By: Samuel Deng

Math for Machine Learning Week 2.2: Eigendecomposition and PSD Matrices

Logistics & Announcements

- · $HM(2)$: Pue: $any 18, next Times.$ \cdot Hw \cup . Rue: July 11, tomorrow.
	- OFFICE HAPS SPM-SPM (ZOOM)

"BREAUS. & minutes = 16 min. total.

Lesson Overview

- **Linear dynamical systems example.** Motivation for eigendecomposition as a way to make repeated matrix multiplication easier.
- **Eigendecomposition.** Definition of eigenvectors, eigenvalues.
- **Eigendecomposition and SVD.** The eigendecomposition drops out of the SVD.
- **Spectral Theorem.** Symmetric matrices are always diagonalizable.
	- **Positive semidefinite matrices/positive definite matrices.** Definition and some visual examples through the corresponding quadratic forms.

Lesson Overview Big Picture: Least Squares

Lesson Overview Big Picture: Gradient Descent

 x 1-axis x 2-axis $f(x1, x2)$ -axis \rightarrow descent \rightarrow start

 $x1$ -axis $x2$ -axis $f(x1, x2)$ -axis \rightarrow descent \rightarrow start

 $x1$ -axis $x2$ -axis $f(x1, x2)$ -axis \rightarrow descent of start

Least Squares A Quick Review

Regression Setup

 $\boldsymbol{0}$ $\boldsymbol{$

$$
\mathbf{X} = \begin{bmatrix} \uparrow \\ \mathbf{X}_1 & \dots & 1 \\ \downarrow & & \end{bmatrix}
$$

̂

Unknown: Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1, ..., w_d$. Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + ... + w_d x_{id} \in \mathbb{R}$. Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or: ↑ ↑ **x**¹ … **x***^d* ↓ ↓ = ← \mathbf{x}_1^{\top} → $\ddot{\bullet}$ ← \mathbf{x}_n^{\top} → . $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1,...,w_d$ $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$ ̂ $\mathbf{X}\mathbf{w}=\hat{\mathbf{y}}\approx\mathbf{y}$.

Regression Setup

Choose a weight vector that "fits the training data": $\hat{\textbf{w}} \in \mathbb{R}^{d}$ such that \textbf{w} for $i \in [n]$, or:

To find $\hat{\mathbf{w}}$, we follow the *principle of least squares.* ̂

Xw ̂

$$
=\hat{\mathbf{y}}\approx\mathbf{y}.
$$

$$
\left\{\begin{array}{c}\hat{\mathbf{w}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X} \mathbf{w} - \mathbf{y}\|^2\\end{array}\right\}
$$

<u>Goal:</u> For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^{\top} \mathbf{x}_i = w_1 x_{i1} + ... + w_d x_{id} \in \mathbb{R}$. $i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \dots + w_d x_{id} \in \mathbb{R}$ ̂ $\in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$

SVD and Pseudoinverse Review

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, and let $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top$ be its full SVD.

If
$$
n \ge d
$$
, the matrix $(\Sigma^\top \Sigma)^{-1} \Sigma^\top \in \mathbb{R}^{d \times n}$ is matrix Σ , denoted $\Sigma^+ := (\Sigma^\top \Sigma)^{-1} \Sigma^\top$
If $d > n$, the matrix $\Sigma^+ := \Sigma^\top (\Sigma \Sigma^\top)^{-1}$ is

 M ore generally, the matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with full SVD $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top$ has the *(Moore-* P enrose) *pseudoinverse*: $X^+ := V\Sigma^+ U^\top$.

 $X = (U\Sigma V^T)^{-1} = (V^T)^{-1}\Sigma^{-1}U^{-1}$

is the *(Moore-Penrose) pseudoinverse* of the the pseudoinverse. \leftarrow hym-mms. $\sum \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{$ $= 7$

Least Squares: SVD, Perspective
\n United Picture \n $W = d$ and rank(X) = d... \n $W = d$ and rank(X) = n... \n $$

S: SVD, Perspective
\n*f n > d* and rank(X) = d...
\nWe approximate by least squares:
\n
$$
\hat{w} = \arg \min_{w \in \mathbb{R}^d} ||Xw - y||^2
$$
.
\nChoose
\n
$$
\hat{w} = (X^TX)^{-1}X^Ty = X^+y
$$
,
\nthe best approximate solution:
\n
$$
||X\hat{w} - y||^2 \le ||Xw - y||^2
$$
.
\n
$$
||X\hat{w} - y||^2 \le ||Xw - y||^2
$$
.
\n
$$
||\hat{w}||^2 \le ||w||^2
$$

Least Squares: SVD Perspective Unified Picture

We want to solve Z

We can solve exactly, but there are infinitely many solutions.

> $y = 3$ $d=2$

 $\begin{array}{c} 2 \\ 1.5 \\ 1 \end{array}$

 0.5

 -1

 -1.5

$$
\hat{\mathbf{w}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.
$$

$$
Xw = y. Use \hat{w} = X^+y!
$$

 σ .

If $n < d$ and $\text{rank}(\mathbf{X}) = n...$

x1 x2 u1 u2 y - ^y [~y - ^y](https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html) ~y - y y ^y ~y x1 x2 [u1](https://samuel-deng.github.io/math4ml_su24/story_ls/ls2_1.html) u2 y

If $n > d$ and $\text{rank}(\mathbf{X}) = d...$

We approximate by least squares:

Singular Value Decomposition (SVD) Matrix Decompositions B IT APPLIES TO ANY MATRIX **V**[⊤] **X** = **U Σ** . $\overline{}$ $\overline{}$ $\overline{}$ \overline{a} *n*×*d n*×*n d*×*d n*×*d*

is orthogonal, i.e. $\mathbf{U}^{\top}\mathbf{U} = \mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$. \mathbf{U} is orthogonal, i.e. $\mathbf{U}^\top \mathbf{U} = \mathbf{U} \mathbf{U}^\top = \mathbf{I}$

is orthogonal, i.e. $V'V = VV' = I$. \mathbf{V} is orthogonal, i.e. $\mathbf{V}^\top \mathbf{V} = \mathbf{V} \mathbf{V}^\top = \mathbf{I}$

the diagonal. $\mathrm{rank}(\mathbf{X})$ is equal to the number of $\sigma_{i} > 0.$

is a diagonal matrix with **singular values** $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_d \geq 0$ on $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times d}$ is a diagonal matrix with <mark>singular values</mark> $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_d \geq 0$

 $r:56, x0$

What other matrix decompositions are out there?

Eigendecomposition Motivation: Linear Dynamical System

Population Change Example of a linear dynamical system

Consider the following example.

Suppose that

- of those who start a year in California, 60% stay in California and 40% move out of California by the end of the year.
- of those who start a year outside California, 95% stay out and 5% move to California by the end of the year.

If we know how many people are in California x_{in} and how many people are outside of California x_{out} , then we can find the number of people inside and outside of California at the end of the year:

$$
\frac{\text{# inside}}{\text{# outside}} = 0.6x_{in} + 0.05x_{out}
$$
\n
$$
\frac{\text{H outside}}{\text{# outside}} = 0.4x_{in} + 0.95x_{out}
$$

Computational Linear Algebra (Fall 2022)

Consider the following example.

Suppose that

- of those who start a year in California, 60% stay in California and 40% move out of California by the end of the year.
- of those who start a year outside California, 95% stay out and 5% move to California by the end of the year.

We can model this with a *transition matrix*

and a system of linear equations:

$$
\mathbf{A} = \begin{bmatrix} in \rightarrow in & out \rightarrow in \\ in \rightarrow out & out \rightarrow out \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}
$$

$$
\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{in} & \rightarrow \mathbf{in} \\ \mathbf{in} & \rightarrow \mathbf{out} \end{bmatrix} \quad \mathbf{out} \quad \mathbf{
$$

Computational Linear Algebra (Fall 2022)

Consider the transition matrix

$$
\mathbf{A} = \begin{bmatrix} in \rightarrow in & out \rightarrow in \\ in \rightarrow out & out \rightarrow out \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}
$$

with a corresponding system of linear equations:

How to find the number of people inside/outside of California after years have passed? t

$$
\mathbf{A}\mathbf{x} = \begin{bmatrix} \text{in} & \rightarrow \text{in} \\ \text{in} & \rightarrow \text{out} \end{bmatrix} \text{out} \rightarrow \text{in} \mathbf{x}_{int} \end{bmatrix} = \begin{bmatrix} x_{in} \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix}.
$$

The vector $\mathbf{A}\mathbf{x} \in \mathbb{R}^2$ gives the number of people inside and outside of California after a year has passed, from the initial populations in $\mathbf{x} \in \mathbb{R}^2$.

Consider the transition matrix

How to find the number of people inside/outside of California after years have t passed?

$$
\mathbf{A} = \begin{bmatrix} in \rightarrow in & out \rightarrow in \\ in \rightarrow out & out \rightarrow out \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}
$$

with a corresponding system of linear equations:

$$
\mathbf{A}\mathbf{x} = \begin{bmatrix} \n\text{in} & \rightarrow \text{in} \\ \n\text{in} & \rightarrow \text{out} \n\end{bmatrix} \quad \text{out} \quad \rightarrow \text{in} \quad \begin{bmatrix} \nx_{in} \\ \nx_{out} \n\end{bmatrix} = \begin{bmatrix} \n0.6 & 0.05 \\ \n0.4 & 0.95 \n\end{bmatrix} \begin{bmatrix} \nx_{in} \\ \nx_{out} \n\end{bmatrix}.
$$

The vector $\mathbf{A} \mathbf{x}^{(0)} \in \mathbb{R}^2$ gives the number of people inside and outside of California after a year has passed, from the initial populations in $\mathbf{x}^{(0)}\in\mathbb{R}^2.$

$$
\mathbf{x}^{(1)} = \mathbf{A}\mathbf{x}^{(0)}
$$
\n
$$
\mathbf{x}^{(2)} = \mathbf{A}\mathbf{x}^{(1)} = \mathbf{A}\mathbf{A}\mathbf{x}^{(0)} = \mathbf{A}^2\mathbf{x}^{(0)}
$$
\n
$$
\vdots
$$
\n
$$
\mathbf{x}^{(t)} = \mathbf{A}\mathbf{A} \dots \mathbf{A} \quad \mathbf{x}^{(0)} = \mathbf{A}^t\mathbf{x}^{(0)}
$$
\n
$$
t \text{ products}
$$

Concretely, suppose there are 300 million outside of California and 40 million inside of California at the start of a year. Then,

What are the populations inside and outside of CA after years? t

$$
\mathbf{A}\mathbf{x} = \begin{bmatrix} \text{in} & \rightarrow \text{in} \\ \text{in} & \rightarrow \text{out} \end{bmatrix} \text{out} \rightarrow \text{in} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix}
$$

$$
\mathbf{x}^{(0)} = \begin{bmatrix} 40 \\ 300 \end{bmatrix}
$$

$$
\mathbf{x}^{(t)} = \mathbf{A}^t \mathbf{x}^{(0)} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^t \begin{bmatrix} 40 \\ 300 \end{bmatrix}
$$

Computational Linear Algebra (Fall 2022)

What are the populations inside and outside of CA after years? t

${\bf x}^{(t)} = {\bf A}^t {\bf x}^{(0)} =$

Try calculating this…

 \mathbf{I} 0.6 0.05 0.4 0.95] …
……

0.6 0.05 0.4 0.95] *t* \mathbf{I} 40 300]

0.6 0.05 0.4 0.95] [0.6 0.05 0.4 0.95] [40 300]

Population Change Easy computation

Assume I gave you a couple of vector vectors have the properties:

$$
\mathbf{w}_{\text{spically}}.
$$
\n
$$
\mathbf{w}_{\text{spically}} = (1,8) \text{ and } \mathbf{v} = (-1,1).
$$
\nThese two

Au ⁼ [A **v** = $|$ 0.6 0.05 0.4 0.95] [

Population Change Easy computation

Assume I gave you a couple of vectors, $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1).$ These two vectors have the properties: Now, the repeated multiplication looks like: $Au =$ 0.6 0.05 0.4 0.95] 1 $\begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 8] A **v** = \vert 0.6 0.05 0.4 0.95] −1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ = 11 20 [−1 $1 \mid$ **A***t* $\mathbf{u} = \begin{bmatrix} \end{bmatrix}$ 0.6 0.05 0.4 0.95] *t* $\overline{}$ 1 $\begin{bmatrix} 1 \\ 8 \end{bmatrix} = (1)^t$ \mathbb{I} 1 $\begin{bmatrix} 1 \\ 8 \end{bmatrix} =$ 1 8] **A***t* $\mathbf{v} =$ 0.6 0.05 0.4 0.95] *t* \mathbf{I} −1 $\begin{pmatrix} 1 \\ 1 \end{pmatrix} =$ 11 $\overline{20}$) *t* \mathbf{I} −1 $1 \mid$

$$
Atu = \begin{bmatrix} 0.6 & 0.03 \\ 0.4 & 0.93 \end{bmatrix}
$$

Atv =
$$
\begin{bmatrix} 0.6 & 0.05 \end{bmatrix}
$$

$$
V = \begin{bmatrix} 0.4 & 0.95 \end{bmatrix}
$$

Assume I gave you a couple of vectors, $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1).$ These two vectors have the properties: $Au =$ 0.6 0.05 0.4 0.95] 1 $\begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 8] A **v** = \vert 0.6 0.05 0.4 0.95] −1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ = 11 20 [−1 $1 \mid$

Now, the repeated multiplication looks like:

$$
\mathbf{A}^{t}\mathbf{u} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \begin{bmatrix} 1 \\ 8 \end{bmatrix} =
$$

$$
\mathbf{A}^{t}\mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{pmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{pmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \mathbf{v} = \begin{bmatrix} 0.6 & 0
$$

For $u = (1,8)$ and $v = (-1,1)$, Notice that \bf{u},\bf{v} are a basis for $\mathbb{R}^2.$ Then, if we rewrite $\bf{x}^{(0)}$ as a linear combination of \bf{u} and \bf{v} , i.e. $\mathbf{x}^{(0)} = a\mathbf{u} + b\mathbf{v}$, A^t **u** = **u** A^t **v** = $($ 11 $\overline{20}$ *t* **v**

we can obtain $\mathbf{x}^{(t)}$ with the following computation:

$$
\mathbf{x}^{(t)} = \mathbf{A}^t \mathbf{x}^{(0)} = \mathbf{A}^t (a\mathbf{u} + b\mathbf{v}) = a\mathbf{A}^t \mathbf{u} + b\mathbf{A}^t \mathbf{v} = a\mathbf{u} + b(11/20)^t \mathbf{v}.
$$

For $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$,

Notice that \bf{u},\bf{v} are a basis for $\mathbb{R}^2.$ Then, if we rewrite $\bf{x}^{(0)}$ as a linear combination of \bf{u} and \bf{v} , i.e. $\mathbf{x}^{(0)}$

we can obtain $\mathbf{x}^{(t)}$ with the following computation:

$$
=a\mathbf{u}+b\mathbf{v},
$$

In matrix form:

$$
Atv = u
$$

$$
Atv = \left(\frac{11}{20}\right)tv
$$

$$
\mathbf{x}^{(t)} = \mathbf{A}^t \mathbf{x}^{(0)} = \mathbf{A}^t (a\mathbf{u} + b\mathbf{v}) = a\mathbf{A}^t \mathbf{u} + b\mathbf{A}^t \mathbf{v} = a\mathbf{u} + b(11/20)^t \mathbf{v}.
$$

$$
\begin{bmatrix}\n\uparrow & \uparrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow\n\end{bmatrix}\n\begin{bmatrix}\n1 & 0 & \downarrow \\
0 & (11/20)^t & \downarrow \\
0 & \downarrow\n\end{bmatrix}\n\begin{bmatrix}\na \\
b\n\end{bmatrix} \rightarrow \begin{bmatrix}\na \\
\downarrow\n\end{bmatrix}\n\begin{bmatrix}\n\downarrow \\
\downarrow\n\end{bmatrix}
$$

$$
\begin{bmatrix}\n1 & 0 & a \\
0 & (11/20)^t & b\n\end{bmatrix}\n\begin{bmatrix}\na \\
b\n\end{bmatrix}
$$
\n
$$
= a\mathbf{u} + b\mathbf{v}.
$$
\n
$$
\begin{bmatrix}\n1 & 1 & a \\
a & v & b \\
b & v & v\n\end{bmatrix}\n\begin{bmatrix}\na \\
b\n\end{bmatrix}
$$

 ${\bf x}^{(0)} =$

For $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$,

where

 ${\bf x}^{(t)} =$

 ${\bf x}^{(0)} =$

Writing $\mathbf{x}^{(0)}$ in matrix form as well, we have:

Because \bf{u} and \bf{v} are linearly independent, $\bf{V} \in \mathbb{R}^{2 \times 2}$ has $\mathrm{rank}(\bf{V}) = 2,$ so we can invert:

 \mathbf{I} *a*

$$
\begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}
$$

 ${\bf x}^{(0)} = a{\bf u} + b{\bf v}$.

$$
\begin{aligned}\n\uparrow & \uparrow \\
\mathbf{u} & \mathbf{v} \\
\downarrow & \downarrow\n\end{aligned}\n\begin{bmatrix}\na \\
b\n\end{bmatrix} = \mathbf{V}\begin{bmatrix}\na \\
b\n\end{bmatrix}.
$$
\n
$$
\begin{aligned}\n(\mathbf{V}) &= 2, \text{ so we can invert:} \\
\begin{bmatrix}\na \\
b\n\end{bmatrix} &= \mathbf{V}^{-1}\mathbf{x}^{(0)}.
$$

$$
V^{-1} = \begin{bmatrix} I & J \\ M & V \\ I & I \end{bmatrix}^{-1}
$$

For $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$,

where

Writing $\mathbf{x}^{(0)}$ in matrix form as well, we have:

Because \bf{u} and \bf{v} are linearly independent, $\bf{V} \in \mathbb{R}^{2 \times 2}$ has $\mathrm{rank}(\bf{V}) = 2$, so we can invert:

Therefore,

$$
\begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}
$$

 $\mathbf{x}^{(0)} = a\mathbf{u} + b\mathbf{v}$.

$$
\begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V}^{-1} \mathbf{x}^{(0)}.
$$

$$
\begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V} \begin{bmatrix} a \\ b \end{bmatrix}.
$$

 $\overline{}$

 ${\bf x}^{(t)} =$

 ${\bf x}^{(0)} =$

$$
\mathbf{x}^{(t)} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix}^{-1} \mathbf{x}^{(t)} = \mathbf{V} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \mathbf{V}^{-1} \mathbf{x}^{(0)}
$$

 $\mathbf{x}^{(t)} = \mathbf{V}$

 $For u = (1,8)$ and $v = (-1,1)$,

Population Change Comparison of hard and easy computation

Hard computation:

$A[s] = [s]$

$$
\mathbf{x}^{(t)} = \mathbf{A}^t \mathbf{x}^{(0)}
$$

For initial populations $\mathbf{x}^{(0)} = (40, 300)$, the population after *t* years is: $\mathbf{x}^{(0)} = (40, 300)$

$$
\mathbf{x}^{(t)} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^t \begin{bmatrix} 40 \\ 300 \end{bmatrix}.
$$

Easy computation:

$$
\mathbf{x}^{(t)} = \mathbf{V} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \mathbf{V}^{-1} \mathbf{x}^{(0)}
$$

For initial populations $\mathbf{x}^{(0)} = (40, 300)$, the population after t years is: $\mathbf{x}^{(0)} = (40, 300)$

$$
\mathbf{x}^{(t)} = \begin{bmatrix} 1 & -1 \\ 8 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} 1/9 & 1/9 \\ -8/9 & 1/9 \end{bmatrix} \begin{bmatrix} 40 \\ 300 \end{bmatrix}.
$$

Diagonal Matrices Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy:

1 0 0 (11/20) *t*

$$
\begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & (11/20) \end{bmatrix}^t.
$$

Diagonal Matrices Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy:

But this matrix depended on a basis of vectors that we got out of nowhere:

$$
\begin{bmatrix} 1 & 0 \\ 0 & (11/20) \end{bmatrix}^t
$$

$$
\begin{array}{|l|l|}\n\hline\n\mathbf{u} = (1,8) \text{ and } \mathbf{v} = (-1,1) \\
\hline\n\text{As (and how) can we obtain such nice bases?}\n\hline\n\end{array}
$$

ln what case

$$
\begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix}
$$

Eigendecomposition Intuition and Definition

Eigenvectors and eigenvalues Intuition \rightarrow T_A : $R^d \rightarrow R^d$

Let $[A \in \mathbb{R}^{d \times d}]$ be a square matrix.

This represents a linear transformation from \mathbb{R}^d to \mathbb{R}^d .

Eigenvectors are the vectors in \mathbb{R}^d that just get scaled by A .

Eigenvalues are how much each eigenvector gets scaled.

Eigenvectors/eigenvalues are properties of square matrices!

Eigenvectors and eigenvalues Definition

Let $A \in \mathbb{R}^{d \times d}$ be a *square* matrix. **A** ∈ ℝ*d*×*^d*

A nonzero vector $\mathbf{v} \in \mathbb{R}^d$ is an *eigenvector* if there exists a scalar $\lambda \in \mathbb{R}$ such that $\mathbf{v} \in \mathbb{R}^d$

$$
(Av = \lambda v)
$$

The scalar λ is the *eigenvalue* associated with the eigenvector **v**.

Eigenvectors/eigenvalues are properties of square matrices!

Eigenvectors and eigenvalues Example

Consider the matrix $A \in \mathbb{R}^{2 \times 2}$ given by $A \in \mathbb{R}^{2 \times 2}$

$$
\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}.
$$

What happens to the vector $\mathbf{v}_1 = (1,1)$?

Consider the matrix $A \in \mathbb{R}^{2 \times 2}$ given by $A = \begin{bmatrix} 1/2 & 3/2 \\ 0 & 2 \end{bmatrix}$. $A \in \mathbb{R}^{2 \times 2}$ −1/2 5/2 $0 \t 2 \t 1$

What happens to the vector $\mathbf{v}_2 = (1,0)$?

$$
\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 0 \end{bmatrix}
$$

Consider the matrix $A \in \mathbb{R}^{2 \times 2}$ given by $A = \begin{bmatrix} 1/2 & 3/2 \\ 0 & 2 \end{bmatrix}$. $A \in \mathbb{R}^{2 \times 2}$ −1/2 5/2 $0 \t 2 \t 1$

What happens to the vector $\mathbf{v}_3 = (0,1)$?

$$
\begin{bmatrix}-i_2 & s_2\\ 0 & 2\end{bmatrix}\begin{bmatrix}0\\ 1\end{bmatrix}=\begin{bmatrix}s_2\\ 2\end{bmatrix}
$$

Consider the matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ given by

$$
\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}.
$$

Eigenvectors (with eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -1/2$):

Not an eigenvector:

$$
\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$

$$
\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 0 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5/2 \\ 2 \end{bmatrix}
$$

Eigenvectors and eigenvalues

Example

 $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,0)$ are linearly independent $-$ they form a basis for $\mathbb{R}^2.$

 $A = |$

We can write any $\mathbf{x} \in \mathbb{R}^2$ in terms of \mathbf{v}_1 and \mathbf{v}_2 : $\mathbf{x} \in \mathbb{R}^2$ in terms of \mathbf{v}_1 and \mathbf{v}_2

$$
\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2.
$$

$$
\mathbf{x} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}
$$

 $-1/2$ 5/2

 $\begin{array}{ccc} 0 & 2 \end{array}$

Repeated multiplication:

$$
\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}
$$

and $v_2 = (1,0)$ are linearly independent *eigenvectors* — they form a basis for \mathbb{R}^2 . Their *eigenvalues* are $\lambda_1=2$ and $\lambda_2=-1/2$. **and** $**v**₂ = (1,0)$ \mathbb{R}^2 . Their eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = -1/2$

We can write any $\mathbf{x} \in \mathbb{R}^2$ in terms of \mathbf{v}_1 and \mathbf{v}_2 :

$$
\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2.
$$
\n
$$
\mathbf{x} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}
$$

$$
\mathbf{A}^t \mathbf{x} = \mathbf{A}^t (a\mathbf{v}_1 + b\mathbf{v}_2) = a\mathbf{A}^t \mathbf{v}_1 + b\mathbf{A}^t \mathbf{v}_2 = a2^t \mathbf{v}_1 + b\left(-\frac{1}{2}\right)
$$

Repeated multiplication:

$$
\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}
$$

 $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,0)$ are linearly independent *eigenvectors* $-$ they form a basis for \mathbb{R}^2 . Their *eigenvalues* are $\lambda_1 = 2$ and $\lambda_2 = -1/2$.

We can write any $\mathbf{x} \in \mathbb{R}^2$ in terms of \mathbf{v}_1 and \mathbf{v}_2 : $\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2$ $\mathbf{x} =$ ↑ ↑ \mathbf{v}_1 \mathbf{v}_2 ↓ ↓ **V** $\overline{}$ *a* $\begin{array}{c} \begin{array}{c} a \\ b \end{array} \end{array}$ *a* $\begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V}^{-1}\mathbf{x}$

$$
\mathbf{A}^t \mathbf{x} = \mathbf{A}^t (a\mathbf{v}_1 + b\mathbf{v}_2) = a\mathbf{A}^t \mathbf{v}_1 + b\mathbf{A}^t \mathbf{v}_2 = a2^t \mathbf{v}_1 + b\left(-\frac{1}{2}\right)
$$

 ${\bf v}_1=(1,1)$ and ${\bf v}_2=(1,0)$ are linearly independent *eigenvectors —* they form a basis for $\mathbb{R}^2.$ Their *eigenvalues* are $\lambda_1=2$ and $\lambda_2= 1/2.$ We can write any $\mathbf{x} \in \mathbb{R}^2$ in terms of \mathbf{v}_1 and \mathbf{v}_2 :

$$
\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}
$$

 $A =$

$$
\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2.
$$
\n
$$
\mathbf{x} = \begin{bmatrix} 1 & 1 \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \implies \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V}^{-1}\mathbf{x}
$$
\n
$$
\mathbf{v} = \mathbf{V}^{-1}\mathbf{x}
$$
\n
$$
\mathbf{v} = \mathbf{V}^{-1}\mathbf{V}^{-
$$

Repeated multiplic

$$
\mathbf{x} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \implies \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V}^{-1}\mathbf{x}
$$

ation:

$$
\mathbf{A}^t \mathbf{x} = \mathbf{A}^t (a\mathbf{v}_1 + b\mathbf{v}_2) = a\mathbf{A}^t \mathbf{v}_1 + b\mathbf{A}^t \mathbf{v}_2 = a2^t \mathbf{v}_1 + b \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}^t \mathbf{v}_2 \implies \mathbf{A}^t \mathbf{x} = \mathbf{V} \begin{bmatrix} 2^t & 0 \\ 0 & (-1/2)^t \end{bmatrix} \mathbf{V}^{-1}\mathbf{x}
$$

 $A^tX = A^t(aV_1 + bV_2) = aA^tV_1 + bA^tV_2 = a2^t$

Single multiplication: $\mathbf{A}\mathbf{x} = \mathbf{V}$ 2 0 $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$

Repeated multiplication:

$$
= \mathbf{V} \begin{bmatrix} 2 & 0 \\ 0 & -1/2 \end{bmatrix} \mathbf{V}^{-1} \mathbf{x}
$$

1, where $\Lambda \in \mathbb{R}^{2 \times 2}$ is diagonal.

$$
\mathbf{v}_1 + b \left(-\frac{1}{2} \right)^t \mathbf{v}_2 \implies \mathbf{A}^t \mathbf{x} = \mathbf{V} \begin{bmatrix} 2^t & 0 \\ 0 & (-1/2)^t \end{bmatrix} \mathbf{V}^{-1}
$$

Eigendecomposition Definition

eigenvectors

$$
\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{b
$$

Prop (Eigendecomposition of a diagonalizable matrix). Let $\mathbf{A}\in\mathbb{R}^{d\times d}$ be a matrix with d linearly independent

Eigendecomposition Example

$A = \begin{bmatrix} 1/2 & 3/2 \\ 0 & 2 \end{bmatrix}$ has the eigenvectors $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,0)$: and $Av_2 = -v_2$. −1/2 5/2 $\begin{bmatrix} 1/2 & 3/2 \\ 0 & 2 \end{bmatrix}$ has the eigenvectors $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,0)$ $\mathbf{A}\mathbf{v}_1 = 2\mathbf{v}_1$ and $\mathbf{A}\mathbf{v}_2 = -\frac{1}{2}$ 2 **v**₂

 \mathbf{v}_1 and \mathbf{v}_2 are *linearly independent*, so \mathbf{A} is *diagonalizable* with *eigendecomposition:*

\mathbf{I} −1/2 5/2 $\begin{bmatrix} 1/2 & 3/2 \\ 0 & 2 \end{bmatrix} =$

$$
\mathbf{A} = \mathbf{Q}\Lambda \mathbf{Q}^{-1}
$$

$$
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1/2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}
$$

Eigendecomposition Example

 \mathbf{v}_1 and \mathbf{v}_2 are *linearly independent*, so \mathbf{A} is *diagonalizable* with *eigendecomposition:*

Question: Butwhendo (square) **A** = **QΛQ**−¹ \mathbf{I} −1/2 5/2 $\begin{bmatrix} 1/2 & 3/2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

$$
\frac{\text{Sum 97}}{\text{Sum 1}} \cdot \frac{\text{Sum 100}}{\text{Sum 2}} \cdot \frac{\text{Sum 32}}{\text{Sum 40}} = \frac{(1,1) \text{ and } v_2 = (1,0):}{\text{Sum 500}} = \frac{1}{2}
$$
\n
$$
\frac{\text{Equation 100}}{\text{Equation 2}} = \frac{1}{2}
$$
\n
$$
\frac{1}{1} \cdot \frac{1}{0} \cdot \frac{2}{0} = \frac{1}{1} \cdot \frac{1}{0} \cdot \frac{2}{0} = \frac{1}{2}
$$
\n
$$
\frac{1}{0} \cdot \frac{1}{0} \cdot \frac{1}{0} = \frac{1}{2}
$$
\n
$$
\frac{1}{0} \cdot \frac{1}{0} \cdot \frac{1}{0} = \frac{1}{2}
$$
\n
$$
\frac{1}{0} \cdot \frac{1}{0} = \frac{1}{2}
$$

Eigendecomposition Connection with SVD

Eigendecomposition only applies to *square* matrices $A \in \mathbb{R}^{\text{a} \times \text{a}}$.

The SVD applies to any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$. $\mathbf{X} \in \mathbb{R}^{n \times d}$

 $R^d \rightarrow R^d$

 $A \in \mathbb{R}^{d \times d}$

 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\mathsf{T}$

The SVD applies to any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$. $\mathbf{X} \in \mathbb{R}^{n \times d}$

- Consider the square matrix $A = X'X \in \mathbb{R}^{d \times d}$. By the SVD:
	- - -

$A = X^T X$ → **1** = **VΣ**⊤**U**⊤**UΣV**[⊤] = **VΣ**⊤**ΣV**[⊤]

 $\mathbf{A} = \mathbf{X}^\mathsf{T} \mathbf{X} \in \mathbb{R}^{d \times d}$

 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\mathsf{T}$.

$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top$. $\overline{}$ *d*×*d* **Σ**⊤ ⏟ **Σ** *d*×*d d*×*d* **V**[⊤] \sum $\overline{}$ *d*×*d* **Λ** \overline{a} *d*×*d* **Q**−¹ $\overline{}$ *d*×*d*

Theorem (SVD and Eigendecomposition). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix with values with corresponding eigenvalue $\lambda_i = \sigma_i^2,$ and the eigendecomposition of ${\bf A}$ is: $\text{rank}(\mathbf{X}) = r$ and $\mathbf{A} = \mathbf{X}_\P^{\top}\mathbf{X} \in \mathbb{R}^{d \times d}$. Let the $\text{{SVD of }} \bar{\mathbf{X}} = \mathbf{U} \mathbf{\Sigma} \mathbf{X}^{\top}$

where $\Lambda \in \mathbb{R}^{d \times d}$ is the diagonal matrix with entries $\lambda_i = \sigma_i^2$ for $i \in [d].$

- $\lambda_i = \sigma_i^2$, and the eigendecomposition of \mathbf{A}
	- , $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^\top$
- $\boldsymbol{\Lambda} \in \mathbb{R}^{d \times d}$ is the diagonal matrix with entries $\lambda_i = \sigma_i^2$ for $i \in [d]$

linearly independent eigenvectors $-$ this is a case where A is diagonalizable! $\mathbf{A} = \mathbf{X}^{\mathsf{T}}\mathbf{X}$ (for *any* matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, we know that we have d **A**

Moreover, the diagonalization looks like:

where $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ is the SVD. $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top$

 $E^{\{R^{\text{d}x\}}$

Positive Semidefinite Matrices Definition and Connections

Positive Semidefinite (PSD) Matrices First definition

Note: If you've seen PSD matrices before, this isn't the usual definition (but it's equivalent, as we'll see in a bit).

A square matrix $A \in \mathbb{R}^{d \times d}$ is *positive semidefinite (PSD)* if there exists a matrix

Positive Semidefinite (PSD) Matrices Symmetry of PSD Matrices

A square matrix $A \in \mathbb{R}^{d \times d}$ is **positive semidefinite (PSD)** if there exists a matrix $X \in \mathbb{R}^{n \times d}$ such that: **A** ∈ ℝ*d*×*^d* $\mathbf{X} \in \mathbb{R}^{n \times d}$

Prop (Symmetry of PSD matrices). All positive semidefinite matrices are symmetric. If $A \in \mathbb{R}^{d \times d}$ is PSD, then $A \in \mathbb{R}^{d \times d}$

- $\mathbf{A} = \mathbf{X}^\mathsf{T} \mathbf{X}$. $A^T = (x^T x)^T = x^T x = A$.
	-
	- . $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$

Positive Semidefinite (PSD) Matrices Example

$A = \begin{bmatrix} 3/2 & 5/2 \\ 3/2 & 5/2 \end{bmatrix}$ is positive semidefinite. 5/2 3/2 3/2 5/2]

Positive Semidefinite (PSD) Matrices Example

 $\mathbf{A} = \begin{bmatrix} 3/2 & 3/2 \\ 3/2 & 5/2 \end{bmatrix}$ is positive semidefinite. 5/2 3/2 $3/2$ $5/2$

 $X =$

Its "square root" is the matrix

To verify:

.

$$
\mathbf{X}^{\mathsf{T}}\mathbf{X} = \begin{bmatrix} \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{2}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}
$$

$$
\begin{bmatrix} \frac{2}{\sqrt{2}} & \frac{2}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 5/2 & 3/2 \\ 3/2 & 5/2 \end{bmatrix} = A
$$

PSD Matrices and Eigendecomposition Connection to eigenvalues

then $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \dot{\mathbf{V}}^\top$

with orthonormal eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_d$

and nonnegative eigenvalues $\lambda_1 = \sigma_1^2, \ldots, \lambda_d = \sigma_d^2$

The reverse direction is also true!

PSD Matrices and Eigendecomposition Second definition

A square matrix $A \in \mathbb{R}^{a \times a}$ is *positive semidefinite (PSD)* if A has eigenvectors forming an orthonormal basis for \mathbb{R}^d with corresponding nonnegative eigenvalues $\lambda_1, ..., \lambda_d \geq 0$.

nonnezatre ersemvalues

 $\mathbf{A} \in \mathbb{R}^{d \times d}$ is <mark>positive semidefinite (PSD)</mark> if \mathbf{A} has d \mathbb{R}^d

Positive Semidefinite (PSD) Matrices Example

It has the eigenvectors $\mathbf{v}_1 = \left(\frac{\overline{}}{\sqrt{2}}, \frac{\overline{}}{\sqrt{2}}\right)$ and $\mathbf{v}_2 = \left(\frac{\overline{}}{\sqrt{2}}, -\frac{\overline{}}{\sqrt{2}}\right)$: The eigenvectors are orthonormal and $\lambda_1, \lambda_2 \geq 0$, so $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^\top.$ 5/2 3/2 3/2 5/2] 1 2 , 1 $\frac{1}{2}$) and $\mathbf{v}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{A}\mathbf{v}_1 =$ 5/2 3/2 3/2 5/2] $1/\sqrt{2}$ $1/\sqrt{2}$ $\mathbf{A}\mathbf{v}_2 =$ 5/2 3/2 3/2 5/2]

Positive Semidefinite (PSD) Matrices Third definition

definitions in previous slides).

- A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is *positive semidefinite (PSD)* if, for any $\mathbf{x} \in \mathbb{R}^d,$. This is often taken as the definition of PSD (but it is equivalent to the other two $\mathbf{A} \in \mathbb{R}^{d \times d}$ is <mark>positive semidefinite (PSD)</mark> if, for any $\mathbf{x} \in \mathbb{R}^{d}$ **x**⊤**Ax** ≥ 0
	- $X^{T}Ax \in P$.
 $B = 1$

Positive Semidefinite (PSD) Matrices Example

$$
A = \begin{bmatrix} 5/2 & 3/2 \\ 3/2 & 5/2 \end{bmatrix}
$$
 is positive semi-

Consider any vector $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^d$. $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^d$

$$
\begin{bmatrix}\n\overline{\mathbf{x}}^T \mathbf{A} \mathbf{x} \\
\overline{\mathbf{x}}^T \mathbf{A} \mathbf{x}\n\end{bmatrix}\n\begin{bmatrix}\n\overline{x}_1 & x_2\n\end{bmatrix}\n\begin{bmatrix}\n5/2 & 3/2 \\
3/2 & 5/2\n\end{bmatrix}\n\begin{bmatrix}\nx_1 \\
x_2\n\end{bmatrix}\n=\n\begin{bmatrix}\nx_1 & x_2\n\end{bmatrix}\n\begin{bmatrix}\n(5/2)x_1 + (3/2)x_2 + (5/2)x_2 + (5
$$

Positive Semidefinite (PSD) Matrices All definitions

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is **positive semidefinite (PSD)** if… there exists $\mathbf{X} \in \mathbb{R}^{n \times a}$ such that $\mathbf{A} = \mathbf{X}^{\top} \mathbf{X}$. $A \in \mathbb{R}^{d \times d}$ $\mathbf{X} \in \mathbb{R}^{n \times d}$ such that $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X}$

all eigenvalues of ${\bf A}$ are nonnegative: $\lambda_1 \geq 0,...,\lambda_d \geq 0.$

↕

for any $\mathbf{x} \in \mathbb{R}^d$. $\mathbf{x}^\top A \mathbf{x} \geq 0$ for any $\mathbf{x} \in \mathbb{R}^d$

↕

Positive Definite (PD) Matrices All definitions

A square matrix $A \in \mathbb{R}^{d \times d}$ is **positive definite (PD)** if… $A \in \mathbb{R}^{d \times d}$

Strictly

-
- there exists *an invertible matrix* $\mathbf{X} \in \mathbb{R}^{d \times d}$ such that $\mathbf{A} = \mathbf{X}^{\intercal}\mathbf{X}.$ all eigenvalues of A are positive: $\lambda_1 > 0, \ldots, \lambda_d > 0$. $\mathbf{X} \in \mathbb{R}^{d \times d}$ such that $\mathbf{A} = \mathbf{X}^\top \mathbf{X}$ ↕ \boldsymbol{A} are positive: $\lambda_1 > 0,...,\lambda_d > 0$ ↕
	- for any $\mathbf{x} \in \mathbb{R}^d$. $\mathbf{x}^\top A \mathbf{x} > 0$ for any $\mathbf{x} \in \mathbb{R}^d$

Spectral Theorem Statement

But even more generally…

Spectral Theorem Statement

(i.e. $A^{\perp} = A$). Then, A is diagonalizable: A has an orthonormal basis of eigenvectors and an eigendecomposition

But, in this generality, λ_i can be negative!

 $A \in \mathbb{R}^{d \times d}$ **Theorem (Spectral Theorem).** Let $A \in \mathbb{R}^{d \times d}$ be a square, *symmetric* matrix $\mathbf{A}^\top = \mathbf{A}$). Then, \mathbf{A} is diagonalizable: \mathbf{A} has an orthonormal basis of d $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$. $X = U\Sigma V^T$ \leftarrow SVD work for any 11xd.

Principal Components Analysis Application of Eigendecomposition

Example: "Eigenfaces" and facial recognition

Observed: Matrix of *training images* $X \in \mathbb{R}^{n \times d}$.

 $X =$

Each row is a "flattened" image vector. Typically, each pixel is in $[0, 255]$ for grayscale images.

Images are very high-dimensional: $d=$ width in pixels \times height in pixels (e.g. $d = 1080 \times 1080 = 1,166,400$.

Principal Components Analysis Example: "Eigenfaces" and facial recognition

Consider a dataset of 1,000 grayscale face images $\mathbf{x}_1, ..., \mathbf{x}_{1000} \in \mathbb{R}^{1080 \times 1080}$. $\mathbf{x}_1, \ldots, \mathbf{x}_{1000} \in \mathbb{R}^{1080 \times 1080}$

"closest" face (perhaps in Euclidean norm $\|\mathbf{x}_i - \mathbf{x}_i\|$).

Storage: 1166400 integers \times 1000 images \approx 1 GB.

 $B + R$

1,000,600

Naive facial recognition: Get a new face, linear search over $1{,}000$ *faces for the*

Principal Components Analysis Example: "Eigenfaces" and facial recognition

Suppose we can find a "basis" of representative faces: $\mathbf{v}_1, ..., \mathbf{v}_k$ where $k \ll n$. Then, we can represent any face as a linear combination of the basis faces!

Improved facial recognition: Store k "eigenfaces." Given a new face \mathbf{x}_0 , project the face onto the subspace spanned by the eigenfaces to get $\Pi(\mathbf{x}_0)$. Compare $\Pi(\mathbf{x}_0)$ to each face's projection in the $database$ in Euclidean norm $\|\Pi(\mathbf{x}_0) - \Pi(\mathbf{x}_i)\|$.

 $= 0.45$ + 0.21 + 0.12 + 0.05 + $+$ 0.05 $\sqrt{2}$ $\sqrt{2}$

 $\sqrt{1000}$

Principal Components Analysis Example: PCA in 2D

Observed: Matrix of *training* points $X \in \mathbb{R}^{n \times 2}$:

Want to find the directions that most explain the "variance" of the data.

 $X =$

X ∈ ℝ*n*×² x_{11} x_{12} *x*²¹ *x*²² $\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & & \bullet \\ \bullet & & & \bullet \end{array}$ *xn*¹ *xn*²

.
Principal Components Analysis Example: PCA in 2D

Observed: Matrix of *training* points $X \in \mathbb{R}^{n \times 2}$:

Want to find the directions that most explain the "variance" of the data. The matrix $\mathbf{C} = \mathbf{X}^\top \mathbf{X} \in \mathbb{R}^{2 \times 2}$ is the covariance matrix of the data.

 $X =$

 $C = X^{\top}X \in \mathbb{R}^{2 \times 2}$

.

Principal Components Analysis Example: PCA in 2D

Observed: Matrix of *training points* $\mathbf{X} \in \mathbb{R}^{n \times 2}$:

Principal Components Analysis Example: PCA in 2D

Observed: Matrix of *training points* $\mathbf{X} \in \mathbb{R}^{n \times 2}$:

The matrix $\mathbf{C} = \mathbf{X}^\top \mathbf{X} \in \mathbb{R}^{2 \times 2}$ is the covariance matrix of the data.

$$
\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{x}_1 & \mathbf{x}_2 \\ \downarrow & \downarrow \end{bmatrix}
$$

$$
\mathbf{C} = \begin{bmatrix} \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_1 & \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 \\ \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 & \mathbf{x}_2^{\mathsf{T}} \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} ||\mathbf{x}_1||^2 & \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 \\ \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 & ||\mathbf{x}_2||^2 \end{bmatrix}
$$

PCA: Find the ordered set of vectors $\mathbf{v}_1, ..., \mathbf{v}_d \in \mathbb{R}^d$ *that explain the most variance to least variance in the data.* $\mathbf{v}_1, \ldots, \mathbf{v}_d \in \mathbb{R}^d$

Derivation of PCA Eigendecomposition and PCA

 $\mathbf{C} = \mathbf{X}^\top \mathbf{X} \in \mathbb{R}^{d \times d}$. By definition, \mathbf{C} is positive semidefinite.

PCA = Eigendecomposition of the covariance matrix!

- Consider a (column-centered) dataset $\mathbf{X} \in \mathbb{R}^{n \times d}$ and construct its covariance matrix
	-
	- , with eigenvectors $V_1, ..., V_d$.
		-

Therefore, it is diagonalizable with eigendecomposition:

$$
\mathbf{C} = \mathbf{X}^\top \mathbf{X} = \boxed{\mathbf{V}\Lambda\mathbf{V}}
$$
, with eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_d$

With eigenvectors ordered $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d \geq 0$, choose a cutoff point $k \ll d$, and keep eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$.

The eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_k$ give an orthonormal basis for a k -dimensional subspace.

Derivation of PCA Eigendecomposition and PCA

PCA = Eigendecomposition of the covariance matrix!

Consider a (column-centered) dataset $\mathbf{X} \in \mathbb{R}^{n \times d}$ and \mathbf{const} ruct its covariance matrix $\mathbf{C} = \mathbf{X}^\mathsf{T} \mathbf{X} \in \mathbb{R}^{d \times d}$. By definition, $\mathbf C$ is positive semidefinite.

Therefore, it is diagonalizable with eigendecomposition:

, with eigenvectors $V_1, ..., V_d$. $\mathbf{C} = \mathbf{X}^\mathsf{T} \mathbf{X} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^\mathsf{T}$, with eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_d$

With eigenvectors ordered $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_d \geq 0$, choose a cutoff point $k \ll d$, and keep eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_k$.

The eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_k$ give an orthonormal basis for a k -dimensional subspace.

 150

Derivation of PCA Eigendecomposition and PCA

- *PCA = Eigendecomposition of the covariance matrix!*
- Consider a (column-centered) dataset $\mathbf{X} \in \mathbb{R}^{n \times d}$ and construct its covariance matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
	-
	- . $C = X^{\top}X = V\Lambda V^{\top}$

 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top$

. By definition, C is positive semidefinite. $C = \mathbf{X}^\top \mathbf{X} \in \mathbb{R}^{d \times d}$. By definition, C

Therefore, it is diagonalizable with eigendecomposition:

(Could have also just taken the right singular vectors of if we have efficient algorithm to find the SVD — true in practice).

Least Squares Interpretation of Eigenvalues

Regression Setup

$$
\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \leftarrow & \mathbf{x}_1^{\top} \rightarrow \\ \vdots \\ \leftarrow & \mathbf{x}_n^{\top} \rightarrow \end{bmatrix}
$$

Unknown: Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1, ..., w_d$. $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1,...,w_d$

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$. **T**

$\boldsymbol{0}$ $\boldsymbol{$

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or: $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$ **T**

.

 $\mathbf{X}\mathbf{w}=\hat{\mathbf{y}}\approx\mathbf{y}$.

Regression Setup

Choose a weight vector that "fits the training data": $\hat{\textbf{w}} \in \mathbb{R}^{d}$ such that \textbf{w} for $i \in [n]$, or:

To find $\hat{\mathbf{w}}$, we follow the *principle of least squares.* ̂

̂

̂ **w**∈ℝ*^d*

- **<u>Goal:</u>** For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^{\top} \mathbf{x}_i = w_1 x_{i1} + ... + w_d x_{id} \in \mathbb{R}$. $i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \dots + w_d x_{id} \in \mathbb{R}$ ̂ $\in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$
	- $\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y}$.
		-
	- $\hat{\mathbf{w}} = \arg \min ||\mathbf{X}\mathbf{w} \mathbf{y}||^2$

Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

̂ $\in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$

̂

But \hat{y} might not be a perfect fit to $y!$ Model this using a *true weight vector* w^*

$$
\frac{\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y}}{\mathbf{y}}.
$$

$$
t \text{ vector } \mathbf{w}^* \in \mathbb{R}^d \text{ and an error term } \epsilon = (\epsilon_1, ..., \epsilon_n) \in \mathbb{R}^n
$$

$$
y_i = \mathbf{x}_i^{\top} \mathbf{w}^* + \epsilon_i \text{ for all } i \in [n]
$$

$$
\mathbf{y} = \mathbf{X} \mathbf{w}^* + \vec{\epsilon} \epsilon \mathbf{e}^{\mathbf{w}}
$$

What happens when we use the least squares weights $\hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$? ̂

True labels:
$$
y = \underline{\mathbf{Xw}}^* + \underline{\mathbf{\epsilon}}
$$
.

$$
\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$
\n
$$
= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}\mathbf{w}^{*} -
$$
\n
$$
= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}\mathbf{w}^{*} +
$$
\n
$$
= \mathbf{w}^{*} + (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{c}
$$

$\mathbf{X}^{\top}(\mathbf{X}\mathbf{w}^{*} + \epsilon)$ $\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w}^* + (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \boldsymbol{\epsilon}$

True labels: $y = Xw^* + \epsilon$.

What happens when we use the least squares weights $\hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$? ̂

- ̂
- $\mathbf{X}^\top \mathbf{X} \mathbf{w}^* + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{\epsilon}$
- $(\mathbf{X}\mathbf{w}^* + \epsilon)$

X⊤**y**

$$
\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

$$
= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

$$
= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

$$
= \mathbf{w}^* + (\mathbf{X}^{\top}\mathbf{X})
$$

When $\epsilon = 0$ (y is linearly related to \mathbf{X}), this is perfect: $\hat{\mathbf{w}} = \mathbf{w}^*!$

−1

X⊤*ϵ*

True labels: $y = Xw^* + \epsilon$.

What happens when we use the least squares weights $\hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$? ̂

When $\epsilon \neq 0$, we have an error of $\hat{\mathbf{w}} - \mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \epsilon$. $\hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ ̂ $= (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top (\mathbf{X} \mathbf{w}^* + \epsilon)$ $=$ **w*** $+$ (**X**^T**X**)⁻¹**X**^T*c*

 $= (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{X} \mathbf{w}^* + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{\epsilon}$

Error in Regression Eigendecomposition perspective

Weight vector's error:

We know that $\mathbf{X}^\top \mathbf{X}$ (the *covariance matrix*) is PSD, so it is diagonalizable:

 λ_i is small, the entries of $\hat{\mathbf{w}}$ ̂

$$
\mathbf{W} \cdot \hat{\mathbf{W}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{C}.
$$

$$
X^{\top}X = V\Lambda V^{\top} \implies (X^{\top}X)
$$

The inverse of the diagonal matrix $\mathbf{\Lambda}^{-1}$:

$$
\Rightarrow (\mathbf{X}^\top \mathbf{X})^{-1} = \mathbf{V}^\top \mathbf{\Lambda}^{-1} \mathbf{V}.
$$

$$
\lambda_i
$$
 is small \rightarrow λ_i is by

Gradient Descent Positive Semidefinite Matrices and Convexity

Hx **Lesson Overview Big Picture: Gradient Descent**

Lesson Overview Big Picture: Gradient Descent

 x 1-axis x 2-axis x [f\(x1, x2\)-axis](https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html) x descent x start

 $x1-axis$ x2-axis [f\(x1, x2\)-axis](https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html) **descent** start

Quadratic Forms 2D Example

Quadratic Forms 2D Example

 $\mathsf{\mathsf{A}}$ *quadratic function* $f:\mathbb{R}\to\mathbb{R}$ *has the form* , $f(x) = ax^2 + bx + c$

where $a, b, c \in \mathbb{R}$ are constants.

Example: $f(x) = 2x^2 - x - 1$

We will be concerned about finding *minima* of quadratic functions.

Quadratic Forms 3D Example

In 3D, a *quadratic function* $f: \mathbb{R}^2 \to \mathbb{R}$ has the form $f: \mathbb{R}^2 \to \mathbb{R}$

$$
f(x) = ax2 + 2bxy + cy2 + dx + ey + f
$$

where *a*, *b*, *c*, *d*, *e*, *f* $\in \mathbb{R}$ are all constants.

Example:

$$
f(x) = 2x2 + 4xy + 2y2 + 2x + 2y + 1
$$

Quadratic Forms 3D Example

 $f(x) = \left(2x^2 + 4xy + 2y^2\right) + 2x + 2y + 1$ vs. $f(x) = 2x^2 + 4xy + 2y^2$

Quadratic Forms 3D Example

In 3D, a *quadratic function* $f: \mathbb{R}^2 \to \mathbb{R}$ has the form $f: \mathbb{R}^2 \to \mathbb{R}$

$$
f(x) = ax^2 + 2bxy +
$$

Let's only examine the quadratic part!

$$
f(x) = ax^2
$$

quadratic

two:

We can rewrite this in matrix form:

 $f(x, y) = [x \ y]$

Consider a quadratic form:

 $f(x, y) = [x]$

 $f(\mathbf{x})$

The matrix $\mathrm{A} \in \mathbb{R}^{\mathcal{Z} \times \mathcal{Z}}$ is always symmetric, so it is diagonalizable! , where $\Lambda \in \mathbb{R}^{d \times d}$ is diagonal. $A \in \mathbb{R}^{2 \times 2}$ $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\top,$ where $\mathbf{\Lambda} \in \mathbb{R}^{d \times d}$

$$
c y \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$

$$
= \mathbf{x}^T \mathbf{A} \mathbf{x}
$$

The matrix $\mathrm{A} \in \mathbb{R}^{2 \times 2}$ is always symmetric, so it is diagonalizable! $A \in \mathbb{R}^{2 \times 2}$

$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\mathsf{T}$, where $\mathbf{\Lambda} \in \mathbb{R}^{d \times d}$

$$
x^{T}Ax = x^{T}QAQ^{T}x
$$

\n
$$
x = M_{1}V_{1} + M_{2}V_{2}
$$

\n
$$
\frac{1}{N_{1}N_{2}}\int_{\gamma_{1}}^{N_{1}}\frac{x}{\gamma_{2}}\int_{\gamma_{1}}^{N_{2}}\frac{1}{\gamma_{2}}\int_{\gamma_{2}}^{N_{1}}\frac{1}{\gamma_{2}}\int_{\gamma_{2}}^{N_{2}}\frac{1}{\gamma_{2}}\int_{\gamma_{2}}^{N_{2}}\frac{1}{\gamma_{2}}\frac{1}{\gamma_{2}}
$$

\n
$$
\frac{1}{N_{1}N_{2}}\sqrt{\frac{1}{N_{2}}N_{2}}
$$

-
- , where $\Lambda \in \mathbb{R}^{d \times d}$ is diagonal.

$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\mathsf{T}$, where $\mathbf{\Lambda} \in \mathbb{R}^{d \times d}$

There are three possibilities:

- 1. λ_1 and λ_2 are *both* positive (*positive definite*).
- 2. λ_1 or λ_2 is zero, and the other is positive (*positive semidefinite*).

3. λ_1 or λ_2 is negative (*indefinite*).

, where $\Lambda \in \mathbb{R}^{d \times d}$ is diagonal. **^Λ** ⁼ [*λ*¹ 0 $\begin{bmatrix} 0 & \lambda_2 \end{bmatrix}$

 $\lambda_1, \lambda_2 \geq 0$

Eigendecomposition:

Quadratic Forms
\n**Example: positive definite**
\n
$$
[x+1] \begin{bmatrix} 2-i \\ -i \\ 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x-1 \\ -x+2y \end{bmatrix}
$$
\n**Example:**
\n
$$
f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}^{\epsilon} \begin{bmatrix} x \\ y \end{bmatrix}^{\epsilon} \begin{bmatrix} x^2 - 2x + 2y \\ y \end{bmatrix}
$$

$$
\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1/2 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
\mathbf{s} \phi \mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}.
$$

descent start

Quadratic Forms Example: positive semide finite

Example:

Eigendecomposition:

$$
f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$

$$
\begin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/2 & 0 \\ 0 & 0 \end{bmatrix}
$$

so $\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$. $\lambda_1 = 2$

 1.5

 Δ

 0.5

 $\overline{\mathcal{O}}$

 -0.5

 λ

 21.5

 \mathcal{L}

 $f(x1, x2)$

Example:

Eigendecomposition:

$$
f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$

$$
\begin{bmatrix} 1 & -2 \ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1/2 & 0 \\ 0 & -1 \end{bmatrix}
$$

so $\Lambda = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$.

−1.5

− 1

−0.5

1 1.5

Least Squares Example of quadratic form

Consider the familiar function we've been thinking about: **w**⊤(**X**⊤**X**)**w**The quadratic form $\mathbf{w}^\top (\mathbf{X}^\top \mathbf{X}) \mathbf{w}$ is positive semidefinite! $A = X^T X$ is PSD

.

Gradient Descent Preview

 $x1$ -axis $x2$ -axis $f(x1, x2)$ -axis \rightarrow descent start

2 0

 $x1$ -axis $x2$ -axis $f(x1, x2)$ -axis \rightarrow descent

 $\Lambda =$ 3 0 $\begin{bmatrix} 0 & 1 \end{bmatrix}$ $\Lambda =$ $x1$ -axis $x2$ -axis $f(x1, x2)$ -axis \rightarrow descent \rightarrow start

 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\Lambda =$ 3 0 0 -1

Recap

Lesson Overview

- **Linear dynamical systems example.** Motivation for eigendecomposition as a way to make repeated matrix multiplication easier.
- **Eigendecomposition.** Definition of eigenvectors, eigenvalues.
- **Eigendecomposition and SVD.** The eigendecomposition drops out of the SVD.
- **Spectral Theorem.** Symmetric matrices are always diagonalizable.
- **Positive semidefinite matrices/positive definite matrices.** Definition and some visual examples through the corresponding quadratic forms.
Lesson Overview Big Picture: Least Squares

Lesson Overview Big Picture: Gradient Descent

RUADRATIC FUNCTIONS

 $x1$ -axis $x2$ -axis $f(x1, x2)$ -axis \rightarrow descent \rightarrow start

References

Mathematics for Machine Learning. Marc Pieter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.

Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach. John H. Hubbard and Barbara Burke Hubbard.

Computational Linear Algebra Lecture Notes: Eigenvalues and eigenvectors. Daniel Hsu.