
By: Samuel Deng

Math for Machine Learning
Week 1.1: Vectors, matrices, and least squares regression

Mobile User



Lesson Overview

Vectors and matrices (an ML view). A single datapoint/sample in ML is represented 
as a vector . A collection of samples is represented as a matrix .


Regression (the basic ML problem). The basic problem in machine learning is 
regression: constructing a “best-fit” model from a collection of observed data  
and labels : . 

Linear independence. Linearly independent vectors are vectors that are not 
redundant; linearly dependent vectors can be expressed as simple (linear) 
combinations of other vectors. 

Span. The span of a set of vectors includes all vectors we can form by simple (linear) 
combinations of the vectors in the set.

x ∈ ℝd X ∈ ℝn×d

x ∈ ℝd

y ∈ ℝ (x1, y1), …, (xn, yn)



Lesson Overview
Big Picture: Least Squares

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

Click to interact

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html


Lesson Overview
Big Picture: Gradient Descent

−10 −5 0 5 10

0

20

40

60

80

100
descent
start

descent start

0

50

100

150

200

Click to interact

https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html


Vectors & Matrices 



Vectors
Review from linear algebra

A vector is a list of numbers. We write  as:


 or .


By convention, our vectors will be column vectors. A row vector looks like:


x ∈ ℝd

x :=
x1
⋮
xd

x := (x1, …, xd)

x⊤ = [x1 … xd]
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Vectors
Review from linear algebra

In , a special set of vectors is the unit basis vectors:
ℝn

e1 =

1
0
⋮
0

, …, en =

0
0
⋮
1
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Vectors
Review from linear algebra

Vectors can interchangeably thought of as points:


or “arrows”:
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Matrices
Review from linear algebra

A matrix is a box of numbers, or a list of vectors. We write  as:





X ∈ ℝn×d

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.
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Matrices
Transpose

For a matrix , its transpose is the matrix  obtained from swapping  
for all .








X ∈ ℝn×d X⊤ ∈ ℝd×n X⊤
ij = Xji

i ∈ [d], j ∈ [n]

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

X⊤ =
↑ ↑
x1 … xn

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

d →
.
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Multiplication
Vector-vector “multiplication”

Given two vectors , their dot product (Euclidean inner product) is:


.


More generally, an inner product between two vectors is written as . If 
not specified otherwise, we will use the dot product as default in this course.


x, y ∈ ℝd

x⊤y := x1y1 + … + xdyd

⟨x, y⟩
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Multiplication
Properties of the inner product

For any two vectors  the inner product obeys the following:


1. Symmetry. .


2. Positive definiteness. , and  if and only if .


(note , the squared norm of any vector)


3. Linearity. Let  be a scalar and  be another vector. Then:


v, w ∈ ℝd

⟨v, w⟩ = ⟨w, v⟩

⟨v, v⟩ ≥ 0 ⟨v, v⟩ = 0 v = 0

⟨v, v⟩ = ∥v∥2

α ∈ ℝ u ∈ ℝd

⟨αu + v, w⟩ = α⟨u, w⟩ + ⟨v, w⟩ .
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Multiplication
Vector-vector “multiplication”

Example. Compute the dot product between  and .x = (2,5,3) y = (−1,0,3)
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Multiplication
Matrix-vector multiplication (column view)

To multiply a matrix  and a vector , we can think of the column 
view:





The result is .

X ∈ ℝn×d w ∈ ℝd

Xw =
↑ ↑
x1 … xd

↓ ↓

w1
⋮
wd

= w1

↑
x1
↓

+ … + wd

↑
xd

↓
.

Xw ∈ ℝn
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Multiplication
Matrix-vector multiplication (equation view)

To multiply a matrix  and a vector , we can think of the equation 
view:





The result is .

X ∈ ℝn×d w ∈ ℝd

Xw =
← x⊤

1 →
⋮

← x⊤
n →

↑
w
↓

=
x⊤

1 w
⋮

x⊤
n w

Xw ∈ ℝn
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Multiplication
Matrix-vector multiplication

Example. Compute the matrix-vector product:


Xw = [
1 −1 2
0 2 3
1 0 1] [

2
1

−1]
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Multiplication
Matrix-matrix multiplication (matrix-vector view)

To multiply two matrices  and , we just think of  different matrix-
vector products:





The result is .

U ∈ ℝn×r V ∈ ℝr×d d

UV = U
↑ ↑
v1 … vd

↓ ↓
=

↑ ↑
Uv1 … Uvd

↓ ↓

X = UV ∈ ℝn×d
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Multiplication
Matrix-matrix multiplication (inner product/entry view)

To multiply two matrices  and , we just think of  different inner 
products: 




 for all .


The result is .

U ∈ ℝn×r V ∈ ℝr×d nd

UV =
← u⊤

1 →
⋮

← u⊤
n →

↑ ↑
v1 … vd

↓ ↓
=

u⊤
1 v1 … u⊤

1 vd
⋮ ⋱ ⋮

u⊤
n v1 … u⊤

n vd

(UV)ij = u⊤
i vj i ∈ [n], j ∈ [d]

X = UV ∈ ℝn×d
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Multiplication
Matrix-matrix multiplication (outer product view)

To multiply two matrices  and , we just think of summing  
different outer products (  matrices): 




The result is .

U ∈ ℝn×r V ∈ ℝr×d r
n × d

UV =
↑ ↑
u1 … ur

↓ ↓

← v⊤
1 →

⋮
← v⊤

r →
=

↑
u1
↓

[ ← v1 → ] + … +
↑
ur

↓
[ ← vr → ]

X = UV ∈ ℝn×d

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Matrices
Inverses and Identity Matrix

A square matrix  is invertible if there exists a matrix  (the inverse) 
such that:


,


where  is the identity matrix:


.

X ∈ ℝd×d X−1 ∈ ℝd×d

X−1X = XX−1 = I

I ∈ ℝd×d

I :=

1 0 0 … 0
0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1
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Regression 
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Regression
The main problem of our course

Collect  measurements  for  students…


where  denotes the test score of a student.


Given the measurements for a new student, , what is their test score?

d x1, …, xn ∈ ℝd n

yi ∈ ℝ

x0 ∈ ℝd
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Regression
The main problem of our course

Collect a bunch of images with  pixels  of  cats and dogs…


where  denotes a dog and  denotes a cat.


Given a new image, , is it a cat or a dog?

d x1, …, xn ∈ ℝd n

yi = 1 yi = − 1

x0 ∈ ℝd
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Regression
The main problem of our course

We observe  samples of training (observed) features , with 
labels .





Goal: Given a new unlabelled sample, , make a prediction  such that .

n x1, …, xn ∈ ℝd

y1, …, yn ∈ ℝ

xi =
xi1
⋮
xid

x0 ̂y ̂y ≈ y0
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Regression
The main problem of our course

Goal: Given a new unlabelled sample, , make a prediction  such that .


To do this, we will construct a model for the observed data.


A linear model is represented with a weight vector . To make a 
prediction with the weight vector, we take an inner product.


.


x0 ̂y ̂y ≈ y0

w ∈ ℝd

̂y = ⟨w, x0⟩ = w1x01 + …wdx0d
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Regression
The main problem of our course

How do we construct the weight vector ?


Learn it from the observed data . 

For some weight vector , its predictions on the observed data are:


w ∈ ℝd

(x1, y1), …, (xn, yn)

w ∈ ℝd

̂y1
⋮
̂yn

= ŷ = Xw =
← x⊤

1 →
⋮

← x⊤
n →

↑
w
↓

=
x⊤

1 w
⋮

x⊤
n w

=
⟨x1, w⟩

⋮
⟨xn, w⟩

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Regression
The main problem of our course

For some weight vector , its predictions on the observed data are:





w ∈ ℝd

̂y1
⋮
̂yn

= ŷ = Xw =
← x⊤

1 →
⋮

← x⊤
n →

↑
w
↓

=
x⊤

1 w
⋮

x⊤
n w

=
⟨x1, w⟩

⋮
⟨xn, w⟩
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Regression
The main problem of our course

Goal: Given a new unlabelled sample, , make a prediction  such that .


If the new sample  is “distributed like” the training samples  
and , then it’s not a bad idea to find  so:


.


This will be our new goal!

x0 ̂y ̂y ≈ y0

(x0, y0) X ∈ ℝn×d

y ∈ ℝn w ∈ ℝd

Xw = ŷ ≈ y
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Regression
Setup

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝd

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .
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Regression
Caveat

Choose a weight vector that “fits the training data”:  such that  
for , or:





In general, it may not be the case that  for any  (the labels  
don’t have a perfect linear relationship with the ).

w ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xw = ŷ ≈ y .

y = Xw w ∈ ℝd yi
xi
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Regression
Example: d = 1

X =

⋮
14.07
17.51
22.42
26.88

⋮

y =

⋮
2.5
3

3.48
3.12

⋮
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Regression
Example: d = 2
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⋮ ⋮
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2.6 7.7
⋮ ⋮
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⋮
0.4
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2.1
2.3
⋮

https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression.html
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Least Squares 
A Solution to Regression



Regression
Setup

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝd

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .
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Ordinary Least Squares
Notion of Error

In general, it may not be the case that  for any  (the labels  don’t have a 
perfect linear relationship with the ).


The residual  of the th prediction with  is


.


We can write this as a vector .


The sum of squared residuals is


.

y = Xw w ∈ ℝd yi
xi

ri(w) i w ∈ ℝd

ri(w) := ̂yi − yi = ⟨w, xi⟩ − yi

r ∈ ℝn

SSR :=
n

∑
i=1

ri(w)2 = r1(w)2 + … + rn(w)2
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Norms and Inner Products
Euclidean Norm

Recall the notion of “length” from . For a vector ,


.


Generalizing this, for , the Euclidean norm ( -norm) is:


.


.

ℝ2 x = (x1, x2) ∈ ℝ2

∥x∥2 := x2
1 + x2

2

x ∈ ℝn ℓ2

∥x∥2 := x2
1 + … + x2

n = x⊤x

∥x∥2
2 = x⊤x
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Ordinary Least Squares
Notion of Error

Residual: , or . 

The sum of squared residuals is





.

ri(w) := ̂yi − yi = ⟨w, xi⟩ − yi r ∈ ℝn

SSR :=
n

∑
i=1

ri(w)2 = r1(w)2 + … + rn(w)2 .

SSR = ∥r∥2 = ∥ŷ − y∥2 = ∥Xw − y∥2
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Ordinary Least Squares
Principle of Least Squares

Goal: Find the  that minimizes the sum of squared residuals:
w ∈ ℝd

∥r∥2 = ∥ŷ − y∥2 = ∥Xw − y∥2.
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Ordinary Least Squares
Sum of Squared Residuals

Example: If  and , what does  

look like?

X = [1 0
0 1] y = [−1

1 ] SSR(w) = ∥Xw − y∥2
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Ordinary Least Squares
Sum of Squared Residuals
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Ordinary Least Squares
Sum of Squared Residuals

descent start
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Ordinary Least Squares
Geometry of Least Squares

Let  and . In this case  is a linear combination of columns  and .


.


n = 3 d = 2 ŷ ∈ ℝ3 x1 x2

ŷ = Xw = w1x1 + w2x2 ∈ ℝ3

x1 x2 ~y

x1 x2 ~y
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Span
Idea

For a collection of vectors , the span is… 
x1, …, xd ∈ ℝn

x1 x2 ~y
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Span
Definition

For a collection of vectors , the span is the set of vectors we 
can attain through linear combinations of :


.


x1, …, xd ∈ ℝn

x1, …, xd

span(x1, …, xd) = {y ∈ ℝn : y =
d

∑
i=1

αixi, αi ∈ ℝ}

Deng, Samuel

Deng, Samuel



Span
Examples










span ([1
0])

span ([2
1], [ 0

−1])
span ([

1
0
0], [

0
−2
0 ], [

1
0
1])
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Ordinary Least Squares
Geometry of Least Squares

Let  and . In this case  is a linear combination of columns  and .


.


Let  be the columnspace of . Then,


.


n = 3 d = 2 ŷ ∈ ℝ3 x1 x2

ŷ = Xw = w1x1 + w2x2 ∈ ℝ3

col(X) := {x1, …, xd} X ∈ ℝn×d

ŷ ∈ span(col(X))

x1 x2 ~y
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Ordinary Least Squares
Geometry of Least Squares

So, , which we can write as: .


The true labels  might not be in .


Goal: Find  that minimizes .  

ŷ = Xw = w1x1 + w2x2 ∈ ℝ3 ŷ ∈ span(col(X))

y ∈ ℝn span(col(X))

w ∈ ℝn ∥Xw − y∥2

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

Click to 

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
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Ordinary Least Squares
Geometry of Least Squares

Goal: Find  that minimizes .  w ∈ ℝn ∥Xw − y∥2

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

Goal: Find  that minimizes . 


Which point on  minimizes the distance from  to ? 

w ∈ ℝn ∥Xw − y∥2

span(col(X)) y span(col(X))

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
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Ordinary Least Squares
Geometry of Least Squares

Goal: Find  that minimizes . 


Which point on  minimizes the distance from  to ? 

The point a perpendicular line down to ! 

w ∈ ℝn ∥Xw − y∥2

span(col(X)) y span(col(X))

span(col(X))

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

A projection of  onto  gives us , and .


Let  be any other vector in , written .


y ∈ ℝn span(col(X)) ŷ ∈ ℝn Xŵ = ŷ

ỹ ∈ ℝn span(col(X)) Xw̃ = ỹ

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
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Ordinary Least Squares
Geometry of Least Squares

Let  be the projection of . Let  be any other .


The distances  and  are the lengths of the residuals  and .


ŷ = Xŵ y ỹ = Xw̃ ỹ

∥y − ŷ∥ ∥y − ỹ∥ ∥ ̂r∥ ∥r̃∥

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
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Ordinary Least Squares
Geometry of Least Squares

Let  be any other vector in .


By the Pythagorean Theorem,


.


But , so:


.


By definition,  and .


Therefore,


.


ỹ = Xw̃ span(col(X))

∥ ̂r∥2 + ∥ỹ − ŷ∥2 = ∥r̃∥2

∥ỹ − ŷ∥2 ≥ 0

∥ ̂r∥2 ≤ ∥r̃∥2

̂r = Xŵ − y r̃ = Xw̃ − y

∥Xŵ − y∥2 ≤ ∥Xw̃ − y∥2
x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y
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Ordinary Least Squares
Geometry of Least Squares

Therefore:


,


where  is obtained from the projection 
 of  onto , and  

is any other vector.


But what is ?

∥Xŵ − y∥2 ≤ ∥Xw̃ − y∥2

ŵ ∈ ℝd

ŷ y ∈ ℝd span(col(X)) w̃ ∈ ℝd

ŵ x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
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Orthogonality
Definition

Two vectors  and  are orthogonal if


.


So, if a vector  is orthogonal to a whole set of vectors , we can 
write this in matrix form.





.

x ∈ ℝn y ∈ ℝn

⟨x, y⟩ = x⊤y = 0

v ∈ ℝn {x1, …, xd}

X =
↑ ↑
x1 … xd

↓ ↓

X⊤v = 0
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Ordinary Least Squares
The Normal Equations

From the picture,  is orthogonal 
to :





This gives us the normal equations:


.

̂r = Xŵ − y
span(col(X))

X⊤ ̂r = 0 ⟹ X⊤ (Xŵ − y) = 0 .

X⊤y = X⊤Xŵ

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y
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Ordinary Least Squares
The Normal Equations

Finally, we need to solve the normal equations:


.X⊤y
⏟

ℝd

= X⊤X
⏟

ℝd×d

ŵ⏟
ℝd
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Linear Independence
Idea

A collection of vectors  is linearly independent if there are no 
redundancies — no vector  can be written as a linear combination of the 
others.

a1, …, ad ∈ ℝn

ai
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Linear Independence
Definition

A collection of vectors  is linearly independent if 
 if and only if  for all .


Equivalently, there exists  that can be written in terms of the others:


.


a1, …, ad ∈ ℝn

α1a1 + … + αdad = 0 αi = 0 i ∈ [d]

ai

ai = α1a1 + … + αi−1ai−1 + αi+1ai+1 + … + αdad
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Linear Independence
Examples










{[
1
0
0], [

0
1
0], [

2
2
0]}

{[
1
0
0], [

1
1
0]}

{[
1
0
0], [

0
1
0], [

0
0
2]}
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Rank
Definition

Rank is the number of linearly independent columns in a matrix. This is always 
the same as the number of linearly independent rows in a matrix.


For , it is always the case that: . If 
, then we say  is full rank.


A ∈ ℝn×d rank(A) ≤ min{n, d}
rank(A) = min{n, d} A
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Remember this?
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Ordinary Least Squares
The Normal Equations

Finally, we need to solve the normal equations:


.


For , if  and , then:  
has  linearly independent columns  exists.

X⊤y
⏟

ℝd

= X⊤X
⏟

ℝd×d

ŵ⏟
ℝd

X ∈ ℝn×d n ≥ d rank(X) = d rank(X⊤X) = d ⟺ X⊤X
d ⟺ (X⊤X)−1
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Ordinary Least Squares
The Normal Equations

.


Finally, solving the normal equations:


X⊤y
⏟

ℝd

= X⊤X
⏟

ℝd×d

ŵ⏟
ℝd

ŵ = (X⊤X)−1X⊤y
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Ordinary Least Squares
Main Theorem

Let  with  and  (the columns of  are linearly 
independent. 


Then, the solution  that minimizes , i.e.


 for all ,


is given by:


.

X ∈ ℝn×d n ≥ d rank(X) = d X

ŵ ∈ ℝd ∥Xw − y∥

∥Xŵ − y∥ ≤ ∥Xw − y∥ w ∈ ℝd

ŵ = (X⊤X)−1X⊤y
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Recap



Lesson Overview
Takeaways

Regression. The basic problem in machine learning is regression. We have training data in the 
form of a data matrix  and labels . We seek a model  such that .


Least squares. One way to find a model for the data is through least squares: choose  that 
minimizes .


Span and orthogonality. We can solve least squares by noticing that  is orthogonal to 
. This gives us the normal equations: .


Linear independence. To solve the normal equations, we need  to be full rank (its  columns are 
linearly independent). Then, we can invert and solve the normal equations.


.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd Xŵ ≈ y

ŵ
∥Xw − y∥2

Xŵ − y
span(cols(X)) X⊤Xŵ = X⊤y

X d

ŵ = (X⊤X)−1X⊤y



Lesson Overview
Big Picture: Least Squares

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

Click to interact
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Lesson Overview
Big Picture: Gradient Descent
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