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Problem 1

Properties of inner products (20 points total). The dot product or standard Euclidean
inner product is an important operation in linear algebra that takes two vectors and returns
a scalar value. Recall that, given two vectors v = (v1, . . . , vd) and u = (u1, . . . , ud) in Rd,
their dot product is

u⊤v = u1v1 + · · ·+ udvd =
d∑

i=1

uivi.

The dot product is an example of an inner product , an operation that takes two vectors and
returns a scalar value that obey three important properties. For two vectors u,v, the inner
product is denoted ⟨u,v⟩. Inner products on Rd obey three properties:

• Symmetry. For all u,v ∈ Rd, ⟨u,v⟩ = ⟨v,u⟩.

• Positive definiteness. For all v ∈ Rd, ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 if and only if v = 0.

• Linearity. Let α ∈ R be a scalar and let w ∈ Rd be another vector. Then:

⟨αu+ v,w⟩ = α⟨u,w⟩+ ⟨v,w⟩.

Problem 1(a) [3 points]. Consider the dot product on R2:

⟨u,v⟩ := u⊤v = u1v1 + u2v2.

Prove, using the three properties above, that this is indeed an inner product.

Defining an inner product on Rd imbues Rd with notions of length and angle, which allows
us to do geometry. For example, using the standard dot product, we recover the standard
notion of length, the Euclidean norm

∥u∥2 =

√√√√ d∑
i=1

u2
i =

√
u⊤u.

However, the dot product isn’t the only possible inner product in Rd.
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Problem 1(b) [3 points]. Consider the following inner product on R2:

⟨u,v⟩ := u1v1 − (u1v2 + u2v1) + 2u2v2.

Prove, using the three properties above, that this is indeed an inner product.

Any inner product induces a notion of “length,” or norm. Note from the second property,
positive definiteness, that inner products are always nonnegative, so we can always take a
square root. For any inner product ⟨·, ·⟩, the induced norm by that inner product is defined
as ∥u∥ :=

√
⟨u,u⟩.

Problem 1(c) [2 points]. Consider the vector u = (1, 1) ∈ R2. Compute ∥u∥2, the
standard Euclidean norm. Then, using the inner product defined in Problem 1(b),
compute the induced norm ∥u∥. Compare: is u “longer” with the standard Euclidean
norm or the induced norm?

One can prove properties of the norm just from the three properties of inner products above.
Here is one example:

Problem 1(d) [2 points]. Let ⟨·, ·⟩ be an arbitrary inner product, and let ∥ · ∥ be
its induced norm. Prove that, for any two vectors u,v,

∥u+ v∥2 + ∥u− v∥2 = 2(∥u∥2 + ∥v∥2).

Now we will state and prove perhaps two of the most important properties of inner products.
The Cauchy-Schwarz Inequality states that, for any two vectors u,v ∈ Rd,

|⟨u,v⟩| ≤ ∥u∥∥v∥. (1)

The triangle inequality states that the sum of the lengths of two sides of a triangle is never

greater than the third side. That is, for any two vectors u,v ∈ Rd,

∥u+ v∥ ≤ ∥u∥+ ∥v∥. (2)

Both of these properties are true for any inner product. The rest of this problem will walk
you through a proof of these two properties for the standard Euclidean inner product.

Problem 1(e) [2 points]. Consider the following vectors in R2:

u = (1, 1) v = (2,−1).

Verify that u,v obey the Cauchy-Schwarz inequality with the standard Euclidean inner
product (show all your steps). Verify that they also obey the triangle inequality (show
all your steps).

Mathematics for Machine Learning (Problem Set 1) Page 2



There are many proofs of the Cauchy-Schwarz inequality, but we will do a proof by induction.
The induction will be on the dimension d.

Problem 1(f) [2 points]. For u, v ∈ R, the dot product is

u⊤v = uv.

For u,v ∈ R2, the dot product is

u⊤v = u1v1 + u2v2.

Prove the base case for the induction when d = 1 (i.e., Cauchy-Schwarz for R). This
should be trivial, so also prove the base case for d = 2:

|u1v1 + u2v2| ≤
√

u2
1 + u2

2

√
v21 + v22.

Now, we need to prove our induction step. Assume that Cauchy-Schwarz holds for Rd:

|u1v1 + · · ·+ udvd| ≤
√

u2
1 + · · ·+ u2

d

√
v21 + · · ·+ v2d.

It suffices to show that it holds for Rd+1 as well.

Problem 1(g) [2 points]. Let u,v ∈ Rd. Let ud+1, vd+1 ∈ R be scalars. Prove the
inequality

|∥u∥∥v∥+ ud+1vd+1| ≤
√

∥u∥2 + u2
d+1

√
∥v∥2 + v2d+1.

Hint: It may be helpful to use Problem 1(f).

Problem 1(h) [2 points]. Complete the proof by using the inequality in Problem
1(g) to show that the Cauchy-Schwarz inequality holds for Rd+1.

UPDATE: You need only show the Cauchy-Schwarz inequality (Equation (1)) with-
out the absolute value for full credit. That is, you need only prove:

⟨u,v⟩ ≤ ∥u∥∥v∥.

A valid proof of the version in Equation (1) will give you 4 points extra credit.

This completes our proof of the Cauchy-Schwarz inequality for the dot product on Rd. The
triangle inequality is a direct consequence of the Cauchy-Schwarz inequality.
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Problem 1(i) [2 points]. Prove the triangle inequality, stated above in Equation
(2). You may use the Cauchy-Schwarz inequality in Equation (1).
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Problem 2

Linear transformations and matrices (26 points total). The property that under-
lies all of linear algebra is linearity . In this problem, we will attempt to understand the
relationship between matrices and linear transformations.

Many common functions in the real world are linear. Cooking is one of them. Consider
the following example. Suppose that we have d = 7 ingredients to make some classic NYC
fare: bacon, egg, cheddar cheese, cream cheese, bagel, Kaiser roll, and lox. Consider four
recipes we can make with these ingredients, represented by the vectors r, c,b and l. The
d ingredients are ordered as above; for example, to make a bacon, egg and cheese on a roll
(vector r), we need one unit each of bacon, egg, cheddar cheese, and Kaiser roll, with zero
units of the other ingredients.

bacon, egg, and cheese on roll: r =



1
1
1
0
0
1
0


cream cheese on bagel: c =



0
0
0
2
1
0
0



bacon, egg, and cheese on bagel: b =



1
1
1
0
1
0
0


lox sandwich on bagel: l =



0
0
0
1
1
0
1


.

Suppose the vector u = (4, 4, 4, 5, 6, 2, 3) describes how much of each ingredient we have in
supply today (four units of bacon, four units of egg, etc.).

Problem 2(a) [2 points]. We would like to use as many of our ingredients as possible
to make as many of the above recipes as possible. How many of each recipe can we
make with zero surplus (or shortfall) of each ingredient? Set up a system of linear
equations for this question in matrix-vector form.

Problem 2(b) [2 points]. Does the system of equations in Problem 2(a) have a
solution? If so, write down a solution. If not, explain why. Feel free to use numpy or
any other numerical computing software to help you solve the system.

As we can see from the above example, matrix-vector multiplication has the nice property
that, if you add the inputs, you add the outputs (if we wanted twice as many of each recipe,
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we’d need exactly twice as many ingredients).

Let T : Rd → Rn be a function (also referred to as a “mapping” or “transformation”).
Functions can be arbitrarily complicated; a function need only map inputs in Rd to outputs
in Rn. Linear transformations (a.k.a. “linear functions” or “linear maps”) are restricted to
obey two rules that force them to behave nicely:

T (x+ y) = T (x) + T (y) and T (αx) = αT (x)

for all x,y ∈ Rd and scalars α ∈ R.

Problem 2(c) [8 points] Determine whether the following transformations are linear.
If a function is linear, give a proof by showing the function satisfies the properties of
linearity. If not, state which property of linearity fails and give a specific pair of vectors
x,y or a scalar α and vector x for which it fails.

• T : R → R defined T (x) := 2x− 1.

• T : R2 → R2 defined as T (x1, x2) := (x2, x1 + x2).

• T : Rd → R defined T (x) := 1
d
(x1 + · · ·+ xd).

• T : Rd → R defined T (x1, . . . , xd) := xd − x1.

Taken as functions, inner products and matrix-vector products are also linear. For a given
vector a ∈ Rd, let the function Ta : Rd → R be defined as:

Ta(x) := a⊤x. (3)

For a given matrix A ∈ Rn×d, let the function TA : Rd → Rn be defined as:

TA(x) := Ax. (4)

Problem 2(d) [4 points] Prove that the function defined by inner products in Equa-
tion (3) and the function defined by matrix-vector products in Equation (4) are linear
transformations. For Equation (4), you may use any of the equivalent characterizations
of matrix-vector multiplication shown in class.

In this way, any matrix defines a linear transformation. This is important — perhaps in
your introductory linear algebra class, matrices were introduced as just a way to organize
a system of linear equations, like Ax = b. Equation (4) tells us that we can actually think
of a matrix as an object that does something to vectors. Given a matrix, matrix-vector
multiplication is a linear transformation. Surprisingly, the reverse is true as well: any linear
transformation has an associated matrix!
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Consider the following example. Let e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) denote
the standard basis vectors in R3. Let T : R3 → R2 be the linear transformation defined as:

T (x1, x2, x3) := (2x1, x2 + x3).

Problem 2(e) [1 point] Where does T map the basis vectors to? That is, compute
T (e1), T (e2), and T (e3).

Now, consider the input vector x = (3, 2,−1). Because x ∈ R3 and e1, e2, and e3 are a basis
for R3, we can write x as a linear combination of e1, e2, and e3. Using this example, we’ll
try to “guess” the matrix that corresponds to T .

Problem 2(f) [1 point] Write the matrix A ∈ R2×3 such that:

T (x) = Ax.

for x = (3, 2,−1).

Hint: Write x as a linear combination of e1, e2, and e3, i.e.,

x = α1e1 + α2e2 + α3e3, (5)

where α1, α2, α3 ∈ R are scalars. Apply T (·) to both sides of Equation (5), and use
linearity to get the right-hand side to be a sum of three terms.

Problem 2(f) shows us that T (x) is just a linear combination of T (e1), T (e2), and T (e3).
It turns out that, in general, if we are given a linear transformation and want to find its
corresponding matrix A, we only need to see what that linear transformation does to the
standard basis vectors.

Problem 2(g) [4 points] Prove that any linear transformation T : Rd → Rn is given
by matrix-vector multiplication by a matrix A ∈ Rn×d:

T (x) = Ax,

where the ith column of A is T (ei).

Together, Equation (4) and Problem 2(g) give us a central theorem of linear algebra: the
equivalence of matrices and linear transformations:

(a) Any matrix A ∈ Rn×d defines a linear transformation T : Rd → Rn through matrix-
vector multiplication:

T (x) = Ax.
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(b) Any linear transformation T : Rd → Rn is given by matrix-vector multiplication by a
matrix A ∈ Rn×d:

T (x) = Ax,

where the ith column of A is T (ei).

The claim in (b) is particularly interesting — it tells us that, any linear transformation can
be pinned down (by a concrete box of n×d numbers) just by seeing how that transformation
acts on the standard basis vectors. Just by imposing the property of linearity on functions,
we can treat them as matrices which we can easily write down! This perspective on matrices
as linear transformations (and vice versa) is very helpful in understanding many of the
definitions and theorems of linear algebra.

One such operation that we’ve already studied is the projection operation. Informally, we
compute a projection of a point onto a subspace by seeing where a perpendicular line from
the point intersects the subspace. Formally, for the subspace S ⊆ Rd, the projection ΠS(x)
of x ∈ Rd onto S satisfies:

(x− ΠS(x))
⊤u, for all u ∈ S.

The theorem we proved above shows us that we can determine the exact projection matrix
if we know what a transformation does to the standard basis vectors.

Problem 2(h) [2 points] Consider the linear transformation in T : R2 → R2 that
takes any point x ∈ R2 and outputs its projection onto the x-axis, i.e. the subspace
spanned by the vector u = (1, 0). Find the matrix A ∈ R2×2 that corresponds to this
transformation. Find the explicit rule T (x1, x2) that corresponds to this transforma-
tion.

Hint: What does this transformation do to e1? What does it do to e2? It may help
to draw a picture.

Problem 2(i) [2 points] Consider the linear transformation in T : R2 → R2 that
takes any point x ∈ R2 and outputs its projection onto the y = x line, i.e. the subspace
spanned by the vector u = (1, 1). Find the matrix A ∈ R2×2 that corresponds to this
transformation. Find the projection of the vector x = (3,−1) onto this subspace.

Other properties of matrices also become more intuitive when we conceive of matrices in
Rn×d as linear transformations from Rd to Rn. For example, one of the concepts we’ve
learned is rank, the number of linearly independent columns of a matrix. From (b), the
columns of a matrix are exactly where the standard basis vectors “land” after the associated
transformation. Therefore, a matrix that is not full-rank transforms the standard basis such
that some of them are linearly dependent after the transformation.

Commit the theorem you proved above to memory — it’s at the very heart of linear algebra!
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Problem 3

Orthonormal bases, projection, and the dot product (18 points total).

In this problem, we will study orthonormal bases , why they’re “good” bases, and how to
interpret them with respect to projections. Throughout this problem, an ordered basis refers
to the ordered collection V := (v1, . . . ,vn). Order is important because basis vector vj

determines coordinate j of a vector in that basis. Recall that a collection of vectors v1, . . . ,vn

is an orthonormal basis if:

v⊤
i vj = 0 for i ̸= j

∥vi∥ = 1 for all i ∈ [n].

We can think of bases as different “languages” to describe vectors. Different bases give
us different coordinates for the same vector, and subspaces can have many different bases.
These coordinates are given by the coefficients of the vector in the linear combination of the
basis vectors.

When we write a vector as a list of numbers, we implicitly write it with respect to the
standard basis e1 = (1, . . . , 0), . . . , en = (0, . . . , 1). For example, consider x = (1,−1) ∈ R2.
The standard basis in R2 is e1 = (1, 0) and e2 = (0, 1). The coordinates x1 = 1 and x2 = −1
are implicitly the coefficients of this linear combination:

x = 1

[
1
0

]
− 1

[
0
1

]
.

However, given another basis, say, v1 = (1, 1) and v2 = (0,−1), we can write the same vector
as the linear combination:

x = 1

[
1
1

]
+ 2

[
0
−1

]
.

The coefficients of the linear combination are now ν1 = 1 and ν2 = 2, so we say that the
coordinates of x in the ordered basis V = (v1,v2) is (1, 2). Drawing a picture may make this
clear — the same vector can be expressed two different ways.

In general, let x ∈ Rn be a vector. If we have two ordered bases U := (u1, . . . ,un) and
V := (v1, . . . ,vn) of vectors in Rn, the coordinate representation of x in these two bases are
the coefficients of the linear combination of x in each of the bases. For example, given these
bases, we can write x in two ways:

x = ν1v1 + · · ·+ νnvn (6)

x = µ1u1 + · · ·+ µnun (7)

We will write these coordinates as [x]U = (µ1, . . . , µn) and [x]V = (ν1, . . . , νn), respectively.

When we write x without any brackets, we implicitly refer to x in the coordinates of the
standard basis e1, . . . , en:

x = x1e1 + · · ·+ xnen. (8)
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We can construct a matrix from these ordered bases by arranging them column-wise in n×n
matrices as follows:

U =

 ↑ . . . ↑
u1 . . . un

↓ . . . ↓

 V =

 ↑ . . . ↑
v1 . . . vn

↓ . . . ↓

 I =

 ↑ . . . ↑
e1 . . . en
↓ . . . ↓


Written like this, the linear combinations of Equations (6), (7), and (8) can be compactly
expressed, respectively, as the matrix-vector multiplications (recall the “linear combination
view” of matrix-vector multiplication from lecture):

x = U[x]U x = V[x]V x = Ix.

Problem 3(a) [4 points] Consider the vector x = (1, 2,−1) ∈ R3. Consider the
ordered bases:

U :=

11
1

 ,

−2
1
1

 ,

 0
1
−1

 V :=

10
0

 ,

 0

1/
√
2

1/
√
2

 ,

 0

−1/
√
2

1/
√
2

 .

Find [x]U ∈ Rd and [x]V ∈ Rd, the coordinate representations of x in each of these
bases. State and prove whether each basis is an orthonormal basis (if not, provide a
clear reason why not).

Hint: To find the coordinate representations, set up a system of linear equations in
matrix-vector form and take inverses. You may use any numerical computing software,
including numpy to take inverses and compute your final answers.

It is clear from the above that getting the coordinates of a vector in a different basis is
equivalent to setting up a system of linear equations and solving it. Now, we see one reason
why orthonormal bases are “nice” to work with. We have learned that if U ∈ Rn×n is a
matrix formed by an orthonormal basis, then U⊤U = I and UU⊤ = I. Therefore, finding
the coordinate representation of a vector [x]U just involves taking a transpose and doing a
matrix-vector multiplication:

[x]U = U⊤x.

Transposes are easier to compute than inverses (which would be necessary for a basis that
is not orthonormal).

Now, suppose that we have a vector x ∈ Rn and we want to compute its projection ΠS(x) ∈
Rn onto a lower dimensional subspace S ⊆ Rn, with dimension d ≤ n. Recall that, informally,
we can think of a projection as the “closest vector to x in the subspace:”

x ≈ ΠS(x).

Suppose that we know an ordered basis U := (u1, . . . ,ud) of vectors in Rn for the subspace
S. Arranging them in a matrix still gives us an inverse when multiplying on the left.
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Problem 3(b) [2 points] Let S ⊆ R3 be a 2-dimensional subspace of R3. Suppose
U := (u1,u2) is an ordered basis for S, and letU ∈ R3×2 be the matrix with these basis
vectors as its columns. Let Id×d be the d×d identity matrix. Prove that U⊤U = I2×2.
Show that UU⊤ = I3×3 is not necessarily true by finding an orthonormal basis that
violates this equality.

From lecture, we used least squares to derive the projection matrix for subspaces for which
we know a basis.

Problem 3(c) [4 points] Let x = (1, 2, 3, 4) ∈ R4. Consider the 3-dimensional
subspace S ⊆ R4 spanned by the basis

U :=



1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0


 .

Find the projection ΠS(x). Find the projection matrix for S, the matrix PS such that
ΠS(x) = PSx.

We’ll focus now on the case where we are projecting onto a one-dimensional subspace, or a
line. Given a vector u ∈ Rn, any one-dimensional subspace can be written as

Su = {αu : α ∈ R},

all the scalar multiples of u. Because we can determine such subspaces with just a single
vector, we will write Πu(x) to denote the projection of x onto the subspace Su spanned by
u. It turns out that projection is a way to geometrically interpret the dot product.

When one first learns the dot product, it seems like a strictly algebraic operation:

u⊤v = u1v1 + · · ·+ unvn :=
n∑

i=1

uivi.

We can view this as a matrix-vector multiplication by the matrix u ∈ R1×n (with one row
and n columns) and the vector v ∈ Rn. This motivates the usual notation for the dot
product with the transpose operator.

It is usually also defined in terms of the angle θ between vectors:

u⊤v := ∥u∥∥v∥ cos θ.

These two definitions are equivalent (we will not prove that here, but one can refer to any
standard linear algebra textbook for the proof). But, at first glance, the relationship between
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these two equivalent definitions is mysterious. Why would the element-wise sum of products
of entries between two vectors have anything to do with angle?

Let u ∈ Rn be a vector. Immediately, we can consider the one-dimensional subspace Su

spanned this vector. This single vector is clearly a basis for this subspace, and normalizing

it gives us an orthonormal basis U =
(

u
∥u∥

)
. By normalizing u, we focus only on the

“direction” that u defines, which is all that matters for a line.

Problem 3(d) [2 points] Prove that the subspace Su has the projection matrix

Pu = uu⊤

∥u∥2 . That is, Πu(x) = Pux for any x ∈ Rn.

Hint: Use the projection matrix formula derived in lecture from least squares. What
is the “orthogonal matrix” in this situation?

From Problem 3(d), we can see that the projection Πu(x) of any x ∈ Rn onto Su can be
computed as:

Πu(x) = Pux =
uu⊤x

∥u∥2
=

(
u⊤x

∥u∥

)
︸ ︷︷ ︸
coefficient

(
u

∥u∥

)
︸ ︷︷ ︸
direction

.

We see from the above that the (normalized with ∥u∥) dot product u⊤x
∥u∥ is how many units

in the direction u
∥u∥ the projected vector Πu(x) is.

Now, we’ll relate this back to the geometric definition of the dot product. For simplicity,
first assume that u and x form an acute angle, with 0 ≤ θ ≤ 90◦:

u⊤x = ∥u∥∥x∥ cos θ =⇒ u⊤x

∥u∥
= ∥x∥ cos θ. (9)

What is this quantity ∥x∥ cos θ? One way to find ∥x∥ cos θ involves analyzing ∥Πu(x)∥ (do
this yourself!), but this doesn’t give much intuition. We can get more intuition through some
basic trigonometry.

Problem 3(e) [2 points] Draw a right triangle with first leg x− Πu(x), second leg
Πu(x), and hypotenuse x (include your drawing in your submission). Prove, using
trigonometry, that ∥x∥ cos θ = ∥Πu(x)∥.
Hint: The right triangle should come immediately from the “arrow view” of vector
addition. Use the identity from basic trigonometry: cos θ = adjacent

hypotenuse
.

Finally, plugging this back into the geometric definition of the dot product in Equation (9),

u⊤x = ∥Πu(x)∥∥u∥ when 0 ≤ θ ≤ 90◦. (10)

When 90◦ < θ ≤ 180◦, we form the right triangle with θ′ = 180◦−θ. Using the trigonometric
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identity cos(180◦ − θ) = − cos θ, we obtain:

cos θ′ = cos(180◦ − θ) = − cos θ =
∥Πu(x)∥
∥x∥

=⇒ −∥x∥ cos θ = ∥Πu(x)∥,

and, by the same argument:

u⊤x = −∥Πu(x)∥∥u∥ when 90◦ < θ ≤ 180◦. (11)

Together, Equations (10) and (11) show us that the dot product between two vectors is
equivalent to projecting one of the vectors onto the other and measuring the length of that
projection! Recall that we can think of a projection as the “shadow” of a vector on a
subspace. In an informal sense, the dot product is the length of the “shadow” one vector
casts on another. Notice that, in the above arguments, we could have also switched the
places of u and x — it doesn’t matter which vector we’re projecting and which we’re using
to form the subspace.

Problem 3(f) [4 points] Let u = (2, 1) ∈ R2 be a vector and consider

x1 =

[
2
1

]
x2 =

[
1
1

]
x3 =

[
1
−2

]
x4 =

[
−1
2

]
.

Compute the dot products u⊤x1, u
⊤x2, u

⊤x3 and u⊤x4. Compute Πu(xi) and ∥Πu(xi)∥
for each of x1, . . . ,x4. You don’t need to submit this, but drawing a picture for each
of these should help your geometric intuition.

Interpreting the dot product in this way also clarifies why the dot product is so often thought
of as a measure of “similarity” between vectors. The more colinear one vector is with another,
the larger the “shadow” it casts. When a vector is orthogonal to another, it doesn’t cast any
shadow — this tracks with the definition of orthogonality: u⊤v = 0.
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Problem 4

Errors in least-squares regression (18 points total).

One of the central ideas in this course is least-squares regression. Recall the setup from

lecture. We are given n training samples with d features x⊤
1 , . . . ,x

⊤
n and a vector of training

labels y ∈ Rn. Arranged row-wise, the training samples form a matrix X ∈ Rn×d with
columns x1, . . . ,xd. For each i ∈ [n], our goal is to make a prediction ŷi ∈ R, such that ŷi is
as close to yi as possible. In order to make these predictions, we need to construct a weight
vector w ∈ Rd such that ŷi = w⊤xi. In matrix-vector form, we want to find w ∈ Rd such
that

Xw = ŷ ≈ y.

The “least-squares” part of “least-squares regression” comes from how we model the approx-
imation, “≈.” We want to find the w ∈ Rd that minimizes a specific notion of error, the
sum of squared residuals (also known as mean squared error), which we’ll denote with err(·):

err(w) := ∥Xw − y∥2.

In this problem, we will investigate the limitations of this model by examining what happens
when we change how xi and yi are related.

As a warm-up, let’s make sure we understand what each object in the least squares derivation
is. Suppose we have the following (small) set of data from some local basketball league.

height (in) workouts per week score
Aaron 80 5 27.2
Bob 72 4 20.5
Charlie 68 2 15
David 74 4 18.1
Evan 68 5 22.8

In this case, we have n = 5 data samples total, and we have d = 2 features for every sample:
the number of workouts the player does each week, and the height of the player in inches.
The label, y, for each player is their average score in the season.

Problem 4(a) [4 points] For the basketball data above, (i) construct the data matrix
X ∈ Rn×d and (ii) the vector y ∈ Rn. Then, (iii) find w ∈ Rd through least squares
regression by using the ordinary least squares solution from lecture. Finally, (iv)
compute the sum of squared residuals error of your solution, err(w). You may use
numpy or any other scientific computing utility to perform the matrix multiplications.

Now, let us consider an ideal general scenario. Suppose that, for every i ∈ [n], there exists
some w∗ ∈ Rd such that

yi = (w∗)⊤xi. (12)
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In this case, there is a perfect linear relationship between xi and yi. For example, if d = 1
and w∗ = 2, then yi = 2xi. The labels just come from a relationship that looks like a line
with slope 2 passing through the origin.

Problem 4(b) [2 points] Let Equation (12) apply to all samples i = 1, . . . , n, let
n ≥ d, and let the columns of X be linearly independent. Let ŵ ∈ Rd be the ordinary
least squares solution. Prove that ŵ = w∗ and err(ŵ) = 0.

In most real-world problems, there is not a perfect linear relationship between the labels and
the training features, however. One way of modeling such relationships is by positing that
each sample has some error unexplained by the linear relationship, ϵi ∈ R. In this case, there
exists some w∗ ∈ Rd, but the labels are now:

yi = (w∗)⊤xi + ϵi. (13)

We can collect all these errors into a vector, ϵ ∈ Rn.

Problem 4(c) [4 points] Let Equation (13) apply to all samples i = 1, . . . , n, let
n ≥ d, and let the columns of X be linearly independent. Let ŵ ∈ Rd be the ordinary
least squares solution. Supposing that (X⊤X) = 2Id×d, where Id×d is the d×d identity
matrix, prove that:

∥y −Xŵ∥2 = ∥ϵ∥2 − 1

2
∥X⊤ϵ∥2.

Hint: Expand out ∥y − Xŵ∥2 using properties of dot products. Using the property
(AB)⊤ = B⊤A⊤ may help.

From Problem 4(c), we see that, if we don’t know anything else about the errors, ϵi, there’s
not much else we can say about the optimality of ŵ. We will elaborate more on Equation
(13) later in the probability section of this course.

Finally, we will consider an example where the true relationship between yi and xi is nonlinear
in the original features but linear in some new features we will engineer. Consider the
following dataset with d = 2 and n = 5, already arranged in a data matrix and label vector:

X =


2 1
−1 2
0 1
−2 2
0 −1

 y =


7
−7
−1
−8
−1

 . (14)

Problem 4(d) makes clear that the true relationship is certainly not linear as in Equation
(12) (if it were, the error would be 0).
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Problem 4(d) [2 points] For the data in (14), find w ∈ Rd through least squares
regression by using the ordinary least squares solution from lecture. Also compute the
sum of squared residuals error of your solution, err(w). You may use numpy or any
other scientific computing utility to perform the matrix multiplications.

Now, consider the following nonlinear function, ϕ : R2 → R3

ϕ(x1, x2) = (x2
1, x1x2, x

2
2).

Because ϕ(·, ·) takes inputs in R2, we can feed it each row (sample) in our data matrix. This
allows us to “transform” our data matrix to a new data matrix, X′ ∈ R5×3 by applying ϕ(·, ·)
row by row. By doing so, we are constructing 3 new features from the d = 2 old features.

Problem 4(e) [4 points] Find the transformed data matrix X′ ∈ R5×3 obtained by
applying ϕ(·, ·) to each of the 5 rows. Find w ∈ Rd by least squares regression on X′

and the original y. Also compute the sum of squared residuals error of your solution,
err(w) (you should find that, now, err(w) = 0). You may use numpy or any other
scientific computing utility to perform the matrix multiplications.

It turns out that the true relationship between yi and xi = (xi1, xi2) for the data in (14) is
actually:

yi = x2
i1 + 2xi1xi2 − x2

i2 for all i ∈ [n]. (15)

By finding the feature transformation ϕ(·, ·) above, we turned a problem with a nonlinear
relationship into a problem where a linear model is again useful (and, in fact, perfectly fits
X′). We are back in our ideal scenario in Equation (12), but there now exists some w∗ ∈ Rd

such that
yi = (w∗)⊤ϕ(xi).

Problem 4(f) [2 points] What is w∗ ∈ Rd for the relationship in Equation (15) that
generated our data in (14)?

Finding useful functions ϕ : Rd → Rd′ that transform vectors to a higher dimensional space
d′ such that we can eventually use a linear model atop the transformed vectors is the focus
of a great deal of machine learning. For instance, one can take the simplified view that
the architecture of many neural networks finds some extremely complex ϕ(·) which we can
eventually apply a linear model on to make predictions.
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Programming Part

Basics of linear regression in Python (18 points total). In this problem, you will
familiarize yourself with the basics of running linear regression in Python on three simple
examples of increasing dimensionality.

In order to start this programming part, download the file ps1.ipynb from Course Content
on the course webpage. Your submission for this part will be the same ps1.ipynb file mod-
ified with your code; see HW Submission on the course webpage for additional instructions.
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