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Problem 1

Proof of the spectral theorem through optimization [30 points].

In this problem, you will prove one of the most important theorems of linear algebra: the
spectral theorem. Recall that the spectral theorem we stated in class states that, if A ∈ Rd×d

is a symmetric matrix, then it has an eigendecomposition

A = VΛV⊤,

where V is composed of an orthonormal basis of eigenvectors v1, . . . ,vd and Λ is a diagonal
matrix with eigenvalues λ1, . . . , λd. Although we’ve been using this throughout the course,
we haven’t proven this result yet, and many introductory linear algebra courses neglect
showing a proof. In this problem, you will see that performing successive equality constrained
optimization gives you the spectral theorem.

Let A ∈ Rd×d be a fixed symmetric matrix. For this problem, we will attempt to prove the
spectral theorem for A. This problem will heavily rely on the optimization of the associated
quadratic form, which we denote QA : Rd → R,

QA(x) := x⊤Ax.

The overall strategy of this proof is to find the vector that maximizes the quadratic form
out of all vectors with norm 1. Then, we will find the next vector that is orthogonal to the
first, also constrained to have norm 1. We find a third vector that is orthogonal to the first
two with norm 1, repeating this process. The vectors we find will happen to be eigenvectors.

First, consider the constrained optimization problem:

maximize x⊤Ax

subject to ∥x∥ = 1.

Maximizing an objective is equivalent to minimizing the negative of the objective, so consider
the equivalent problem:

minimize − x⊤Ax (1)

subject to ∥x∥2 = 1.

Note that, above, requiring ∥x∥2 = 1 is the same as requiring that ∥x∥ = 1, but the square
is more mathematically convenient for our purposes. Suppose that a minimum exists for the
above optimization problem presented in (1).1

1Technically, we should prove that a minimum indeed exists first, by showing that the constraint set is
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Problem 1(a) [3 points] The problem in (1) is an constrained optimization problem
with equality constraints. Write the Lagrangian L : Rd×R → R for this problem, and
state clearly what the constraint function h : Rd → R is.

You should have the Lagrangian from Problem 1(a), which now unconstrains the optimiza-
tion problem. From our techniques in lecture, we now know that finding a minimum for
this Lagrangian amounts to first applying the first-order necessary conditions to the uncon-
strained Lagrangian.

Problem 1(b) [3 points] Using the Lagrangian you found in Problem 1(a), find the
gradient ∇xL(x, λ) with respect to x. Then, find the gradient ∇λL(x, λ) with respect
to λ. State both these gradients clearly.

Problem 1(c) [3 points] Conclude that the optimal x∗ ∈ Rd of the Lagrangian
satisfies

Ax∗ = λx∗,

where ∥x∗∥ = 1. Prove that any non-regular point cannot be feasible, which implies
that x∗ is a global minimum to the optimization problem in (1).

By solving Problem 1(c), you effectively showed the existence of an eigenvector x∗ corre-
sponding to the eigenvalue λ, the unique Lagrange multiplier from solving the constrained
optimization problem in (1). Let us now denote this solution v1 (formerly known as x∗) and
the corresponding eigenvalue as λ1 (formerly known as λ, the Lagrange multiplier).

Now, to find the second eigenvector, consider the following optimization problem:

maximize x⊤Ax

subject to ∥x∥ = 1

x⊤v1 = 0.

This is, again, equivalent to a corresponding minimization problem:

minimize − x⊤Ax (2)

subject to ∥x∥2 = 1

x⊤v1 = 0.

That is, our goal is now to find a second eigenvector that is unit length and is orthogonal to
the first eigenvector we found, v1. In the optimization problem above, v1 is fixed.

compact. We will not deal with compactness because that will require a bit of basic topology, outside the
scope of this course.
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Problem 1(d) [3 points] The problem in (2) is a constrained optimization problem
with 2 equality constraints. Write the Lagrangian L : Rd × R2 → R for this problem,
and state clearly what the constraint functions h1 : Rd → R and h2 : Rd → R are.

Use variable λ2 to refer to the first Lagrange multiplier (the multiplier corresponding
to h1, the first constraint) and use the variable µ2,1 to refer to the second Lagrange
multiplier (the multiplier corresponding to h2, the second constraint).

Now, again use the first-order necessary conditions to solve the Lagrangian in Problem 1(d).

Problem 1(e) [3 points] Using the first order necessary conditions, prove that the
optimal minimizer x∗ ∈ Rd satisfies:

Ax∗ = λ2x
∗ +

µ2,1

2
v1, (3)

while satisfying ∥x∗∥ = 1 and v⊤
1 x

∗ = 0.

The equation you found in Problem 1(e) almost says that x∗ is an eigenvector with eigenvalue
λ2, but not quite. In order to show this, it would suffice to show that µ2,1 = 0.

Problem 1(f) [3 points] Prove that µ2,1 = 0 in Equation (3). Conclude that the
optimal x∗ for the optimization problem in (2) satisfies

Ax∗ = λ2x
∗.

Prove that, by how the constraint functions h1 and h2 are set up, there are no feasible
non-regular points.

Hint: It may be helpful to take the inner product of both sides of Equation (3) by
v1. Then, use the constraints on x∗, particularly v⊤

1 x
∗ = 0. The assumption that A

is symmetric may also help.

In all, Problem 1(f) gives us some x∗ that satisfies

Ax∗ = λ2x
∗

where v⊤
1 x

∗ = 0. Because x∗ is orthogonal to v1 and is an eigenvector of A with eigenvalue
λ2, let us denote it as v2. Now, we have orthonormal eigenvectors v1 and v2 with eigenvalues
λ1 and λ2, by design.

It should now be clear how to proceed. To find the third eigenvector, consider the following
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optimization problem:

maximize x⊤Ax (4)

subject to ∥x∥ = 1

x⊤v1 = 0

x⊤v2 = 0.

Using the techniques we’ve established in this problem already, it shouldn’t be too hard to
find the third eigenvector v3 and eigenvalue λ3, in a similar fashion.

Problem 1(g) [8 points] Prove that solving the above optimization problem in (4)
yields a third eigenvector v3 with corresponding eigenvalue λ3 that is orthogonal to v1

and v2 and has unit length, ∥v3∥ = 1.

Hint: Set up a Lagrangian and solve it, just as in the previous problems. If we denote
the Lagrangian’s multipliers λ3, µ3,1, and µ3,2, you should reach a point where you
obtain:

Ax∗ =
µ3,1

2
v1 +

µ3,2

2
v2 + λ3x

∗,

and showing that µ3,1 = µ3,2 = 0 using the technique from Problem 1(f) should give
you your third eigenvector.

Continuing in this way, it should be clear that we can obtain eigenvalues λ1, . . . , λd and an
orthonormal basis of eigenvectors v1, . . . ,vd, proving the spectral theorem.

Finally, we will use the spectral theorem, which we just showed, to prove an important
property of quadratic forms. Namely, we will show that the eigenvector corresponding to
the largest eigenvalue maximizes quadratic forms over all unit vectors, and, correspondingly,
the eigenvector corresponding to the smallest eigenvalue minimizes quadratic forms.

Problem 1(h) [4 points] Let A ∈ Rd×d be symmetric. Prove that the optimization
problem

maximize x⊤Ax

subject to ∥x∥ = 1.

is optimized at v1, the eigenvector corresponding to the largest eigenvalue λ1 of A,
and the optimal value is λ1. Also prove that the optimization problem

minimize x⊤Ax

subject to ∥x∥ = 1.

is optimized at vd, the eigenvector corresponding to the smallest eigenvalue λd of A,
and the optimal value is λd. Conclude that:

λd ≤ x⊤Ax ≤ λ1 for all ∥x∥ = 1.
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Hints: This problem does not require you to use the Lagrangian method. Instead,
you should use the spectral theorem on A to obtain A = VΛV⊤. The property of
orthogonal matrices that ∥V⊤x∥ = ∥x∥ should also help.

This last problem, Problem 1(h), shows us the close connection between quadratic forms,
these objects from calculus we’ve studied extensively, and the eigenvectors and eigenvalues
of the matrix A that defines the quadratic form.

Some additional hints/a proof outline for the maximization problem:

(a) Diagonalize A into VΛV⊤.

(b) “Change variables” to maximizing over y := V⊤x.

(c) Try to obtain the expression
∑d

i=1 λiy
2
i where ∥y∥ = 1.

(d) Let I = {i : λi = λmax(A)}, the indices of the largest eigenvalue (there may be
multiple). Prove the following claim: y maximizes the expression in (c) if and only if∑

i∈I y
2
i = 1 and yj = 0 for j ̸∈ I.

(e) Denote the maximizer in (d) as y∗. Substitute x back in using the equality x = VV⊤ =
Vy∗ (this is fine because VV⊤ = I as V is assumed orthogonal). Use this to show
that x is an eigenvector of A with eigenvalue λmax(A).

An analagous technique proves the minimization problem.
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Problem 2

Verifying convexity [21 points total].

In this problem, you will verify a couple of commonly used properties that are helpful in
identifying convex functions. Recall that, a function f : Rd → R is said to be convex if for
any x,y ∈ Rd,

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y) for all α ∈ [0, 1]. (5)

This definition of convexity can be simply stated as: “the line segment between any two
points lies above the function.” One commonly occurring convex function is the affine function,
which is simply the class of linear functions plus an offset.

Problem 2(a) [3 points] Let A ∈ Rn×d and b ∈ Rn. Consider any function f :
Rd → Rn of the form

f(x) = Ax+ b.

Prove that all such functions are convex using the definition above.

Hint: It may be helpful to break up b into αb and (1− α)b.

Another commonly considered function is the one that outputs the norm of a given vector.

Problem 2(b) [3 points] Consider the function f : Rd → R defined by

f(x) := ∥x∥.

Prove that f is convex.

Hint: The triangle inequality for norms you proved in PS1 may help you.

It is also often very useful to combine convex functions together. One common way to
combine convex functions together is by summing them with nonnegative coefficients.

Problem 2(c) [3 points] Let c1, . . . , cn ≥ 0 be positive scalars. Suppose that
f1, . . . , fn are convex functions, with fi : Rd → R. Prove that the function g : Rd → R
defined by their pointwise sum,

g(x) :=
n∑

i=1

cifi(x)

is convex.

Hint: Start with considering
∑n

i=1 cifi(αx+(1−α)y) and use the definition of convexity
on each fi.
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Another way is to compose convex functions with other convex functions. Two useful convex
function composition properties that we won’t prove are the following:

Lemma 1. Let h : Rd → R be a convex function and let g : R → R be convex and nonde-
creasing on the image of h, i.e. {y ∈ R : h(x) = y, for some x ∈ Rd}. Then, the composition
function f(x) = g(h(x)) is convex.

Lemma 2. Let g : Rd → R be a convex function. Then, the pre-composition with an affine
function f(x) = g(Ax+ b) is convex.

Problem 2(d) [3 points] Let X ∈ Rn×d and y ∈ Rn. Prove, using the properties
you’ve already seen in this problem, that the least squares objective function

f(w) = ∥Xw − y∥2

is convex. Also, for γ > 0, prove that the ridge regression objective function

f(w) = ∥Xw − y∥2 + γ∥w∥2

is convex. You may use any statements in the previous problems, Lemma 1, and
Lemma 2 to prove these claims.

Typically, recognizing that a function is a combination of other simpler convex pieces is
enough to verify convexity. However, sometimes it is easier to verify it from the equivalent
first-order definition of convexity if the function is differentiable. Recall that a function can

also be said to be convex if, for any x,y ∈ Rd,

f(x) +∇f(x)⊤(y − x) ≤ f(y). (6)

This definition of convexity can be simply stated as: “the function’s tangents/linearizations
all lie below the function.” We stated without proof that this definition of convexity is
equivalent to the first definition we stated above. We will prove this claim here.

Problem 2(e) [3 points] First, prove the =⇒ direction, that (5) implies (6). That
is, let f : Rd → R satisfy, for all x,y ∈ Rd,

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y) for all α ∈ [0, 1].

Prove that:
f(x) +∇f(x)⊤(y − x) ≤ f(y).

Hints: Note that:
f((1− α)x+ αy) = f(x+ α(y − x)).

Does this look familiar, perhaps in the form of the directional derivative? Rearrange
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the right-hand side so we get something that looks like a directional derivative. Take
the limit as α → 0 to obtain the result.

Problem 2(f) [3 points] Now, prove the ⇐= direction, that (6) implies (5). That
is, let f : Rd → R satisfy, for all u,v ∈ Rd,

f(v) +∇f(v)⊤(u− v) ≤ f(u).

Prove that, for any x,y ∈ Rd,

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y) for all α ∈ [0, 1].

Hints: The first-order definition applies for any choices of u and v. In the statement
of Definition (5), let α ∈ [0, 1] be fixed and let x,y ∈ Rd. Consider

z = (1− α)x+ αy,

a point on the line segment in between x and y. Apply the first-order definition (6)
first to the pair v = z and u = x. Then apply (6) to the pair v = z and u = y. This
gives you two inequalities; try to combine them to obtain (5).

Problem 2(e) and Problem 2(f) now gives you another way to verify whether a function is
convex, as long as it’s differentiable. We won’t prove this here, but, in lecture, we saw a
third characterization of convexity for twice-differentiable functions. A twice-differentiable
function f : Rd → R is said to be convex if its Hessian ∇2f(x) at all points x ∈ Rd is positive
semidefinite. We call this the second-order definition of convexity.

Problem 2(g) [3 points] Let X ∈ Rn×d and y ∈ Rn be fixed. Using the first-order
definition of convexity, prove that the least squares objective

f(w) = ∥Xw − y∥2

is convex. Also use the second-order definition of convexity to prove that it is convex.
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Problem 3

OLS-specific gradient descent [24 points total].

In this problem, we will analyze the properties of gradient descent applied specifically to the
least squares optimization problem. Throughout this problem, let X ∈ Rn×d and y ∈ Rn be
fixed. Also, suppose that n ≥ d and rank(X) = d for simplicity; that is, assume that X is
full-rank. In this case, a minimizer surely exists, and we already know from the first lecture
that it takes the form:

w∗ = (X⊤X)−1X⊤y.

Recall from lecture that, for general convex and β-smooth functions, gradient descent with
learning rate η = 1/β guaranteed:

f(xT )− f(x∗) ≤ β

2T

(
∥x0 − x∗∥2 − ∥xT − x∗∥2

)
.

We saw that the least squares objective

f(w) = ∥Xw − y∥2

is convex and β-smooth, where λmax(2X
⊤X) = β, so as a corollary, we are have the guarantee:

∥XwT − y∥2 − ∥Xw∗ − y∥2 ≤ β

2T
(∥w0 −w∗∥2 − ∥wT −w∗∥2).

However, this result was a corollary for the general case of convex and β-smooth functions,
which is a much broader class of functions than the least squares objective. If we already
know that we’re specifically performing gradient descent on the least squares objective, can
we analyze the behavior of gradient descent directly?

It turns out that we can. We will be proving a guarantee that is a slightly different flavor from
the one in lecture for this problem. Whereas the guarantee on gradient descent in lecture
proved convergence in the function values f(wT ) and f(w∗), we will be proving convergence
in distance to the minimizer in the input space. That is, we will bound ∥wT −w∗∥.
We’ve seen time and again that the gradient and Hessian of the least squares objective are:

∇f(w) = 2(X⊤Xw −X⊤y) (7)

∇2f(w) = 2X⊤X. (8)

Notice that the Hessian in Equation (8) does not depend on w, so for notational convenience,
we will denote the Hessian [∇2f ] throughout this problem. For some step size η > 0, we
know that the gradient descent update step looks like:

wt = wt−1 − 2η(X⊤Xwt−1 −X⊤y). (9)
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Problem 3(a) [4 points] Denote the global minimizer w∗ = (X⊤X)−1X⊤y. Prove
that we can rewrite the gradient update step in Equation (9) as:

wt = wt−1 − η[∇2f ](wt−1 −w∗).

Hint: Notice that we can rewrite X⊤y as (X⊤X)(X⊤X)−1X⊤y.

Problem 3(a) is quite helpful because it introduces w∗, the minimum value. This is helpful
because it’ll help us track how far we are from the minimizer, in terms of wt. Let us denote
the integer T as the total number of steps we run gradient descent for.

Problem 3(b) [4 points] Prove the following expression for any step 1 ≤ t ≤ T ,

wt −w∗ = (I− η[∇2f ])(wt−1 −w∗),

where I is the d × d identity matrix. Use this expression to conclude that, for any
integer T ≥ 1,

wT −w∗ = (I− η[∇2f ])T (w0 −w∗).

Hint: Subtract w∗ from both sides of the expression in Problem 3(a).

Problem 3(b) almost has the quantity we want to track, but we are interested in the distance,
∥wT −w∗∥, not the vector wT −w∗ itself.

Problem 3(c) [4 points] Prove the following expression for any integer T ≥ 1:

∥wT −w∗∥2 = (w0 −w∗)⊤(I− η[∇2f ])2T (w0 −w∗). (10)

Also, prove that for any symmetric matrix A, the matrix (I − A)k is symmetric for
any k ≥ 1. Conclude that the function

f(v) = v⊤(I− η[∇2f ])2Tv

is a quadratic form.

We are now again dealing with a quadratic form. In order to analyze quadratic forms, we
know from the end of Problem 1 (specifically, Problem 1(h)), that it may help to analyze
the eigenvalues of the underlying symmetric matrix.

Problem 3(d) [4 points] Let A ∈ Rd×d be a symmetric matrix and consider the
matrix (I−A)k for integer k ≥ 1. Prove that if λ is an eigenvalue of A, then (1−λ)k is
an eigenvalue of (I−A)k. Conclude that if λ is an eigenvalue of [∇2f ], then (1−ηλ)2T
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is an eigenvalue of the matrix (I− η[∇2f ])2T .

From Problem 3(d), we have obtained an expression for the eigenvalues of the somewhat
messy-looking matrix (I − η[∇2f ])2T . Recall from Problem 1(h) that, for any symmetric
matrix A, the quadratic form is bounded by

λmin(A) ≤ v⊤Av ≤ λmax(A) for all ∥v∥ = 1,

where λmax(A) is the largest eigenvalue of A and λmin(A) is the smallest eigenvalue. In our
theorem on gradient descent for β-smooth functions from lecture, we let

β = λmax(2X
⊤X) = λmax([∇2f ])

and chose the learning rate η = 1/β. We will use this same learning rate, η = 1/β. For
simplicity of notation, we refer to λmin := λmin([∇2f ]) and λmax := λmax([∇2f ]). Using this
notation, the learning rate is η = 1/β = 1/λmax.

Problem 3(e) [4 points] Let λ be any eigenvalue of [∇2f ]. Show that, setting
η = 1/β, we can bound

(1− ηλ)2T ≤
(
1− λmin

λmax

)2T

.

Finally, we will use these facts we’ve accumulated to prove our result.

Problem 3(f) [4 points] Using Problems 3(c), 3(d), and 3(e), show that Equation
(10) yields the inequality:

∥wT −w∗∥2 ≤
(
1− λmin

λmax

)2T

∥w0 −w∗∥2.

Hint: Divide the vectors w0 − w∗ in Equation (10) by their norm, ∥w0 − w∗∥ and
put the norm back by multiplying by ∥w0 −w∗∥2 again. You may find Problem 1(h)
helpful (but possibly not necessary).

Sometimes, the ratio κ := λmax

λmin
is referred to as the “condition number” of a symmetric

matrix. Then, using the famous inequality 1 + x ≤ ex for all x ∈ R (optional exercise: you
can prove this using the first-order definition of convex functions!), we can conclude that:

∥wT −w∗∥2 ≤ e−2T/κ∥w0 −w∗∥2, (11)

which says that our distance to the minimizer w∗ actually decreases exponentially fast in T ,
all else held constant. This gives a slightly different flavor of guarantee than the one in class.
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Programming Part

Gradient descent and OLS (25 points total). In this problem, you will apply gradient
descent to OLS and verify that it corresponds to the analytical solution we’ve seen all
semester.

In order to start this programming part, download the file ps4.ipynb from Course Content
on the course webpage. Your submission for this part will be the same ps4.ipynb file mod-
ified with your code; see HW Submission on the course webpage for additional instructions.
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