
Mathematics for Machine Learning Instructor: Samuel Deng
Problem Set 2 samdeng@cs.columbia.edu
COMS 4995-002 : Summer B 2024 Due: 07/22/2024 11:59 PM ET.

Problem 1

Interpretation of the linear transformation under SVD (25 points total). You
proved in Problem Set 1 that linear transformations are equivalent to matrices and vice
versa. This was the following theorem:

(a) Any matrix A ∈ Rn×d defines a linear transformation T : Rd → Rn through matrix-
vector multiplication:

T (x) = Ax.

(b) Any linear transformation T : Rd → Rn is given by matrix-vector multiplication by a
matrix A ∈ Rn×d:

T (x) = Ax,

where the ith column of A is T (ei).

In this problem, we will use the singular value decomposition (SVD) of a matrix A ∈ Rn×d

to interpret how it transforms vectors on the unit sphere, the set of all unit vectors in Rd.
Keep in the back of your mind that multiplying any vector by the matrix A is the same as
applying its associated linear transformation T. Recall from lecture that a unit vector is a
vector x ∈ Rd such that ∥x∥ = 1. We will denote the unit sphere as S, the set of all such
unit vectors:

S := {x ∈ Rd : ∥x∥ = 1}.
In R2, the unit sphere is given by the all vectors x = (x1, x2) that satisfy the equation of a
circle with radius 1:

∥x∥ = 1 ⇐⇒ x2
1 + x2

2 = 1.

For the rest of this problem, let A ∈ R2×2 be a matrix with rank(A) = 2. Let TA : R2 → R2

refer to its associated linear transformation. By the singular value decomposition,

A = UΣV⊤,

where u1,u2 are the left singular vectors and columns of U, v1,v2 are the right singular
vectors and columns of V, and Σ ∈ R2×2 is a diagonal matrix with entries σ1, σ2, the
singular values of A.

Problem 1(a) [5 points] Prove that TA(v1) = σ1u1 and TA(v2) = σ2u2.
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Problem 1(a) tells us that the transformation maps the right singular vectors to scaled left
singular vectors. However, we want to interpret how TA acts on any x ∈ R2. It turns out
that we can interpret this in terms of the left singular vectors, right singular vectors, and
singular values.

Problem 1(b) [5 points] We can write x as:

x = ν1v1 + ν2v2,

for unique scalars ν1, ν2 ∈ R. State why these scalars are unique. Then, show that, for
any x ∈ R2,

TA(x) = ν1σ1u1 + ν2σ2u2.

Hint: Problem 1(a) is helpful here.

Problem 1(b) gives us an expression that interprets the transformation of any vector x ∈ R2

in terms of the left singular vectors of A. It isn’t completely clear yet how to interpret this,
but one property of the left singular vectors that we can exploit is, again, that they form an
orthonormal basis.

Recall from Problem 3 on Problem Set 1 that, given any basis for Rn, we can write any
vector x ∈ Rn as a linear combination of the basis vectors. Its coordinates in that basis
are the coefficients of that linear combination. Denote V = (v1,v2) the ordered basis of
right singular vectors. In this case, in Problem 1(b), the coordinates of x in the basis V are
[x]V = (ν1, ν2). In the “language” of the basis V , the vector x has coordinates (ν1, ν2). We
will also use the “language” of the basis U := (u1,u2) to reinterpret y = TA(x).

Problem 1(c) [5 points] Let y = TA(x). We can write y as:

y = µ1u1 + µ2u2,

for unique scalars µ1, µ2 ∈ R. State why these scalars are unique. Let [y]U = (µ1, µ2).
Then, show that, for any x ∈ R2,

[y]U = Σ[x]V .

Writing out Problem 1(c) explicitly, we have:[
µ1

µ2

]
=

[
σ1 0
0 σ2

] [
ν1
ν2

]
. (1)

Seeing it written like this, we can interpret the transformation TA as follows. If we view x,
the vector that’s being acted upon, in terms of the ordered basis V = (v1,v2) and y, the
resulting vector, in terms of the ordered basis U = (u1,u2), the transformation TA looks as
simple as it can get — a diagonal matrix!
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Further, observe that Equation (1) immediately gives us the relations:

ν1 =
µ1

σ1

and ν2 =
µ2

σ2

. (2)

So far, this problem has applied to any general x ∈ R2. The motivation for this problem was
to see what TA specifically does to the vectors on the unit circle, x ∈ S.

Problem 1(d) [5 points]. Let x ∈ S be a unit vector. Using the linear combination
of x in terms of v1 and v2 in Problem 1(b), prove that:

ν2
1 + ν2

2 = 1.

Conclude that
µ2
1

σ2
1

+
µ2
2

σ2
2

= 1.

The final statement in Problem 1(d) is the equation of an elipse with a major axis u1 and
minor axis u2. Using the SVD, you just proved that we can interpret the transformation of
any full-rank matrix A ∈ R2×2 acting on the unit circle in R2 as mapping vectors onto an
ellipse with axes characterized by the left singular vectors u1 and u2 and scale characterized
by the singular values σ2

1 and σ2
1. A larger singular value σ1, for example, results in a “wider”

axis in the u1 direction.

We won’t prove this here (optional: you can try it yourself!), but the argument in this
problem can be generalized to general matrices A ∈ Rn×d with rank(A) = r. In that
case, we can prove that TA : Rd → Rn maps vectors in span(col(A⊤)) onto an ellipsoid in
span(col(A)) with axes specified by the first r left singular vectors u1, . . . ,ur. If r ≤ n, then
this is a “degenerate ellipsoid” in Rn.

Finally, let us connect this back to eigendecomposition and diagonalization. Because the
A ∈ R2×2 we focused on in this problem is square, we might ask if we can interpret the
transformation TA in terms of its eigendecomposition. If A has the eigendecomposition

A = VΛV⊤,

it is relatively straightforward to apply the same arguments we walked through in this prob-
lem to get an equation of the elipse in terms of the eigenvalues and eigenvectors.

Problem 1(e) [5 points] Suppose that A ∈ R2 is a positive definite matrix, with
eigendecomposition A = VΛV⊤. Let TA be the associated linear transformation. If
its eigenvectors are v1,v2 and its eigenvalues are λ1, λ2, show that there exist unique
scalars ν1, ν2 such that, for any y = TA(x) ∈ R2:

y = ν1v1 + ν2v2.
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Conclude, using the arguments above, that for any x ∈ S, the associated transforma-
tion TA(x) maps vectors on the unit circle to the elipse defined by:

ν2
1

λ2
1

+
ν2
2

λ2
2

= 1.

You may use any of the results you’ve already proven in Problem 1 here without proof.
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Problem 2

Quadratic forms and positive semidefinite matrices (25 points total).

As briefly stated in lecture, a prevalent theme in this course is that a common technique
to solve tough problems will be to look at nonlinear functions as approximated by linear
functions. We have all the tools of linear algebra at our disposal when dealing with linear
functions because of their equivalence with matrices, as we explored in Problem 1 of Problem
Set 1.

As a next step up in complexity, we can look at quadratic functions, which describe a larger
class of phenomena.1 A general quadratic function f : Rd → R is a polynomial with degree
two with d variables. For example, a single variable quadratic function f : R → R looks like:

f(x) = ax2 + bx+ c, where a ̸= 0.

A two-variable quadratic function f : R2 → R looks like:

f(x1, x2) = ax2
1 + bx1x2 + cx2

2︸ ︷︷ ︸
“quadratic part”

+ dx1 + ex2︸ ︷︷ ︸
“linear part”

+ f︸︷︷︸
“constant part”

,

where a, b, or c is nonzero. In general, a quadratic function can have as many variables as
you’d like, but they quickly start becoming unwieldy to write down explicitly. Note from the
two equations above that all quadratic functions have a “quadratic part,” “a linear part,”
and a “constant part.” We will focus on the “quadratic part” of quadratic functions, as that
ends up dominating the shape and behavior of such functions.

The “quadratic part” of a quadratic function is called a quadratic form. Recall from lecture
that a quadratic form is a polynomial function f : Rd → R with terms all of degree two.
Some examples of quadratic forms f : R2 → R include f(x1, x2) = x2

1 + x2
2 or f(x1, x2) =

4x2
1 + x1x2 − x2

2.

First, we will study quadratic forms using pure high school algebra. Recall the technique
of “completing the square.” One can complete the square to prove a familiar formula from
high school: the quadratic formula.

Problem 2(a) [3 points] Recall the quadratic formula: to find roots of single variable
quadratic equations of the form ax2 + bx+ c = 0, it suffices to let

x =
−b±

√
b2 − 4ac

2a
.

1In both physics and machine learning, we usually reach for linear functions to describe the “fist-order”
effects of nonlinear phenomena. We reach for quadratic functions to describe the “second-order” effects.
Usually, understanding the first and second order effects gives us a very good understanding on how a
nonlinear function behaves. This will become more formal after our lecture on Taylor series.
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Prove this formula by completing the square. Hint: add and subtract
(

b
2
√
a

)2

, factor

to complete the square, and solve for x.

Here’s an important fact about quadratic forms that we will state here but not prove. For
any quadratic form f : Rd → R, there exist r = p+ l linearly independent vectors v1, . . . ,vr

such that
f(x) = (v⊤

1 x)
2 + · · ·+ (v⊤

p x)
2 − (v⊤

p+1x)
2 − · · · − (v⊤

p+lx)
2, (3)

where p is the number of squares with positive coefficients and l is the number of squares
with negative coefficients. This is, roughly, because one can always complete the square for
a quadratic form.

There are certain quadratic forms that are quite nice to analyze. We say that a quadratic
form f : Rd → R is positive definite if f(x) > 0 when x ̸= 0. Note that, on its own, this
property doesn’t seem to have anything to do with the notion of positive definite matrices
we learned in lecture, but the connection will soon become clear.

Problem 2(b) [3 points] Consider the following quadratic form f(x1, x2) = x2
1+x1x2.

Find linearly independent vectors v1 and v2 such that f(x1, x2) can be expressed as
in Equation (3). In this case, what is p and what is l?

There is a term for these inner products in Equation (3). If we view each vector vj for j ∈ [n]
as a matrix v⊤

j ∈ R1×d, we can interpret, again, using our trusty theorem from Problem
Set 1 that linear transformations are equivalent to matrices, the linear transformation that
each vector is associated with. In general, for any vector u ∈ Rd, we can consider it as
a linear function T : Rd → R if we view it as the row matrix u ∈ R1×d; this is called a
linear functional on Rd. In this way, we can view any quadratic form as a sum of the squares

of n linear functions on Rd.

Problem 2(c) [3 points] Let u = (1, 2, 3). Using the equivalence of matrices and
linear transformations theorem from Problem Set 1 (restated on the first page of this
problem set), write the linear functional T : R3 → R determined by u.

Consider the set of vectors x ∈ R3 such that T (x) = 0. Prove that this set is a
subspace, and find a basis for this subspace. What is the dimension of this subspace?

Just for yourself: what does this subspace look like?

It can be shown that for any quadratic, the numbers p and l are characteristic of the quadratic
form — that is, regardless of how we write the quadratic form as a sum of squares (as in
Equation (3)), the number p of plus signs and the number l of minus signs will always be the
same for the same quadratic form. Because of this, the ordered pair (p, l) is often called the
quadratic form’s signature or type. Interestingly, this inherent property of every quadratic
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form is linked to linear algebra; particularly, it is linked to the eigenvalues and eigenvectors
of a matrix associated with every quadratic form.

In lecture, we saw that every two-variable quadratic form f : R2 → R can be written in
terms of a symmetric matrix A ∈ R2×2:

f(x) = x⊤Ax.

It turns out that this is a general fact for quadratic forms f : Rd → R.

(a) Any symmetric matrix A ∈ Rd×d defines an associated quadratic form f : Rd → R
through

fA(x) = x⊤Ax.

(b) Any quadratic form f : Rd → R has a unique associated symmetric matrix A such
that

f(x) = x⊤Ax.

Problem 2(d) [3 points] Using constants a, b, c, d, e, and f in R, write a general
quadratic form f : R3 → R in three variables. Write the quadratic form as f(x) =
x⊤Ax, where A ∈ R3×3 is a symmetric matrix with entries a, b, c, d, e and f.

For the specific quadratic form

f(x1, x2, x3) = x2
1 + x2

2 + 2x1x3 + 4x2x3 + 9x2
3,

write the associated symmetric matrix A ∈ R3×3.

Recall that a matrix A ∈ Rd×d is positive definite if

x⊤Ax > 0 for all x ̸= 0.

The connection in terminology to positive definite quadratic forms should now be apparent.
One particularly important property about positive definite quadratic forms comes from the
simple fact that we can always construct a symmetric matrix A ∈ Rd×d from an arbitrary
matrix X ∈ Rn×d by considering A = X⊤X.

Problem 2(e) [3 points] Verify that, for any X ∈ Rn×d, the matrix A = X⊤X is
a symmetric matrix. Prove that the quadratic form defined by f(x) = x⊤Ax is a
positive definite quadratic form if and only if rank(X) = d.

Because we can now study quadratic forms in terms of matrices, it should become clearer
that the tools of linear algebra are at our disposal. Specifically, because quadratic forms
are related to symmetric matrices, we might hope to use the spectral theorem and the
eigenvectors and eigenvalues of A to analyze quadratic forms.
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It turns out that we can do exactly that, and the eigenvectors and eigenvalues of A com-
pletely characterize its associated quadratic form. Without the tools of linear algebra, we
characterized a quadratic form by its signature (p, l) via completing the square. With linear
algebra, we take a different perspective of a quadratic form’s signature through the eigen-
values and eigenvectors of A, the associated symmetric matrix.

First, we prove a useful and important general property about orthonormal bases.

Problem 2(f) [3 points] Let v1, . . . ,vn ∈ Rn be an orthonormal basis. Prove that
any vector x ∈ Rn can be written as

x =
n∑

i=1

(x⊤vi)vi.

Recall that the spectral theorem says that any symmetric matrix A ∈ Rd×d has the eigende-
composition:

A = VΛV⊤,

where V ∈ Rd×d is a matrix with columns v1, . . . ,vd, the eigenvectors of A, and Λ ∈ Rd×d

is a diagonal matrix with entries λ1, . . . , λd, the eigenvalues of A.

Problem 2(g) [3 points] Using the spectral theorem and Problem 2(f), show that
for any vector x ∈ Rd,

Ax =
d∑

i=1

λi(x
⊤vi)vi.

Finally, we will link the notion of a quadratic form’s signature to the eigenvalues and eigen-
vectors. It turns out that the number of positive eigenvalues is exactly p, the number of
negative eigenvalues is exactly l, and there are exactly d− p− l zero eigenvalues.

Problem 2(h) [4 points] Prove that a quadratic form f : Rd → R with associated
symmetric matrix A ∈ Rd×d has signature (p, l) if and only if there exists an or-
thonormal basis of eigenvectors v1, . . . ,vd such that Avi = λivi, with λ1, . . . , λp > 0,
λp+1, . . . , λp+l < 0, and all of λp+l+1, . . . , λd are 0 (if p+ l < d).

Hint: It suffices to show that f(x) =
∑d

i=1 λi(v
⊤
i x)

2. Use Problem 2(f) and Problem
2(g) to obtain this equality.

When initially studied, quadratic forms seem like purely algebraic objects. Problem 2(h)
shows us, however, that the tools of linear algebra allow us to interpret them exactly in
terms of eigenvalues and eigenvectors. It tells us that everything we need to know about
a quadratic form; for instance, whether its associated quadratic function “curves up” (is
positive definite) can be read off from the eigenvalues of its associated symmetric matrix A.
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Problem 3

The pseudoinverse and errors in least squares regression (25 points total).

Recall the setup of least squares regression from lecture. We are given n training samples

with d features x⊤
1 , . . . ,x

⊤
n and a vector of training labels y ∈ Rn. Arranged row-wise, the

training samples form a matrix X ∈ Rn×d with columns x1, . . . ,xd. For each i ∈ [n], our
goal is to make a prediction ŷi ∈ R, such that ŷi is as close to yi as possible. In order to
make these predictions, we need to construct a weight vector w ∈ Rd such that ŷi = w⊤xi.
In matrix-vector form, we want to find w ∈ Rd such that

Xw = ŷ ≈ y.

The “least-squares” part of “least-squares regression” comes from how we model the approx-
imation, “≈.” We want to find the w ∈ Rd that minimizes a specific notion of error, the
sum of squared residuals (also known as mean squared error), which we’ll denote with err(·):

err(w) := ∥Xw − y∥2.

In Problem Set 1, we investigated the errors of least squares regression just using our OLS
solution for ŵ:

ŵ = (X⊤X)−1X⊤y.

In this problem, we will explore the pseudoinverse and its relationship to least squares
regression and use the SVD to take a closer look at errors in least squares regression. Recall
from lecture that, for any X ∈ Rn×d with full SVD X = UΣV⊤, the pseudoinverse is defined
as

X+ := VΣ+U⊤,

where Σ+ = (Σ⊤Σ)−1Σ⊤ ∈ Rd×n if n ≥ d and Σ+ = Σ⊤(ΣΣ⊤)−1 ∈ Rd×n if d > n.

To get a grasp on this object, let’s consider a concrete example first.

Problem 3(a) [3 points] Consider the matrix

A =

1 −2
0 1
1 0

 .

Left singular vectors u1,u2,u3 ∈ R3 for this matrix are given by:

u1 =


5√
30

−2√
30
1√
30

 u2 =

 0
1√
5
2√
5

 u3 =


−1√
6

−2√
6
1√
6

 .
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Right singular vectors v1,v2 ∈ R2 for this matrix are given by:

v1 =

[
1√
5

−2√
5

]
v2 =

[
2√
5
1√
5

]
.

Finally, the singular values are σ1 =
√
6 and σ2 = 1. Write the matrix in full SVD

form:
A = UΣV⊤,

where U ∈ R3×3, Σ ∈ R3×2 and V ∈ R2×2. Compute the pseudoinverses Σ+ ∈ R2×3

and A+ ∈ R2×3. Verify numerically (showing your steps) that Σ+Σ = I2×2. Also
compute ΣΣ+. You may use numpy or any other numerical computing software to
compute these answers.

We already know from lecture that, when X ∈ Rn×d, with d ≥ n and rank(X) = n, using
the pseudoinverse to obtain ŵ = X+y gives us the exact solution with smallest Euclidean
norm. However, we’ve relied on the assumption that X ∈ Rn×d has full rank, i.e. rank(X) =
min{n, d}, in all our uses of the pseudoinverse so far. This was necessary to invert the
matrices Σ⊤Σ or ΣΣ⊤.

Problem 3(b) [3 points] ConsiderX ∈ R4×2 with singular values σ1 and σ2. Suppose
that rank(X) = 2. Compute Σ⊤Σ ∈ R2×2 and write it in terms of the singular values.
Also, compute Σ+ = (Σ⊤Σ)−1Σ⊤ and write it in terms of the singular values.

Now, assume that rank(X) = 1. Compute Σ⊤Σ ∈ R2×2 and write it in terms of the
singular values. State why Σ⊤Σ cannot be inverted.

There is an alternative characterization of the pseudoinverse using the compact SVD that

will be easier to analyze for the purposes of this problem. Recall that any matrix X ∈ Rn×d

has the compact SVD:
X = UΣV⊤,

where U ∈ Rn×r, V ∈ Rd×r, and Σ ∈ Rr×r, where r = rank(X). In this representation, the
diagonal matrix Σ is only as large as the number of positive singular values σ1, . . . , σr > 0,
which is equal to rank(X). For the rest of this problem, we will focus on the pseudoinverse
obtained from the compact SVD:

X+ = VΣ−1U⊤. (4)

Because Σ ∈ Rr×r is full-rank (its diagonal entries are all positive), there is no problem
inverting Σ and this pseudoinverse is well-defined. We will now refer to Equation (4) as
the pseudoinverse for the remainder of this problem, and we will consider the compact SVD
unless stated otherwise.
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Problem 3(c) [4 points] Prove these two properties of the pseudoinverse in Equation
(4):

XX+ = UU⊤ and X+X = VV⊤.

Also prove: (i) if rank(X) = n, then XX+ = I and (ii) if rank(X) = d, then X+X = I.

Using the compact SVD also gives us the following simple property.

Problem 3(d) [3 points] Prove that, if X = UΣV⊤ by the compact SVD,

X⊤X = VΣ2V⊤,

where V ∈ Rd×r has columns v1, . . . ,vr ∈ Rd and Σ ∈ Rr×r is a diagonal matrix with
entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The compact SVD definition of the pseudoinverse gives us a solution to the normal equations
even when X is not full rank. Recall that, to obtain a minimizer of err(w) = ∥Xw − y∥2,
we solved the normal equations

(X⊤X)w = X⊤y (5)

for w ∈ Rd. However, if rank(X) ≤ d, then the normal equations in Equation (5) may not
have a unique solution.

Problem 3(e) [3 points] Using Problem 3(d), prove that, by using the pseudoinverse
in Equation (4), the vector

ŵ = X+y ∈ Rd

is a solution to the normal equations.

Hint: Start by plugging in ŵ into the left hand side of Equation (5).

Problem 3(e) never assumed anything about the rank of X ∈ Rn×d, so the pseudoinverse (of
the compact SVD) given in Equation (4) has given us a solution that minimizes err(w) =
∥Xw − y∥2 without assuming that rank(X) = min{n, d}.
Another way to see this is as follows.

Problem 3(f) [3 points] Find the pseudoinverse of X⊤X, i.e. the matrix (X⊤X)+ ∈
Rd×d. Prove that

(X⊤X)+X⊤y = X+y.

Problem 3(f) shows that our definition of pseudoinverse meshes well with our familiar solution
for the normal equations. When rank(X) = d, then ŵ = (X⊤X)−1X⊤y. However, when
rank(X) < d, we can swap out (X⊤X)−1 with the pseudoinverse (X⊤X)+ and get a solution
to the normal equations.
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Finally, we will show that the pseudoinverse and the SVD give us a particularly illuminating
perspective on the errors of our linear model, ŵ ∈ Rd. Recall from Problem Set 1 that a
common way to model the errors we make from using a linear model is by positing that each
sample has some error unexplained by the linear relationship, ϵi ∈ R. In this case, there
exists some true underlying linear model w∗ ∈ Rd, but the labels are now:

yi = (w∗)⊤xi + ϵi. (6)

We can collect all these errors into a vector, ϵ ∈ Rn. As usual, we collect the true labels yi
into a vector y ∈ Rn. Writing Equation (6) with matrices and vectors, we get

y = Xw∗ + ϵ. (7)

For the rest of this problem, assume that rank(X) = d, for simplicity.

Problem 3(g) [3 points] Prove that with the error model in Equation (7), using the
pseudoinverse characterization of the OLS solution in Problem 3(e),

ŵ = X+y,

the squared distance between ŵ and w∗, the true linear model, satisfies

∥ŵ −w∗∥2 = ϵ⊤UΣ−2U⊤ϵ,

where X = UΣV⊤ is the compact SVD of X.

Hint: First, show that ∥ŵ −w∗∥2 = ∥X+ϵ∥2. Problem 3(c) might be helpful. Then,
expand ∥X+ϵ∥2 using the definition of the pseudoinverse.

What might ϵ be, in the worst case? We don’t have any notions of randomness right now (the
third part of this course will cover such notions), but we can consider some “bad” choices of
ϵ that may occur. Particularly, we will consider what happens when ϵ is in the direction of
a left singular vector ui with a small singular value σi.

Problem 3(h) [3 points] Consider any i ∈ [r]. Let ϵ = αui where α ∈ R is a scalar,
and let σi > 0 be the singular value associated with ui. Prove, using Problem 3(g),
that

∥ŵ −w∗∥2 = α2

σ2
i

.

Problem 3(h) shows us that if σi is small, then the error in our estimate of w∗ blows up, so
long as ϵ is in the direction of ui.
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Programming Part

Eigendecomposition, PCA, and eigenfaces (25 points total). In this problem, you
will use eigendecomposition to perform a basic dimensionality reduction technique in machine
learning: principal components analysis (PCA).

In order to start this programming part, download the file ps2.ipynb from Course Content
on the course webpage. Your submission for this part will be the same ps2.ipynb file mod-
ified with your code; see HW Submission on the course webpage for additional instructions.
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