
Mathematics for Machine Learning Instructor: Samuel Deng
Problem Set 3 samdeng@cs.columbia.edu
COMS 4995-002 : Summer B 2024 Due: 07/29/2024 11:59 PM ET.

Problem 1

A closer look at multivariable derivatives (25 points total).

In class, we introduced a couple of notions of “derivative” for multivariable functions. This
problem will clarify these notions by working with a concrete example. In the most general
case, a multivariable function f : Rd → Rn maps from d variables to n variables. We will
consider the following multivariable function f : R2 → R2, where d = 2 and n = 2:

f(x, y) =

[
xy

x2 − y2

]
, with f1(x, y) = xy and f2(x, y) = x2 − y2. (1)

Recall from lecture that the reason why multivariable derivatives are more complicated is
that there are infinitely many directions in which we can move in multiple dimensions, while,
in one dimension, there were only two directions: the “negative” direction and the “positive”
direction. Because of this, our first notion of derivative for multivariable functions is the
directional derivative, the rate of change of f : Rd → Rn in a specific direction, v ∈ Rd.
Recall from lecture that the directional derivative of f at x0 in the direction v ∈ Rd is

lim
δ→0

f(x0 + δv)− f(x0)

δ
.

In calculus with a single variable, f : R → R with d = 1 and n = 1, a “direction” v ∈ R
is simply a scalar. Because of this, the directional derivative should simply generalize the
single variable definition of the derivative. Problem 1(a) shows you that it indeed does.

Problem 1(a) [3 points] Consider the single-variable function f(x) = x2. Find the
“directional derivative” of f at x0 = 1 in the direction v = 1 using the definition. Find
the “directional derivative” of f at x0 = 1 in the direction v = −1 using the definition.
You may use any properties of limits from single-variable calculus without proof.

The directional derivative becomes more interesting when we compute it for multivariable
functions.

Problem 1(b) [3 points] Compute the directional derivative of f in Equation (1)
above at x0 = (1, 1) in the direction v = (1, 1). Compute the directional derivative of
in Equation (1) above at x0 = (1, 1) in the direction u = (1/

√
2, 1/
√
2), which is the

normalized unit vector u = v/∥v∥. You may use the simple fact that, to take the limit

Mathematics for Machine Learning (Problem Set 3) Page 1

mailto:samdeng@cs.columbia.edu


of a vector valued function, you may take the limit of each component individually:
limδ→b f(δ) = (limδ→b f1(b), . . . , limδ→b fd(b)).

The computation in Problem 1(b) shows us that, if we only care about the direction in which
f is changing, we need only specify directional derivatives with unit vectors. Some of our
favorite unit vectors are the unit basis vectors, e1 = (1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 1). This
leads to our second notion of multivariable derivative, the parital derivative. Recall from

lecture that, for a function f : Rd → Rn, the ith partial derivative of f at x ∈ Rd is the
directional derivative at x in the direction ei ∈ Rd:

∂f

∂xi

:= lim
δ→0

f(x+ δei)− f(x)

δ
= lim

δ→0

f(x1, . . . , xi + δ, . . . , xd)− f(x1, . . . , xi, . . . , xd)

δ
.

The partial derivative of a vector-valued function f : Rd → Rn is a vector ∂f
∂xi
∈ Rn; the

partial derivative of a scalar-valued function f : Rd → R is a scalar ∂f
∂xi
∈ R. We’ll use the

definition once, for practice, in Problem 1(c), but, for all intents and purposes, there’s a
much easier way to calculate a formula for the partial derivative. Mechanically, we take the
ith partial derivative by taking the derivative with respect to xi and holding all the other
variables constant.

Problem 1(c) [3 points] Compute a formula for the first partial derivative, ∂f
∂x
∈ R2,

of the function in Equation (1) at the point (x, y) = (1, 1) using the formal definition
of partial derivative (write your setup and steps down in your assignment). Compute
the second partial derivative, ∂f

∂y
∈ R2 at the point (x, y) = (1, 1), of the function in

Equation (1) using the usual shortcut: taking the derivative with respect to y and
keeping x constant.

Associated with every vector-valued function f : Rd → Rn is the Jacobian matrix , the
n × d matrix composed of all the function’s partial derivatives. We will denote this matrix
[∇f(x0)] ∈ Rn×d, where the brackets are there to remind you that this is indeed a ma-
trix. This should now ring some alarm bells to recall that central theorem of linear algebra
you proved on PS1: all matrices can be associated with a linear transformation, and vice
versa. Indeed, the Jacobian is no exception — it is associated with a very particular linear
transformation for f : its (total) derivative.

Problem 1(d) [3 points] State the formula for the 2 × 2 Jacobian matrix of the
function f in Equation (1) (by “formula for” we mean just using x and y for the
variables). State the Jacobian matrix at the point (x, y) = (1, 1). From this problem
forward, you may take partial derivatives the usual way: taking the derivative with
respect to your variable of choice while keeping the others constant.

The all-encompassing notion of the derivative in multiple variables is the total derivative,
which, in many cases, is just referred to as the derivative for reasons we shall see soon. Recall

Mathematics for Machine Learning (Problem Set 3) Page 2



from lecture that for a function f : Rd → Rn and a point x0 ∈ Rd, if there exists some linear
transformation Dfx0 : Rd → Rn such that

lim
d→0

1

∥d∥
((f(x0 + d)− f(x0))−Dfx0(d)) = 0, (2)

then f is said to be differentiable at x0 and has the (total) derivative Dfx0 . In this definition,

d ∈ Rd is the change in x0; we used d instead of δ for clarity. The first part, f(x0+d)−f(x0), is
the change in f going from x0 to x0+d. The second part, Dfx0(d), is the linear transformation
applied to the change in x0 to x0 +d. From the perspective of an “origin point” x0 and any
“destination point” x, the definition above says that f is differentiable if we can find some
linear transformation Dfx0 such that, as d = x− x0 gets smaller and smaller,

Dfx0(x− x0) ≈ f(x)− f(x0).

What’s a good candidate for what this linear transformation Dfx0 might be? Well, we
happen to have a matrix, the Jacobian, and we know that all matrices are associated with
a linear transformation — could this be the one? Indeed, you will now prove the following
theorem:

Theorem 1 (The Jacobian and the derivative). If f : Rd → Rn is differentiable at x0, then all
the partial derivatives of f at x0 exist, and the unique linear transformation Dfx0 is given
by the Jacobian [∇f(x0)] of f .

In Theorem 1 above, we assume differentiability and need to prove that Dfx0 is indeed given
by the Jacobian. That is, we can assume that there does exist some (currently mysterious)
Dfx0 that satisfies Equation (2). Recall from our “central theorem of linear algebra” you
proved in PS1 that Dfx0 : Rd → Rn is associated with a unique matrix, which we’ll denote
[Dfx0 ] ∈ Rn×d, using brackets to differentiate the matrix from the linear transformation
itself. The transformation and the matrix agree on all inputs:

Dfx0(u) = [Dfx0 ]u for all u ∈ Rd.

Therefore, our strategy will be to prove that [Dfx0 ] = [∇f(x0)], the Jacobian, and we will
do this by showing that they agree on all inputs:

[Dfx0 ]u = [∇f(x0)]u for all u ∈ Rd.

Problem 1(e) [3 points] Prove that, for any two matrices A ∈ Rn×d and B ∈ Rn×d,
if Aei = Bei for all standard basis vectors e1, . . . , ed, then Au = Bu for any u ∈ Rd.

Problem 1(e) shows us that we only need to demonstrate that

[Dfx0 ]ei = [∇f(x0)]ei

for every standard basis vector ei to prove Theorem 1. This will be our new goal.

Mathematics for Machine Learning (Problem Set 3) Page 3



Problem 1(f) [4 points] Let d = αei for a scalar α ∈ R in Equation (2); this limit
exists because we are assuming differentiability for Theorem 1. Prove that, in this
case, Equation (2) simplifies to:

lim
α→0

f(x0 + αei)− f(x0)−Dfx0(αei)

α
= 0.

Note that αei → 0 is equivalent to α→ 0 once we fix ei.

Problem 1(f) reduces our problem from thinking of the limit from any arbitrary direction
d ∈ Rd to just the standard basis directions. It also shows us the way forward to prove
Theorem 1.

Problem 1(g) [3 points] Use Problem 1(f) to conclude that

[Dfx0 ]ei = [∇f(x0)]ei,

proving Theorem 1. State why this also proves that all partial derivatives of f at x0

exist. Hint: Linearity might help.

By proving Theorem (1), you’ve unveiled why a solid understanding of linear algebra is
so important for multivariable differential calculus: in a nutshell, multivariable differential
calculus is the study of replacing nonlinear functions with linear transformations that ap-
proximate them well — these linear transformations are the derivatives.

One subtle point here is that Theorem 1 states that, when a function is differentiable (i.e.
when the limit in Equation (2) exists for some Dfx0), the Jacobian is definitely the approx-
imating linear transformation:

differentiable =⇒ Jacobian is the derivative.

But this seems a bit strange — saying that a function is differentiable means that we are
saying that the limit in Equation (2) exists in the first place, but in what cases might that
limit exist?

? =⇒ differentiable.

We won’t prove this fact, but, as we saw in class, one sufficient condition for a function to
be differentiable is that the function is C1, or continuously differentiable. This means that
all of its partial derivatives exist and are continuous.

f ∈ C1 =⇒ differentiable.

One could check if a function is C1 by taking all its partial derivatives (perhaps in the usual
mechanical way) and checking if they are continuous. 1That is outside of the scope of this

1If you’re curious, this footnote contains some examples of functions that behave quite pathologically.

Mathematics for Machine Learning (Problem Set 3) Page 4



course, because all of the functions we’ll study and care about in this course are C1, and,
typically, so are many of the non-pathological functions we typically care about in nature
and engineering. Functions composed of polynomials, sin, cos, logarithms, and exponentials
are all C1 in their domains. You can rest assured that, at least for us, any function we
encounter can be reliably approximated locally by its derivative, the Jacobian.

Problem 1(h) [3 points] Prove that f in Equation (1) is in C1. You may use, without
proof, the fact that any linear function is continuous everywhere (but to use this claim,
you must prove that the function you apply it on is a linear function).

Example 1: f(x, y) = x2y
x2+y2 for (x, y) ̸= 0 and f(x, y) = 0 for (x, y) = 0. This is a function that is continuous,

has both partial derivatives existing, but is not differentiable. The problem is that its partial derivatives are
discontinuous.
Example 2: f(x, y) = 3x2y−y3

x2+y2 when (x, y) ̸= (0, 0) and f(x, y) = 0 for (x, y) = (0, 0). This function has all
directional derivatives but it isn’t differentiable at the origin.

Mathematics for Machine Learning (Problem Set 3) Page 5



Problem 2

Calculus with quadratic forms (25 points total).

In this problem, we will focus on multivariable calculus with quadratic functions and quadratic
forms. Recall from lecture and PS2 that a quadratic form is the “quadratic part” of
a quadratic function in multiple variables. A quadratic form is a polynomial function

f : Rd → R with terms all of degree two. Some examples of quadratic forms f : R2 → R
include f(x1, x2) = x2

1+x2
2 or f(x1, x2) = 4x2

1+x1x2−x2
2. Recall from PS2 that any quadratic

form f : Rd → R can be written in terms of a symmetric matrix A ∈ Rd×d as:

f(x) = x⊤Ax.

In lecture, we found that, for fixed X ∈ Rn×d and y ∈ Rn, the familiar least squares objective
f(w) = ∥Xw − y∥2 can be expanded as:

f(w) = w⊤X⊤Xw − 2w⊤(X⊤y) + y⊤y. (3)

Notice that the quadratic term is indeed a quadratic form: X⊤X is a d × d symmetric
matrix. In all, f(w) is simply a quadratic function in multiple variables w = (w1, . . . , wd).
Quadratic functions arise everyhwere in optimization and machine learning, particularly
because Taylor approximations allow us to study many functions with their first and second-
order approximations. Therefore, doing calculus fluently with them is important.

First, however, a technical note about the gradient is in order. Recall that, for a scalar-valued
function f : Rd → R, the gradient at x is the vector ∇f(x) = (x1, . . . , xd) ∈ Rd constructed
by taking all the partial derivatives of f and stacking them into a vector:

∇f(x) =


∂f
∂x1
...
∂f
∂xd

 .

Scalar-valued functions f : Rd → R are, of course, vector-valued functions with a single
output, so all the definitions of derivative above in Problem 1 apply to them with n = 1.
One subtle point to note, though, is that through our definitions above, technically the
appropriate Jacobian (and, hence, derivative) of a scalar-valued function should be [∇f(x)] ∈
R1×d, a matrix with a single row. This is just the gradient (which is a vector), but transposed:
[∇f(x)] = ∇f(x)⊤. Therefore, when we talk about the derivative of a scalar-valued function
at x, we are technically talking about the linear transformation Dfx : Rd → R obtained by
taking (the standard Euclidean) inner product with ∇f(x):

Dfx(u) = ∇f(x)⊤u for all u ∈ Rd.

Technically, then, the derivative of a scalar-valued multivariable function is the the linear functional
(defined in PS2) determined by the gradient vector ∇f(x). For all intents and purposes,

Mathematics for Machine Learning (Problem Set 3) Page 6



though, it is usually convention to just call the gradient the “derivative,” because it is
second-nature to take inner products with it.

Multivariable calculus generalizes all the familiar derivative rules we saw in single-variable
calculus, like the sum rule, product rule, quotient rule, and chain rule in the ways you might
expect. We won’t prove all of these properties, but we’ll prove two that are important for
taking the gradient of a quadratic form.

The most basic property of derivatives from single-variable calculus is that constant functions
have a derivative of 0 everywhere. That is, for f(x) = C for some C ∈ R,

f ′(x) = 0.

The multivariable equivalent of this is that ∇f(x) = 0 if f(x) = C for some C ∈ R. To
prove that this is indeed true, we must appeal to the multivariable definition of the derivative
(restated in Problem 1 in Equation (2)). In order to prove that these properties are true,
we simply need to plug in a “guess” at what the derivative might be into Equation (2) and
verify that the limit is indeed 0. These guesses are, of course, informed by the equivalent
properties from single-variable calculus.

Problem 2(a) [3 points] Let f : Rd → R be a constant function f(x) = C for some
C ∈ R. A reasonable “guess” at the gradient of such a function is 0 ∈ Rd, the zero
vector. Prove, using the definition of the total derivative in Equation (2) that, for any
x ∈ Rd, the constant function f(x) = C is differentiable with gradient ∇f(x) = 0.

Second, we know from single-variable calculus that if f : R → R and g : R → R are
differentiable at x with derivatives f ′(x) and g′(x), then so is f + g, with derivative:

(f + g)′(x) = f ′(x) + g′(x).

The derivative in multiple variables is no different.

Problem 2(b) [3 points] Let f : Rd → R and g : Rd → R be two scalar-valued
multivariable functions. Suppose f and g are both differentiable at a with gradients
∇f(a) and ∇g(a). Prove that their sum, the function (f + g) : Rd → R, defined by

(f + g)(x) = f(x) + g(x) for all x ∈ Rd

is differentiable at a with gradient ∇(f + g)(x) = ∇f(x) +∇g(x).
Hint: Because f and g are both differentiable at a, Equation (2) applies to both of
them at a. Use these to prove the claim.

Now that we have the familiar sum rule of multivariable calculus from Problem 2(b), we can
rest assured that taking the derivative of Equation (3) can be done term-by-term. That is,

∇wf(w) = ∇ww
⊤X⊤Xw −∇w2w

⊤(X⊤y) +∇wy
⊤y, (4)

Mathematics for Machine Learning (Problem Set 3) Page 7



where ∇w is notation that reminds us that the variable we’re taking a derivative respect to
is w. The last term in Equation (4), as a function of w, can be expressed as f(w) = y⊤y,
where y⊤y ∈ R is just some scalar. Therefore, Problem 2(a) tells us that ∇wy

⊤y = 0. We
are left with:

∇wf(w) = ∇ww
⊤X⊤Xw −∇w2w

⊤(X⊤y).

Now, let us prove a couple of useful vector calculus gradient identities that will allow us to
take care of these last two terms. The first identity concerns the gradient of linear functionals,
which are just linear functions of the form f : Rd → R.

Problem 2(c) [3 points] Let a ∈ Rd be any fixed vector. Consider the function
f : Rd → R defined by

f(x) = a⊤x.

Prove that ∇f(x) = a at any x ∈ Rd. State why, if we expressed f(x) = x⊤a, we
would still have ∇f(x) = a.

Hint: To prove this, use the definition of the standard Euclidean inner product (dot
product) and take partial derivatives.

Problem 2(c) should be seen as analogous to the single-variable differentiation rule that
linear functions through the origin have derivative equal to their slope:

d

dx
ax = a.

Problem 2(d) [3 points] Let A ∈ Rd×d be any fixed square matrix (not necessarily
symmetric). Consider the function f : Rd → R defined by

f(x) = x⊤Ax.

Prove that ∇f(x) = (A + A⊤)x at any x ∈ Rd. State why ∇f(x) = 2Ax if A is
symmetric. You may use any definition of matrix-vector product to prove this claim.

For symmetric matrices, Problem 2(d) gives us the derivative of quadratic forms. It should
be seen as analogous to the single-variable differentiation rule that quadratic functions with
no linear or constant terms obey:

d

dx
ax2 = 2ax.

Together, Problems 2(a)-(d) give you all the ingredients to derive the gradient of the least
squares objective. The least squares objective is an instance of a general quadratic function
in multiple variables. In the last half of this problem, we will derive a general formula for
minimizing such functions.

Mathematics for Machine Learning (Problem Set 3) Page 8



Let A ∈ Rd×d be a symmetric matrix, let b ∈ Rd be a vector, and let c ∈ R be a scalar.
Then, any multiavariable quadratic function f : Rd → R can be written as:

f(x) =
1

2
x⊤Ax− b⊤x+ c. (5)

The 1/2 in front of the quadratic form term is sometimes written for mathematical conve-
nience with the gradients. You will prove the following general claim:

Theorem 2 (Optimizing positive definite quadratic functions). Consider any multivariable
quadratic function f : Rd → R, written as

f(x) =
1

2
x⊤Ax− b⊤x+ c.

If A ∈ Rd×d is positive definite, then the global minimizer of f(x) exists and is x∗ = A−1b,
with the minimum value

f(x∗) = −1

2
b⊤A−1b+ c ≤ f(x) for all x ∈ Rd.

In the following problems, take the following theorem to be true (we will prove this later in
the course).

Theorem 3 (First-order necessary condition for optima). Let f : Rd → R be a differentiable
function at all x ∈ Rd. Let x∗ ∈ Rd be a local minimum: there exists some δ such that
f(x∗) ≤ f(x) for all x ∈ Bδ(x

∗), where Bδ(x
∗) is the δ-neighborhood (defined in class)

around x∗. Then, ∇f(x∗) = 0.

Problem 2(e) [4 points] Prove that the gradient at any x ∈ Rd of any quadratic
function, written as Equation (5), is:

∇f(x) = Ax− b.

Suppose thatA is positive definite. State whyAmust be invertible, and prove that the
only candidate global minimum is x∗ = A−1b. State why this is the unique candidate
choice for a global minimum. You may use Theorem 3.

Problem 2(e) gives us a candidate for a minimum, but notice that Theorem 3 only tells us
that it is locally a minimum. That is, we are only guaranteed that x∗ is a minimum for
points in some neighborhood around x∗. To show that it is a global minimum, we usually
need some other condition on the function. One such condition that is useful for our purposes
is coerciveness. A function f : Rd → R is said to be coercive if

f(x)→∞ as ∥x∥ → ∞.

Mathematics for Machine Learning (Problem Set 3) Page 9



As a small example, f(x1, x2) = x2
1+x2

2 is coercive, because f(x1, x2) =
(√

x2
1 + x2

2

)2

= ∥x∥2,
and clearly f →∞ as ∥x∥2 →∞. Coercive functions are functions that “coerce” their output
values to increase as their inputs increase in magnitude. Intuitively, one class of coercive
functions are the “bowl-shaped” ones, as they increase to infinity in all directions as we
increase the size of the inputs. We still don’t have a formal definition for “bowl-shaped”
yet, but an important sub-class of bowl-shaped functions are the positive definite quadratic
forms. Problem 2(f) shows that positive definite quadratic forms are coercive.

Problem 2(f) [3 points] Prove that for a positive definite matrix A ∈ Rd×d, any
function of the form

f(x) =
1

2
x⊤Ax− b⊤x+ c

is coercive. This will require a couple of ingredients you have already proven or seen,
namely: (i) The spectral theorem (ii) Cauchy-Schwarz and (iii) the property that any
orthogonal matrix Q ∈ Rd×d preserves lengths under projections: ∥Q⊤x∥ = ∥x∥. If
you haven’t seen this last property before, it has an easy proof you can try for yourself
(try squaring both sides).

It turns out that a very useful property of coercive functions is that coercive functions always
have at least one global minimizer.

Theorem 4 (Coercive functions and global minima). If a function f : Rd → R is coercive then
it has at least one global minimizer, i.e. there exists x∗ ∈ Rd such that

f(x∗) ≤ f(x) for all x ∈ Rd.

We won’t prove this, but this seems intuitively true — if a function only grows as we let
its inputs grow in magnitude, it better have an input where its function value is smallest
somewhere.

Problem 2(g) [3 points] Conclude using the last couple of problems and Theorem
4 that Theorem 2 is true.

Theorem 2 is very handy in machine learning; keep this tucked away in your back pocket.
For instance, because we proved this general theorem, we can go back around and try to
apply it immediately to the least squares objective function.

Problem 2(h) [3 points] Verify that the least squares objective f(w) in Equation
(3) can be written as in Equation (5). What is A, b, and c? State what must be true
about the matrix X ∈ Rn×d in the least squares objective for Theorem 2 to apply and
state the global minimizer w∗ ∈ Rd and global minimum value f(w∗) ∈ R when it
does apply.

Mathematics for Machine Learning (Problem Set 3) Page 10



Problem 3

The gradient, Taylor’s Theorem, and gradient descent [25 points total].

In this problem, we will try to get a bit more intuition for gradient descent , the main
workhorse algorithm for much of modern machine learning. In the grand scheme of things,
gradient descent is also the other “narrative” that our course is based around (next to least
squares regression), and it unifies many of the concepts we’ll be learning moving forward.
Recall that the algorithm for gradient descent can simply be written as follows:

Algorithm 1 Gradient Descent

Input: Function f : Rd → R. Initial point x0 ∈ Rd. Positive step size η > 0. Positive
stopping condition ϵ > 0.

1: for t = 1, 2, 3, . . . do
2: Compute xt ← xt−1 − η∇f(xt−1).
3: if ∥xt − xt−1∥ < ϵ or ∇f(xt) = 0 then
4: return f(xt).
5: end if
6: end for

In particular, we saw in lecture that the idea of a first-order Taylor approximation was crucial
to our understanding of gradient descent. At any time t ≥ 0 in gradient descent, we are at
the point xt ∈ Rd. The idea is that, to get to the next point, we want to use local first-order
information to move in a direction d ∈ Rd that gets us to the next point xt+1 = xt + d.
Intuitively, the first-order Taylor approximation told us that, as long as η is small enough,
then xt + d is close to xt, and

f(xt+1) = f(xt + d) ≈ f(xt) +∇f(xt)
⊤d.

What should d ∈ Rd be then? Our idea was to use a greedy step — we should move in the
local direction that makes the function smallest the fastest. That is, we want to find the
direction of steepest descent, which is often used as a one-line summary of Algorithm 1:

Move in the direction of steepest descent.

It turns out that this direction is the negative of the function’s gradient at xt, which is

given by the vector ∇f(xt) ∈ Rd. This is the first mystery in gradient descent that isn’t
immediately obvious from the definition of the gradient: why is the negative gradient the
direction of steepest descent? To descent, we should go in the negative direction, so the
equivalent question is: why is the gradient the direction of steepest ascent?

One useful property we saw in class was that, for differentiable functions, the directional derivative
can be obtained by just taking a dot product with the gradient (more generally, they can be

Mathematics for Machine Learning (Problem Set 3) Page 11



found by matrix-vector product with the Jacobian). Recall from lecture that the directional
derivative of f at x0 in the direction v ∈ Rd is

lim
δ→0

f(x0 + δv)− f(x0)

δ
.

We will prove the following claim:

Theorem 5 (Directional derivatives from gradient). Let f : Rd → Rn be differentiable at
x0 ∈ Rd. Then, all directional derivatives of f at x0 exist and the directional derivative at
x0 in the direction v is given by the formula

lim
δ→0

f(x0 + δv)− f(x0)

δ
= ∇f(x0)

⊤v.

In the definition of the derivative in Equation (2), define the remainder as the numerator
term:

R(d) = (f(x0 + d)− f(x0))−∇f(x0)
⊤d. (6)

Problem 3(a) [3 points] State why, if f : Rd → R is differentiable at x0, its
remainder R(d) in Equation (6) satisfies

lim
d→0

R(d)

∥d∥
= 0.

Take d = δv to be the direction given in the directional derivative definition, where
δ ∈ R and v ∈ Rd. Prove that

∥v∥R(δv)

δ∥v∥
=

f(x0 + δv)− f(x0)

δ
−∇f(x0)

⊤v.

Linearity might be helpful. Use the property that

lim
δ→0

R(δv)

δ∥v∥
= 0 if lim

d→0

R(d)

∥d∥
= 0

to conclude that Theorem 5 is true.

Problem 3(a) shows us that we can get any of a function’s directional derivatives by taking
a standard Euclidean inner product (dot product) with the gradient. Now, we want to
formalize and prove the often cited property that

The gradient is the direction of steepest ascent.

Now, recall from PS1 that the dot product is intimately connected with the angle between
two vectors and the idea of projection. Formally, for any two vectors u,v ∈ Rd, the dot
product can be written as

u⊤v = ∥u∥∥v∥ cos θ, (7)

Mathematics for Machine Learning (Problem Set 3) Page 12



where θ is the angle formed between u and v, drawn as vectors. Because we only care
about the direction of steepest ascent, we will restrict ourselves to the unit vectors S :=
{v ∈ Rd : ∥v∥ = 1}. Recall from class that we can express optimization problems with an
objective function f : Rd → R and a constraint set , C ⊆ Rd, as follows:

maximize
x∈Rd

f(x)

subject to x ∈ C.

Problem 3(b) [4 points] Let f : Rd → R be a function with the gradient ∇f(x0) ∈
Rd at a point x0. Consider the following optimization problem:

maximize
v∈Rd

∇f(x0)
⊤v

subject to ∥v∥ = 1

Prove that this is equivalent to the optimization problem:

maximize
v∈Rd

∥∇f(x0)∥ cos θv

subject to ∥v∥ = 1,

where θv is the angle between v and ∇f(x0). We have written θv because the angle
clearly still depends on v. At what setting of θv do we achieve a maximum? Why
does that setting of θv mean that the maximizer, v∗, satisfies

v∗ =
∇f(x0)

∥∇f(x0)∥
?

You may answer this with geometric intuition.

Recall from Theorem 5 that the directional derivative, which is just the rate of change of
f in the direction of v, is obtained exactly by that optimization problem in Problem 3(b).
Therefore, by finding v that maximizes the above problem, you found the direction in which
the function changes the fastest. In short, you found the direction of steepest ascent, which
was just the normalized gradient.

Problem 3(c) [3 points] Using Problem 3(b), prove that the actual value of the
directional derivative at x0 is ∥∇f(x0)∥.

Problem 3(c) tells us that, moving in the direction of steepest ascent, the rate of change of
the function f : Rd → R is the norm of the gradient itself! Therefore, the gradient not only
tells us the direction of steepest ascent, but also how fast we ascend.

Mathematics for Machine Learning (Problem Set 3) Page 13



Figure 1: Contour plot of f(x, y) = x2 + y2 in Problem 3(d).

Problem 3(d) [3 points] Consider the function f : R2 → R given by

f(x, y) = x2 + y2.

our classic “bowl-shaped” positive definite quadratic function. Compute the gradient
∇f(x0) at the point x0 = (1, 1). State the unit direction of steepest ascent at x0 and
what the rate of change is by taking that direction. You don’t need to turn this in, but
draw on some scratch paper the contour plot in Figure 1 and the direction of steepest
ascent at (1, 1).

It may help your intuition to draw some other directions at x0 in which our function may
change.

Mathematics for Machine Learning (Problem Set 3) Page 14



Problem 3(e) [3 points] Consider the function f : R2 → R given by

f(x, y) = x2 + y2.

our classic “bowl-shaped” positive definite quadratic function. Compute the direc-
tional derivatives at x0 = (1, 1) in the directions

v1 =

[
1
0

]
v2 =

[
0
1

]
v3 =

[
−1/
√
2

1/
√
2

]
using Theorem 5. Also draw these on your contour plot, continuing from Problem
3(d). You don’t have to turn the drawings in.

To relate this back to PS1 and the intuition from dot product you gained from there, another
way of viewing a dot product is a projection of a vector onto another. Maximizing the dot
product between two vectors is the same as minimizing the length of the projection of one
vector onto the other. From that perspective, finding the maximizing v ∈ Rd is the same
as finding the vector that, when projected onto the span of ∇f(x0), maximizes the length
of the projection: ∥Π∇f(x0)(v)∥. Of course, choosing v to be exactly on the span of ∇f(x0)
(i.e., parallel) maximizes that projection.

Finally, let’s consider performing gradient descent on this simple function. Typically, tuning
the learning rate η ∈ R for gradient descent (see Algorithm 1) is a dark art, but, in certain
cases, we have some principled ways of choosing η. One particular case is when we have a
β-smooth function.

Problem 3(f) [3 points] Consider the function f : R2 → R given by

f(x, y) = x2 + y2.

Compute and state its Hessian. Prove that this function is indeed β-smooth, and state
the appropriate value of β.

Let’s consider some approximations of this function and how accurate they are. To do this,
we should employ Taylor’s Theorem, which, in Lagrange’s form, gives us an exact expression
for our approximation error (remainder).

Problem 3(g) [3 points] Write the first-order Taylor approximation of

f(x, y) = x2 + y2

at the point x0 = (1, 1). Prove that using Lagrange’s form of Taylor’s Theorem to
capture the first-order approximation at any point f(x) simply gives us back the
function itself. Why is this the case?

Mathematics for Machine Learning (Problem Set 3) Page 15



Finally, we will specify the gradient descent algorithm for our test function. In this case,
we know the β-smoothness of the function, so this allows us to write the gradient descent
algorithm exactly, with a principled choice of η.

Problem 3(h) [3 points] Using the choice η = 1/β suggested by the theorem we
proved in class about gradient descent making function values smaller, write out the
gradient descent update step (Step 2 in Algorithm 1) for this function, using its specific
gradient ∇f(xt). Then, write out the first three iterations x1,x2, and x3 of gradient
descent when starting with x0 = (1, 1). Can you apply Theorem 2 in Problem 2 to this
function? If so, state what A, b and c are, as well as the global minimizer x∗ and the
minimum value f(x∗).

Mathematics for Machine Learning (Problem Set 3) Page 16



Problem 4

Mid-course survey (0 points total).

Congratulations on making it halfway through the course! Especially because this is the
first iteration of this course, I wanted to get a gauge on how everyone is doing and how I
could improve this course in this current semester and future semesters. I made a quick,
fully anonymous, five minute mid-course survey at this link. This is totally optional, but
I’d really appreciate any feedback you have!

Mathematics for Machine Learning (Problem Set 3) Page 17

https://forms.gle/Ghjh9zvUZSLdZQgQ8


Programming Part

Implementing gradient descent (25 points total). In this problem, you will implement
gradient descent from scratch and experiment a bit with it on some simple functions.

In order to start this programming part, download the file ps3.ipynb from Course Content
on the course webpage. Your submission for this part will be the same ps3.ipynb file mod-
ified with your code; see HW Submission on the course webpage for additional instructions.

Mathematics for Machine Learning (Problem Set 3) Page 18

https://samuel-deng.github.io/math4ml_su24/content/
https://samuel-deng.github.io/math4ml_su24/homework/

