
By: Samuel Deng

Math for Machine Learning
Week 2.2: Eigendecomposition and PSD Matrices



Logistics & Announcements
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Lesson Overview

Linear dynamical systems example. Motivation for eigendecomposition as a 
way to make repeated matrix multiplication easier.


Eigendecomposition. Definition of eigenvectors, eigenvalues.


Eigendecomposition and SVD. The eigendecomposition drops out of the SVD.


Spectral Theorem. Symmetric matrices are always diagonalizable.


Positive semidefinite matrices/positive definite matrices. Definition and 
some visual examples through the corresponding quadratic forms.
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Lesson Overview
Big Picture: Least Squares

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls2_1.html
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Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
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Least Squares 
A Quick Review



Regression
Setup

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝd

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .
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Regression
Setup

Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  
for , or:





To find , we follow the principle of least squares. 


i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2
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SVD and Pseudoinverse
Review

Let  be a matrix, and let  be its full SVD. 


If , the matrix  is the (Moore-Penrose) pseudoinverse of the 
matrix , denoted . 


If , the matrix  is the pseudoinverse.


More generally, the matrix  with full SVD  has the (Moore-
Penrose) pseudoinverse: .

X ∈ ℝn×d X = UΣV⊤

n ≥ d (Σ⊤Σ)−1Σ⊤ ∈ ℝd×n

Σ Σ+ := (Σ⊤Σ)−1Σ⊤

d > n Σ+ := Σ⊤(ΣΣ⊤)−1

X ∈ ℝn×d X = UΣV⊤

X+ := VΣ+U⊤
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Least Squares: SVD Perspective
Unified Picture

If  and …


We can solve exactly.


Choose





which is an exact solution.

n = d rank(X) = d

ŵ = X−1y,

If  and …


We approximate by least squares:





Choose





the best approximate solution:


.

n > d rank(X) = d

ŵ = arg min
w∈ℝd

∥Xw − y∥2.

ŵ = (X⊤X)−1X⊤y = X+y,

∥Xŵ − y∥2 ≤ ∥Xw − y∥2

If  and …


We can solve exactly, but there 
are infinitely many solutions.


Choose





the minimum norm solution:


.

n < d rank(X) = n

ŵ = X⊤(XX⊤)−1y = X+y,

∥ŵ∥2 ≤ ∥w∥2

We want to solve .Xw = y
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Least Squares: SVD Perspective
Unified Picture

If  and …


We approximate by least squares:


n > d rank(X) = d

ŵ = arg min
w∈ℝd

∥Xw − y∥2.

If  and …


We can solve exactly, but there 
are infinitely many solutions.


n < d rank(X) = n

We want to solve . Use !Xw = y ŵ = X+y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls2_1.html
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Singular Value Decomposition (SVD)
Matrix Decompositions

.


 is orthogonal, i.e. .


 is orthogonal, i.e. .


 is a diagonal matrix with singular values  on 
the diagonal.  is equal to the number of .

X⏟
n×d

= U⏟
n×n

Σ
⏟

n×d

V⊤
⏟
d×d

U U⊤U = UU⊤ = I

V V⊤V = VV⊤ = I

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σd ≥ 0
rank(X) σi > 0
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What other matrix 
decompositions are out there?



Eigendecomposition 
Motivation: Linear Dynamical System



Population Change
Example of a linear dynamical system

Consider the following example.


Suppose that


• of those who start a year in California, 60% stay in 
California and 40% move out of California by the end 
of the year.


• of those who start a year outside California, 95% stay 
out and 5% move to California by the end of the year.


If we know how many people are in California  and how 
many people are outside of California , then we can find 
the number of people inside and outside of California at 
the end of the year:


xin
xout

# inside = 0.6xin + 0.05xout

# outside = 0.4xin + 0.95xout

Example and graphic from Daniel Hsu’s course:

Computational Linear Algebra (Fall 2022)
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Population Change
Modeling with a transition matrix

Consider the following example.


Suppose that


• of those who start a year in California, 60% stay in 
California and 40% move out of California by the end of 
the year.


• of those who start a year outside California, 95% stay out 
and 5% move to California by the end of the year.


We can model this with a transition matrix 

 

and a system of linear equations:


A = [ in → in out → in
in → out out → out] = [0.6 0.05

0.4 0.95]

Ax = [ in → in out → in
in → out out → out] [ xin

xout] = [0.6 0.05
0.4 0.95] [ xin

xout]
Example and graphic from Daniel Hsu’s course:


Computational Linear Algebra (Fall 2022)
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Population Change
Modeling with a transition matrix

Consider the transition matrix


 

with a corresponding system of linear equations:





The vector  gives the number of people 
inside and outside of California after a year has 
passed, from the initial populations in .


How to find the number of people inside/outside of 
California after  years have passed?

A = [ in → in out → in
in → out out → out] = [0.6 0.05

0.4 0.95]

Ax = [ in → in out → in
in → out out → out] [ xin

xout] = [0.6 0.05
0.4 0.95] [ xin

xout] .

Ax ∈ ℝ2

x ∈ ℝ2

t

Example and graphic from Daniel Hsu’s course:

Computational Linear Algebra (Fall 2022)
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Population Change
Modeling with a transition matrix

Consider the transition matrix


 

with a corresponding system of linear equations:





The vector  gives the number of people inside and outside of California 
after a year has passed, from the initial populations in .


How to find the number of people inside/outside of California after  years have 
passed? 

 

 

 

A = [ in → in out → in
in → out out → out] = [0.6 0.05

0.4 0.95]

Ax = [ in → in out → in
in → out out → out] [ xin

xout] = [0.6 0.05
0.4 0.95] [ xin

xout] .

Ax(0) ∈ ℝ2

x(0) ∈ ℝ2

t

x(1) = Ax(0)

x(2) = Ax(1) = AAx(0) = A2x(0)

⋮

x(t) = AA…A
t products

x(0) = Atx(0)

Example and graphic from Daniel Hsu’s course:

Computational Linear Algebra (Fall 2022)
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Population Change
Modeling with a transition matrix




Concretely, suppose there are 300 million outside of 
California and 40 million inside of California at the 
start of a year. Then,





What are the populations inside and outside of CA 
after  years?


Ax = [ in → in out → in
in → out out → out] [ xin

xout] = [0.6 0.05
0.4 0.95] [ xin

xout]

x(0) = [ 40
300]

t

x(t) = Atx(0) = [0.6 0.05
0.4 0.95]

t

[ 40
300]

Example and graphic from Daniel Hsu’s course:

Computational Linear Algebra (Fall 2022)

Deng, Samuel

Deng, Samuel

Deng, Samuel



Population Change
Annoying computation 😖

What are the populations inside and outside of CA after  years?





Try calculating this…





t

x(t) = Atx(0) = [0.6 0.05
0.4 0.95]

t

[ 40
300]

[0.6 0.05
0.4 0.95]…[0.6 0.05

0.4 0.95] [0.6 0.05
0.4 0.95] [ 40

300]
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Population Change
Easy computation 😃

Assume I gave you a couple of vectors,  and . These two 
vectors have the properties:





u = (1,8) v = (−1,1)

Au = [0.6 0.05
0.4 0.95] [1

8] = [1
8]

Av = [0.6 0.05
0.4 0.95] [−1

1 ] =
11
20 [−1

1 ]
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Population Change
Easy computation 😃

Assume I gave you a couple of vectors,  and . These two vectors have the properties:








Now, the repeated multiplication looks like:





u = (1,8) v = (−1,1)

Au = [0.6 0.05
0.4 0.95] [1

8] = [1
8]

Av = [0.6 0.05
0.4 0.95] [−1

1 ] =
11
20 [−1

1 ]

Atu = [0.6 0.05
0.4 0.95]

t

[1
8] = (1)t[1

8] = [1
8]

Atv = [0.6 0.05
0.4 0.95]

t

[−1
1 ] = ( 11

20 )
t

[−1
1 ]
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Population Change
Using  and  for initial populationu v

Assume I gave you a couple of vectors,  and . These two vectors have the properties:








Now, the repeated multiplication looks like:





u = (1,8) v = (−1,1)

Au = [0.6 0.05
0.4 0.95] [1

8] = [1
8]

Av = [0.6 0.05
0.4 0.95] [−1

1 ] =
11
20 [−1

1 ]

Atu = [0.6 0.05
0.4 0.95]

t

[1
8] = (1)t[1

8] = [1
8] ⟹ Atu = u

Atv = [0.6 0.05
0.4 0.95]

t

[−1
1 ] = ( 11

20 )
t

[−1
1 ] ⟹ Atv = ( 11

20 )
t

v
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Population Change
Using  and  for initial populationu v

For  and ,








Notice that  are a basis for . Then, if we rewrite  as a linear combination of  and , i.e.


,


we can obtain  with the following computation:


.

u = (1,8) v = (−1,1)

Atu = u

Atv = ( 11
20 )

t

v

u, v ℝ2 x(0) u v

x(0) = au + bv

x(t)

x(t) = Atx(0) = At(au + bv) = aAtu + bAtv = au + b(11/20)tv
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Population Change
Using  and  for initial populationu v

For  and ,








Notice that  are a basis for . Then, if we rewrite  as a linear combination of  and , i.e.


,


we can obtain  with the following computation:


.


In matrix form:


u = (1,8) v = (−1,1)

Atu = u

Atv = ( 11
20 )

t

v

u, v ℝ2 x(0) u v

x(0) = au + bv

x(t)

x(t) = Atx(0) = At(au + bv) = aAtu + bAtv = au + b(11/20)tv

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b]
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Population Change
Using  and  for initial populationu v

For  and ,





where 





Writing  in matrix form as well, we have:


u = (1,8) v = (−1,1)

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b]

x(0) = au + bv .

x(0)

x(0) =
↑ ↑
u v
↓ ↓

[a
b]
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Population Change
Using  and  for initial populationu v

For  and ,





where 





Writing  in matrix form as well, we have:





Because  and  are linearly independent,  has , so we can invert:


.

u = (1,8) v = (−1,1)

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b]

x(0) = au + bv .

x(0)

x(0) =
↑ ↑
u v
↓ ↓

[a
b] = V [a

b] .

u v V ∈ ℝ2×2 rank(V) = 2

[a
b] = V−1x(0)
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Population Change
Using  and  for initial populationu v

For  and ,





where 





Writing  in matrix form as well, we have:





Because  and  are linearly independent,  has , so we can invert:


.


Therefore,


u = (1,8) v = (−1,1)

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b]

x(0) = au + bv .

x(0)

x(0) =
↑ ↑
u v
↓ ↓

[a
b] = V [a

b] .

u v V ∈ ℝ2×2 rank(V) = 2

[a
b] = V−1x(0)

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t]
↑ ↑
u v
↓ ↓

−1

x(0) = V [1 0
0 (11/20)t] V−1x(0)
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Population Change
Using  and  for initial populationu v

For  and ,





where


.

u = (1,8) v = (−1,1)

x(t) = V [1 0
0 (11/20)t] V−1x(0)

V =
↑ ↑
u v
↓ ↓

Deng, Samuel
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Population Change
Comparison of hard and easy computation

Hard computation:





For initial populations , 
the population after  years is:





😖

x(t) = Atx(0)

x(0) = (40, 300)
t

x(t) = [0.6 0.05
0.4 0.95]

t

[ 40
300] .

Easy computation:





For initial populations , the 
population after  years is:





😃

x(t) = V [1 0
0 (11/20)t] V−1x(0)

x(0) = (40, 300)
t

x(t) = [1 −1
8 1 ] [1 0

0 (11/20)t] [ 1/9 1/9
−8/9 1/9] [ 40

300] .
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Diagonal Matrices
Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy:


.
[1 0
0 (11/20)t] = [1 0

0 (11/20)]
t

Deng, Samuel
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Diagonal Matrices
Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy:


.


But this matrix depended on a basis of vectors that we got out of nowhere:


 and .


In what cases (and how) can we obtain such nice bases?

[1 0
0 (11/20)t] = [1 0

0 (11/20)]
t

u = (1,8) v = (−1,1)
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Eigendecomposition 
Intuition and Definition



Eigenvectors and eigenvalues
Intuition

Let  be a square matrix. 


This represents a linear transformation from 
 to .


Eigenvectors are the vectors in  that just 
get scaled by .


Eigenvalues are how much each eigenvector 
gets scaled.


Eigenvectors/eigenvalues are properties of 
square matrices!

A ∈ ℝd×d

ℝd ℝd

ℝd

A

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Eigenvectors and eigenvalues
Definition

Let  be a square matrix. 


A nonzero vector  is an eigenvector 
if there exists a scalar  such that


.


The scalar  is the eigenvalue associated 
with the eigenvector .


Eigenvectors/eigenvalues are properties of 
square matrices!

A ∈ ℝd×d

v ∈ ℝd

λ ∈ ℝ

Av = λv

λ
v

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

Deng, Samuel
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Eigenvectors and eigenvalues
Example

Consider the matrix  given by


.


What happens to the vector ?

A ∈ ℝ2×2

A = [−1/2 5/2
0 2 ]

v1 = (1,1)

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5
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Eigenvectors and eigenvalues
Example

Consider the matrix  given by


.


What happens to the vector ?

A ∈ ℝ2×2

A = [−1/2 5/2
0 2 ]

v2 = (1,0)

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

Deng, Samuel

Deng, Samuel



Eigenvectors and eigenvalues
Example

Consider the matrix  given by


.


What happens to the vector ?

A ∈ ℝ2×2

A = [−1/2 5/2
0 2 ]

v3 = (0,1)

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5
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Eigenvectors and eigenvalues
Example

Consider the matrix  given by


.


Eigenvectors (with eigenvalues  and ):








Not an eigenvector:


A ∈ ℝ2×2

A = [−1/2 5/2
0 2 ]

λ1 = 2 λ2 = − 1/2

[−1/2 5/2
0 2 ] [1

1] = [2
2] = 2[1

1]
[−1/2 5/2

0 2 ] [1
0] = [−1/2

0 ] = −
1
2 [1

0]

[−1/2 5/2
0 2 ] [0

1] = [5/2
2 ]

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5
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Eigenvectors and eigenvalues
Example




 and  are linearly independent — they form 
a basis for .


We can write any  in terms of  and :


.





A = [−1/2 5/2
0 2 ]

v1 = (1,1) v2 = (1,0)
ℝ2

x ∈ ℝ2 v1 v2

x = av1 + bv2

x =
↑ ↑
v1 v2
↓ ↓

[a
b]

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5
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Eigenvectors and eigenvalues
Example




 and  are linearly independent eigenvectors — they form 
a basis for . Their eigenvalues are  and .


We can write any  in terms of  and :


.





Repeated multiplication:


A = [−1/2 5/2
0 2 ]

v1 = (1,1) v2 = (1,0)
ℝ2 λ1 = 2 λ2 = − 1/2

x ∈ ℝ2 v1 v2

x = av1 + bv2

x =
↑ ↑
v1 v2
↓ ↓

[a
b]

Atx = At(av1 + bv2) = aAtv1 + bAtv2 = a2tv1 + b (−
1
2 )

t

v2

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5
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Eigenvectors and eigenvalues
Example




 and  are linearly independent eigenvectors — they form a basis 
for . Their eigenvalues are  and .


We can write any  in terms of  and :


.





Repeated multiplication:


A = [−1/2 5/2
0 2 ]

v1 = (1,1) v2 = (1,0)
ℝ2 λ1 = 2 λ2 = − 1/2

x ∈ ℝ2 v1 v2

x = av1 + bv2

x =
↑ ↑
v1 v2
↓ ↓

V

[a
b] ⟹ [a

b] = V−1x

Atx = At(av1 + bv2) = aAtv1 + bAtv2 = a2tv1 + b (−
1
2 )

t

v2

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

Deng, Samuel

Deng, Samuel
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Eigenvectors and eigenvalues
Example




 and  are linearly independent eigenvectors — they form a basis for . Their eigenvalues are  and .


We can write any  in terms of  and :


.





Repeated multiplication:


A = [−1/2 5/2
0 2 ]

v1 = (1,1) v2 = (1,0) ℝ2 λ1 = 2 λ2 = − 1/2

x ∈ ℝ2 v1 v2

x = av1 + bv2

x =
↑ ↑
v1 v2
↓ ↓

V

[a
b] ⟹ [a

b] = V−1x

Atx = At(av1 + bv2) = aAtv1 + bAtv2 = a2tv1 + b (−
1
2 )

t

v2 ⟹ Atx = V [2t 0
0 (−1/2)t] V−1x

Deng, Samuel
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Eigenvectors and eigenvalues
Example

Repeated multiplication:





Single multiplication:





, where  is diagonal.

Atx = At(av1 + bv2) = aAtv1 + bAtv2 = a2tv1 + b (−
1
2 )

t

v2 ⟹ Atx = V [2t 0
0 (−1/2)t] V−1x

Ax = V [2 0
0 −1/2] V−1x

A = VΛV−1 Λ ∈ ℝ2×2

Deng, Samuel
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Eigendecomposition
Definition

Prop (Eigendecomposition of a diagonalizable matrix). Let  be a matrix with  linearly independent 
eigenvectors





Then,  has the eigendecomposition:


.


Such a matrix is said to be diagonalizable.

A ∈ ℝd×d d

Av1 = λ1v1
⋮

Avd = λdvd

A

A = VΛV−1 =
↑ … ↑
v1 … vd

↓ … ↓

λ1 0 … 0
0 λ2 … 0
0 0 ⋱ 0
0 0 … λd

↑ … ↑
v1 … vd

↓ … ↓

−1
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Eigendecomposition
Example

 has the eigenvectors  and :


 and .


 and  are linearly independent, so  is diagonalizable with eigendecomposition:





 

A = [−1/2 5/2
0 2 ] v1 = (1,1) v2 = (1,0)

Av1 = 2v1 Av2 = −
1
2

v2

v1 v2 A

A = QΛQ−1

[−1/2 5/2
0 2 ] = [1 1

1 0] [2 0
0 −1/2] [0 1

1 −1]



Eigendecomposition
Example

 has the eigenvectors  and :


 and .


 and  are linearly independent, so  is diagonalizable with eigendecomposition:





 


Question: But when do (square) matrices have a basis of eigenvectors?

A = [−1/2 5/2
0 2 ] v1 = (1,1) v2 = (1,0)

Av1 = 2v1 Av2 = −
1
2

v2

v1 v2 A

A = QΛQ−1

[−1/2 5/2
0 2 ] = [1 1

1 0] [2 0
0 −1/2] [0 1

1 −1]
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Eigendecomposition 
Connection with SVD



Connection with SVD
Eigendecomposition from SVD

Eigendecomposition only applies to square matrices :





The SVD applies to any matrix :


A ∈ ℝd×d

A = QΛQ−1 .

X ∈ ℝn×d

X = UΣV⊤ .
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Connection with SVD
Eigendecomposition from SVD

The SVD applies to any matrix :





Consider the square matrix . By the SVD:


X ∈ ℝn×d

X = UΣV⊤ .

A = X⊤X ∈ ℝd×d

A = X⊤X
= VΣ⊤U⊤UΣV⊤

= VΣ⊤ΣV⊤

Deng, Samuel
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Connection with SVD
Eigendecomposition from SVD

The SVD applies to any matrix :





Consider the square matrix . By the SVD:





The eigendecomposition of  is:


X ∈ ℝn×d

X = UΣV⊤ .

A = X⊤X ∈ ℝd×d

A = V⏟
d×d

Σ⊤Σ
⏟

d×d

V⊤
⏟
d×d

A

A = Q
⏟
d×d

Λ
⏟

d×d

Q−1

⏟
d×d

Deng, Samuel
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Connection with SVD
Eigendecomposition from SVD

Theorem (SVD and Eigendecomposition). Let  be a matrix with 
 and . Let the SVD of  have singular 

values





and let  be the columns of . Then, each  is an eigenvector for  
with corresponding eigenvalue , and the eigendecomposition of  is:


,


where  is the diagonal matrix with entries  for .

X ∈ ℝn×d

rank(X) = r A = X⊤X ∈ ℝd×d X = UΣV⊤

σ1 ≥ σ2 ≥ … ≥ σr > 0,

v1, …, vd V ∈ ℝd×d vi A
λi = σ2

i A

A = VΛV⊤

Λ ∈ ℝd×d λi = σ2
i i ∈ [d]
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Connection with SVD
Eigendecomposition from SVD

Therefore, if  (for any matrix ), we know that we have  
linearly independent eigenvectors — this is a case where  is diagonalizable!


Moreover, the diagonalization looks like:





where  is the SVD.

A = X⊤X X ∈ ℝn×d d
A

A = VΛV⊤

X = UΣV⊤
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Positive Semidefinite Matrices 
Definition and Connections
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Positive Semidefinite (PSD) Matrices
First definition

A square matrix  is positive semidefinite (PSD) if there exists a matrix 
 such that:


.


Note: If you’ve seen PSD matrices before, this isn’t the usual definition (but it’s 
equivalent, as we’ll see in a bit).

A ∈ ℝd×d

X ∈ ℝn×d

A = X⊤X

Deng, Samuel

Deng, Samuel
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Positive Semidefinite (PSD) Matrices
Symmetry of PSD Matrices

A square matrix  is positive semidefinite (PSD) if there exists a 
matrix  such that:


.


Prop (Symmetry of PSD matrices). All positive semidefinite matrices are 
symmetric. If  is PSD, then


 .

A ∈ ℝd×d

X ∈ ℝn×d

A = X⊤X

A ∈ ℝd×d

A = A⊤

Deng, Samuel



Positive Semidefinite (PSD) Matrices
Example

 is positive semidefinite.
A = [5/2 3/2
3/2 5/2]



Positive Semidefinite (PSD) Matrices
Example

 is positive semidefinite.


Its “square root” is the matrix





To verify:


A = [5/2 3/2
3/2 5/2]

X =

2

2

2

2
1

2
− 1

2

0 0

.

X⊤X =

2

2

1

2
0

2

2
− 1

2
0

2

2

2

2
1

2
− 1

2

0 0

= [5/2 3/2
3/2 5/2] = A



PSD Matrices and Eigendecomposition
Connection to eigenvalues

By Theorem (SVD and Eigendecomposition), if  is PSD with  and 
 then


, 


with orthonormal eigenvectors  


and nonnegative eigenvalues 


The reverse direction is also true!

A A = X⊤X
X = UΣV⊤

A = VΛV⊤

v1, …, vd

λ1 = σ2
1 , …, λd = σ2

d
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PSD Matrices and Eigendecomposition
Second definition

A square matrix  is positive semidefinite (PSD) if  has  
eigenvectors forming an orthonormal basis for  with corresponding 
nonnegative eigenvalues . 

A ∈ ℝd×d A d
ℝd

λ1, …, λd ≥ 0

Deng, Samuel
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Positive Semidefinite (PSD) Matrices
Example

 is positive semidefinite.


It has the eigenvectors  and :








The eigenvectors are orthonormal and , so .

A = [5/2 3/2
3/2 5/2]

v1 = ( 1

2
,

1

2 ) v2 = ( 1

2
, −

1

2 )
Av1 = [5/2 3/2

3/2 5/2] 1/ 2

1/ 2
=

4/ 2

4/ 2
= 4

1/ 2

1/ 2
⟹ λ1 = 4

Av2 = [5/2 3/2
3/2 5/2] 1/ 2

−1/ 2
=

1/ 2

−1/ 2
⟹ λ1 = 1

λ1, λ2 ≥ 0 A = VΛV⊤
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Positive Semidefinite (PSD) Matrices
Third definition

A square matrix  is positive semidefinite (PSD) if, for any ,


.


This is often taken as the definition of PSD (but it is equivalent to the other two 
definitions in previous slides).

A ∈ ℝd×d x ∈ ℝd

x⊤Ax ≥ 0
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Positive Semidefinite (PSD) Matrices
Example

 is positive semidefinite.


Consider any vector .





A = [5/2 3/2
3/2 5/2]

x = (x1, x2) ∈ ℝd

x⊤Ax = [x1 x2] [5/2 3/2
3/2 5/2] [x1

x2] = [x1 x2] [(5/2)x1 + (3/2)x2

(3/2)x1 + (5/2)x2]
x⊤Ax = (5/2)x2

1 + 3x1x2 + (5/2)x2
2

x1-axis x2-axis f(x1, x2)-axis
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Positive Semidefinite (PSD) Matrices
All definitions

A square matrix  is positive semidefinite (PSD) if…


there exists  such that .





all eigenvalues of  are nonnegative: .





 for any .

A ∈ ℝd×d

X ∈ ℝn×d A = X⊤X

↕

A λ1 ≥ 0,…, λd ≥ 0

↕

x⊤Ax ≥ 0 x ∈ ℝd

Deng, Samuel



Positive Definite (PD) Matrices
All definitions

A square matrix  is positive definite (PD) if…


there exists an invertible matrix  such that .





all eigenvalues of  are positive: .





 for any .

A ∈ ℝd×d

X ∈ ℝd×d A = X⊤X

↕

A λ1 > 0,…, λd > 0

↕

x⊤Ax > 0 x ∈ ℝd

Deng, Samuel
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Spectral Theorem
Statement

Question: But when does a square matrix  have a basis of 
eigenvectors (and, hence, is diagonalizable)? 

A: When  is positive semidefinite!


But even more generally…

A ∈ ℝd×d

A

Deng, Samuel
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Spectral Theorem
Statement

Theorem (Spectral Theorem). Let  be a square, symmetric matrix 
(i.e. ). Then,  is diagonalizable:  has an orthonormal basis of  
eigenvectors and an eigendecomposition





But, in this generality,  can be negative!

A ∈ ℝd×d

A⊤ = A A A d

A = QΛQ⊤ .

λi

Deng, Samuel
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Principal Components Analysis 
Application of Eigendecomposition
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Principal Components Analysis
Example: “Eigenfaces” and facial recognition

Observed: Matrix of training images :





Each row is a “flattened” image vector. Typically, each pixel is in  for 
grayscale images.


Images are very high-dimensional:  (e.g. 
).

X ∈ ℝn×d

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

[0, 255]

d = width in pixels × height in pixels
d = 1080 × 1080 = 1,166,400
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Principal Components Analysis
Example: “Eigenfaces” and facial recognition

Consider a dataset of 1,000 grayscale face images …


e.g.                 


Naive facial recognition: Get a new face, linear search over  faces for the 
“closest” face (perhaps in Euclidean norm ). 

Storage: 1166400 integers   images  1 GB.

x1, …, x1000 ∈ ℝ1080×1080

x1 =

1,000
∥x − xi∥

× 1000 ≈

Deng, Samuel
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Principal Components Analysis
Example: “Eigenfaces” and facial recognition

Suppose we can find a “basis” of representative faces:  where .


Then, we can represent any face as a linear combination of the basis faces!


Improved facial recognition: Store  “eigenfaces.” Given a new face , project the face onto the 
subspace spanned by the eigenfaces to get . Compare  to each face’s projection in the 
database in Euclidean norm .

v1, …, vk k ≪ n

k x0
Π(x0) Π(x0)

∥Π(x0) − Π(xi)∥

= 0.45 + + +0.21 0.12 0.05 +…
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Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points :





Want to find the directions that most explain the “variance” of the data.

X ∈ ℝn×2

X =

x11 x12
x21 x22
⋮ ⋮

xn1 xn2

.



Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points :





Want to find the directions that most explain the “variance” of the data.


The matrix  is the covariance matrix of the data.

X ∈ ℝn×2

X =

x11 x12
x21 x22
⋮ ⋮

xn1 xn2

.

C = X⊤X ∈ ℝ2×2
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Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points :





The matrix  is the covariance matrix of the data.


X ∈ ℝn×2

X =

x11 x12
x21 x22
⋮ ⋮

xn1 xn2

=
↑ ↑
x1 x2
↓ ↓

C = X⊤X ∈ ℝ2×2

C = [x⊤
1 x1 x⊤

1 x2

x⊤
1 x2 x⊤

2 x2] = [∥x1∥2 x⊤
1 x2

x⊤
1 x2 ∥x2∥2]
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Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points :





The matrix  is the covariance matrix of the 
data.





PCA: Find the ordered set of vectors  that explain 
the most variance to least variance in the data.

X ∈ ℝn×2

X =

x11 x12
x21 x22
⋮ ⋮

xn1 xn2

=
↑ ↑
x1 x2
↓ ↓

C = X⊤X ∈ ℝ2×2

C = [x⊤
1 x1 x⊤

1 x2

x⊤
1 x2 x⊤

2 x2] = [∥x1∥2 x⊤
1 x2

x⊤
1 x2 ∥x2∥2]

v1, …, vd ∈ ℝd

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6
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Derivation of PCA
Eigendecomposition and PCA

PCA = Eigendecomposition of the covariance matrix! 

Consider a (column-centered) dataset  and construct its covariance matrix 
. By definition,  is positive semidefinite.


Therefore, it is diagonalizable with eigendecomposition:


, with eigenvectors .


With eigenvectors ordered , choose a cutoff point , and 
keep eigenvectors .


The eigenvectors  give an orthonormal basis for a -dimensional subspace.

X ∈ ℝn×d

C = X⊤X ∈ ℝd×d C

C = X⊤X = VΛV⊤ v1, …, vd

λ1 ≥ λ2 ≥ … ≥ λd ≥ 0 k ≪ d
v1, …, vk

v1, …, vk k
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Derivation of PCA
Eigendecomposition and PCA

PCA = Eigendecomposition of the covariance matrix! 

Consider a (column-centered) dataset  and 
construct its covariance matrix . By 
definition,  is positive semidefinite.


Therefore, it is diagonalizable with eigendecomposition:


, with eigenvectors .


With eigenvectors ordered , choose 
a cutoff point , and keep eigenvectors .


The eigenvectors  give an orthonormal basis for a 
-dimensional subspace.

X ∈ ℝn×d

C = X⊤X ∈ ℝd×d

C

C = X⊤X = VΛV⊤ v1, …, vd

λ1 ≥ λ2 ≥ … ≥ λd ≥ 0
k ≪ d v1, …, vk

v1, …, vk
k
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Derivation of PCA
Eigendecomposition and PCA

PCA = Eigendecomposition of the covariance matrix! 

Consider a (column-centered) dataset  and construct its covariance matrix 
. By definition,  is positive semidefinite.


Therefore, it is diagonalizable with eigendecomposition:


.


(Could have also just taken the right singular vectors of  if we have 
efficient algorithm to find the SVD — true in practice).

X ∈ ℝn×d

C = X⊤X ∈ ℝd×d C

C = X⊤X = VΛV⊤

X = UΣV⊤



Least Squares 
Interpretation of Eigenvalues



Regression
Setup

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝd

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup

Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  
for , or:





To find , we follow the principle of least squares. 


i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

Deng, Samuel



Error in Regression
Error using least squares model

Choose a weight vector that “fits the training data”:  such that  for 
, or:





But  might not be a perfect fit to ! 


Model this using a true weight vector  and an error term . 





ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŷ y

w* ∈ ℝd ϵ = (ϵ1, …, ϵn) ∈ ℝn

yi = x⊤
i w* + ϵi for all i ∈ [n]

y = Xw* + ϵ
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Error in Regression
Error using least squares model

True labels: .


What happens when we use the least squares weights ?


y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ
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Error in Regression
Error using least squares model

True labels: .


What happens when we use the least squares weights ?





When  (  is linearly related to ), this is perfect: !

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ = 0 y X ŵ = w*
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Error in Regression
Error using least squares model

True labels: .


What happens when we use the least squares weights ?





When , we have an error of .

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ ≠ 0 ŵ − w* = (X⊤X)−1X⊤ϵ
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Error in Regression
Eigendecomposition perspective

Weight vector’s error: .


We know that  (the covariance matrix) is PSD, so it is diagonalizable:





The inverse of the diagonal matrix :


, so if  is small, the entries of  blow up!


ŵ − w* = (X⊤X)−1X⊤ϵ

X⊤X

X⊤X = VΛV⊤ ⟹ (X⊤X)−1 = V⊤Λ−1V .

Λ−1

Λ−1 =
1/λ1 … 0

⋮ ⋱ ⋮
0 … 1/λd

λi ŵ
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Gradient Descent 
Positive Semidefinite Matrices and Convexity
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Lesson Overview
Big Picture: Gradient Descent

descent start

0

50

100

150

200

Click to interact

−10 −5 0 5 10

0
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80

100
descent
start

https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
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Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html


Quadratic Forms
2D Example

A quadratic function  has the form


,


where . 


Example:   

f : ℝ → ℝ

f(x) = ax2 + bx + c

a, b, c ∈ ℝ

f(x) = 2x2 − x − 1
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1
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Quadratic Forms
2D Example

A quadratic function  has the form


,


where  are constants.


Example:  


We will be concerned about finding minima of 
quadratic functions.

f : ℝ → ℝ

f(x) = ax2 + bx + c

a, b, c ∈ ℝ

f(x) = 2x2 − x − 1

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8−8
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Quadratic Forms
3D Example

In 3D, a quadratic function  has 
the form


,


where  are all constants.


Example: 

f : ℝ2 → ℝ

f(x) = ax2 + 2bxy + cy2 + dx + ey + f

a, b, c, d, e, f ∈ ℝ

f(x) = 2x2 + 4xy + 2y2 + 2x + 2y + 1

x1-axis x2-axis f(x1, x2)-axis

Deng, Samuel
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Quadratic Forms
3D Example

  vs.  f(x) = 2x2 + 4xy + 2y2 + 2x + 2y + 1 f(x) = 2x2 + 4xy + 2y2

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/quad242_stack.html
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Quadratic Forms
3D Example

In 3D, a quadratic function  has the form


.


Let’s only examine the quadratic part!


.

f : ℝ2 → ℝ

f(x) = ax2 + 2bxy + cy2

quadratic

+dx + ey

linear

+ f
⏟

constant

f(x) = ax2 + 2bxy + cy2
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Quadratic Forms
Relationship with matrices and eigenvalues

A function  is a quadratic form if it is a polynomial with terms of all degree 
two:





We can rewrite this in matrix form:








f : ℝ2 → ℝ

f(x) = ax2 + 2bxy + cy2 .

f(x, y) = [x y] [a b
b c] [x

y]
f(x) = x⊤Ax
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Quadratic Forms
Relationship with matrices and eigenvalues

Consider a quadratic form:








The matrix  is always symmetric, so it is diagonalizable!


, where  is diagonal.


f(x, y) = [x y] [a b
b c] [x

y]
f(x) = x⊤Ax

A ∈ ℝ2×2

A = QΛQ⊤ Λ ∈ ℝd×d
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Quadratic Forms
Relationship with matrices and eigenvalues

The matrix  is always symmetric, so it is diagonalizable!


, where  is diagonal.





, where .


A ∈ ℝ2×2

A = QΛQ⊤ Λ ∈ ℝd×d

⟹ f(x) = x⊤Ax = x⊤QΛQ⊤x

⟹ x⊤Λx x = Q⊤x

Λ = [λ1 0
0 λ2]
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Quadratic Forms
Relationship with matrices and eigenvalues

, where  is diagonal.





There are three possibilities:


1.  and  are both positive (positive definite).


2.  or  is zero, and the other is positive (positive semidefinite).


3.  or  is negative (indefinite).

A = QΛQ⊤ Λ ∈ ℝd×d

Λ = [λ1 0
0 λ2]

λ1 λ2

λ1 λ2

λ1 λ2
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Quadratic Forms
Example: positive definite

Example: 





Eigendecomposition:





so .

f(x, y) = [x y] [ 2 −1
−1 2 ] [x

y]

[ 2 −1
−1 2 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [3 0
0 1] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [3 0
0 1]
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Quadratic Forms
Example: positive semidefinite

Example: 





Eigendecomposition:





so .

f(x, y) = [x y] [ 1 −1
−1 1 ] [x

y]

[ 1 −1
−1 1 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [2 0
0 0] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [2 0
0 0]

x1-axis x2-axis f(x1, x2)-axis descent start
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Quadratic Forms
Example: indefinite

Example: 





Eigendecomposition:





so .

f(x, y) = [x y] [ 1 −2
−2 1 ] [x

y]

[ 1 −2
−2 1 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [3 0
0 −1] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [3 0
0 −1]

x1-axis x2-axis f(x1, x2)-axis descent start
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Quadratic Forms
Example: indefinite

x1-axis x2-axis f(x1, x2)-axis descent start
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Quadratic Forms
Example: indefinite

x1-axis x2-axis f(x1, x2)-axis descent start
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Quadratic Forms
Example: indefinite

x1-axis x2-axis f(x1, x2)-axis descent start
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Least Squares
Example of quadratic form

Consider the familiar function we’ve been thinking about:





.


The quadratic form  is positive semidefinite!

f(w) = ∥Xw − y∥2

(Xw − y)⊤(Xw − y) = w⊤(X⊤X)w − 2w⊤(X⊤y) + y⊤y

w⊤(X⊤X)w
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Gradient Descent
Preview

Λ = [3 0
0 1] Λ = [2 0

0 0] Λ = [3 0
0 −1]

x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html


Recap



Lesson Overview

Linear dynamical systems example. Motivation for eigendecomposition as a 
way to make repeated matrix multiplication easier.


Eigendecomposition. Definition of eigenvectors, eigenvalues.


Eigendecomposition and SVD. The eigendecomposition drops out of the SVD.


Spectral Theorem. Symmetric matrices are always diagonalizable.


Positive semidefinite matrices/positive definite matrices. Definition and 
some visual examples through the corresponding quadratic forms.
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Lesson Overview
Big Picture: Least Squares

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls2_1.html
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Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
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