphs he made himself, and problem sets that have entire expositions written to
guide you through each concept. He has put in the work to give you the best experience you can have to learn as
much as possible.

Workload:

Bear in mind this is likely subject to change depending on ifflhow Sam decides to re-create the course for a future
semester schedule.

This is a challenging class.
e 6 problem sets

We write out all our PSets in Latex (something you will learn in PSet 0 if you have never done it before.) You will
be deriving a lot of foundational proofs. Each PSet also includes a programming section in python. You need to
put aside adequate time to understand the lectures and complete these questlons For some this may come

easier than others (i.e you have great mathematical intuition these Psets will be readily manageable.) For many, it
will take some grit and effort to work your way through them. Having said that, | felt motivated going through the
PSets. They felt meaningful, and | learned a great deal.

e 2 paper evaluations

The paper evaluations are a way to encourage you to choose a paper and dissect it in some detail. It was a great
exercise to better understand how to apply what we learnt in class to interpreting literature.

Overall:

| wanted to write this because | honestly felt so lucky to have taken this course and | really want more people to
take it if it's offered in the future. Get your moneys worth, don't pass up on it if it's offered again.

Jump To: Table of Contents
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Student Evaluations: Computational Linear Algebra

Course: (click to access recitations and guest lecture)
Semester: Fall 2022

Role: Head TA

Course Size: 130

| have condensed all the responses into tables to save space; the original evaluation is available upon request.

Prompt (1) Poor | (2) Fair (3) Good (4) Very (5) Mean Resp.
Good Excellent Rate
Overall Quality 0 0 4 11 36 4.63/5 51
Knowledgeability 0 0 3 11 37 4.67/5 51
Approachability 0 1 3 11 36 4.67/5 51
Availability 0 3 5 10 32 4.42/5 50
Communication 0 1 6 8 35 4.54/5 50

Responses to “Comments:”

+ Sam was easily one of the best TAs I've had at Columbia. He explained things in a clear and
concise manner and was clearly very passionate about the subject. Attending his recitations
was my favorite part of this class!

+ Sam is a superstar. He was great in his recitations and the guest lecture he did. He's patient
and a great communicator. If he's not on a professorial track, | hope he considers it. Also, as
a commuting GS student, | was appreciative to have recitations available on Zoom and
recorded.

+ Excellent lecturer and very good at explaining tricky concepts in recitation

+ Probably the best instructor and TA that I've had the pleasure of learning from. Very rarely
does an instructor (professor or otherwise) come as well prepared in terms of lesson
materials and knowledge whilst maintaining approachability and affability. Very responsive to
questions and shares his thought process regarding topics at hand. If there is a TA of the year
sticker Sam should definitely get it.

+ TA Sam is the reason that | understood half of the material in this course. His explanations
always made the most sense, and he really went above and beyond to make sure that we
understood everything, through extra videos and lengthy Ed responses. | can't explain how
grateful | am to have had Sam to help me understand CLA.

« Samuel is really good at teaching. Not only does he have the knowledge base, but he also
has a very good energy about him while he's teaching that draws you into the material. Also,
he can dumb things down "simple stupid" which make it easier to broadly grasp a concept
before building upon its intricacies that make it complex.

+ Informally, Sam is the best. | literally might have pulled the chute on this course if | didn't
have him to pull me through this course kicking and screaming. Sam and | spent no less then
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3ish hours every Friday going over course material. Don't get me wrong Daniel Hsu is great,
but Sam could have absolutely taught this course for Daniel without an issue. 9.7/10.

* nice

+ Very well prepared and patient!

+ Always explained everything really well!

+ Sam has been an incredible TA. He is super caring and knowledgeable, providing multiple
ways to understand a topic.

+ This man went above and beyond as a TA. He saw lots of messages on the Ed that a
particular Problem Set was hard so he made a video giving a high level overview of the
homework. Another Problem Set was hard and no one really understood the solutions
(because Hsu releases solutions without work/explanation) so Deng made a video of him
going through the solutions with work. Great TA. Was very responsive to the needs of the
students!

+ He's so knowledgeable, approachable, and friendly -- like no matter how silly a question may
seem, he will answer it with patience and do his best to make sure you understand. His
review sessions were life savers and he organizes his office hours so well so everyone who
needs help will get help in a timely manner - overall one of the best TAs I've learned from!

+ king

+ INCREDIBLE! An amazing teacher. | wouldn’t have understood the material nearly as well if
not for Sam. Thank you Sam!!! It was a pleasure!
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Student Evaluations: Natural and Artificial Neural Networks Lab

Course: (click to access all materials)
Semester: Spring 2022

Role: Co-Instructor/Co-Course Designer/TA?

Course Size: 15

| have condensed all the responses into tables to save space; the original evaluation is available upon request.

Prompt (1) Poor | (2) Fair (3) Good (4) Very (5) Mean Resp.
Good Excellent Rate
Overall Quality 0 0 0 0 3 5/5 3
Knowledgeability 0 0 0 0 3 5/5 3
Approachability 0 0 0 0 3 5/5 3
Availability 0 0 0 0 3 5/5 3
Communication 0 0 0 0 3 5/5 3

Responses to Comments:

« great TA. really knows his stuff.

1 With fellow PhD student Clayton Sanford. This was a companion two-hour “lab” course that we created all the materials and
taught every week. Every session involved a short lecture and then an interactive Python “lab.” We also served as TAs to the main
seminar course.
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Student Evaluations: Discrete Mathematics

Course: Discrete Mathematics
Semester: Fall 2019

Role: Head TA

Course Size: 287

| have condensed all the responses into tables to save space; the original evaluation is available upon request.

Prompt (1) Poor  (2) Fair (3) Good | (4) Very (5) Mean Resp.
Good Excellent Rate
Overall Quality 1 0 9 8 20 4.21/5 38
Knowledgeability 0 1 7 6 21 1 4.34/5 35
Approachability 1 0 9 4 21 4.26/5 35
Availability 1 0 6 6 20 4.33/5 33
Communication 1 0 8 4 20 4.27/5 33

Responses to Comments:

* Very good at giving hints that don't give the answers away, very helpful and great teacher, all
around cool guy

+ Best TA everl!

+ He answered questions on piazza well.
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Student Evaluations: Machine Learning

Course: Machine Learning
Semester: Spring 2019
Role: TA

Course Size: 259

| have condensed all the responses into tables to save space; the original evaluation is available upon request.

Prompt (1) Poor  (2) Fair (3) Good | (4) Very (5) Mean Resp.
Good Excellent Rate
Overall Quality 0 0 1 1 16  4.83/5 18
Knowledgeability 0 0 1 2 15 4.78/5 18
Approachability 0 0 1 1 16 4.83/5 18
Availability 0 0 1 1 16  4.83/5 18
Communication 0 0 1 1 16  4.83/5 18

Responses to Comments:

» Thank you!ll

+ Good

+ Thanks for helping with the homework!

« sammy d is my homie g five stars

+ He was super friendly and approachable, always willing to help at office hours or even
outside of class
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Math for Machine Learning Lectures

In this section, | present a 15 minute representative lecture of my teaching and give a broad
overview of three representative lectures? of Math for ML that exhibit my teaching principle: (1)
A driving and cohesive narrative should propel all parts of a course. If you’d like to access
my course in its entirety:

Red-light, yellow-light, green-light system

During lectures, one practice that embodies my teaching principle (3) An instructor should
never forget how they first struggled when learning the same ideas is a “red-light, yellow-
light, green-light system” I've developed for students.

Lecture pace. It's really easy, in my experience, to get lost in a math lecture when lots of derivations or proofs are
involved. At the same time, though, it can often be intimidating to speak up for fear of asking a “dumb question”
(no such thing!). To this end, during every lecture, I'll have a fully anonymous interactive poll to keep an eye on
how people are feeling during lecture and I'll check it intermittently, especially during proofs. When prompted to
regsiter, just click “Skip for now.”

Linear Algebra | (matrices, vectors, bases, and orthogonality)

Jun 26: released + Ed Announcement

Jul 1:

4 N
Lecture pace: how are you feeling with the material? 0
I make this poll

available at the
start of each
lecture for students
to access on their
phones.

SLOW DOWN! SPEED UP!
JUST RIGHT On my PC, a

synchronously
updated version of
this poll is within
sight at all times.

g |

This system comes from the understanding that, oftentimes, students may be insecure or shy
about expressing confusion. It’s greatly helped me calibrate the pacing during difficult sections
of the class.

2 Because this was a summer course, the classes were 3 hours long and included the content of two traditional class sessions.
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15-minute Representative Lecture

Here is a to a 15-minute representative lecture that was a part of my final session of Math
for ML Summer 2024, Lecture 6.2: Multivariate Gaussian and Finale. This clip reviews the
motivation behind the course and the key developments in the first third on linear algebra.

ae 2@ nre 09 aw e

Math for ML

By: Samuel Deng

Overview: Three Representative Lectures
For more detail, I'll present a broad overview of three representative lectures that show how |
spin a narrative around a central idea of the course: ordinary least squares. From the syllabus:

This is a course with a loose story. The course is structured around two main ideas that
underlie modern machine learning: least squares regression and gradient descent. Very
informally, least squares regression is a classic way of modeling problems in machine
learning (the “what”), and gradient descent is the workhorse algorithm that drives much
of modern machine learning (the “how”). Every week, we’ll develop and motivate these
two ideas in lecture with the tools and concepts you learn from each part of the course.
As the class goes on, you'll develop different perspectives on these two ideas from, first,
what we learn in linear algebra, then calculus and optimization, and, finally, probability
and statistics. The hope is that, by the end of the course, you'll have a deep
understanding of both these ideas in ML while also having two concrete “applications” to
motivate all the abstract mathematical tools and concepts you learn in the course.

The three representative lectures are:

1. Lecture 1.1: Vectors, Matrices, and Least Squares ( , )
2. Lecture 3.1: Differentiation and Vector Calculus ( , )
3. Lecture 4.2: Convexity and Convex Optimization ( , )
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https://youtu.be/QRKl5xlIgIQ?si=aVtluQUWLvV1p2yY
https://youtu.be/SHweC31c37w?si=XVJ_23Eaa1wePiY2
https://youtu.be/SHweC31c37w?si=XVJ_23Eaa1wePiY2
https://youtu.be/p6K-kRm7WkM?si=fZNBrjqoz5ihK6H8
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.1_linalgandols.pdf
https://www.youtube.com/watch?v=BibhhpeI6p4&list=PLNm9W-YkOtpMgKhBj8sc1CMHxUPcqHsRM&index=5
https://samuel-deng.github.io/math4ml_su24/assets/slides/3.1_derivatives.pdf
https://youtu.be/y7BRVS7hV9U?si=tT0LbdArEShcibO2
https://samuel-deng.github.io/math4ml_su24/assets/slides/4.2_convexity.pdf
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Lesson Overview

Lesson Overview

o= o @

Click to interact

Ordinary Least Squares
Main Theorem L THEM
Let X € R™< with n > d and rank(X) = d (the columns of X are linearly

independent.

Then, the solution W € R that minimizes || Xw — y]|, i.e.

IXW — y|| < [|IXw —y]|| forall w € R¢,

(xS & = ﬂ'\f

is given by:

Lesson Overview

Takeaways
Regression. The basic problem in machine learning is regression. We have training data in the
form of a data matrix X € R™ and labels y € R". We seek a model W € R such that XW ~ y.

Least squares. One way to find a model for the data is through least squares: choose W that
minimizes|| Xw — y]|2.

Span and orthogonality. We can solve least squares by noticing that XW — y is orthogonal to
span(cols(X)). This gives us the normal equations: X' Xw = X'y.

Linear independence. To solve the normal equations, we need X to be full rank (its d columns are
linearly independent). Then, we can invert and solve the normal equations.

W= X"X)"XTy.

Jump To: Table of Contents
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is the very first lecture.

Every lesson begins
with an updated “big
picture” of the two main
narratives of the course:
least squares and gradient
descent.

All of the 3D renderings are
for students to play

with in the “Story Thus Far”

sections of Course Content.

In this lesson, students
prove a solution to ordinary
least squares purely from
geometric intuition and linear
algebra.

To arrive at this, | continually
reference this

| close every lesson
with a recap of the important
concepts learned. These are
tracked in an ongoing


https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/content/
https://samuel-deng.github.io/math4ml_su24/skeleton/
https://youtu.be/p6K-kRm7WkM?si=9LuLQBccnkoJlyY3
https://youtu.be/p6K-kRm7WkM?si=9LuLQBccnkoJlyY3
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.

. Nt =1 = £t "_)7
Lesson Overview "™ /" T 2.

. is the first lecture
| ' of the second third of the
sitton 4 course on calculus and
S SA optimization.

*e At this point, the linear
“., algebra third of the course
Lesson Overview °. has finished. I’ve hinted at
‘o this
of the least

squares error function, but
students don’t have the
formal tools (yet) to analyze
it. This lecture will give them

these tools.
Least Squares
Obtaining normal equations from linear algebra , The first “narrative” of the
B - g e course takes a twist: least
ecause y — Y is perpendicular to ° .
span(col(X)), we obtain the normal * ., | squares can be solved
equations: ° | either: completely linear
X'Xw = X"y. : / ; . algebraically using pure
e : geometric intuition or using
' the tools of calculus!
L tS K : By the end of the course,
eas quares . e the goal is for students to be

Obtaining normal equations from optimization able to see least squares
Because the gradient is and gradient descent from

Vv, fiw) = 2X"X)w — 2XTy, ‘ | as many perspectives as

possible.
setting it equal to 0, we obtain the normal ¥ i~ g
equations: : . R . .
- - /ﬁ B These perspectives motivate
X Xw=XY. which “characters” |

introduce each lecture: they

see a gradient for the first

time in service of

discovering a bit more about
least squares.
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https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://youtu.be/BibhhpeI6p4?si=2dZZn6-RtPicWYC2
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Lesson Overview

is the
final lecture of the calculus
and optimization unit of the
course.

The big picture slides now
. hint that our least squares
Lesson Overview picture is showing up in a
o° “crossover” with gradient
o descent.

s S The second third of the
’ course culminates in the two
stories of the course coming
together: gradient descent

applied to least squares.

Gradient Descent and OLS

Uniting our two stories

Theorem (GD applied to OLS). Let X € R"™*? and y € R" be fixed. Let the From the very first
maximum eigenvalue A, of XX satisfy Amax < BI2. Let w* be a (global) lecture, | hinted at the

minimizer of fiw) = || Xw — y||?, satisfying:

algorithm of gradient
IXw* — y||> < || Xw — y||* for all w € R?. descent purely with hand-
. e (Bt TF
If we run gradient descent with step size # = 1/f and initial point w, € R for wavy intuition: “rolling a
T iterations, we have: marble down a bowl.”
—vlIz = * _ yl||2 ﬁ — w¥|I? = — w¥[I? - -
1Xwr = yII? - IXw* — yII* < = (Iwo — w12 = llwr — wH[I%) This lecture gives students

° | the mathematical tools to
. prove why gradient descent
. converges, and, specifically,

Gra_dlent Descent : why it works so well with
foonmmio e ) least squares. Students
Make an initial guess w,. . investigate this connection
Fort=123,... A further in
« Compute: H
W, «w,_ —2nX" (Xw—y).
« Stopping condition: If e
lw, — w,_;|| < €, then return . £ One student reported that

fw)). S 4 their “mind was blown” at
’ i this, which is all | can ask for.

s 2l e 11, X208 b escont @ st
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https://samuel-deng.github.io/math4ml_su24/assets/files/ps4.pdf
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be
https://www.youtube.com/watch?v=y7BRVS7hV9U&feature=youtu.be
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This philosophy that (1) A driving and cohesive narrative should propel all parts of a course
was well-received by students in an end-of-semester anonymous survey. All four respondents
appreciated this overarching narrative.

Revolving the course around OLS and Gradient Descent helped me solidify and LD Copy chart
apply the concepts we learned in class.

4 responses

0 ((l)%) 0 ((‘J%) 0 ((‘J%) 0 (C‘)%)
0
1 2 3 4 5

This was a broad overview of three lectures at various points through the semester. For more
details on how | structure my material for an individual lecture, jump to Lecture Slides: Math
for ML (Subspaces, bases, orthogonality).
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Computational Linear Algebra Recitations and Guest Lecture
This section includes some video recordings of my teaching during Computational Linear
Algebra (CLA), where | held a weekly recitation session and delivered a guest lecture.

I’'m particularly proud of my for CLA, where | tied together each unit of
the class into an overarching “big picture” revolving around the four fundamental subspaces.

= [%YouTube

INVERSE . WHEN / dmcescd) =n

L r“ _\,, EUMINATION/
SowiNG As=b  |¥AvoT + #FeEE - N| ( ce ;nmumw)
"

Avor

| VARABLES

Computational Linear Algebra Recitation 12: Semester Review
Uniisted

| also took the opportunity to have my teaching observed and critiqued from the Center for
Teaching and Learning as part of their Teaching Development Program’s observation
requirement. This happened during my on eigenvalues and eigenvectors.
Unfortunately, the sound didn’t pick up in lecture, so this is a re-recording of the same content.

[PICTUPES To EEP N MIND]
O EIGENVECToR fLTVRE

3
o,

l

Computational Linear Algebra Guest Lecture (Re-Recording): Eigenvalues and Eigenvectors
Uniisted
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https://www.youtube.com/playlist?list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd
https://www.youtube.com/playlist?list=PLNm9W-YkOtpOtQmFxmw9MzARpHqAPHLxd
https://youtu.be/lOADPrhy8nI?si=1W1HNtlCGRcmLOy7
https://youtu.be/Hpa2rl4Euyo?si=BikyBlYG7I45GSZ8
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Math for Machine Learning Syllabus

This section includes a few annotated snippets of my and
for ML. A couple details on how this course came to be:

for Math

+ | actually had the inkling of an idea for this course in my undergraduate senior year, Fall 2018,
after | somehow hobbled through our Machine Learning course without ever taking
probability and statistics. It was brutal, and conversations with peers from that point on
showed me that | was not alone: many undergraduates and Master’s students at Columbia
felt that the jump from math prerequisites to our flagship ML course is too steep.

* Recognizing this as a pain point in our curriculum, | began constructing the course in earnest
in Fall 2023, eventually ending up with this .

* When | proposed this rationale to some faculty responsible for the undergraduate curriculum
in the department, | was pleasantly surprised that this has been on their mind for a while, but
no one had taken the initiative to do it.

+ | decided to take the leap and create the course through Fall 2023 and Spring 2024, and |
piloted the course during Summer 2024 under the SEAS Teaching Fellowship.

| didn’t quite have the words then to express this, but, upon reflecting on this now, | was really
motivated by my third teaching principle pervades every design decision in this course: (3) An
instructor should never forget how they first struggled when learning the same ideas. |
figured: if | could go from not knowing what an expectation is while taking Machine Learning to
finishing a PhD in theoretical machine learning, I’'m sure others could too. They just need the
right preparation.

L GYENGNIS VIt IS PEYS 101 SE9T Ul Sunes (UIHISUR SIS 1190 1Sise

're just dropping by, | hope this course is useful to you.

What's this course? This is a topics course meant to strengthen the mathematical fundamentals for students
wishing to pursue further study in machine learning. The serious study of machine learning requires a student to
be proficient in several prerequisite subjects: (i) linear algebra, (i) multivariable calculus, and (iii) probability and
statistics. This course assumes that the student has already taken courses in these subjects at the undergraduate
level (it is not a replacement), but would like to be more comfortable with their mathematical maturity in any of
these areas before approaching a formal course in machine learning at the level of, say, COMS W4771 (Machine
Learning) at Columbia. We will not give comprehensive treatment of each of these areas; instead, we will present
the main results that are most relevant to the analysis and design of machine learning models.

This is a course with a loose story. The course is structured around two main ideas that underlie modern machine
learning: least squares regression and gradient descent. Very informally, least squares regression is a classic way
of modeling problems in machine learning (the “what”), and gradient descent is the workhorse algorithm that
drives much of modern machine learning (the “how”). Every week, we'll develop and motivate these two ideas in
lecture with the tools and concepts you learn from each part of the course. As the class goes on, you'll develop
different perspectives on these two ideas from, first, what we learn in linear algebra, then calculus and
optimization, and, finally, probability and statistics. The hope is that, by the end of the course, you'll have a deep
understanding of both these ideas in ML while also having two concrete “applications” to motivate all the abstract
mathematical tools and concepts you learn in the course.

See for the full syllabus.

Contact. If you have any questions, feedback, or just want to chat about this course, email me at

Feedback? By the nature of this course, students will come from widely different levels of background, and it is
my job to make sure that no student is left behind or glossed over because of this. To this end, if thege's 8nything |
can do to help you learn better, do not hesitate to contact me directly or

Course philosophy. The goal of this course is to reinforce and deepen important mathematical fundamentals, gain
better intuition of these mathematical tools, and develop confidence in mathematical maturity. All of these require
work that may sometimes seem daunting, but | believe that any student is capable of growing in the course, so
long as they continually grapple with the concepts and do the work. This may, at times, be difficult, but struggle is
a totally normal part of the process. | was in your shoes, at one point (and still am!), and | can assure you that
many of these concepts seem really difficult until they inevitably, after plugging away for a while, become natural. |
hope you, the student, come away with this feeling as well.
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My full syllabus and content
is available online. This has
actually led to some
fortuitous consequences:
educators at other
institutions have reached out
to talk about the course and
its use at their schools.

An anonymous feedback
form is open from day one to
make sure | can adjust to the
backgrounds of the class.

I make sure that the
philosophy in designing the
course is clear to the
students.


https://samuel-deng.github.io/math4ml_su24/syllabus/
https://samuel-deng.github.io/math4ml_su24/
https://samuel-deng.github.io/math4ml_su24/assets/files/rationale.pdf

Example Syllabi 24 of 50

Linear Algebra | (matrices, vectors, bases, and orthogonality)

The course is divided into

Jun 26: PS 0 released + Ed Announcement psO_template.zip q 9
three main parts: linear
Jul 1: Lecture: Vectors, matrices, and least squares MML 2.1 - 2.8, 3.1 - 3.3, VMLS algebra Calculus and
1.1-1.5, 2.1-2.3, 3.1-3.4, 5.1, 5.2, . o i . o
6.1-6.4, 12.1-12.4, Regression (d=2) optimization, and probability
: and statistics.
Jul 2: PS 1released, due July 11, 11:59 PM ET ps1.pdf, ps1_template.zip,

pslipynb, ps1_tex.zip
Paper reading project released. Evaluation due July 8 11:59 PM ET
Jul 3: Lecture: Subspaces, bases, and orthogonality MML 2.1 - 2.8, 3.1 - 3.3, VMLS EaCh IeCtu re develops the
1115, 21-23, 31-34,51,6.2, two driving narratives of the
6.1-6.4, 12.1-12.4, Alternate basis, course: /eaSt squares and

3Blue1Brown video on bases,

3Blue1Brown video on matrices as . gradient descent.

linear transformations o ¢
[ ] ° - -
wia: (N3 PSOdue . | visually summarize how the
LS (Story Lecture 1.1: Least squares regression can be solved geometrically with the Pythagorean Concept develops Wlth a 3D
11 A ”
thus far):  Theorem. .« °| rendered “big picture” that
Lecture 1.2: Least squares regression has a simpler solution with orthonormal bases. ° ° each Iecture centers around_
L[]
[ ]
GD (Story Lecture 1.1, 1.2: Gradient descent with a “bowl-shaped” function gets us to the minimum.
thus far):
Linear Algebra Il (singular value decomposition and eigendecomposition)
Calculus and Optimization | (differentiation and Taylor Series)
Jul 15: Lecture: Differentiation and vector calculus “Peaks” Function, Derivative Ex. 1, TO my dellght’ these 3D

Derivative Ex. 2, Derivatilve Ex. 3, | renderings were quite
MML 5.1 - 5.5, The Matrix

Cookbook . popular. One student even
was able to spontaneously

Jul 17: Lecture: Taylor Series, Linearization, and Gradient GD Example 1 (big eta), GD 3 .
Descent Example 1 (small eta), GD Example come Up Wlth the Idea Of a
2 (big eta), GD Example 2 (small saddle point and better

eta), Linearization in 3D, Polynomial

1, Polynomial 2, Beta-smooth unde_rStand La_grang_lan

function, 3Blue1Brown video on duallty by playlng Wlth

Taylor Series in office hours.
Jul 18: PS 3 released, due July 29, 11:59 PM ET ps3.pdf, ps3_template.zip,

ps3.ipynb, ps3_tex.zip

LS (Story Lecture 3.1, 3.2: We can derive the exact same OLS theorem from linear algebra section from
thus far): just the tools of optimization and viewing the notion of least squares error as an “objective

The second third on
calculus and optimization

function.”

GD (Story Lecture 3.1: We can now write down the algorithm for gradient descent. Intuitively, positive

thus far): semidefinite or positive definite quadratic forms seem good for gradient descent. bu"ds on Ilnear algebra by
Lecture 3.2: Using Taylor’s approximations and Taylor’s theorem for the first-order fIrSt ShOWIng that IeaSt
approximation (linearization), we can provide intuition and a formal guarantee that gradient squares can also be SOIVed
desc.ent makes the functiorl va?ues decrease. The behévior of gradient descent depenés on the Via optimization, and, by
learning rate eta: eta too big will result in erratic behavior but small enough eta results in stable . .
convergence. lecture 4.2, with gradient
descent.

Calculus and Optimization Il (optimization and convexity) -- SAM OUT OF TOWN

Jul 22: Lecture: Optimization and the Lagrangian (recording in Constrained least squares (ridge See the l'epresentative Video
lectures in the Math for ML
Lectures section for more
details on this progression.
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https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
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Probability and Statistics | (basic probability theory and statistical estimation)

Jul 29:

Jul 31:

Aug 1:

LS (Story
thus far):

GD (Story
thus far):

Lecture: Basic Probability Theory, Models, and Data

3 rs3due

Lecture: Bias, Variance, and Statistical Estimators

Regression setup w/ randomness,
MML 6.1-6.4, Blitzstein and
Hwang’s Ch. 9 on Conditional
Expectation

Regression (d = 2) with test point,
SGD with batch size 1, SGD with
batch size 10

Final paper reading evaluation released. Evaluation due August 12 11:59 PM ET

PS 5 released, due Aug 13th, 11:59 PM ET (no
programming portion)

ps5.pdf, ps5_template.zip,
ps5_tex.zip

Lecture 5.1: Modeled the regression problem with a linear model with random errors. Found that
OLS’ conditional expectation is the true linear model and its variance scales with the variance of

the random errors.

Lecture 5.2: OLS is the lowest variance unbiased linear estimator (Gauss-Markov Theorem).

Derived expression for the risk (generalization error) of OLS.

Lecture 5.1: Nothing new here.

Lecture 5.2: Closed the story of gradient descent by defining stochastic gradient descent,
where we use unbiased estimators of the gradient instead of the full gradient over all the data.

Probability and Statistics Il (Maximum likelihood and Gaussian distribution)

Aug 5:

Math for ML

Home
Syllabus
Calendar
Course Content
Course Skeleton
HW Submission

Project

This site uses Just
the Docs, a
documentation theme
for Jekvll.

Lecture: The Central Limit Theorem, “Named”
Nictrihinitinne and MI F

MML 6.1-6.8, MML Ch. 8,

Courseworks ~ Video Recordings ~ Gradescope ~ Ed  Anonymous Feedback

Paper Reading Project

Paper Reading Guidelines

N

List of Papers

w

Final Evaluation Outline

IS

First Evaluation Outline

The project of this course will be to attempt to read a research paper in machine learning. Emphasis on attempt:
there is no expectation that you will understand every single detail in the paper. However, you might be pleasantly
surprised that you understand a bit more than you would've at the beginning of the course just by strengthening
your mathematical foundations.

There are three parts to this project:

Choose a paper. Within the first week. Take a look at the list of research papers below and choose a paper
based on the title and abstract. You're free to choose whatever might look interesting to you. If you need help
deciding, feel free to email the instructor or TA or post on Ed.

N

Beginning of course evaluation. Before the second week. You will attempt to read the whole paper. Research
papers can be intimidating if you've never read one before (and even if you've read hundreds!) so we will
provide some guidance on how to read a scientific paper in machine learning. Then, you will provide a critical
evaluation of the paper to the best of your current ability based on the template below. This will be graded on
completion and effort - we emphasize that it does not matter how much you actually know or understand from
the paper, just that you put a concerted effort into completing the evaluation and grappling with the paper.

w

End of course evaluation. Final week. At the end of the course, you will read the paper again. You will fill out a
similar critical evaluation of the paper, per the same template, with a couple added questions. Again, you will be
graded not on your understanding (though we hope it's improved the second time around!) but, rather, your
concerted effort in writing an evaluation that shows that you've read and grappled with the paper to the best of
your ability.

This project will be graded on the clarity and quality of the evaluation, but we stress that we will not focus on how
much you “get” the paper. As long as you do the work of grappling with the paper and filling out the evaluation to
the best of your ability, regardless of your understanding, you should get full marks, grade-wise. The emphasis of
this project is on your own growth — hopefully, you'll find that by the end of the course your chosen paper isn't
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2RIa1TRrAawnN'e viden nn the Central

25 of 50

In the last third of the
course on probability and
statistics, students finally
gain the tools to ground the
epistemic assumption of
“random” data in the
machine learning setup

they’ve examined all class.

Conveniently, least
squares is a pretty deep
concept statistically: it
shows up as maximum
likelihood estimation under
certain assumptions, and it
provides nice analytic
solutions that demonstrate
key concepts like bias and
variance.

This “inevitability” of least
squares drives the last third
of the class.

The summer version of this
course involves a

The intended goal of this
project is to show students
how far they’ve come with

mathematical maturity.

One student emailed me: /
was actually amazed by how
much more of the paper |
understood. In the beginning
it all truly looked like
gibberish. But now, | could
honestly follow what the
authors were talking about
and understand what
computations were being
made.


https://samuel-deng.github.io/math4ml_su24/project/
https://samuel-deng.github.io/math4ml_su24/project/
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My foundations in linear algebra have improved.

4 responses

4

|_|:| Copy chart

4(100%)

2
1
0 (c‘i%) 0 (l'ii%) 0 (C‘i%) 0 (l'it%)
0
1 2 3 4 5
My foundations in calculus and optimization have improved. D copy chart
4 responses
: 4(100%)
3
2
1
0 (?%) 0 ((l)%) 0 (?%) 0 (tl)%)
0
1 2 3 4 5

My foundations in probability and statistics have improved.

4 responses

3

0(0%) 0(0%) 0 (0%)
0 I I \

1 2 3

| feel more confident with my mathematical foundations and tackling future ML

courses or research.

4 responses

3

0(0%) 0(0%) 0(0%)
B | | \

1 2 3
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1(25%)

1 (25%)

|_D Copy chart

3 (75%)

[|_:| Copy chart

3 (75%)
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| created a course-specific
feedback survey at the end
of the course to solicit
feedback on each part of the
course.
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The paper reading project was a valuable exercise. |_|:| Copy chart

4 responses

4 4 (100%)
3
2
1
0 (?%) 0 (?%) 0 (?%) 0 (?%)
0
1 2 3 4

In my opinion, the strength(s) of this class compared to other classes were:

3 responses

A strong emphasis on visualization, examples, and case-study type questions.
It was a clearly presented, important information. | enjoyed learning.

The Problem Sets. | think the problem sets were great. Explained the topic being used. Helped us derive the
main concept from the basics.

In my opinion, the weakness(es) of this class compared to other classes were:

3 responses

Not really a weakness, but no matter how you cut it, this class was fast paced. Some of the later lectures
were definitely harder to grasp at the pace.

It is a significant workload, especially for those with a rusty background in Linear Algebra. This may be due to
summer having an expedited schedule.

Too quick. However that is a consequence of the summer course not the class itself.

For me, the most significant obstacle(s) to my learning in this class were:

3 responses

Having time set aside to explore some of the theorems and concepts. There was little time for self
exploration since the problem sets had to be immediately started. This is mostly a consequence of this being
a summer class.

Time spent on problem sets. Again, summer schedule may be the cause.

Getting more confident with applying mathematical theorems.

Jump To: Table of Contents

27 of 50

| also made sure to get
students’ opinions on what
might change in a future
iteration.

A particular point that came
up multiple times was that
the accelerated summer
schedule (4 full-length
lectures a week in two 3-
hour sessions) made the
course particularly intense.

In future summer iterations,

I will take this feedback to
heart and adjust pacing to
skip some content that’s less
crucial.
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Natural and Artificial Neural Networks Syllabus

This section includes a syllabus for
companion course | co-designed and co-taught with PhD student Clayton Sanford. Some
points that made this course unique were:

28 of 50

, the

+ This was an optional, graded companion course to a widely interdisciplinary seminar, Natural
and Artificial Neural Networks, taught jointly by Christos Papadimitriou from the computer
science department and John Morrison from the philosophy department.

+ This course was cross-listed in many different departments, so students came from
backgrounds as diverse as philosophy, computer science, law, biology, and neuroscience.

* The seminar had about 50 total students, and our lab enrolled 15 of those students.

+ The purpose of the lab was to supplement the seminar with hands-on experience and build
students up from potentially zero Python experience to being able to implement and play

with basic neural network models with keras and scikit-learn.

N&ANNSs Lab
2022

Feedback
Lab Schedule

Staff and Office Hours

This site uses Just the Docs, a
documentation theme for Jekyll

Natural and Artificial Neural Networks Lab
Columbia University, Spring 2022

Instructors: Samuel Deng and Clayton Sanford
Time: Thurs 2:10 PM - 4:00 PM.
Location: 516 Milstein Center (Lab 3 onward). First two labs on Zoom (check Courseworks for link).

Course Description: Understanding the powers and limitations of artificial neural networks requires
exposure to both concepts and practice. This lab section focuses on the latter, supplementing the
conceptual framework from the seminar, Natural and Artificial Neural Networks, taught by Christos
Papadimitriou and John Morrison. The lab focuses on giving students without a background in
computer science hands-on experience with basic programming in Python, tools for data science,
and a variety of machine learning algorithms.

Notes on Prerequisites: The labs are all aimed towards students who have zero programming
experience and start with a series of modules that teach the Python fundamentals necessary for later
labs, which stress Al/ML applications. The lab section is not a comprehensive introduction to any of
these subjects; rather, it is designed to supplement a non-technical understanding of ML and data
science by exposing students first-hand to the concepts discussed. If you are a student who has
already had exposure (at the level of a full class) to both Python and machine learning, there is likely
not much this lab will cover that will be particularly novel to you. Regardless, your participation is
welcome.

Students not formally enrolled in this lab are welcome to attend individual lab sections based on
interest.

Learning Outcomes: This lab will supplement the Natural and Artificial Neural Networks course by
giving students hands-on experience with basic programming and machine learning. For the
beginning of the semester, students will learn the fundamentals of programming and data science in
Python. While students learn about machine learning and artificial neural networks in lecture, the lab
will reinforce the principles they learn in class by having students apply ML algorithms-including
neural networks—for regression, classification, unsupervised learning, and reinforcement learning.
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Our course was hosted
publicly online and all
materials still live there now:

A main challenge of the
course was to teach difficult
concepts to students with a
very wide range of

backgrounds.

To design this course,
Clayton and | had to
constantly exercise a
“beginner’s mind” as PhD
students in machine
learning: what parts of this
might be hard to someone
with little to no programming
or technical background?


https://samuel-deng.github.io/coms4995-nat-art-neural-nets/
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/
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Supervised learning

Perceptron

A Lab 5 - ML Basics/Perceptron.ipynb ¥ &

File Edit View Insert Runtime Tools Help

Q Commands + Code + Text

v Lab 5 - ML Basics / Perceptron

Welcome to the fifth lab! For the first four weeks, we've covered separate topics from the lecture, giving a brief overview of Python and
introductions to algorithms and data science. Now, we'll sync up with the lecture and introduce machine learning (ML), which most of the
remaining lab sections will focus on.

Like the other topics covered in lab, our goal of the ML unit is to expose you to some of the core concepts and applications of the space with
limited technical depth. Our goal is that this will excite you about ML and that you'll have a better grasp of the advantages and limitations of
these approaches. We hope that you continue your ML education beyond this course, and there are a plethora of excellent Columbia courses
and free online materials for learning ML.

WhatisMachineLearning? ®© © 06 06 06 0 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Machine learning is a subfield of artificial intelligence and a family of algorithms that make decisions based on data rather than "hard-coded"
criteria. To make it easier to understand, we introduce several examples of machine learning and explain how they meet the definition.

« Example 1: You want an classifier to determine whether a photo contains a cat or a dog. To do so, you find a few thousand labeled
photos, each of which contains one of the two animals and states which one. You employ an ML algorithm to find the patterns in the
pixels that make some images "cat-like" and others "dog-like."

The ML algorithm decides on a classifier that distinguishes cats from dogs. The classifier doesn't know anything by default of what it
means to be a cat or a dog; everything it learns comes from finding patterns in the data. This contrasts wi hard-coded solution
(without ML) where the programmer comes up with a series of conditions that an image must meet for it to be a dog. Because the
algorithm is trying to obtain a classifier that determines which category (cat or dog) a sample belongs to, and because the algorithm is
provided with labeled examples, this type of ML is called supervised learning.

Jump To: Table of Contents
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Each class session
consisted of a short lecture
and a hands-on interactive
Python programming

session.
These can all be found .
The short introduces

the idea at a high level with
many visuals and non-
technical intuition.

The

is the focus of each
session. Students step
through a machine learning
concept through supportive
exposition and hands-on
exercises. Because the
course was small, Clayton
and | were able to
individually help students
with these labs and provide
one-on-one instructional
feedback in a “flipped
classroom” setting.


https://drive.google.com/file/d/1Shdge8Zx7jdV5irf1P8lillYqgQS8XHW/view
https://samuel-deng.github.io/coms4995-nat-art-neural-nets/calendar/
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
https://colab.research.google.com/drive/1jJKefgraVb_YU6XqBawxnnjUfavcTMVe?usp=sharing
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Lecture Slides: Math for ML (Subspaces, bases, orthogonality)

In this section, | go over snippets of a single lecture in Math for ML that illustrate two of my

core teaching principles at the level of an individual lecture.

1. A driving and cohesive narrative should propel all parts of a course.
2. ldeas should be presented as if the student could’ve discovered them themselves.

The , and the

Lesson Overview

Regression. Fill in gaps from last time: invertibility and Pythagorean theorem.
_— L=

Subspaces. Subsets of & C R” where we “stay inside” when performing linear
( combinations of vectors.

Bases. A “language” to describe all vectors in a subspace.
= —_—

Orthogonality. Orthonormal bases are “good” bases to work with.

Projection. Formal definition of projection and the relationship between projection and
least squares. —————

Least squares with orthonormal bases. If we have an orthonormal basis for
span(col(X)), least squares becomes much simpler. v

+ ZKZTHD&AU'(\/
Gre ks,

Lesson Overview

. ss@ = ercemy = ixw -1
Lesson Overview

Sy =t

Click to interact
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In a normal semester, this
lesson takes place in the
second week after students
review basic linear algebra
(vectors, matrices, dot
products, etc.)

| begin every lesson with a
lesson overview that
includes all the core
concepts of the lecture.
These get compiled week-
to-week in an evolving

Each lesson also begins
with two big picture 3D
visualizations that
summarize the lesson in
view of the main narratives
of the course: least squares
and gradient descent.

Students learn exactly all
the tools (no more, no less)
they need to develop the
main picture, so everything
is well-motivated and can be
recalled in context.

| call this “teaching with
Chekhov’s gun.”


https://youtu.be/m1f3y1gUKmo?si=fZ7wj4NXGRjH9uUo
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf
https://samuel-deng.github.io/math4ml_su24/skeleton/
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Least Squares
A Quick Review

Vectors 4

Review from linear algebra

Vectors can interchangeably thought of as points:
a— MSIVIRCAEM

or “arrows”:
Skl . U -V
vioterm =
éinvs ’_Q disionce
—_ u-v —
_ lu~Vil
* ~
C& T 7€A' P e gs —( oveTeacT
Regression J— e
Setup A et we
- - B
Observed: Matrix of training samples X € [R”"—‘Dand vector of training labels y € R¥
— it
T
! l s e wed
X=|% ... xf= : L ®
e &‘P

xo—3

%,

Unknown: Weight vectoY w € R? \ith weights wy, ..., w,.

Goal: For each i € [n], we predict: §; = W'X; = wyx;; + ... + wx,; € R.
—

Choose a weight vector that “fits the training data”: w € RY such that y; & 9, for i € [n], or:

2 — A l -~ N 7
/,-io W’f‘(a= 7. (Xw:yzy‘ YW=:" %y

e —————
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The lecture then moves to a
review of the previous

lecture’s material with some
simple sketched examples.

Every math concept in the
class is taught in service of
the ML setup of regression,
so | try to re-introduce it in
these early lectures to make
sure it’s crystal clear.
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o7
«
Least Squares - X2 %y
eam—— ) \/ X n
w
Summary /
Use the principle of least squares to find the W € R that minimizes
1§ = yI* = IXw - yII*.
Using geometric intuition: ¥ is the vector for which § — y is perpendicular to y
span(col(X)). =
By Pythagorean Theorem, any other vector § € span(col(X)) gives a larger
error:
s - ® e o o s 2
Iy -yl < 11§ - ylI> oo, .
® o
Because § —y is perpendicular to span(col(X)), we obtain the normal ¢
equations: (i e :,\ : ! . o ’. o ©®
TXw = XT- .
X'Xw=X'y. o s 0o ® o ©

[ o ©
If n > d and rank(X) = d, then XX is invertible, and o o ®

W=XX) Xy. [ O
A J E E z
\/ [+ “{ ]\\Af ~Y |,2 - ﬂ)(vc = )(T

Least Squares
First missing item: invertibility of X'X

flf n > d and rank(X) = d, then XTX@ .

Jump To: Table of Contents
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At the end of the previous
lecture, students learned the
statement of the first main
theorem for least squares,
but two main parts were
missing.

Now for the new material,
and the usual cadence of
how | teach. | begin by
motivating why we need the
math of the lesson. In this
case, it’s to plug up the
holes needed to completely
prove their first major
theorem.

All the individual math
concepts should be
motivated by the need to
understand the bigger
picture.

This structures the lectures
as if students were
discovering these ideas
themselves.

To understand the first
missing item, we need
concepts of rank,
invertibility, and subspace.

Whenever possible, | also
always try to give a “plain
English” description of
mathematical facts.
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Subspaces
Idea

Fﬂz Fudidenn gpace  (n dvesons)
se @"

A subspace is a set of vectors that “stays within” the set under all linear

combinations of the vectors.

Subspaces

Definition

A subspace § C R" is a subset of vectors that satisfies the property: if
V,.WE S, thenav+pwe Sforanyd, FER. | . . 0 0 o 6 0 6 06 6 06 6 06 0 o o

=

V- ¥Y<To
Subspaces ¥
Examples © 06 06060606 0606 0 0 0 0 0 0 0 0 o
Example: §; := R?
Subspaces
Examples
Example: §; := {v € R?: v; = 0} Y

o 0?

Jump To: Table of Contents
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To get to the bottom of the
first missing item, one
mathematical concept we
need is subspace.

Whenever introducing an
individual mathematical
concept, | start with the
idea: a “plain English”
description of its high-level
intuition.

Then, | move onto the formal
definition, making sure to
emphasize how it expresses
the idea.

Finally, | present several
simple examples to make
the concept concrete.

This isn’t rocket science or
anything particularly
innovative — some variant of
this is usually how math
classes go.

However, | try to present
these ideas with as little
visual clutter and as many
intuitive means (3D
renderings, etc.) as possible.
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Least Squares

- - - - a l - T T
First missing item: invertibility of X'X faneCxy & vt d3

-—

Proof. To show that X' X is invertible, show X "X has d linearly independent columns.

XXw=0 = w=0.

Suppose X Xw = 0. Let w € R? be any vector. Take a dot product of both sides with w:
IXw|? = Xw=0.

- JERY
Y¥w=0 = wZo
— —_—
But rank(X) = d, so X has d linearly independent columns. Therefore, w = 0.
L —

R
o = )z -8

Least Squares

Summary

Use the principle of least squares to find the W € R that minimizes

1§ = ylI? = [IXw - ylI%. { B
Using geometric intuition: § is the vector for which § —y is - —_—

perpendicular to span(col(X)).

By Pythagorean Theorem, any other vector § € span(col(X)) gives a
larger error:

Iy —ylI* < Iy = ylI*
Because § — Y is perpendicular, we obtain the normal equations: e e e e e Rt R -
X'Xw = XTy.

If n > d and rank(X) = d, then X' X is invertible, ang

W= (X'X)XTy. 7
—_—

Least Squares
Second missing item: Pythagorean Theorem

By Pythagorean Theorem, any other vector § € span(col(X)) gives a larger error:

—

Iy = ylI*> < Iy - ylI* ?

Jump To: Table of Contents
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After learning the
appropriate mathematical
concepts in sequence, we
bring it back to prove the
“first missing item.” It should
be clear how everything fits
into the broader puzzie.

| very frequently call back
and show the “big picture”
3D renderings to orient
students. The renderings are
clickable and interactive on
the slide PDF itself, so
students can interact with it.

See how | do this in
or

I make sure to loop back
around to what statements
are still pending, indicating
in green what we have
proven, and in red the
component that remains.

| then repeat the process
with the other missing piece.


https://youtu.be/m1f3y1gUKmo?si=tYAiztuuMkNgtWNt&t=7173
https://youtu.be/m1f3y1gUKmo?si=tYAiztuuMkNgtWNt&t=7173
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf
https://samuel-deng.github.io/math4ml_su24/assets/slides/1.2_orthogonality.pdf
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Least Squares

Summary

Use the principle of least squares to find the W € R that minimizes
1§ = ylI> = 1IXw — ylI*

Using geometric intuition: § is the vector for which § —y is
perpendicular to span(col(X)).

By Pythagorean Theorem, any other vector § € span(col(X)) gives a
larger error:

5 = yI* < Iy - ylI*
Because § — y is perpendicular, we obtain the normal equations:
X'Xw = X"y.
If n > d and rank(X) = d, then X"X is invertible, and

w=X"X)"'Xy.

Least Squares

Summary

Goal: Find the W € R that minimizes

IXw -yl

Theorem (OLS). If n > d and rank(X) = d,

then:

W= X"X)"XTy.

ﬁﬁﬁﬁﬁﬁﬁ
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We’ve proven both pieces
of our puzzle! Students now
hopefully feel the
satisfaction that all of the
abstract math they learned
was in service of a broader
story.

Hopefully they also feel
that they could’ve
discovered this themselves
by emulating how | broke
this nontrivial statement into

two modular chunks.

Most theorem statements
then add something to the
“big picture” 3D renderings.
This example didn’t but, later
in the same lecture, it gets
slightly updated when
students learn an

Lesson Overview

Regression. Fill in gaps from last time: invertibility and Pythagorean theorem.

Subspaces. Subsets of & C R" where we “stay inside” when performing linear

combinations of vectors.

Bases. A “language” to describe all vectors in a subspace.

Orthogonality. Orthonormal bases are “good” bases to work with.

Projection. Formal definition of projection and the relationship between projection and

least squares.

Least squares with orthonormal bases. If we have an orthonormal basis for

span(col(X)), least squares becomes much simpler.

Jump To: Table of Contents

The lesson always ends with
a recap of the main ideas
again.


https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
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Lecture Notes: Computational Linear Algebra
Another example of an individual lecture is my
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for Computational Linear Algebra. This was a more traditional mathematics

lecture that | gave on my iPad.

[PILTVRES To LEEP IN MIND.

D BIGENVECToR QLTVRE
@7. A c @““ﬂ:—b TA 5 ﬁn = ﬁ‘.

Theorem 1. For any linear transformation T: R* — R™, there is an X ®
. matriz Ap such that T(x) = Arx for all x € R™. Conversely, for diy m X n
( matriz A, the transformation Ty: R — R™ givengyy Pa(x) = Ax is linear.

>

O

—
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F = ( [;,] [‘;]) — std. @asis
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The lesson begins with two
key pictures that |
continually reference. | didn’t
have the 3D rendering chops
in Fall 2022, but these 2D
doodles served the same
purpose.

I motivate why they need to
learn arguably one of the
most abstract parts of linear
algebra: eigenvectors and
diagonalization.


https://youtu.be/Hpa2rl4Euyo?si=lh-TwU9XtAmgp-Gn
https://youtu.be/Hpa2rl4Euyo?si=lh-TwU9XtAmgp-Gn
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A previous problem set
“seeded” this idea early on.

| recap this problem that
students already solved and
how it relates to
eigenvectors, giving a
concrete example about
population change from New
York to California.

Finally, after providing the
requisite motivation and
intuition, I give the definition.

| try to emphasize that this
definition seems inevitable if
we want to think of the
“fixed point” of
transformations, or the
“vectors that stay on their
span.”

| stress how this definition is
natural after the motivation
and intuition, leading
students to think that they
could’ve formalized these
intuitive ideas themselves.
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With a topic as abstract as
eigenvalues and
eigenvectors, it helps
tremendously to step
through a representative
simple example.

In this case, | drew on my
third teaching principle: (3)
An instructor should never
forget how they first
struggled when learning the
same ideas. For me, a
simple 2D example helps
tremendously when learning
a new theorem or definition.

Walking through this
example should be an active
experience: | frequently stop
and ask students if they
know the “next step” in the
computations.

| close the lecture with a
very nontrivial application of
eigenvalues and
eigenvectors to
convolutions, which
motivates and connects it to
concepts earlier in the class
(in particular, abstract vector
spaces).
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Problem Set: Math for ML

In this section, | present a representative problem from of Math for ML. They all
abide by my second teaching principle: (2) Ideas should be presented as if the student
could’ve discovered them themselves.

All the problems sets in the course aren't just sequences of exercises: they model the process
of mathematical discovery by giving a nontrivial result or theorem as a problem, but then
guiding students through the process of: (i) testing it on simple examples (i) proving key
lemmas (iii) piecing the lemmas together to complete the theorem.

Problem 2

Linear transformations and matrices (26 points total). The property that under-
lies all of linear algebra is linearity. In this problem, we will attempt to understand the
relationship between matrices and linear transformations.

Many common functions in the real world are linear. Cooking is one of them. Consider
the following example. Suppose that we have d = 7 ingredients to make some classic NYC
fare: bacon, egg, cheddar cheese, cream cheese, bagel, Kaiser roll, and lox. Consider four

Most problems begin with a
motivating example that the
student can easily step
through mechanically. The
example should capture the

recipes we can make with these ingredients, represented by the vectors r,c,b and 1. The
d ingredients are ordered as above; for example, to make a bacon, egg and cheese on a roll
(vector r), we need one unit each of bacon, egg, cheddar cheese, and Kaiser roll, with zero
units of the other ingredients.

essence of the idea for this
particular problem — in this
case, linearity.

1 0
1 0
1 0
bacon, egg, and cheese on roll: r = |0 cream cheese on bagel: c¢= (2
0 1 Problem 2(a) and Problem
é 8 2(b) are easy points but
= ’—0 make sure that the student
1 0 has taken time to play with
1 0 the example. In proving a
bacon, egg, and cheese on bagel: b = (3 lox sandwich on bagel: °l = } new theorem for my
0 0 research, | find this is usually
0] 1 the first step.

Suppose the vector u = (4,4,4,5,6,2,3) describes how much,ot each ingredient we have in
supply today (four units of bacon, four units of egg, etc.).

The problem is interlaced
with exposition and a loose
“narrative” that drives the
discovery. The course
doesn’t have an official
textbook, so this is a good
way to have students
actively read supporting
material.

Problem 2(a) [2 points]. We would like to use as many of our ingredients as possible
to make as many of the above recipes as possible. How many ef each recipe can we
make with zero surplus (or shortfall) of each ingredient? Set®up a system of linear
equations for this question in matrix-vector form.

Problem 2(b) [2 points]. Does the system of equations in Problem 2(a) have a
solution? If so, write down a solution. If not, explain why. Feel free to use numpy or
any other numerical computing software to help you solve the system.

As we can see from the above example, matrix-vector multiplication has the nice property
that, if you add the inputs, you add the outputs (if we wanted twice as many of each recipe,
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Let T : RY — R be a function (also referred to as a “mapping” or “transformation”).
Functions can be arbitrarily complicated; a function need only map inputs in R to outputs
in R™. Linear transformations (a.k.a. “linear functions” or “linear maps”) are restricted to
obey two rules that force them to behave nicely:

Tx+y)=Tx)+T(y) and T(ax)=aT(x)

for all x,y € R? and scalars o € R.

Problem 2(c) [8 points] Determine whether the following transformations are linear.
If a function is linear, give a proof by showing the function satisfies the properties of
linearity. If not, state which property of linearity fails and give a specific pair of vectors
X,y or a scalar @ and vector x for which it fails.

e T :R — R defined T'(z) := 2z — 1.
o T:R? — R? defined as T'(z1, ) := (T2, 71 + T2).
o T:R?— R defined T(z) := 2(z1 + - - - + za).

o T:R? — R defined T(z1,...,%q) := Tqg — T1.

Taken as functions, inner products and matrix-vector products are also linear. For a given
vector a € R?, let the function T, : R¢ — R be defined as:

Tou(x) :=a"x. (3)
For a given matrix A € R™ ¢, let the function Ta : R? — R" be defined as:

Ta(x) := Ax. (4)

Problem 2(d) [4 points] Prove that the function defined by inner products in Equa-
tion (3) and the function defined by matrix-vector products in Equation (4) are linear
transformations. For Equation (4), you may use any of the equivalent characterizations
of matrix-vector multiplication shown in class.

In this way, any matrix defines a linear transformation. This is important - pexhaps in
your introductory linear algebra class, matrices were introduced as just a way to organizé
a system of linear equations, like Ax = b. Equation (4) tells us that we can actually think
of a matrix as an object that does something to vectors. leen a matrix, maftrik-vector
multiplication is a linear transformation. Surprisingly, the*reverse is true as well: any linear
transformation has an associated matrix!
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The problems gradually
ramp up in difficulty.
Problem 2(c) is easy but no
longer purely mechanical,
and it asks for short proofs.

A learning goal of this
course is to develop
students’ mathematical
maturity, broadly speaking.
The problem sets attempt to
do this by modeling
problem-solving skills such
as experimenting with simple
examples and proving helper

lemmas.

Text like “this is important”
and “surprisingly” liven the
problem’s exposition and
point out the gut feelings a
student should be feeling.
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Consider the following example. Let e; = (1,0,0),e, = (0,1,0), and e3 = (0,0,1) denote
the standard basis vectors in R%. Let T : R® — R? be the linear transformation defined as:

T(z1, T2, 3) := (221, T3 + 3).

Problem 2(e) [1 point] Where does 7' map the basis vectors to? That is, compute
T(e1), T(ez), and T(e3).

Now, consider the input vector x = (3,2, —1). Because x € R® and ey, e, and e; are a basis
for R3, we can write X as a linear combination of e;, e;, and e3. Using this example, we’ll
try to “guess” the matrix that corresponds to T'.

Problem 2(f) [1 point] Write the matrix A € R**3 such that:

T(x) = Ax.
for x = (3,2, -1).
L
Hint: Write x as a linear combination of e;, €5, and e3, i.e., co®® o *
[ ]
X = €1 + xmep + azes, (5)

where a;, a2, a3 € R are scalars. Apply T'(-) to both sides of Equation (5), and use
linearity to get the right-hand side to be a sum of three terms.

Problem 2(f) shows us that T'(x) is just a linear combination of T'(e;), T'(e2), and T'(e3).
It turns out that, in general, if we are given a linear transformation and want to find its
corresponding matrix A, we only need to see what that linear transformation does to the
standard basis vectors.

Problem 2(g) [4 points] Prove that any linear transformation 7" : R? — R is given
by matrix-vector multiplication by a matrix A € R™*%:

T(x) = Ax, ¢

where the ith column of A is T'(e;).

Together, Equation (4) and Problem 2(g) give us a central theorem of linear algebra: the

equivalence of matrices and linear transformations: ° .

L]
(a) Any matrix A € R"*? defines a linear transformation 7' : R® - R™ through matrix-
vector multiplication: ° .
T(x) = Ax. ®e
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We move onto proving the
surprising fact that any linear
transformation has an
associated matrix. Again,
start with simple examples
to get a feel.

Hints point students toward
what intuitive “next steps”
might be in a proof or
derivation.

Another key skill in
discovering and proving
results in math is going from
the specific to the general.
By guiding students to do
this, students first “get a
feel” for the proof and then
can “take off the training
wheels” to prove the
abstract, general result.

It turns out that Problem
2(g), which the students
have now done themselves,
was important to a “central
theorem of linear algebra” all
along!
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(b) Any linear transformation 7 : R? — R" is given by matrix-vector multiplication by a
matrix A € R"¥4:
T(x) = Ax,

where the ith column of A is T'(e;).

The claim in (b) is particularly interesting — it tells us that, any linear transformation can
be pinned down (by a concrete box of n x d numbers) just by seeing how that transformation
acts on the standard basis vectors. Just by imposing the property of linearity on functions,
we can treat them as matrices which we can easily write down! This perspective on matrices
as linear transformations (and vice versa) is very helpful in understanding many of the
definitions and theorems of linear algebra.

One such operation that we’ve already studied is the projection operation. Informally, we
compute a projection of a point onto a subspace by seeing where a perpendicular line from
the point intersects the subspace. Formally, for the subspace S C R¢, the projection ILs(x)
of x € R? onto S satisfies:

(x —g(x))"u, forallues.

The theorem we proved above shows us that we can determine the exact projection matrix
if we know what a transformation does to the standard basis vectors.

Problem 2(h) [2 points] Consider the linear transformation in 7' : R? — R? that
takes any point x € R? and outputs its projection onto the z-axis, i.e. the subspace
spanned by the vector u = (1,0). Find the matrix A € R?*? that corresponds to this
transformation. Find the explicit rule T'(z1, z3) that corresponds to this transforma-
tion.

Hint: What does this transformation do to e;? What does it do to e2? It may help
to draw a picture.

Problem 2(i) [2 points] Consider the linear transformation in 7' : R? — R? that
takes any point x € R? and outputs its projection onto the y = z line, i.e. the subspace
spanned by the vector u = (1,1). Find the matrix A € R**? that corresponds to this
transformation. Find the projection of the vector x = (3, —1) onto this subspace.

Other properties of matrices also become more intuitive when we conceive of matrices in
R™ ¢ as linear transformations from R¢ to R™. For example, one of the concepts we've
learned is rank, the number of linearly independent columns of a matrix. From (b), the
columns of a matrix are exactly where the standard basis vectors “land” after the associated
transformation. Therefore, a matrix that is not full-rank transforms the standard basis such
that some of them are linearly dependent after the transformation.

Commit the theorem you proved above to memory — it’s at the very heart of linear algebral
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Some more expository
text emphasizes that the
student has shown

something nontrivial.

The problem closes by
connecting the statement
the student has just proven
back to lecture — in this
case, Problems 2(h) and 2(j)
walk the student through the
theorem’s relation to
projection from Lecture 1.2.

This problem also connects
back to the idea of rank from
lecture. Most of the
problems in the problem sets
do something similar, re-
contextualizing ideas
students have learned in the
slides.

Finally, the hope is that, by
proving the theorem bit-by-
bit, the student comes away
feeling like they own the
statement. Recalling
something you truly
understand and own is much
easier.
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How did you like the exposition-problem-exposition format of PS1? O copy chart

6 responses

4 4 (66.7%)
3
2 2 (33.3%)
1
0 (0%) 0 (0%) 0 (0%)
o | \ |
1 2 3 4 5

In my opinion, the strength(s) of this class compared to other classes were:

3 responses

A strong emphasis on visualization, examples, and case-study type questions.
It was a clearly presented, important information. | enjoyed learning.

The Problem Sets. | think the problem sets were great. Explained the topic being used. Helped us derive the
main concept from the basics.

The exposition-question-exposition format of the problem sets helped me |_|:| Copy chart
understand and reinforce concepts better than a traditional problem set.

4 responses

b 4 (100%)
3
2
1
0(0%) 0(0%) 0(0%) 0(0%)
. | | | |
1 2 3 4 5
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This particular problem set
was well-received by
students in a mid-course
survey.

Overall, students seemed to
find the problem sets a
highlight of the course.
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Example Assignments

Python Lab: Natural and Artificial Neural Networks

| co-designed with my co-instructor Clayton

As an
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Sanford, this section steps through a mid-semester programming lab that introduces students
to the Perceptron algorithm. These labs were done in-class, over two hours of “flipped
classroom” instruction. One thing to note is that students came from a very wide range of

backgrounds and programming experience.

v Lab 5 - ML Basics / Perceptron

Welcome to the fifth lab! For the first four weeks, we've covered separate topics from the lecture, giving a brief overview of Python and
introductions to algorithms and data science. Now, we'll sync up with the lecture and introduce machine learning (ML), which most of the
remaining lab sections will focus on.

Like the other topics covered in lab, our goal of the ML unit is to expose you to some of the core concepts and applications of the space with
limited technical depth. Our goal is that this will excite you about ML and that you'll have a better grasp of the advantages and limitations of
these approaches. We hope that you continue your ML education beyond this course, and there are a plethora of excellent Columbia courses
and free online materials for learning ML.

What is Machine Learning?

Machine learning is a subfield of artificial intelligence and a family of algorithms that make decisions based on data rather than "hard-coded"
criteria. To make it easier to understand, we introduce several examples of machine learning and explain how they meet the definition.

o Example 1: You want an classifier to determine whether a photo contains a cat or a dog. To do so, you find a few thousand labeled
photos, each of which contains one of the two animals and states which one. You employ an ML algorithm to find the patterns in the
pixels that make some images ‘cat-like" and others "dog-like."

The ML algorithm decides on a classifier that distinguishes cats from dogs. The classifier doesn't know anything by default of what it
means to be a cat or a dog; everything it learns comes from finding patterns in the data. This contrasts with a hard-coded solution
(without ML) where the programmer comes up with a series of conditions that an image must meet for it to be a dog. Because the
algorithm is trying to obtain a classifier that determines which category (cat or dog) a sample belongs to, and because the algorithm is
provided with labeled examples, this type of ML is called supervised learning.

Example 2: You own a restaurant and receive thousands of reviews online. You do not have time read them individually, but you want to
know roughly what they cover. You apply an ML algorithm that groups together similar reviews based on their word choices, their tones,
and their overall topics. For instance, one category may include a group of reviews that complain about the desserts. Another
compliments the decor, and still another whines about the noise from the nearby train.

Linear Algebra and Vectors

Understanding machine learning in depth requires a background in probability, algorithms, and linear algebra. This section gives an overview
of the basics of linear algebra needed to understand the ML algorithms that you'll try out today.

What is linear algebra? Linear algebra is a field of math which generalizes what you learned in high school algebra to other concepts besides
one-dimensional numbers. For instance, elementary knowledge about linear operations allows a high school student to conclude that the
equality 4x + 2 = 6 is satisfied when x = 1. Linear algebra asks similar questions for the case where x is a vector, or an ordered tuple of
numbers. The more precise term for “one-dimensional number” in linear algebra is scalar.

Vectors are useful in ML because we're rarely interested in performing inference on a scalar input. For instance, if we want distinguish
between cats and dogs (as discussed in Example 1), the input to the algorithm is an image. The image can be precisely represented as a grid
of pixels. If each images is composed of (say) 256 pixels by 256 pixels, then a total of 256 - 256 = 65536 pixels exactly represent the
image. What is a pixel? A pixel is represented by three numbers, each corresponding to the amount of red, green, and blue light in the pixel.
Therefore, the image can be represented exactly as an ordered collection of 65536 - 3 = 196608 numbers, which can be thought of as a
196608-dimensional vector. In order to reason about how the model processes this input, we need a mathematical language for thinking
about these objects and what can be done with them. That is linear algebra.

As an example, we say that x = [1, 2, 3] is a three-dimensional vector, which we express as x € R>. (R represents the collection of all real
numbers; R? is any triple of real numbers, or a 3d coordinate.) More generally, we can let X = [x;, x» x4] € R? be a d-dimensional

vector with first component x;, second component x5, and ith component x;.
We define three operations on vectors, which can also be done for one-dimensional numbers: addition, scalar multiplication, and dot product.

« Addition: If x and y are scalars, we can express their sum as x + y, which simply adds together the two scalars. We can do the same
for vectors. If X = [x1, x ,xq] € R? and y=M,y,...,yi € R? are d-dimensional vectors, then their sum is computed by
adding components element-wise. That is,

X+ =[x + Y1, % + V2, ... Xg + ya] € R

This sum can only be computed if X and y are of the same dimension; it's meaningless to think about combining two vectors of
different sizes.

When thinking about vectors, you typically want to think of each component as having some distinct meaning. For instance, maybe
d = 12 and x; represents the price of an Absolute bagel during the ith month of 2021. Similarly, y; represents the price of a coffee
during the ith month. Then, x; + y; is the price of a bagel + coffee breakfast in the ith month, and x + y helpfully tells you all of the
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The labs begin with
motivation and exposition
for the upcoming concepts,
with a view that students in
this course come from a very
wide range of backgrounds
in programming, math
prerequisites, and academic
discipline.

Some students were at a
higher base level
mathematically, so we were
able to put some notation in
the exposition. Because the
course was small (15
students), Clayton and | were
also able to give one-on-one
guidance to students without
the same math background,
pointing out which parts
were “fine to gloss over” or
providing more concrete
examples.
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v Vectors in Python

Now that you know the basics of vectors, it's time to look at how to work with them in Python. You might be thinking, "I don't need anything
fancy and new for vectors; | already have lists." And that's true! You already have a fantastic data structure for storing collections of numbers.
However, there are a number of things that make lists not the most ideal data structure for the job.

e Lists can hold a mixture of different data types. [1, 2, "cat", [1, -111 is avalid list. Vectors should be more structured and
should only contain scalars.

» Vectors make a point of being fixed size. d-dimensional vectors can only be added to other d-dimensional vectors, and it's uncommon
to add more elements. On the other hand, lists are variable size, and are built around adding more elements.

e Indeed, lists make it much easier to add new elements than to perform operations on current elements. Just as we add numbers
together with x1 + x2 in Python, one might want to add vectors together elemement-wise with v1 + v2.The syntax for lists does not
give you that. Try running the following code:

[1 1vl [, 2; 3l
2v2 [ATR=158 ]
3vl + v2

e In order to add up the elements of that list, we would need to write a for loop.
« Same goes for multiplication:

[1] 13 % vl

While you can write for loops and functions to make those operations possible with lists, it's not ideal because (1) the code will be redundant,
and (2) a data structure optimized for vectors can be setup to do those things much more efficiently.

To magically solve our problems, we introduce the Numpy package. This provides an nparray data structure that stores information in
vectors. These arrays behave roughly as we'd want them to, and they make it elegant and efficient to perform mathematical operations on
them.

Like matplotlib before it, we must start our code with import numpy to get access to its tools. We can convert a python list into a numpy
array using the function np.asarray . Run the following blocks of code to see how vector operations are cleanly implemented.
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The Python labs all followed
the structure of: exposition,
simple coded examples, and
exercises for students to do
themselves.

For the exercise parts,
students all worked on their
own laptops as Clayton and |
walked around to make sure
everyone could pass the
exercise and receive
individualized attention.

Before moving on to machine learning, we have a few exercises that teach you how to program with numpy and arrays/vectors. A key goal of

this section is to solve the following problems using only vector operations, without for loops.

[1]

total_grades(midterml_scores, midterm2_scores, final_scores):

midterml_scores = np.asarray([100, 90, 70])

midterm2_scores = np.asarray([90, 80, 90])

final_scores = np.asarray([80, 80, 100])

grades = np.asarray([87, 82, 91])
assert((total_grades(midterml_scores, midterm2_scores, final_scores

smallest_norm(list_of_vector):

CHECKPOINT #3.
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grades).all())
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rcep A Classification Algorithm

In 1958, Frank Rosen published a paper that introduced the Perceptron, a neurologically-inspired model for learning and information storage
that he claimed would form the foundation of artificial intelligence. Check out the paper; he has a lot to say about neuroscience, and he
speaks of his model very highly:

The present theory, being derived from basic physical variables, is not specific to any one organism or learning situation. It can
be generalized in principle to cover any form of behavior in any system for which the physical parameters are known. A theory
of learning, constructed on these foundations, should be considerably more powerful than any which has previously been
proposed.

He defines a Perceptron as an artificial neuron, which takes many signals as input and gives off an output. (The inputs are analogous to the
dendrites of a neuron, and the output its axon and resulting impulse.) For our purposes, we let a perceptron be a function fy, parameterized
by d-dimensional w that maps a d-dimensional input X to a scalar output with
. 1 ifw-x>0
y(X) = sign(w - X) = . -
fv® gn( ) {—1 ifw-x<0.
This Perceptron is also frequently called a linear threshold function or a halfspace because it subdivides the input space into two regions,
one labeled 1 and the other -1. This is a classifier because the output belongs to one of two discrete categories.

How might this be phrased as a machine learning problem? Using the notation from before, let the inputs be d-dimensional vectors and the
labels be +1 and -1 (which implies Boolean-valued labels). For an unknown test set

o

(X(l]/, y(”'), (X(“‘”, y(z)/), . (X("’", y(m]r),

our goal is to find some W such that fw(x(”’) = y“')’ for most choices of i. Because we don't know that data, our best hope is to find
Perceptron that perfectly fits a training set,

D, y(l)), x?, y(Z) L&, y“”).
That s, fw(x‘”) = ym for all choices of i. The Perceptron learning algorithm is a procedure that obtains suchaw € R? from a training
sample. We refer to w as a hypothesis throughout.
Here's some rough intuition for the algorithm: We start with some hypothesis W and predict the outcomes of training samples one-by-one. If
we correctly guess the label of an input, that's great! The hypothesis was correct, and there is no need to change it. If not, then we modify the

hypothesis to make it more likely to classify the sample right the next time we see it. After looking at all the samples, we start over and
continue looping through the training data until we complete a full loop without classifying any of the training samples right. Then, we're

Here's one potential red flag about the above algorithm: How do we know that it will terminate? Indeed, there's a very real concern with the
Perceptron algorithm that it may not converge, and you could encounter an infinite loop. Work through the following two exercises and come
up with some ideas about what causes the Perceptron learning algorithm to terminate or not. When you finish the two, chat with a TA and
explain your thoughts.

EXERCISE: Ford = 2and n consider the training dataset

&0, y0y = (11, 1], -1), x®, y@) = ([1,-1], 1), ®®, y®) = ([-2, 1], 1). Work out the perceptron algorithm by hand and show
how w will be updated until the algorithm terminates.

EXERCISE: For d = 2 and n = 4, consider the training dataset

&0, y0y = ([1,0], 1), ®?, y@) = ([0, 1], 1), ®?, y) = ([-1, 0], 1), ®?, y®) = ([0, —1], —1). Work out the first two rounds
of Perceptron and explain why you think it will not converge.

CHECKPOINT #4.

Your next task is to implement the Perceptron learning algorithm. Like we've done before, we'll do it in pieces and combine them together to
produce the algorithm. Then, we'll test it out on a cool digit-recognition application.

First, implement a Perceptron f, fora fixed w € R?. w should be a vector of arbitrarily dimension d (not just 2). The test cases should
pass.

[1 import numpy as np

1
2
3
4
5
6

perceptron(w, x):

(perceptron(np.asarray([1,1]1), np.asarray([1,-1]))
(perceptron(np.asarray([1,2,3,4]), np.asarray([1,
(perceptron(np.asarray([1,2,3,4,5]), np.asarray([1,-1,1,-1,1]1))

Your perceptron function powers the following functions, which can be employed to draw a training or testing sample from some "true”

Perceptron, w_true. No need to edit the code, although you should run this and the next block to ensure that your perceptron function
works properly. Feel free to skim it to try to understand what we're doing.
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An important design
principle in the labs was to
build up to a relatively
advanced concept related to
neural networks from simple
modular exercises.

In this case, the example is
the Perceptron algorithm,
the simplest building block
of a neural network.

Interactive Python code
allows students to
experiment and test various
cases to understand an
abstract idea better.

In this case, students code
to try Perceptron on simple
small datasets.

The one-on-one
instructional aspect of the
class also allowed Clayton
and | to have exercises that
gave students the chance to
verbally “explain what this is
doing.” This was helpful to
know where each student
was at, and to develop a
closer instructor-student
relationship. Clayton and |
would go onto provide
mentorship to several of our

students!
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v Digit Classification: Your First "Real" ML Problem

Pat yourself on the back for what you've already accomplished today. You created an ML classification algorithm that perfectly fits training
data and also performs well on test data. We'll wrap up today with a demo of the Perceptron learning algorithm on a "real" learning problem:
digit classification.

The goal of digit classification is to assign a handwritten digit its correct numerical value (e.g. "1%, "2", "3", ...). One of the most famous
datasets for classification in ML is MNIST, a large set of pixelated images of handwritten digits that people attempt to classify.

Here, we show that perceptron can make a good classifier of a simpler digit recognition task, which we source from this tutorial. This dataset
has fewer and lower-resolution images than MNIST, which makes it easier for our purposes. We also simplify the task by distinguishing only
two digits (e.g. "0" vs "1"), rather than ten digits.

3 digitl
4 digit2
5 assert(digitl != digit2)

With the two digits selected, we import all of those images from the dataset and organize them into training data. This requires collecting all
of the pixel-vector inputs into a matrix and all labels into a +1/-1 vector. Because each digit is represented by an 8x8 image, it can be
represented by a vector in R%, and we'll end up running Perceptron to learn a 64-dimensional w.

(In ML, most of the work ends up consisting of data cleaning and processing! Next week, we'll do this more efficiently using built-in functions,
but today we'll do it in a more granular way so you can more clearly see which operations are done.)

[ i ses the sklea ackage
2 from sklearn import datasets
3 digits = datasets.load_digits()
4

5#F Jigi e t

6 target_digits = (digits.target == digitl) | (digits.target == digit2)
7 digits_y = digits.target[target_digits]

8 digits_x = digits.dataltarget_digits]

9 digits_images = digits.images[target_digits]

10
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Most of the labs
concluded with an
application of the machine
learning tool of the week to a
real dataset. In this case,
students applied their
Perceptron algorithm to a
simplified MNIST dataset of
O’'s and 1’s. MNIST is a
handwriting classification
dataset where the examples

are images of digits.

Students found it
fascinating that they could
go from zero programming
experience to building a
“simple neural network” that
accurately classifies
handwritten digits.

It's time to run the Perceptron learning algorithm to obtain some w € R% that perfectly fits the training data.

[1] 1w = perceptron_learning_algorithm(x_train, y_train)

We conclude by evaluating the performance of w on the test data and by visualizing some of the test data it classified wrong.

I 1 print("Training accuracy: {}".format(evaluate_perceptron(x_train, y_train, w)))
2 print("Testing accuracy: {}".format(evaluate_perceptron(x_test, y_test, w)))

5
n_test = len(y_test)
incorrect_test_indices = []

for i in range(n_test):
if perceptron(w, x_test[i]) != y_test[i]:
incorrect_test_indices.append(i)

4
5
6
7
8

10

if label is []:
print("No errors on test data!")
else:
y_orig_test_incorrect = y_orig_test[incorrect_test_indices]
images_test_incorrect = images_test[incorrect_test_indices]
_, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))
n = len(digits_y)
perm = np.random.permutation(len(incorrect_test_indices))
for ax, image, label in zip(axes,
images_test_incorrect[perm],
y_orig_test_incorrect[perm]):
ax.set_axis_off()
if label == digitl:
pred = digit2
else:
pred = digitl
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest"')
ax.set_title("True: {}, Predicted: {}".format(label, pred))

The algorithm will do much better on some pairs of numbers than others because some are much more similar than others. Try a few

different pairs and see which ones it performs better on.

CHECKPOINT #6. Show a TA how your Perceptron performed.
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Python Programming Assignment: Computational Linear Algebra

| designed this

as a homework assignment for students

in Computational Linear Algebra. Students in this class have experience coding, but possibly
not in Python. At this point, they have gotten the hang of basic scientific computing libraries,
so this programming assignment brought their new knowledge of Python to bear on a concrete
demonstration of some abstract linear algebra ideas from class: linear transformations, bases,

and change-of-bases.

v Programming Assignment 3 for COMS 3251 Fall 2022

. 4] i numpy as np
matplotlib.pyplot as plt
png

2 from IPython.display import Image

v Part 1: Perspective Rendering for Wire-frame Cube

In the first part of the lab, we'll try to find the camera representation of a set of points in three dimensions, taking into account perspective.

The point of this assignment
is to connect the abstract
ideas of change-of-basis
from class to being able to
play with the perspective of
points in matplotlib and

In the second part of the lab, we will go in the opposite direction: removing perspective from a real image.

some digital images.

v World Coordinates (W)
To begin, we'll setup the points that make up a wire-frame cube with coordinates as shown in the following image.

1 Image(filename='assets/wireframe.png', width=200, height=200)
This programming
assignment was dense, so
my
), attempted to clarify student
010 __ud questions and provide an
overview and hints to this
assignment.

001)  (1,0,1),

(0,0,0) (1,0,

From a different angle, the 3D cube can be plotted with matplotlib. You can change elev and azimuth to avaluein [@, 360] togeta
different angle on the cube. Using elev=20 and azimuth=75 gives us approximately the angle of the cube in the image wireframe.png
above.

o
2 fig = plt.figure()
3 ax = plt.axes(projection='3d")
4 ax.scatter3D(pts_mat[:,0], pts_mat[:,1], pts_matl[:,2])
5elev = 20
6 azimuth = 75
7 ax.view_init(elev, azimuth)
8 plt.show()

The lab begins with some
interactive plotting to make
sure students can grasp the
inherently 3D idea at hand
from as many different
perspectives as possible.

v Camera Model

Imagine that we are taking a picture of the cube with a camera. The resulting image must depend on where we locate the camera and which
direction the camera points. Imagine that we have a camera facing straight at the plane containing the front face of the cube. For this
exercise, we'll place the camera at the location [¢]yy = (—1, —1, 8) in relation to the cube. If we imagine our perspective from this point,
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v Problem 1: Finding F3 (Camera Coordinates — Pixels) The exercises that
Light travels in a straight line from p to the camera center 0 (we assign the origin to the camera center), and, along the way, it intersects the StUd ents We re responsi ble

image plane at some point q € R3.

Note the difference between a point's pixel and its camera coordinates. A pixel is a rectangle on the image array canonically denoted by the for |n th e |ab Were m od u Iar

2D coordinates of its upper-left corner. Using the camera coordinate system, any point q € R? has coordinates [qla = (x1,2 3), SO .
q = x1a; + X723, + Xx3a3. But, if q is on the image plane, then the coordinate x3 is simply 1, and the pixel value of q on the image array is fu n Ctl 0 n S that each

simply (x1, X2). In general, F 2,X3) = (x1, X2). This is a simple linear transformation, F; : R> — R We consider representing it = =
) e i ' i implemented a key linear
transformation.

1 Image(filename=" /ca coords.png’, width=400, height=400)

The modularity was
important to my design
principle: | wanted students
to get the sense that, by
constructing the correct
building blocks, they were

. able to do something very
(camera cnte) nontrivial by putting them
together.

We will implement F3 below.

Like my Problem Set: Math
F3(q np.ndarray) —> np.ndarray: fOI’ ML, the drIVIng

}Tﬁlement the function ‘F3°, as described above. phI|OSOphy behlnd thIS
programming assignment is
et ‘ giving students a chance to
Implement the function ‘F3_mat’, as described above. discover Something

themselves.

v Displaying the Wire-Frame Cube ®

L]
Now, put this all together to get the pixel coordinates for the wire-frame cube. Before we do anything, we need to account for the ghift in
origin from world coordinates to camera coordinates. Remember that we located our camera at (—1, —1, —8) in world coordirﬁles. In order
to use the camera coordinate system, we need to locate the camera at (0, 0, 0), so translate each of the points of the wirerfr%me cube by
adding (1, 1, 8) to them.

[1
shifted_pts = [v + np.array([1, 1, 8]) for v in pts]
P_W = np.array(shifted_pts).T

First, apply F) to each [plw to get [p] 4, the points in camera coordinates.

[1 1A = np.array([[1/100, 0, 0],
2 o, 1/100, 0],
3 0, 0, 111)
FONIRVZ ST = I - 2
(>}

1
2P_A = F1(P_W, A)

Second, we apply F to [p] 4 in camera coordinates to obtain [q] 4 in the image plane.

p.array([F2(col) for col in P_A.T]).T
Finally, apply F3 to each [q] 4 to get [T3(q)]c, the pixel coordinates of the vectors on the image plane.

[1 1A = np.array([[1/100, 0., 0.],
2 0., 1/100, 0.1,
3 0., 0., 1.11)
4 C = np.array([[1/100, 0.1,
5 0., 1/100]])
60_C = F3_mat(A, C) @ Q_A
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v Part 2: Perspective Rectification

In Part 1, we found the appropriate image for a given set of points, taking into the account the perspective from a fixed camera. The goal for
this main part of the lab is the opposite: we want to remove perspective from an image of a flat surface. Essentially, we want to synthesize a
new image that completely lacks the perspective imbued from how we took the image, but shows us the flat surface (in this case, a
whiteboard) head-on.

The specific image we will be playing with will be board.png, included in your assets directory.

In order to do this, we will again have to use different coordinate systems and a change of basis. Think of the original image as a grid of
rectangles that are each assigned a color (the pixels). Each of these pixels corresponds to a parallelogram in the plane of the whiteboard. To
get the perspective-free image, we must assign each of these parallelograms the corresponding color from the rectangle in the original
image.

Our goal is thus to find a function that maps from pixel coordinates (the coordinates of a point in our image board. png) to coordinates that
exist in the plane of the whiteboard. It is already clear that we will be dealing with two coordinate systems: the coordinate system for the
image, and the coordinate system for the whiteboard.

1 import matplotlib.pyplot
2 import matplotlib.image

1img = mpimg.imread('ass
2 imgplot = plt.imshow(img)

At the end of the assignment, you should see the whiteboard head on, with perspective removed. Here's a "spoiler” cell that shows what you
should see at the end, board_final.png. If you don't want spoilers, you can skip the following cell until the end and just use it to check your
final image. If you do want to see what should happen at the end, uncomment the line of code Image(filename='asserts/
board_final.png') below.

[27] 1
2 Image(filename="assets d_final.png')
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Many of the coding
assignments in CLA
culminated in doing
something to actual images,
which gives students a
visceral real world example
of the techniques of linear
algebra in action.

In this lab, students use the
modular functions they
implemented (each
corresponding to a specific
linear transformation) to
“flatten” the image of a
whiteboard. Pretty nontrivial!
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