Math for Machine Learning Week 2.2: Eigendecomposition and PSD Matrices

By: Samuel Deng

Logistics & Announcements

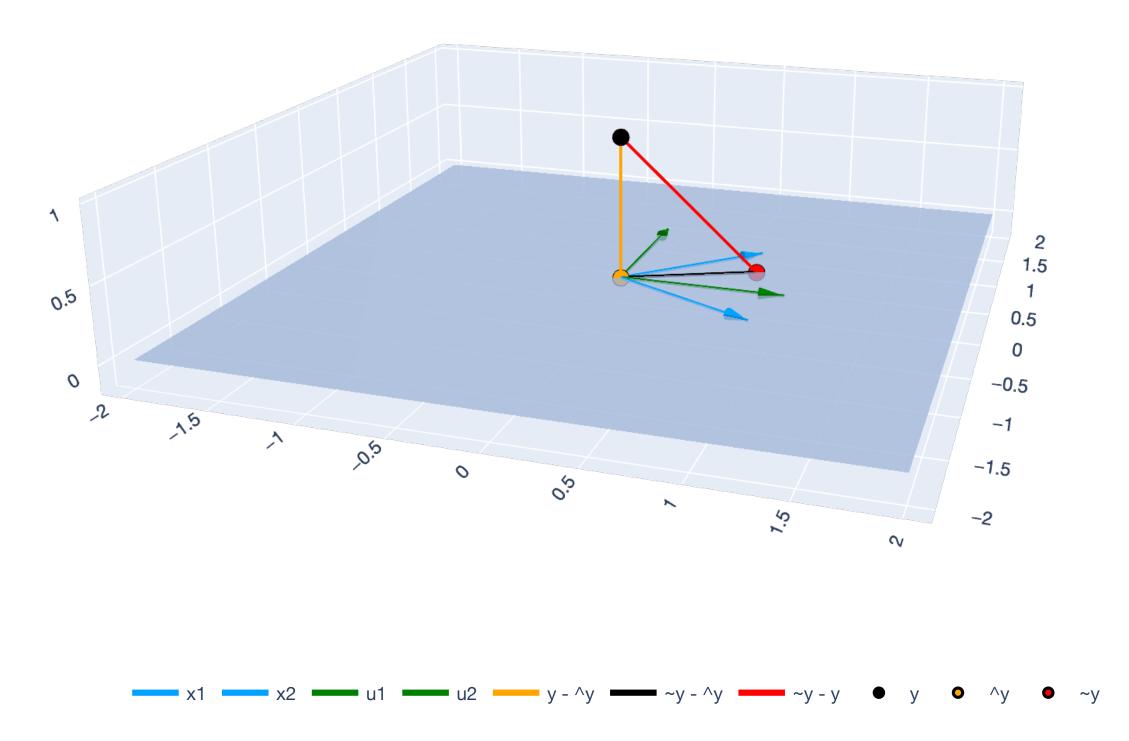
- HWZ: Pre: any 18, wext Thins. · MWD: Rive: Tril 11, tomanon.
 - OFFICE HONRS 3PM-SPM (200m).

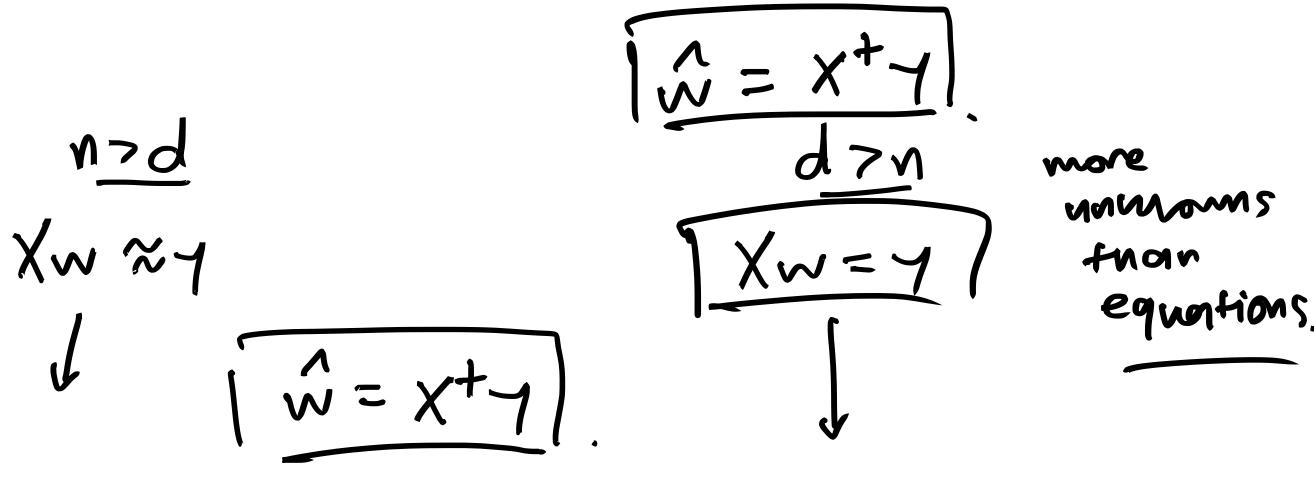
BREAKS. & minnes =16 min. Hotol.

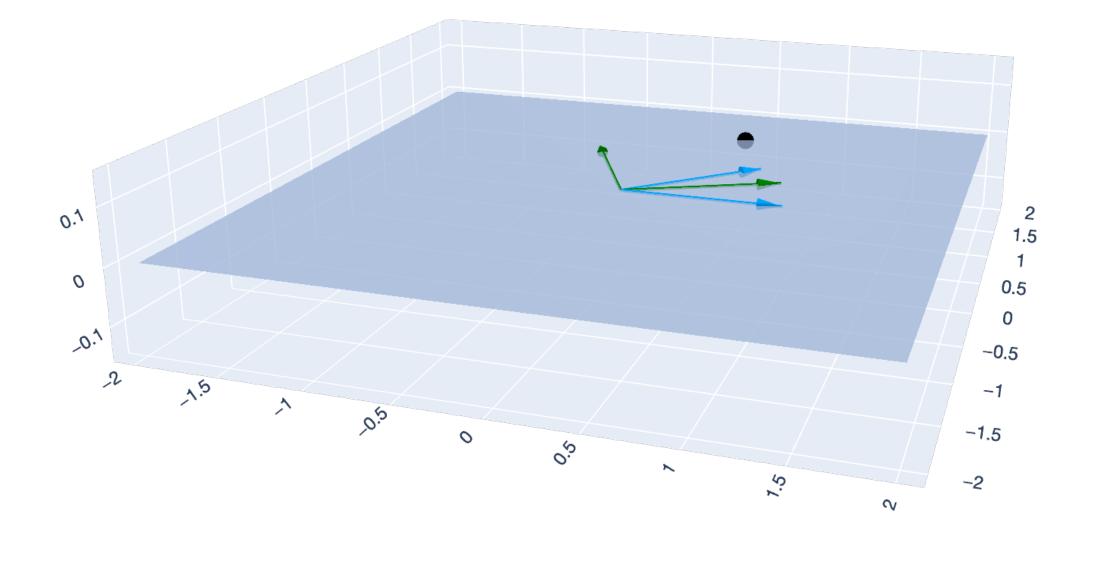
Lesson Overview

- **Linear dynamical systems example.** Motivation for eigendecomposition as a way to make repeated matrix multiplication easier.
- Eigendecomposition. Definition of eigenvectors, eigenvalues.
- Eigendecomposition and SVD. The eigendecomposition drops out of the SVD.
- * Spectral Theorem. Symmetric matrices are always diagonalizable.
 - **Positive semidefinite matrices/positive definite matrices.** Definition and some visual examples through the corresponding quadratic forms.

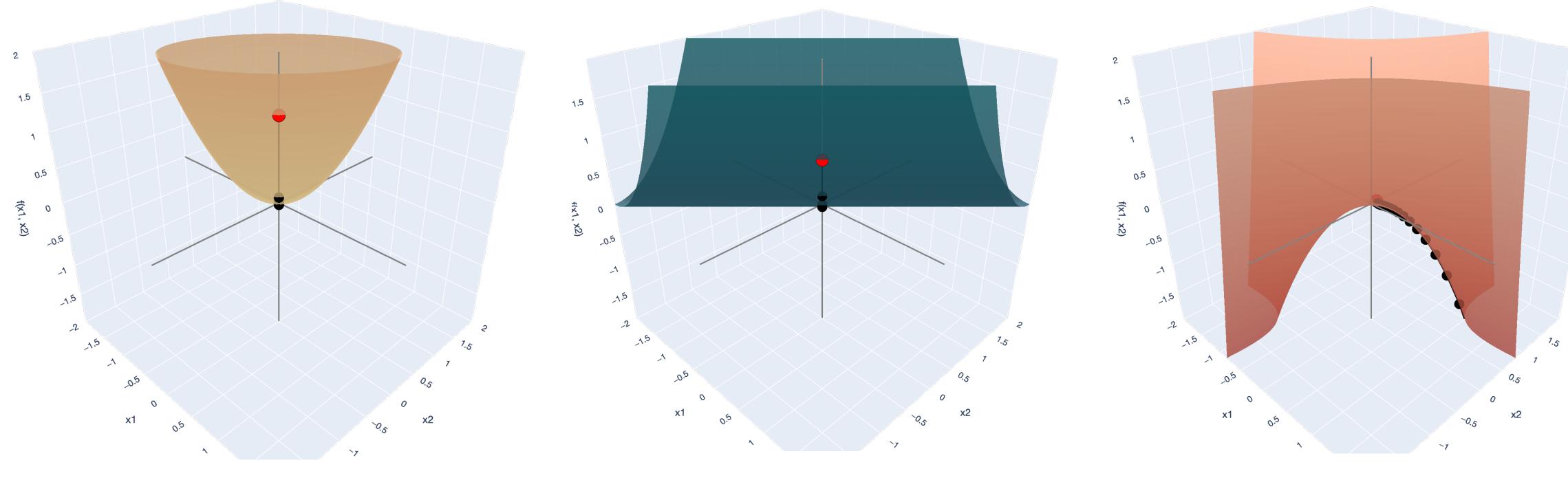
Lesson Overview **Big Picture: Least Squares**



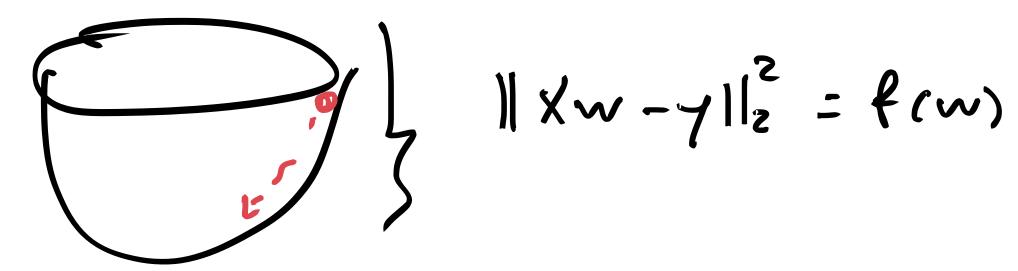




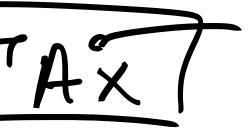
Lesson Overview **Big Picture: Gradient Descent**



(1-axis — x2-axis — f(x1, x2)-axis — descent 0 start



x1-axis x2-axis f(x1, x2)-axis descent start



Least Squares A Quick Review

Regression Setup

<u>**Observed:**</u> Matrix of *training* samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of *training* labels $\mathbf{y} \in \mathbb{R}^{d}$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \\ \mathbf{X}_1 & \dots & \mathbf{X}_n \\ \downarrow & & \end{bmatrix}$$

 $\begin{array}{c} \uparrow \\ \mathbf{x}_{d} \\ \downarrow \end{array} \right] = \left| \begin{array}{c} \leftarrow \mathbf{x}_{1}^{\top} \rightarrow \\ \vdots \\ \leftarrow \mathbf{x}_{n}^{\top} \rightarrow \end{array} \right| \cdot \begin{array}{c} & \swarrow \\ \chi \in \mathcal{P}^{n \times d} \\ \ddots \end{array} \right|$ **<u>Unknown</u>**: Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d . $\mathbf{v} \in \mathbb{R}^d$ **<u>Goal</u>:** For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$. Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or: $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

Regression Setup

for $i \in [n]$, or:

Xŵ

To find $\hat{\mathbf{W}}$, we follow the *principle of least squares*.

$$\begin{cases} \hat{\mathbf{w}} = \arg \min \|\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \\ \mathbf{w} \in \mathbb{R}^d \end{cases}$$

<u>Goal</u>: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$. Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$

$$= \hat{\mathbf{y}} \approx \mathbf{y}$$
.

SVD and **Pseudoinverse** Review

If
$$n \ge d$$
, the matrix $(\Sigma^{\top}\Sigma)^{-1}\Sigma^{\top} \in \mathbb{R}^{d \times n}$ is matrix Σ , denoted $\Sigma^{+} := (\Sigma^{\top}\Sigma)^{-1}\Sigma^{\top}$.
If $d > n$, the matrix $\Sigma^{+} := \Sigma^{\top}(\Sigma\Sigma^{\top})^{-1}$ is

Penrose) pseudoinverse: $X^+ := V\Sigma^+ U^\top$.

$X = (U \ge V^T)^{-1} = (V^T)^{-1} \ge V^{-1}$ Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, and let $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ be its full SVD.

is the *(Moore-Penrose) pseudoinverse* of the $m_{1} = 3^{-1} S^{-1} S^{-1}$ the pseudoinverse. - Fism- marse $\Sigma \Sigma^{+} = \Sigma \Sigma^{-} (\Sigma \Sigma^{-})^{-}$ = T More generally, the matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with full SVD $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ has the <u>(Moore-</u>

Least Squares: SVD Perspective
Unified Picture
We want to solve
$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
.
We want to solve $\mathbf{X}\mathbf{w} = \mathbf{y}$.
If $n = d$ and rank $(\mathbf{X}) = d$...
We can solve exactly.
Choose \mathbf{X}^{\dagger}
 $\hat{\mathbf{w}} = \mathbf{X}^{-1}\mathbf{y}$,
which is an exact solution.
 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{+}\mathbf{y}$,
the best approximate solution:
 $\|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^{2} \le \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^{2}$.
 $\|\hat{\mathbf{w}}\|^{2} \le \|\mathbf{w}\|^{2}$.
 $\mathbf{w} = \|\mathbf{w}\|^{2}$.

s: SVD Perspective
want to solve
$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
.
f $n > d$ and rank $(\mathbf{X}) = d$...
We approximate by least squares:
 $\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\min \||\mathbf{X}\mathbf{w} - \mathbf{y}\|^2}$.
Choose
 $\widehat{\mathbf{w}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{X}^+\mathbf{y}$,
he best approximate solution:
 $\||\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2 \le \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$.
 $\mathbf{W} = \mathbf{W}^T(\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{y} = \mathbf{X}^+\mathbf{y}$,
the minimum norm solution:
 $\|\|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2 \le \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$.

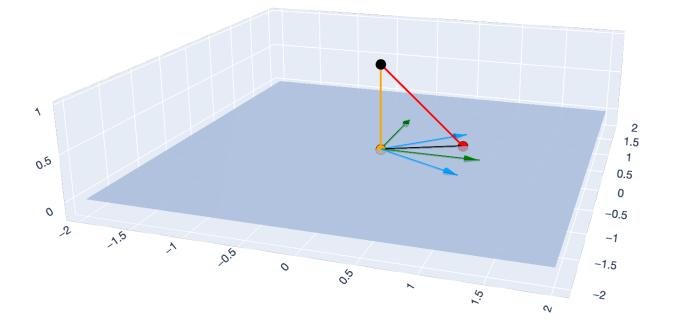
Least Squares: SVD Perspective Unified Picture

We want to solve X

If n > d and $rank(\mathbf{X}) = d...$

We approximate by least squares:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$



x2 — u1 — u2 — y-^y — ~y-^y — ~y-y • y • ^y • ~y

$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
. Use $\hat{\mathbf{w}} = \mathbf{X}^+ \mathbf{y}!$

If n < d and $rank(\mathbf{X}) = n...$

We can solve exactly, but there are infinitely many solutions.

1 = 34 = 2

2 1.5 1

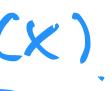
0.5

-1

-1.5

2 15 1 05 0 05 1

0.1



Singular Value Decomposition (SVD) Matrix Decompositions B IT APPLIES TO ANY MATPIX $\underbrace{\mathbf{X}}_{n \times d} = \underbrace{\mathbf{U}}_{n \times n} \underbrace{\mathbf{\Sigma}}_{n \times d} \underbrace{\mathbf{V}}^{\mathsf{T}}.$

U is orthogonal, i.e. $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}$.

V is orthogonal, i.e. $V^{\top}V = VV^{\top} = I$.

the diagonal. rank(**X**) is equal to the number of $\sigma_i > 0$.

$\Sigma \in \mathbb{R}^{n \times d}$ is a diagonal matrix with <u>singular values</u> $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_d \ge 0$ on

r = 5 $6_r \approx 0$

What other matrix decompositions are out there?

Eigendecomposition Motivation: Linear Dynamical System

Population Change Example of a linear dynamical system

Consider the following example.

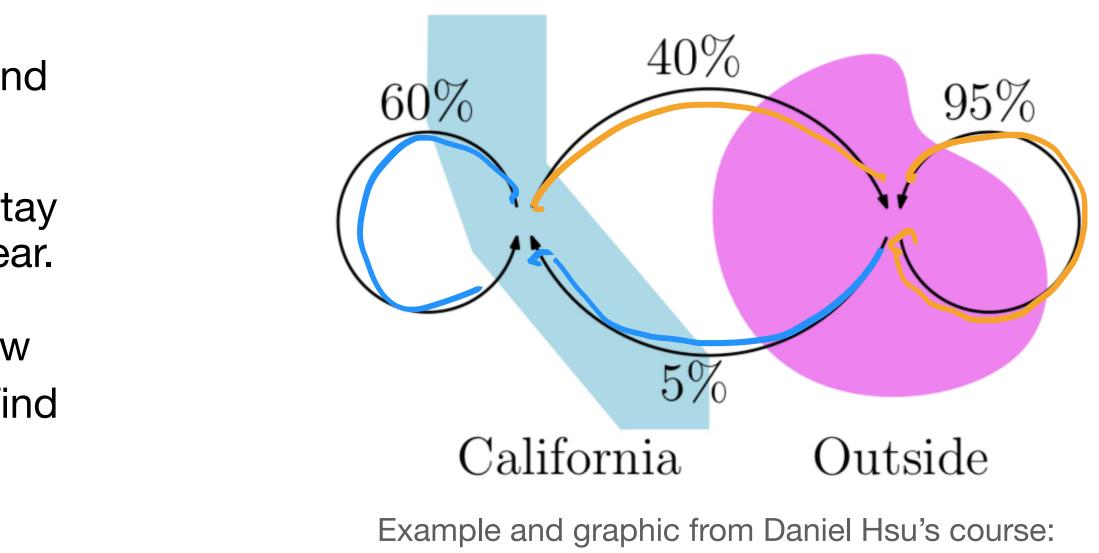
Suppose that

- of those who start a year in California, 60% stay in California and 40% move out of California by the end of the year.
- of those who start a year outside California, 95% stay out and 5% move to California by the end of the year.

If we know how many people are in California x_{in} and how many people are outside of California x_{out} , then we can find the number of people inside and outside of California at the end of the year:

inside =
$$0.6x_{in} + 0.05x_{out}$$

outside = $0.4x_{in} + 0.95x_{out}$



Computational Linear Algebra (Fall 2022)

Consider the following example.

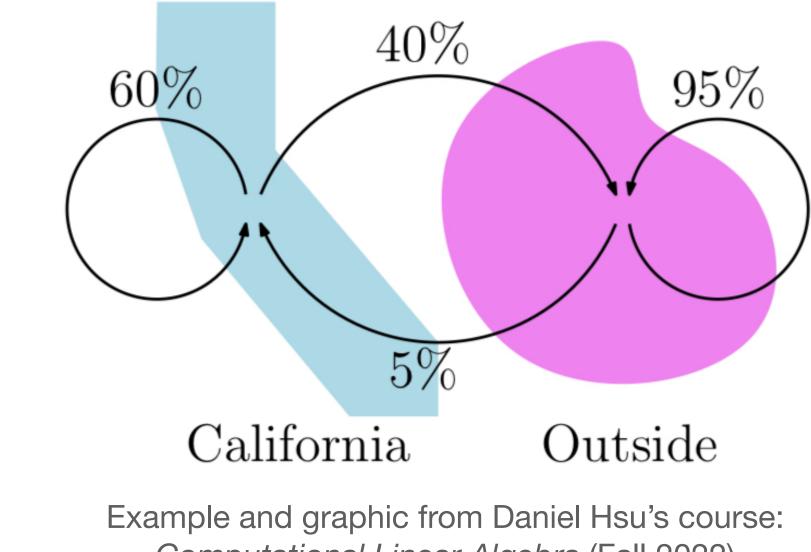
Suppose that

- of those who start a year in California, 60% stay in California and 40% move out of California by the end of the year.
- of those who start a year outside California, 95% stay out and 5% move to California by the end of the year.

We can model this with a transition matrix

$$\mathbf{A} = \begin{bmatrix} in \to in & out \to in \\ in \to out & out \to out \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}$$

and a system of linear equations:



Computational Linear Algebra (Fall 2022)

Consider the transition matrix

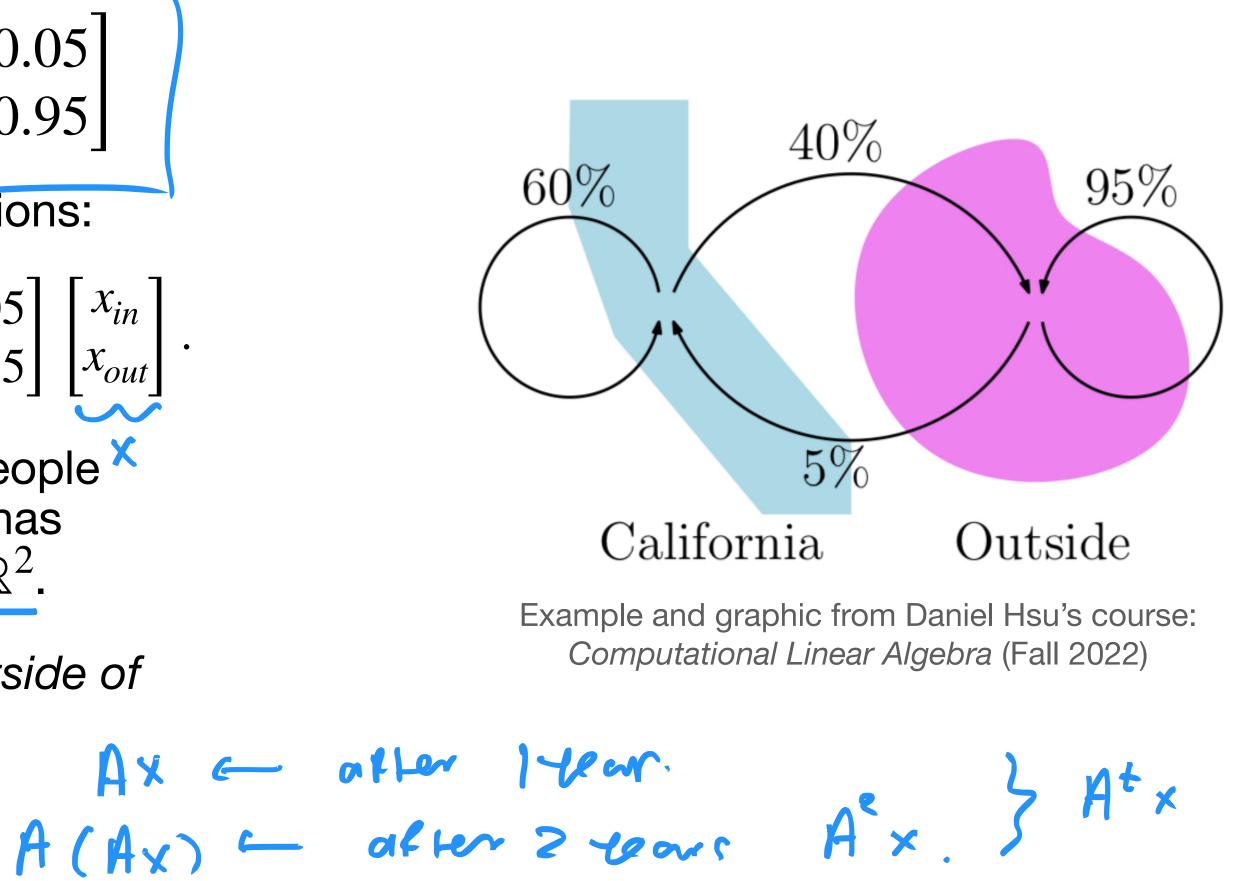
$$\mathbf{A} = \begin{bmatrix} in \to in & out \to in \\ in \to out & out \to out \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}$$

with a corresponding system of linear equations:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \text{in} \to \text{in} & \text{out} \to \text{in} \\ \text{in} \to \text{out} & \text{out} \to \text{out} \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix}$$

The vector $\mathbf{A}\mathbf{x} \in \mathbb{R}^2$ gives the number of people \mathbf{x} inside and outside of California after a year has passed, from the initial populations in $\mathbf{x} \in \mathbb{R}^2$.

How to find the number of people inside/outside of California after t years have passed?



Consider the transition matrix

$$\mathbf{A} = \begin{bmatrix} in \to in & out \to in \\ in \to out & out \to out \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}$$

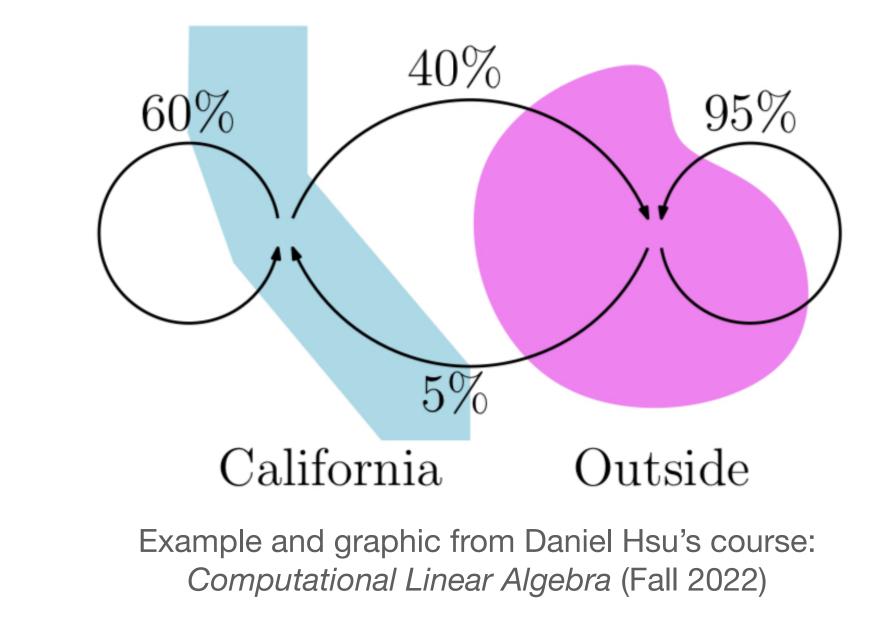
with a corresponding system of linear equations:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \text{in} \to \text{in} & \text{out} \to \text{in} \\ \text{in} \to \text{out} & \text{out} \to \text{out} \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix}.$$

The vector $Ax^{(0)} \in \mathbb{R}^2$ gives the number of people inside and outside of California after a year has passed, from the initial populations in $\mathbf{x}^{(0)} \in \mathbb{R}^2$.

How to find the number of people inside/outside of California after t years have passed?

$$\mathbf{x}^{(1)} = \mathbf{A}\mathbf{x}^{(0)}$$
$$\mathbf{x}^{(2)} = \mathbf{A}\mathbf{x}^{(1)} = \mathbf{A}\mathbf{A}\mathbf{x}^{(0)} = \mathbf{A}^{2}\mathbf{x}^{(0)}$$
$$\vdots$$
$$\mathbf{x}^{(t)} = \underbrace{\mathbf{A}\mathbf{A}\ldots\mathbf{A}}_{t \text{ products}} \mathbf{x}^{(0)} = \mathbf{A}^{t}\mathbf{x}^{(0)}$$



$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \text{in} \to \text{in} & \text{out} \to \text{in} \\ \text{in} \to \text{out} & \text{out} \to \text{out} \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{out} \end{bmatrix}$$

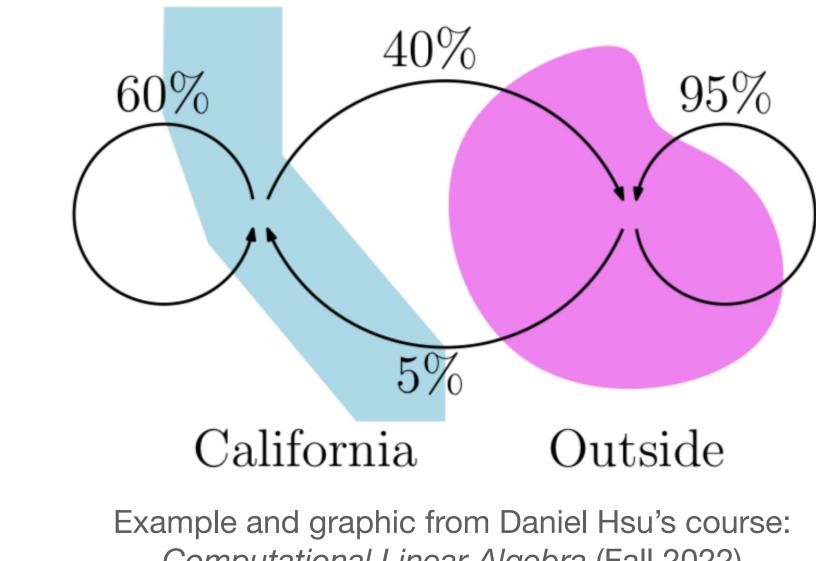
Concretely, suppose there are 300 million outside of California and 40 million inside of California at the start of a year. Then,

$$\mathbf{x}^{(0)} = \begin{bmatrix} 40\\ 300 \end{bmatrix}$$

What are the populations inside and outside of CA after t years?

$$\mathbf{x}^{(t)} = \mathbf{A}^{t} \mathbf{x}^{(0)} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \begin{bmatrix} 40 \\ 300 \end{bmatrix}$$





Computational Linear Algebra (Fall 2022)

What are the populations inside and outside of CA after t years?

Try calculating this...

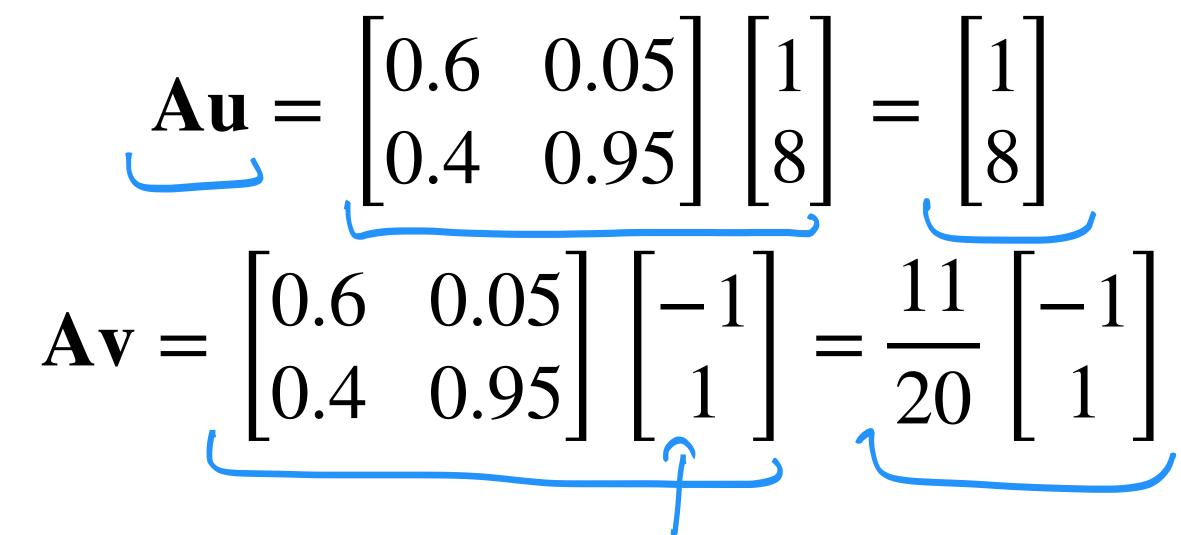
$\mathbf{x}^{(t)} = \mathbf{A}^{t} \mathbf{x}^{(0)} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \begin{bmatrix} 40 \\ 300 \end{bmatrix}$

$\begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \cdots \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} 40 \\ 300 \end{bmatrix}$

Population Change Easy computation

Assume I gave you a couple of vector vectors have the properties:

rs,
$$\mathbf{u} = (1,8)$$
 and $\mathbf{v} = (-1,1)$. These two



Population Change Easy computation

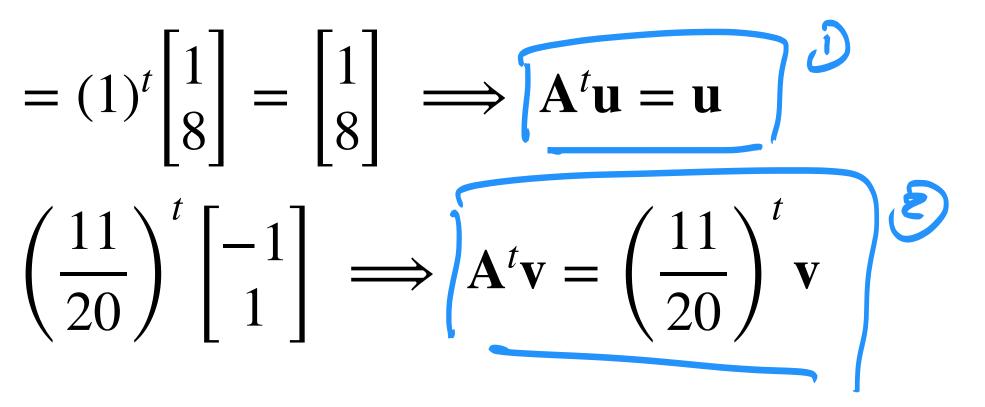
Assume I gave you a couple of vectors, $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$. These two vectors have the properties: $\mathbf{Au} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$ $\mathbf{Av} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \frac{11}{20} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ Now, the repeated multiplication looks like: $\begin{bmatrix} 35 \\ 35 \end{bmatrix}^{t} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = (1)^{t} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^t \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \left(\frac{11}{20}\right)^t \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$\mathbf{A}^{t}\mathbf{u} = \begin{bmatrix} 0.6 & 0.04 \\ 0.4 & 0.94 \end{bmatrix}$$
$$\mathbf{A}^{t}\mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}$$

Assume I gave you a couple of vectors, $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$. These two vectors have the properties: $\mathbf{Au} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$ $\mathbf{Av} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \frac{11}{20} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Now, the repeated multiplication looks like:

$$\mathbf{A}^{t}\mathbf{u} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \begin{bmatrix} 1 \\ 8 \end{bmatrix}$$
$$\mathbf{A}^{t}\mathbf{v} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^{t} \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$$



For $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$, $\mathbf{\hat{v}} \mathbf{A}^{t} \mathbf{u} = \mathbf{u}$ $\mathbf{\hat{v}} \mathbf{A}^{t} \mathbf{v} = \left(\frac{11}{20}\right)^{t} \mathbf{v}$ Notice that \mathbf{u}, \mathbf{v} are a basis for \mathbb{R}^2 . Then, if we rewrite $\mathbf{x}^{(0)}$ as a linear combination of \mathbf{u} and \mathbf{v} , i.e.

we can obtain $\mathbf{x}^{(t)}$ with the following computation:

$$\mathbf{x}^{(t)} = \mathbf{A}^{t} \mathbf{x}^{(0)} = \mathbf{A}^{t} (a\mathbf{u} + b\mathbf{v}) = a\mathbf{A}^{t} \mathbf{u} + b\mathbf{A}^{t} \mathbf{v} = a\mathbf{u} + b(11/20)^{t} \mathbf{v}.$$

 $\mathbf{x}^{(0)} = a\mathbf{u} + b\mathbf{v},$

For $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$,

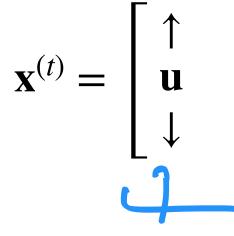
$\mathbf{A}^{t}\mathbf{v}$

Notice that \mathbf{u}, \mathbf{v} are a basis for \mathbb{R}^2 . Then, if we rewrite $\mathbf{x}^{(0)}$ as a linear combination of \mathbf{u} and \mathbf{v} , i.e. $\mathbf{x}^{(0)}$

we can obtain $\mathbf{x}^{(t)}$ with the following computation:

$$\mathbf{x}^{(t)} = \mathbf{A}^{t} \mathbf{x}^{(0)} = \mathbf{A}^{t} (a\mathbf{u} + b\mathbf{v}) = a\mathbf{A}^{t}\mathbf{u} + b\mathbf{A}^{t}\mathbf{v} = a\mathbf{u} + b(11/20)^{t}\mathbf{v}.$$

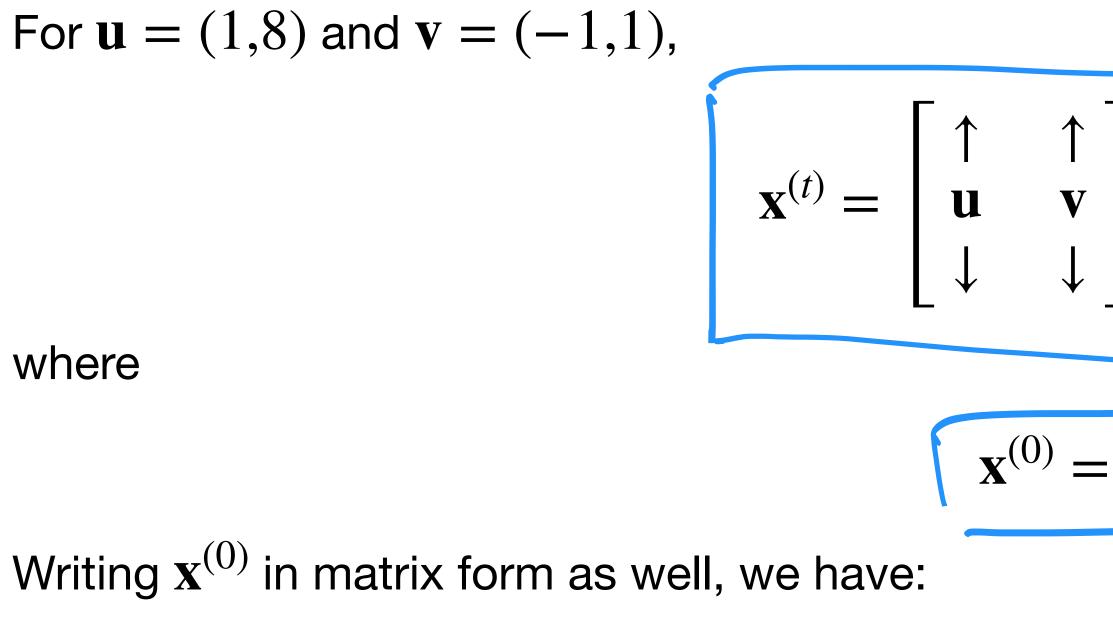
In matrix form:



$$\mathbf{A}^{t}\mathbf{u} = \mathbf{u}$$
$$\mathbf{v} = \left(\frac{11}{20}\right)^{t}\mathbf{v}$$

$$^{)} = a\mathbf{u} + b\mathbf{v},$$

$$\begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$



$$\begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$= a\mathbf{u} + b\mathbf{v}.$$
$$\begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

 $x^{(0)} =$

For $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$,

where

 $\mathbf{x}^{(0)} = \begin{vmatrix} \uparrow \\ \mathbf{u} \\ \downarrow \end{vmatrix}$

 $\mathbf{x}^{(t)} = \begin{bmatrix} \uparrow \\ \mathbf{u} \\ \downarrow \end{bmatrix}$

Writing $\mathbf{x}^{(0)}$ in matrix form as well, we have:

Because \mathbf{u} and \mathbf{v} are linearly independent, $\mathbf{V} \in \mathbb{R}^{2 \times 2}$ has $\mathrm{rank}(\mathbf{V})$

 $\begin{bmatrix} a \\ b \end{bmatrix}$

$$\stackrel{\uparrow}{\mathbf{v}} \\ \downarrow \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

 $\mathbf{x}^{(0)} = a\mathbf{u} + b\mathbf{v} \,.$

$$\begin{pmatrix} \uparrow \\ \mathbf{v} \\ \downarrow \end{pmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V} \begin{bmatrix} a \\ b \end{bmatrix}.$$

$$\mathbf{v} = 2, \text{ so we can invert:}$$

$$= \mathbf{V}^{-1} \mathbf{x}^{(0)}.$$

For $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$,

where

Writing $\mathbf{x}^{(0)}$ in matrix form as well, we have:

Because **u** and **v** are linearly independent, $\mathbf{V} \in \mathbb{R}^{2 \times 2}$ has $rank(\mathbf{V}) = 2$, so we can invert:

Therefore,

$$\mathbf{x}^{(t)} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix}^{-1} \mathbf{x}^{(t)} = \mathbf{V} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \mathbf{V}^{-1} \mathbf{x}^{(0)}$$

$$\stackrel{\uparrow}{\mathbf{v}} \\ \downarrow \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

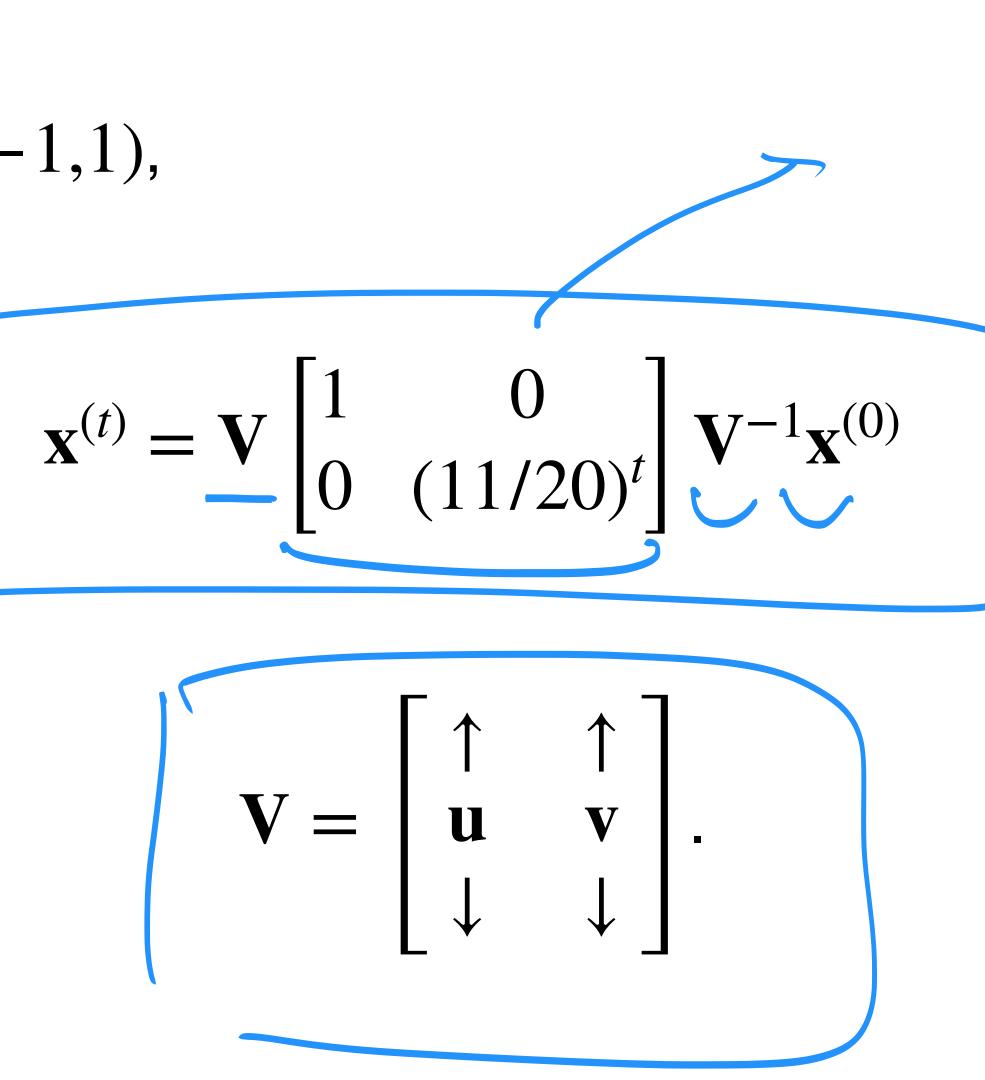
 $\mathbf{x}^{(0)} = a\mathbf{u} + b\mathbf{v}.$

$$\mathbf{x}^{(0)} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u} & \mathbf{v} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V} \begin{bmatrix} a \\ b \end{bmatrix}$$

 $\mathbf{x}^{(t)} = \begin{bmatrix} \uparrow \\ \mathbf{u} \end{bmatrix}$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V}^{-1} \mathbf{x}^{(0)}$$

For $\mathbf{u} = (1,8)$ and $\mathbf{v} = (-1,1)$,



Population Change Comparison of hard and easy computation

Hard computation:

$$\mathbf{x}^{(t)} = \mathbf{A}^t \mathbf{x}^{(0)}$$

For initial populations $\mathbf{x}^{(0)} = (40, 300)$, the population after *t* years is:

$$\mathbf{x}^{(t)} = \begin{bmatrix} 0.6 & 0.05 \\ 0.4 & 0.95 \end{bmatrix}^t \begin{bmatrix} 40 \\ 300 \end{bmatrix}$$

$A\begin{bmatrix} 1\\8\end{bmatrix} = \begin{bmatrix} 1\\8\end{bmatrix}$

Easy computation:

$$\mathbf{x}^{(t)} = \mathbf{V} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \mathbf{V}^{-1} \mathbf{x}^{(0)}$$

For initial populations $\mathbf{x}^{(0)} = (40, 300)$, the population after *t* years is:

$$\mathbf{x}^{(t)} = \begin{bmatrix} 1 & -1 \\ 8 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} \begin{bmatrix} 1/9 & 1/9 \\ -8/9 & 1/9 \end{bmatrix} \begin{bmatrix} 40 \\ 300 \end{bmatrix}$$

Diagonal Matrices Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy:

$\begin{array}{cccc} 1 & 0 \\ 0 & (11/20)^t \end{array}$

$$= \begin{bmatrix} 1 & 0 \\ 0 & (11/20) \end{bmatrix}^t$$

Diagonal Matrices Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy:

$$\begin{bmatrix} 1 & 0 \\ 0 & (11/20)^t \end{bmatrix} =$$

But this matrix depended on a basis of vectors that we got out of nowhere:

$$\mathbf{u} = (1,8)$$
 and $\mathbf{v} = (-1,1)$.
es (and how) can we obtain such nice bases?

In what cases (and how) c

$$= \begin{bmatrix} 1 & 0 \\ 0 & (11/20) \end{bmatrix}^t$$

Eigendecomposition Intuition and Definition

Eigenvectors and eigenvalues Intuition $\neg T_A: \mathbb{R}^d \to \mathbb{R}^d$

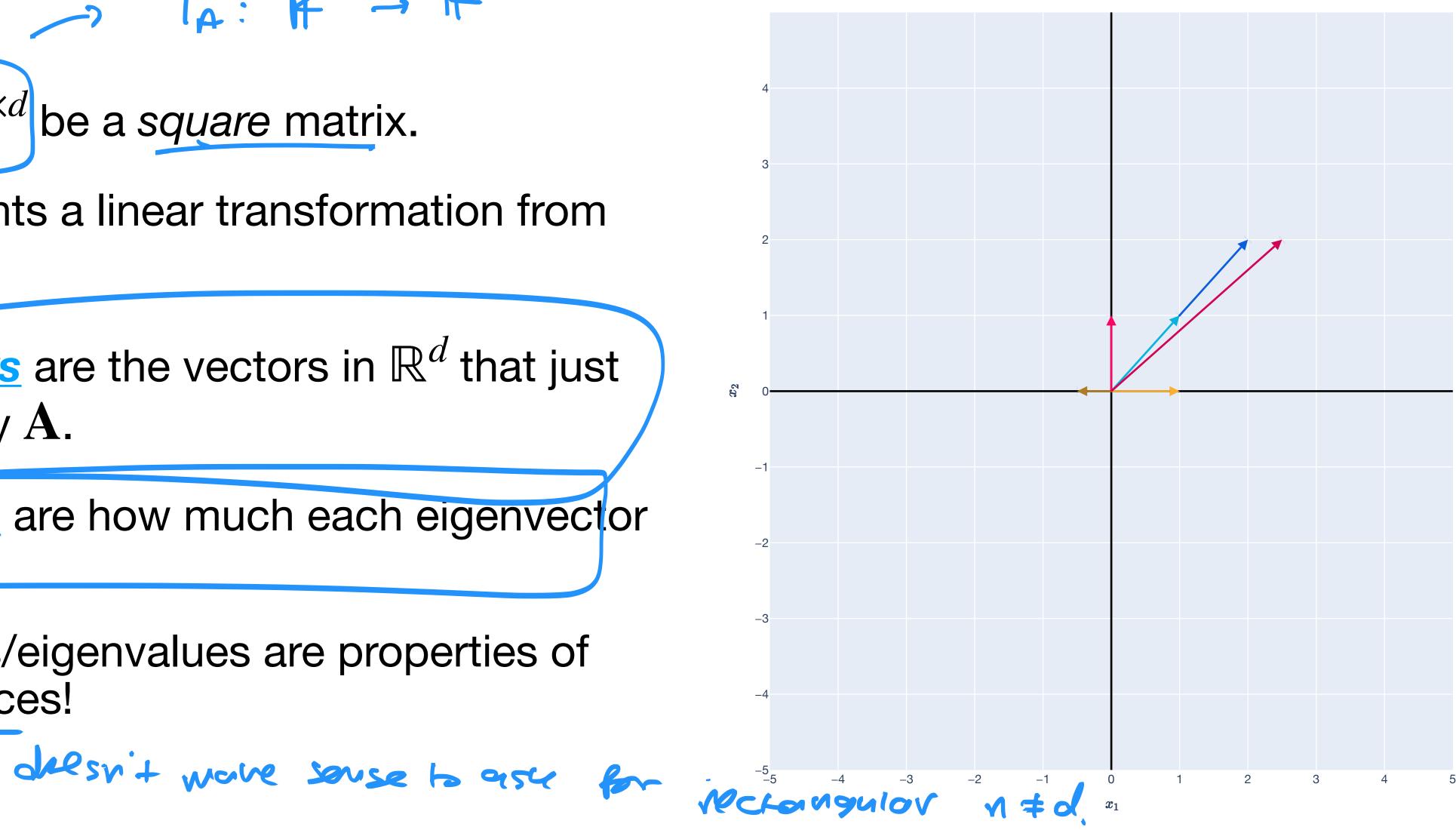
Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a square matrix.

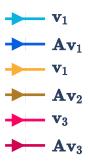
This represents a linear transformation from \mathbb{R}^d to \mathbb{R}^d .

Eigenvectors are the vectors in \mathbb{R}^d that just get scaled by A.

Eigenvalues are how much each eigenvector gets scaled.

Eigenvectors/eigenvalues are properties of square matrices!





Eigenvectors and eigenvalues Definition

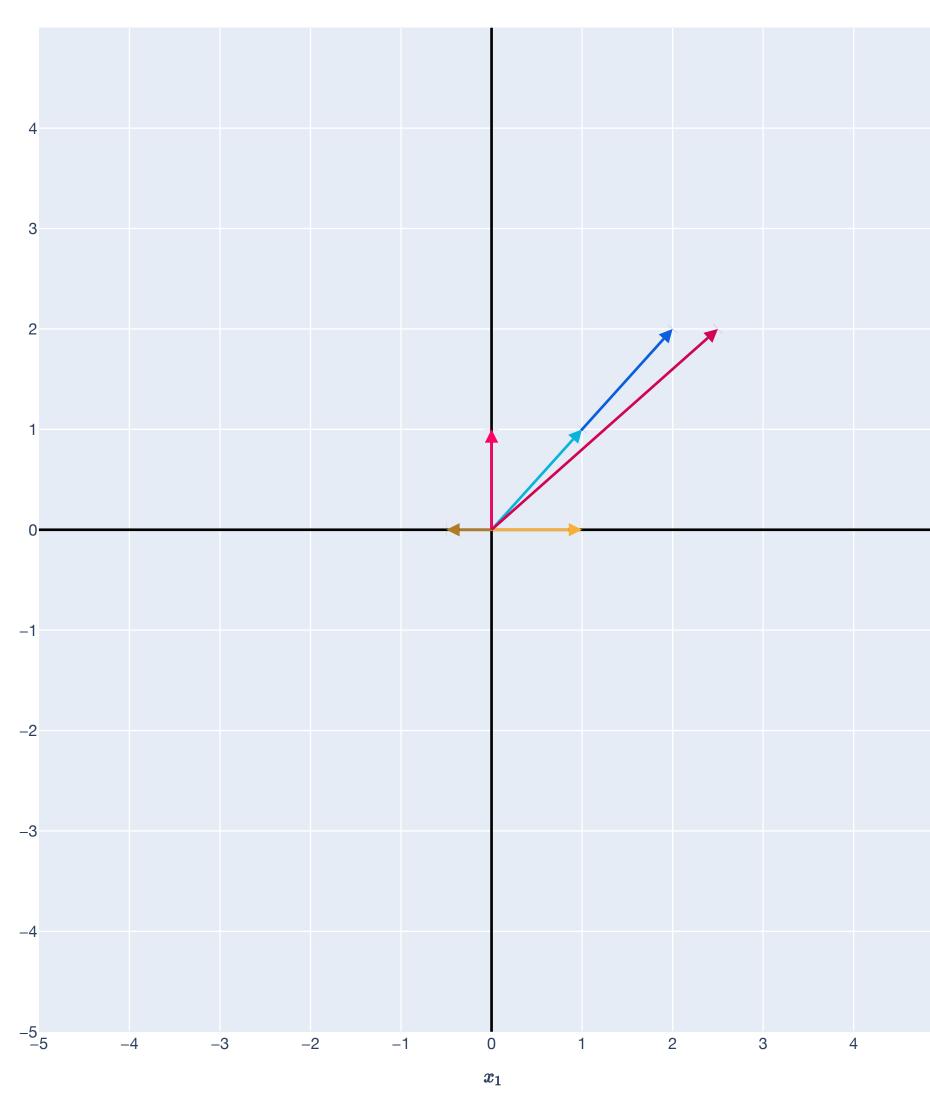
Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a square matrix.

A nonzero vector $\mathbf{v} \in \mathbb{R}^d$ is an <u>eigenvector</u> if there exists a scalar $\lambda \in \mathbb{R}$ such that

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}.$$

The scalar λ is the <u>eigenvalue</u> associated with the eigenvector **v**.

Eigenvectors/eigenvalues are properties of square matrices!

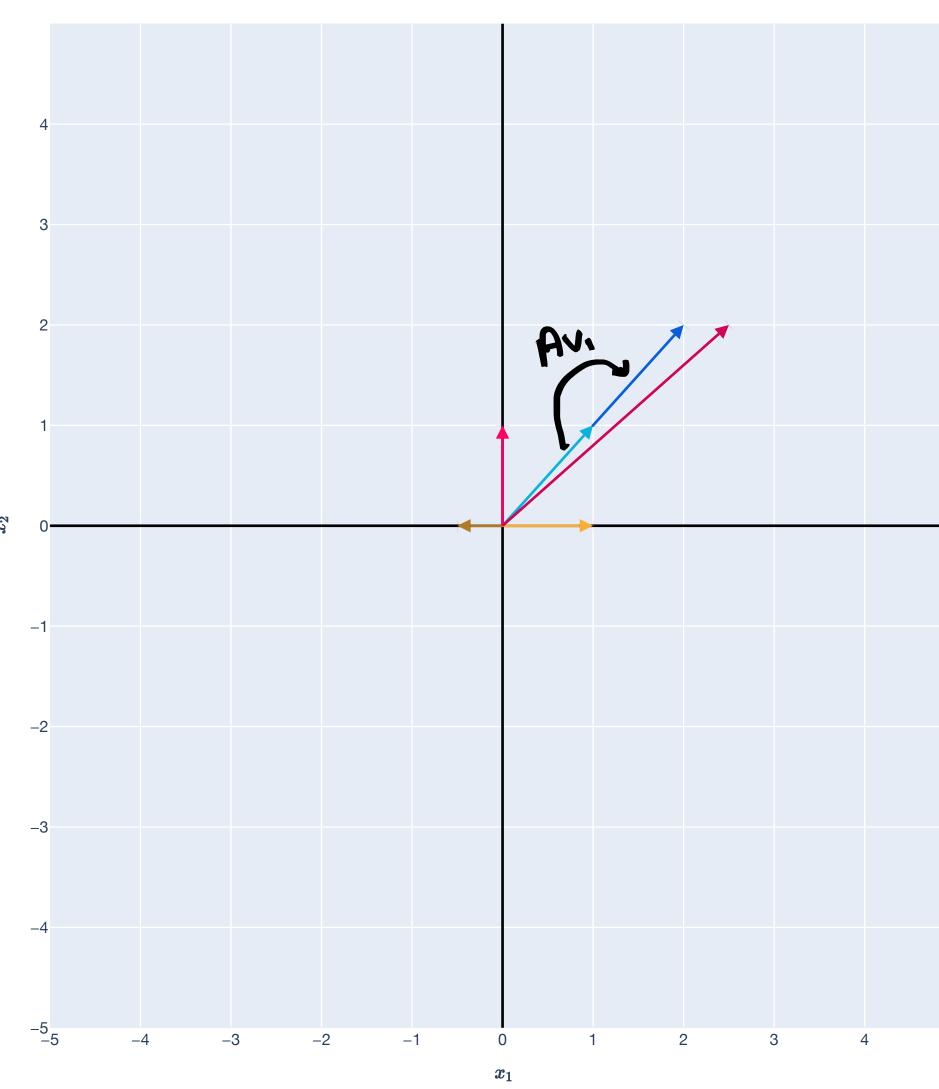


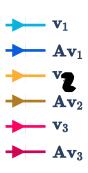
Eigenvectors and eigenvalues Example

Consider the matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ given by

$$\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}.$$

What happens to the vector $\mathbf{v}_1 = (1,1)$?

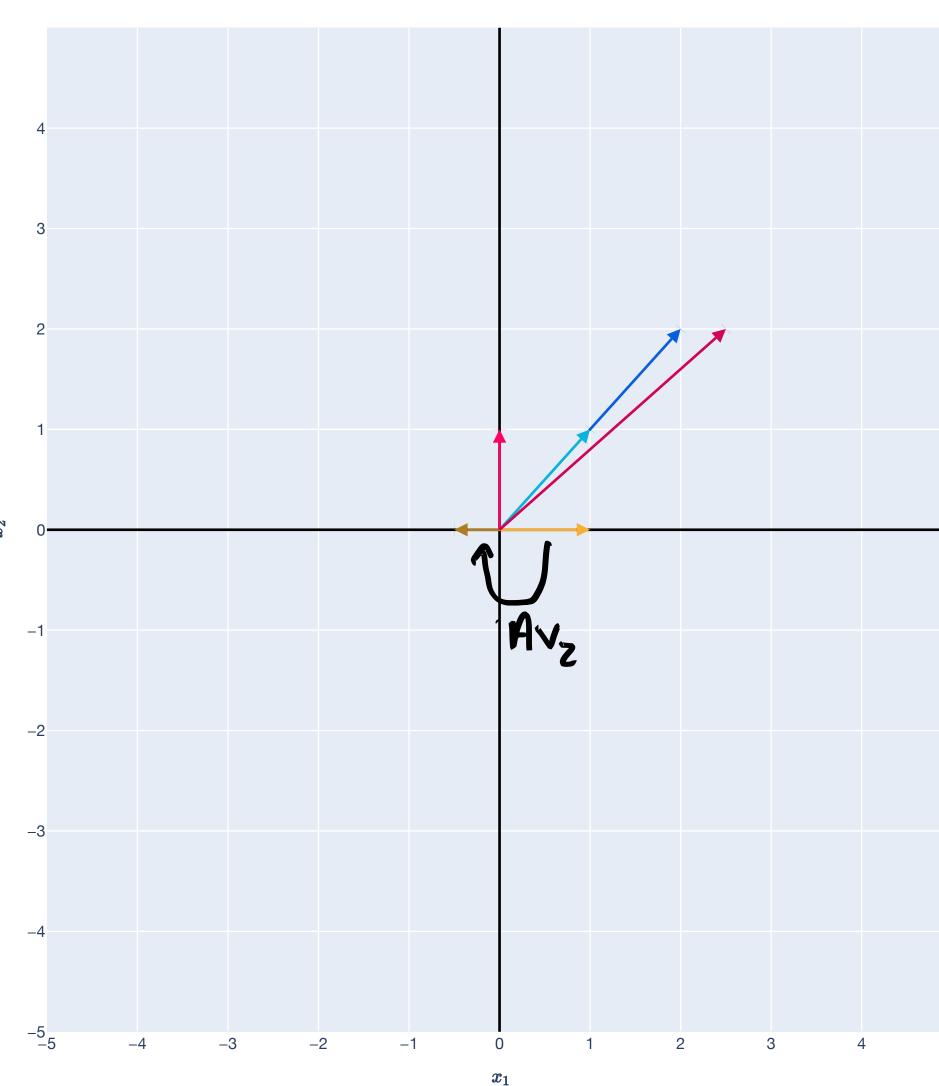




Consider the matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ given by $\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}.$

What happens to the vector $v_2 = (1,0)?$

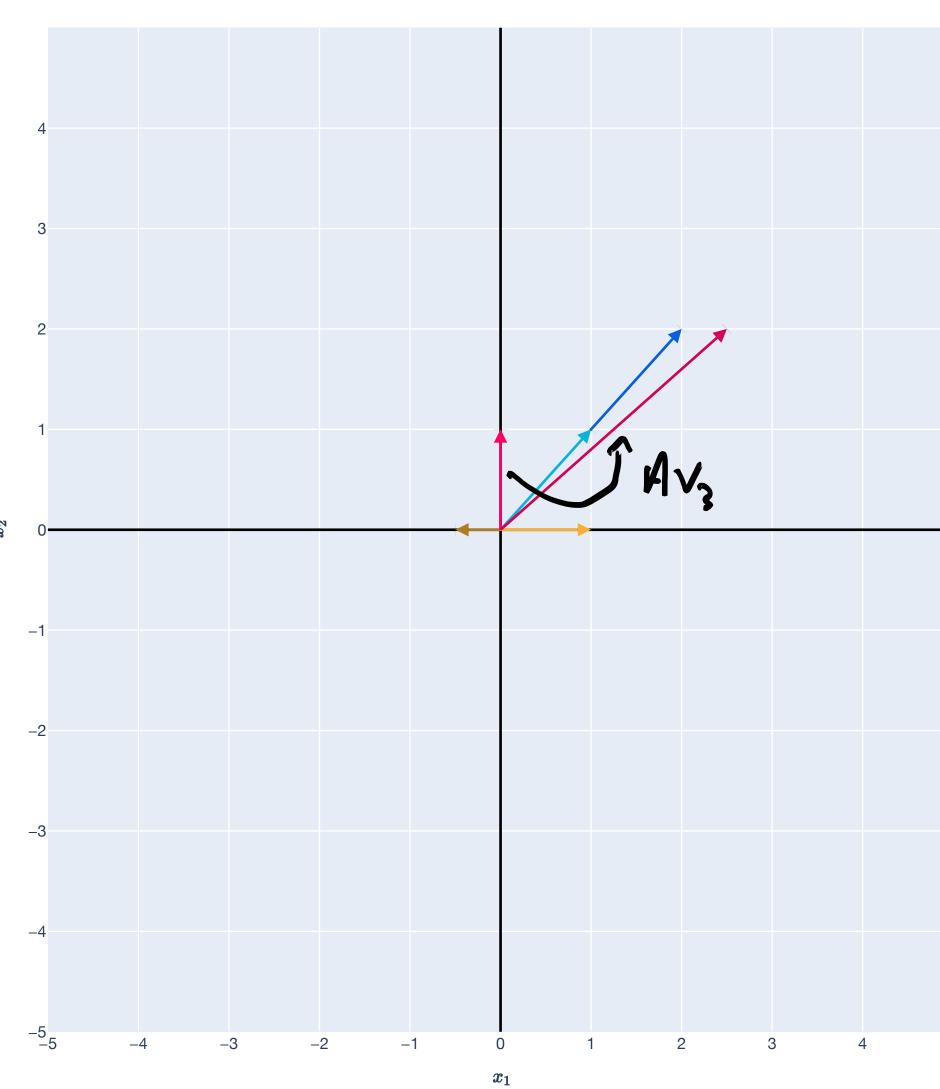
$$\begin{bmatrix} -1/2 & 5/2 \\ 0 & z \end{bmatrix} \begin{bmatrix} 1/2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$$



Consider the matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ given by $\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}.$

What happens to the vector $\mathbf{v}_3 = (0,1)$?

$$\begin{bmatrix} -k_2 & S_2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} S_2 \\ Z \end{bmatrix}$$



Consider the matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ given by

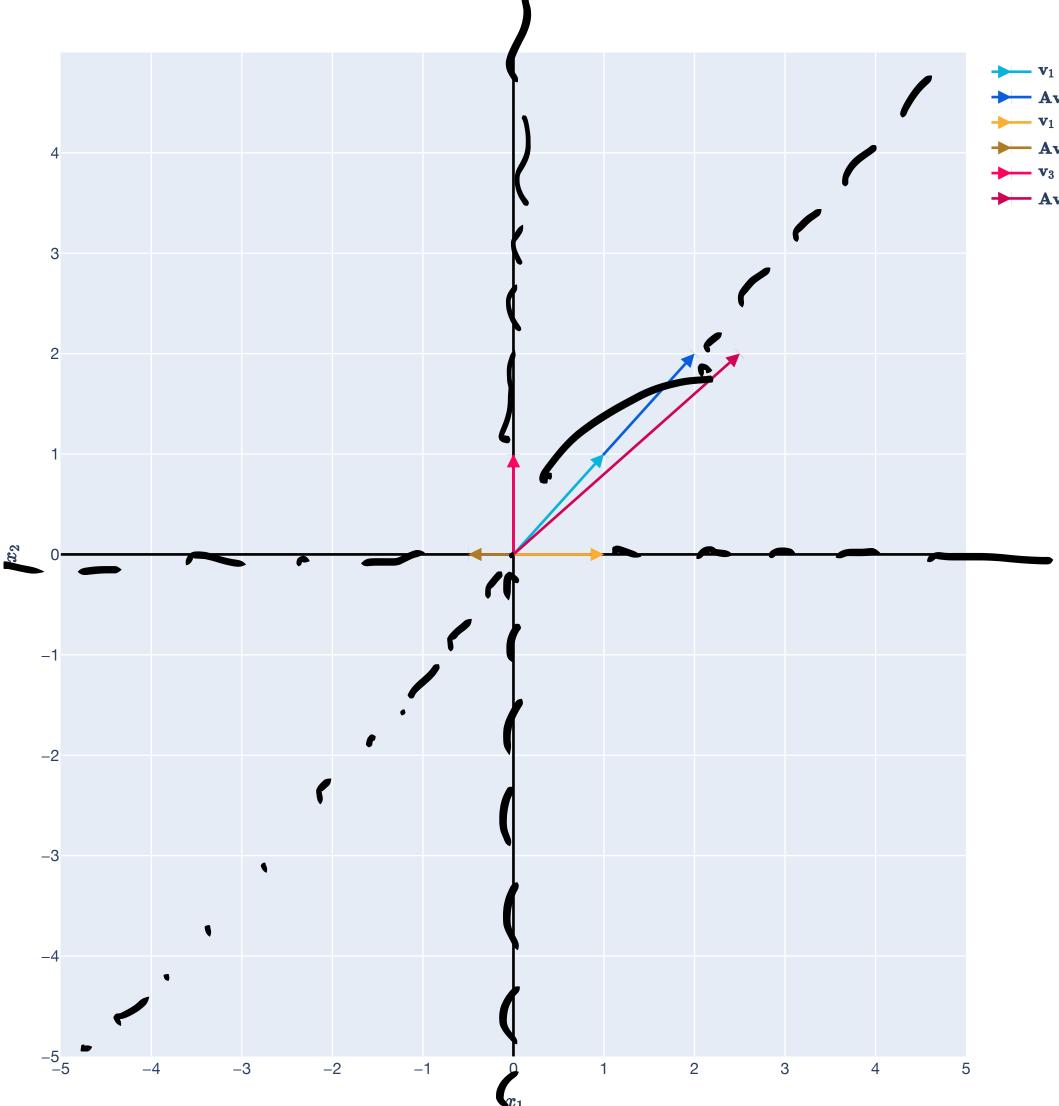
$$\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}.$$

Eigenvectors (with eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -1/2$):

$$\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 0 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Not an eigenvector:

$$\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5/2 \\ 2 \end{bmatrix}$$



Example

 $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,0)$ are linearly independent — they form a basis for \mathbb{R}^2 .

We can write any $\mathbf{x} \in \mathbb{R}^2$ in terms of \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2.$$
$$\mathbf{x} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

 $\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}$

Eigenvectors and eigenvalues [378] we i Brown

$$\mathbf{A} = \begin{bmatrix} -1/2 & 5/2\\ 0 & 2 \end{bmatrix}$$

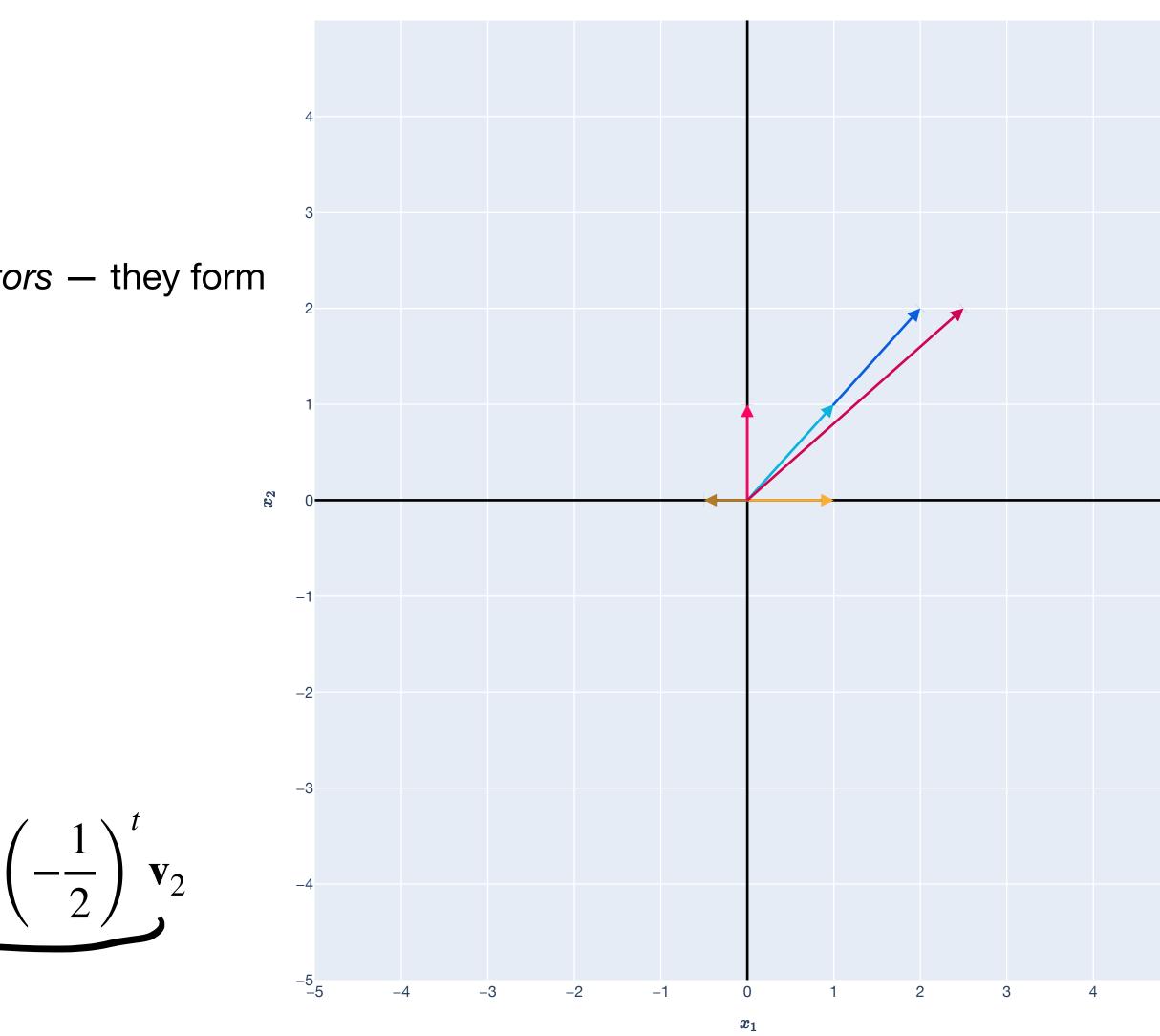
 $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,0)$ are linearly independent *eigenvectors* — they form a basis for \mathbb{R}^2 . Their *eigenvalues* are $\lambda_1 = 2$ and $\lambda_2 = -1/2$.

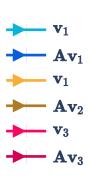
We can write any $\mathbf{x} \in \mathbb{R}^2$ in terms of \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2.$$
$$\mathbf{x} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Repeated multiplication:

$$\mathbf{A}^{t}\mathbf{x} = \mathbf{A}^{t}(a\mathbf{v}_{1} + b\mathbf{v}_{2}) = a\mathbf{A}^{t}\mathbf{v}_{1} + b\mathbf{A}^{t}\mathbf{v}_{2} = a2^{t}\mathbf{v}_{1} + b$$





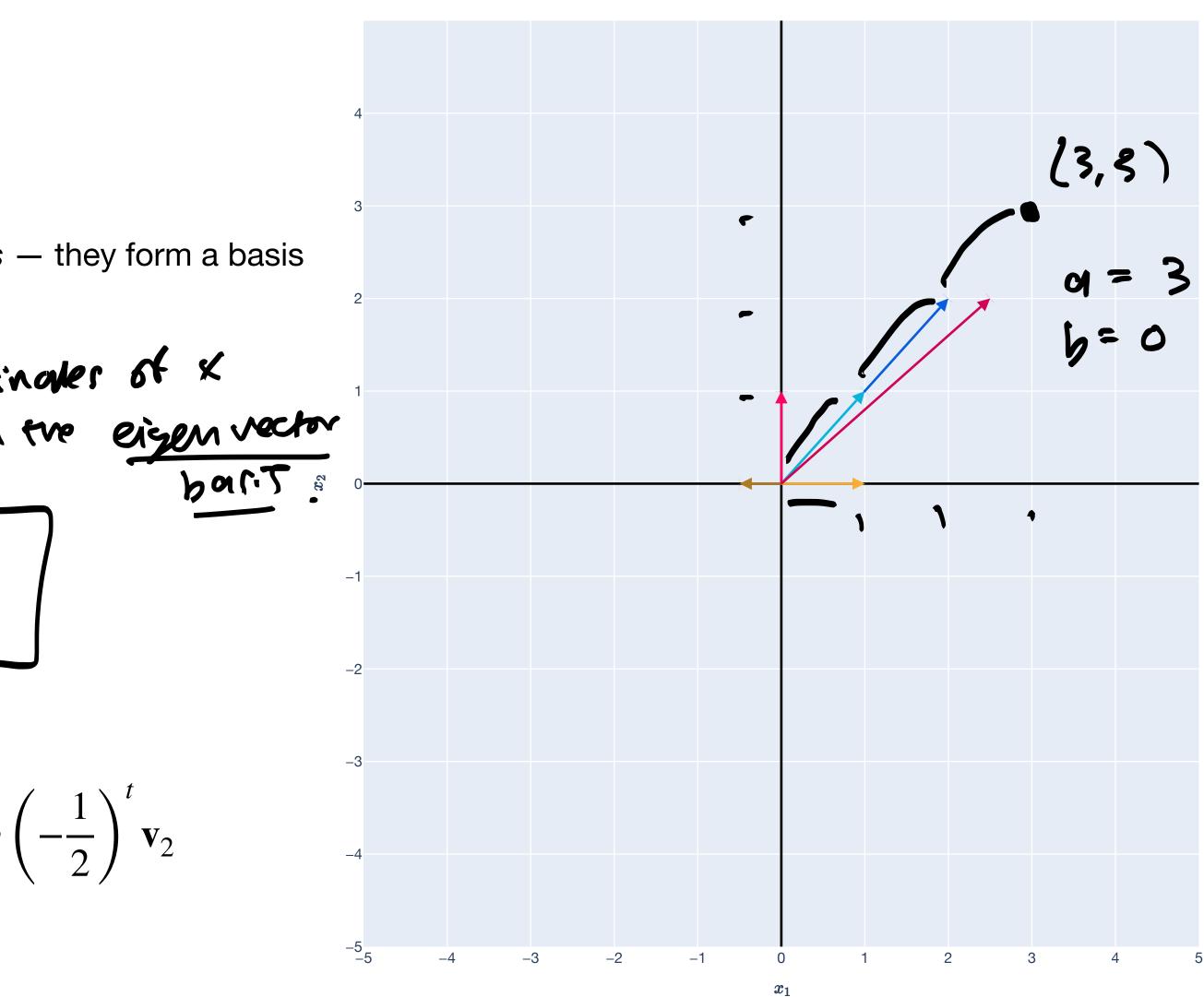
$$\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}$$

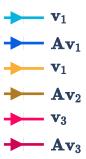
 $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,0)$ are linearly independent *eigenvectors* — they form a basis for \mathbb{R}^2 . Their *eigenvalues* are $\lambda_1 = 2$ and $\lambda_2 = -1/2$.

We can write any
$$\mathbf{x} \in \mathbb{R}^2$$
 in terms of \mathbf{v}_1 and \mathbf{v}_2 :
 $\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2$.
 $\mathbf{x} = \begin{bmatrix}\uparrow\uparrow\uparrow\\\mathbf{v}_1&\mathbf{v}_2\\\downarrow\downarrow\downarrow\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix} \implies \begin{bmatrix}a\\b\end{bmatrix} = \mathbf{V}^{-1}\mathbf{x}$

Repeated multiplication:

$$\mathbf{A}^{t}\mathbf{x} = \mathbf{A}^{t}(a\mathbf{v}_{1} + b\mathbf{v}_{2}) = a\mathbf{A}^{t}\mathbf{v}_{1} + b\mathbf{A}^{t}\mathbf{v}_{2} = a2^{t}\mathbf{v}_{1} + b\left(-\frac{1}{2}a^{t}\mathbf{v}_{1}^{T}\right) + b\left(-\frac{1}{2}a^{t}\mathbf{v}_{1}$$





We can write any $\mathbf{x} \in \mathbb{R}^2$ in terms of \mathbf{v}_1 and \mathbf{v}_2 :

Repeated multiplic

$$\mathbf{x} = a\mathbf{v}_{1} + b\mathbf{v}_{2}.$$

$$\mathbf{x} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \Longrightarrow \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{V}^{-1}\mathbf{x}$$
cation:
$$\mathbf{A}^{t}\mathbf{x} = \mathbf{A}^{t}(a\mathbf{v}_{1} + b\mathbf{v}_{2}) = a\mathbf{A}^{t}\mathbf{v}_{1} + b\mathbf{A}^{t}\mathbf{v}_{2} = a2^{t}\mathbf{v}_{1} + b\left(-\frac{1}{2}\right)^{t}\mathbf{v}_{2} \Longrightarrow \mathbf{A}^{t}\mathbf{x} = \mathbf{V}\begin{bmatrix} 2^{t} & 0 \\ 0 & (-1/2)^{t} \end{bmatrix} \mathbf{V}^{-1}\mathbf{x}$$

$$\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix}$$

 $\mathbf{A} =$

 $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,0)$ are linearly independent eigenvectors — they form a basis for \mathbb{R}^2 . Their eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = -1/2$.

 $\mathbf{A}^{t}\mathbf{x} = \mathbf{A}^{t}(a\mathbf{v}_{1} + b\mathbf{v}_{2}) = a\mathbf{A}^{t}\mathbf{v}_{1} + b\mathbf{A}^{t}\mathbf{v}_{2} = a2^{t}\mathbf{v}$

Single multiplication: $\mathbf{A}\mathbf{X} = \mathbf{V} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$ ^I, wher

Repeated multiplication:

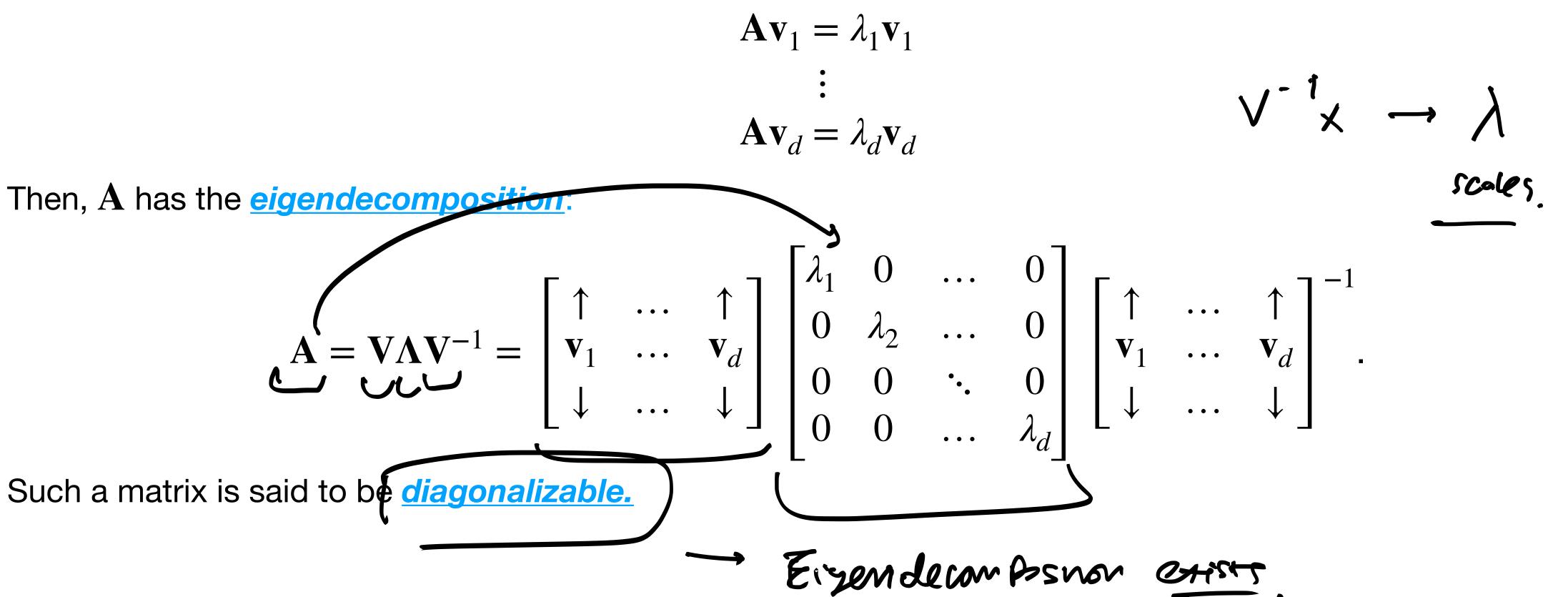
$$\mathbf{v}_1 + b \left(-\frac{1}{2} \right)^t \mathbf{v}_2 \implies \mathbf{A}^t \mathbf{x} = \mathbf{V} \begin{bmatrix} 2^t & 0\\ 0 & (-1/2)^t \end{bmatrix} \mathbf{V}^{-1}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & -1/2 \end{bmatrix} \mathbf{V}^{-1} \mathbf{x}$$

re $\mathbf{\Lambda} \in \mathbb{R}^{2 \times 2}$ is diagonal

Eigendecomposition Definition

eigenvectors



$$\begin{bmatrix} g \\ b \end{bmatrix} = \sqrt{x}$$

$$\sqrt{\begin{bmatrix} g \\ b \end{bmatrix}} = \frac{1}{x}$$

$$\begin{bmatrix} y \\ y \end{bmatrix} \begin{bmatrix} g \\ b \end{bmatrix} = \frac{1}{x}$$

5

Prop (Eigendecomposition of a diagonalizable matrix). Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a matrix with d linearly independent

Eigendecomposition Example

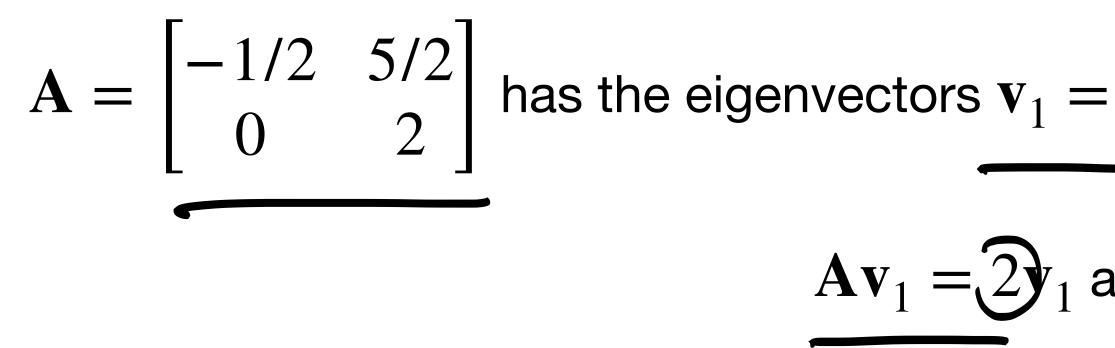
$\mathbf{A} = \begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} \text{ has the eigenvectors } \mathbf{v}_1 = (1,1) \text{ and } \mathbf{v}_2 = (1,0):$ $\mathbf{A}\mathbf{v}_1 = 2\mathbf{v}_1 \text{ and } \mathbf{A}\mathbf{v}_2 = -\frac{1}{2}\mathbf{v}_2.$

 \mathbf{v}_1 and \mathbf{v}_2 are linearly independent, so \mathbf{A} is diagonalizable with eigendecomposition:

 $\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1/2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

Eigendecomposition Example



 \mathbf{v}_1 and \mathbf{v}_2 are linearly independent, so \mathbf{A} is diag

 $\begin{bmatrix} -1/2 & 5/2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ Question: But when do (square)

Eigendecomposition Connection with SVD

Eigendecomposition only applies to square matrices $A \in \mathbb{R}^{d \times d}$.

The SVD applies to any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$:

 $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$

$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1} \, .$

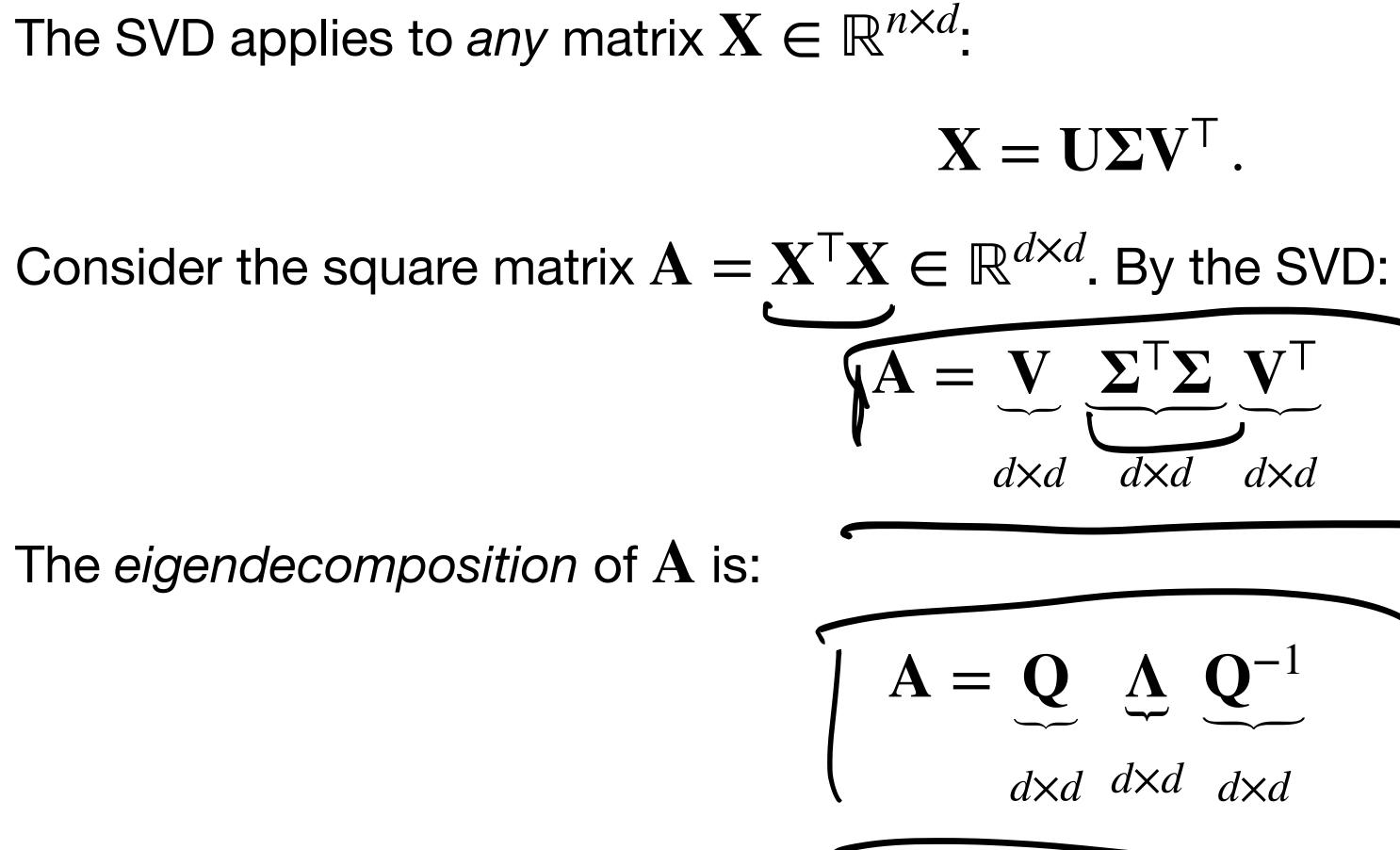
 $\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}},$

The SVD applies to any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$:

- Consider the square matrix $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X} \in \mathbb{R}^{d \times d}$. By the SVD:

$\mathbf{A} = \mathbf{X}^{\mathsf{T}}\mathbf{X} \longrightarrow \mathbf{I}$ $= \mathbf{V} \mathbf{\Sigma}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ $= \mathbf{V} \mathbf{\Sigma}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$

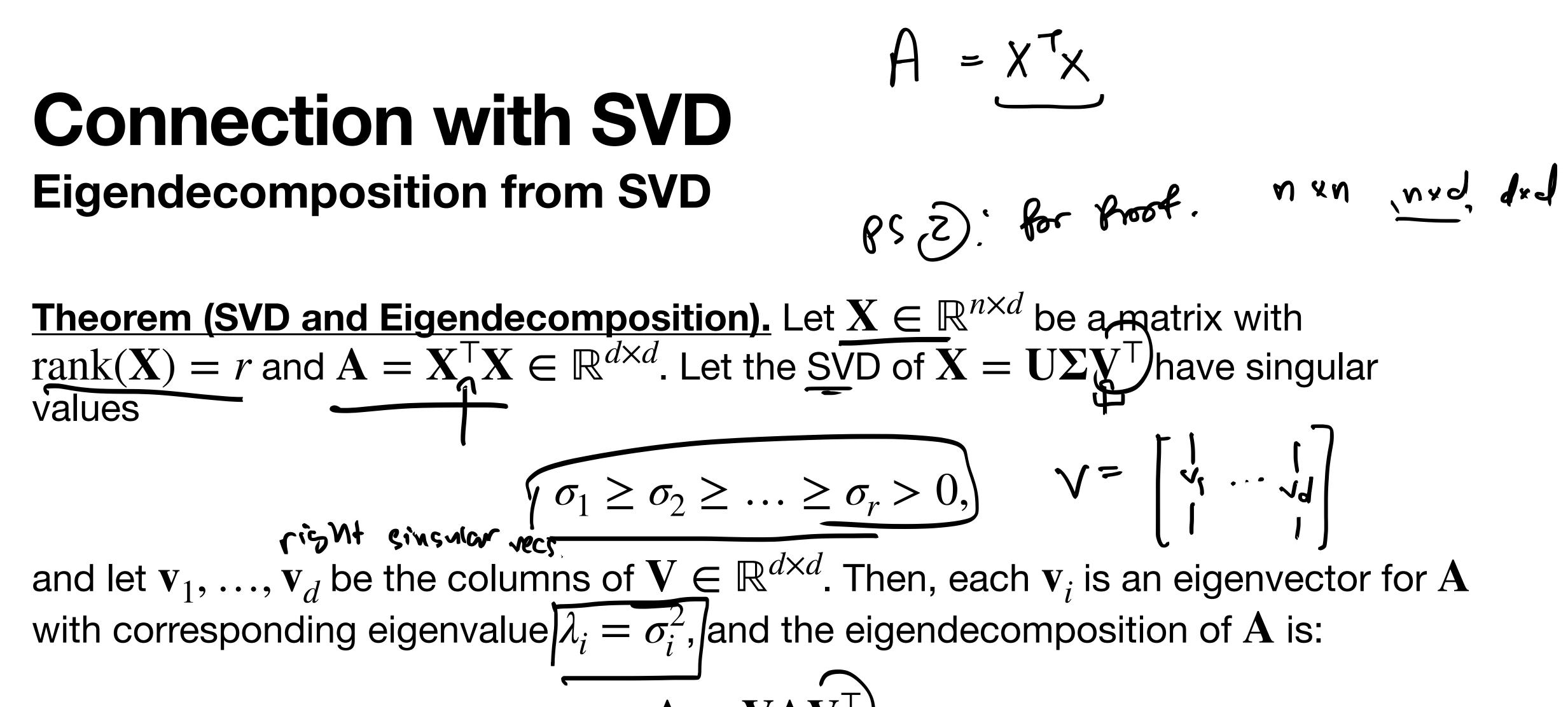
 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}.$

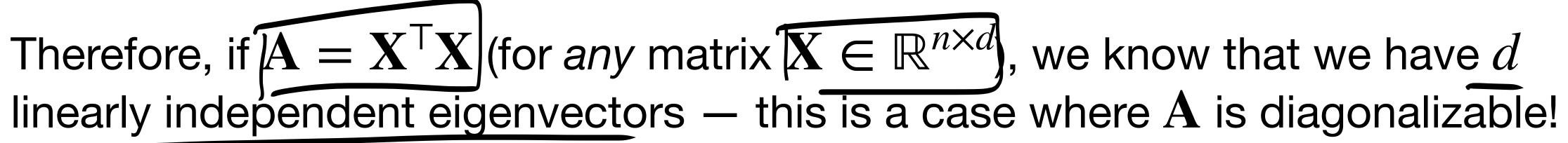


$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$. $d \times d \quad d \times d$ $d \times d$ $d \times d \quad d \times d \quad d \times d$

values $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$

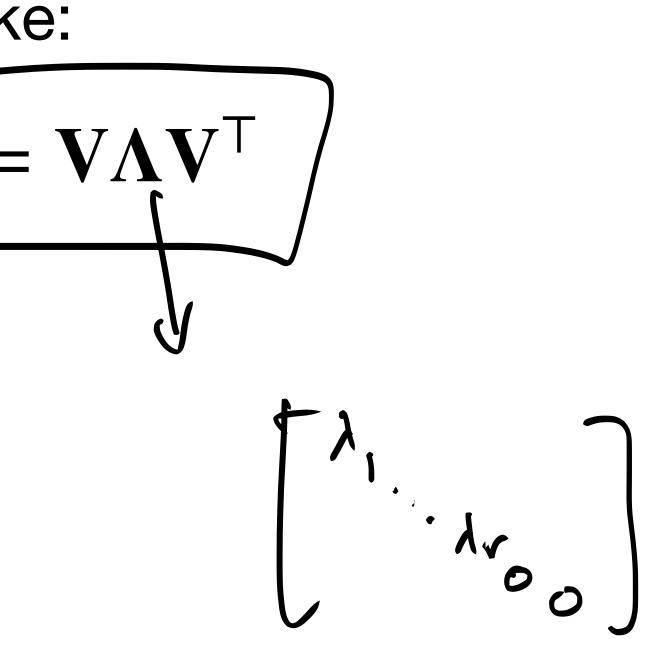
where $\Lambda \in \mathbb{R}^{d \times d}$ is the diagonal matrix with entries $\lambda_i = \sigma_i^2$ for $i \in [d]$.





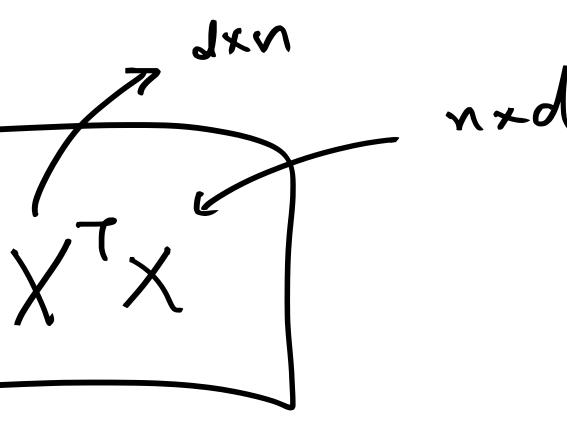
Moreover, the diagonalization looks like:

where $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ is the SVD.



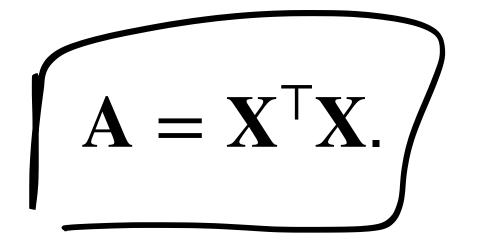
ERdxd

Positive Semidefinite Matrices Definition and Connections



Positive Semidefinite (PSD) Matrices First definition

Note: If you've seen PSD matrices before, this isn't the usual definition (but it's equivalent, as we'll see in a bit).



Positive Semidefinite (PSD) Matrices Symmetry of PSD Matrices

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is **positive semidefinite (PSD)** if there exists a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ such that:

Prop (Symmetry of PSD matrices). All positive semidefinite matrices are symmetric. If $\mathbf{A} \in \mathbb{R}^{d \times d}$ is PSD, then

- $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X}.$ $A^{T} = (x^{T}x)^{T} = x^{T}x = A.$
- $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$

Positive Semidefinite (PSD) Matrices Example

$\mathbf{A} = \begin{bmatrix} 5/2 & 3/2 \\ 3/2 & 5/2 \end{bmatrix}$ is positive semidefinite.

Positive Semidefinite (PSD) Matrices Example

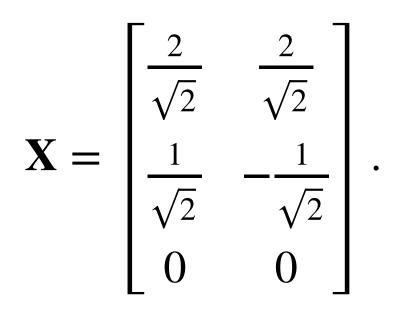
 $\mathbf{A} = \begin{bmatrix} 5/2 & 3/2 \\ 3/2 & 5/2 \end{bmatrix}$ is positive semidefinite.

Its "square root" is the matrix

To verify:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \begin{bmatrix} \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{2}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$





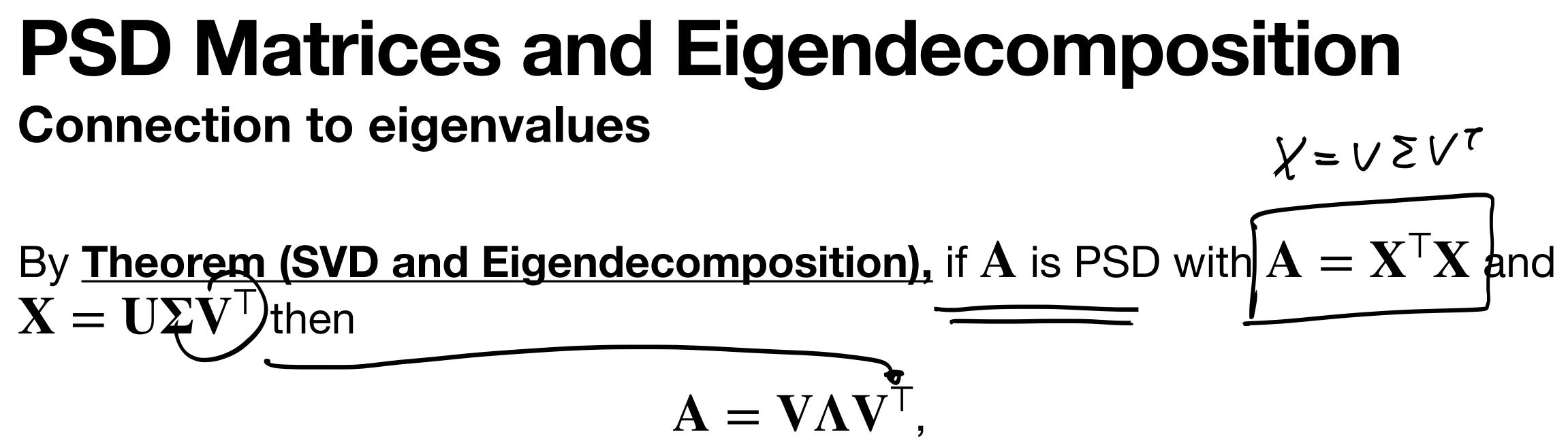
$$\begin{bmatrix} \frac{2}{\sqrt{2}} & \frac{2}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 5/2 & 3/2 \\ 3/2 & 5/2 \end{bmatrix} = \mathbf{A}$$

PSD Matrices and Eigendecomposition Connection to eigenvalues

with orthonormal eigenvectors $\mathbf{V}_1, \ldots, \mathbf{V}_d$

and nonnegative eigenvalues $\lambda_1 = \sigma_1^2, \dots, \lambda_d = \sigma_d^2$

The reverse direction is also true!



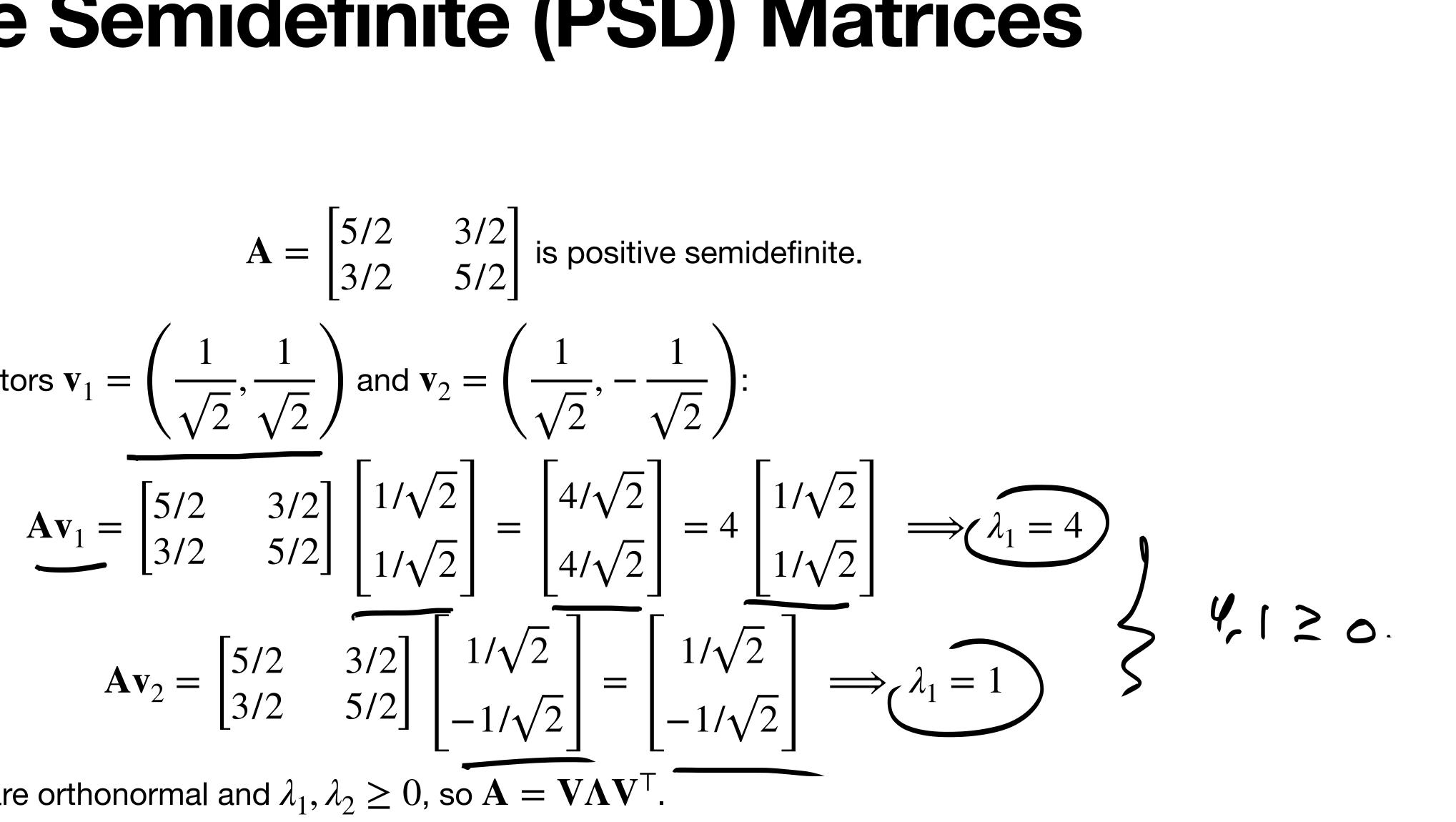
PSD Matrices and Eigendecomposition Second definition

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite (PSD)</u> if \mathbf{A} has d eigenvectors forming an orthonormal basis for \mathbb{R}^d with corresponding nonnegative eigenvalues $\lambda_1, \ldots, \lambda_d \geq 0$.

vonvezatre eijenvalves

Positive Semidefinite (PSD) Matrices Example

It has the eigenvectors $\mathbf{v}_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\mathbf{v}_2 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$: The eigenvectors are orthonormal and $\lambda_1, \lambda_2 \ge 0$, so $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\top}$.



Positive Semidefinite (PSD) Matrices Third definition

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite (PSD)</u> if, for any $\mathbf{x} \in \mathbb{R}^{d}$,

definitions in previous slides).

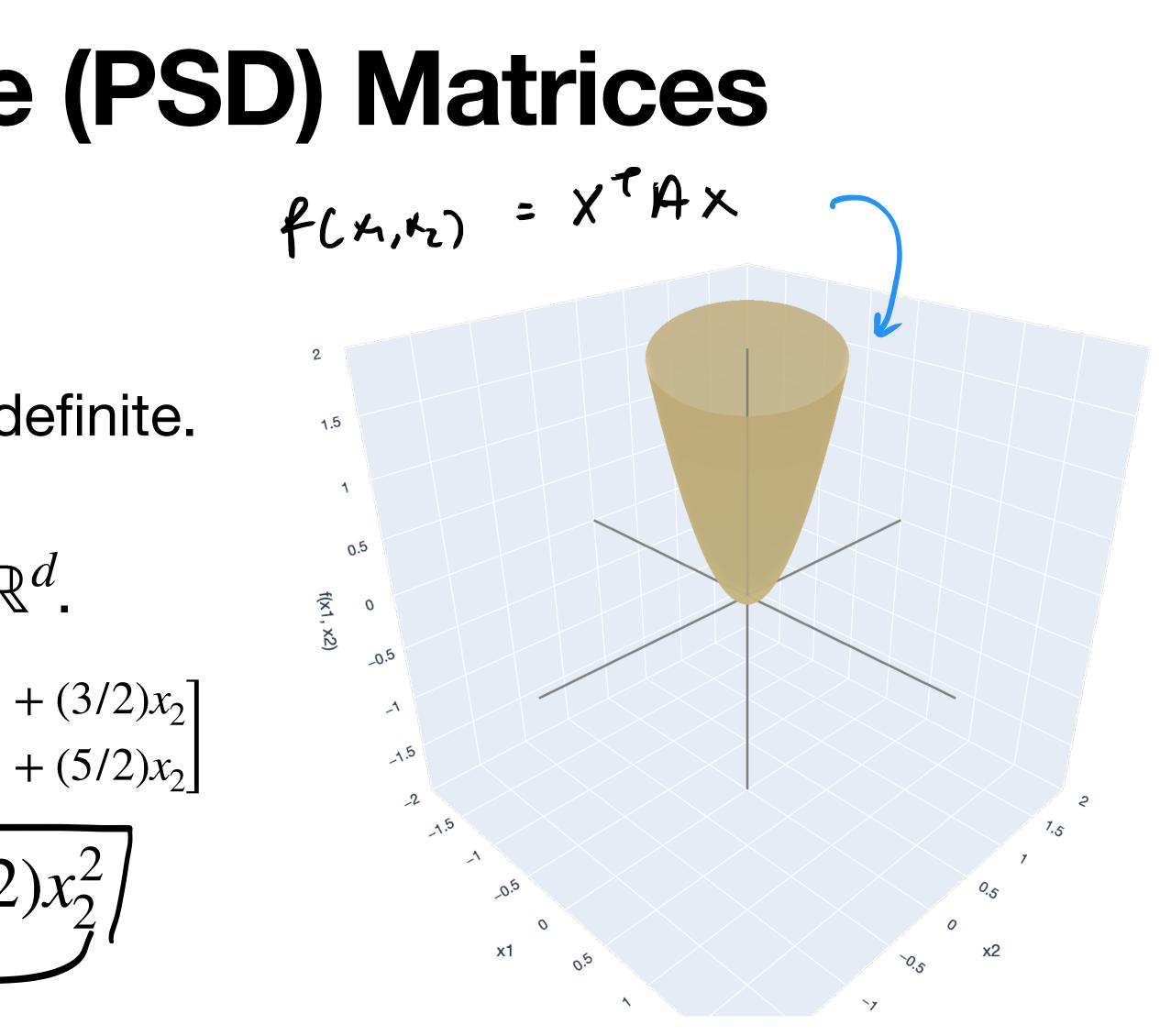
- $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} \ge 0.$ This is often taken as the definition of PSD (but it is equivalent to the other two
 - XTAX ER. Du Du

Positive Semidefinite (PSD) Matrices Example $f(x,y) = x^{\tau}Ax$

$$\mathbf{A} = \begin{bmatrix} 5/2 & 3/2 \\ 3/2 & 5/2 \end{bmatrix}$$
 is positive semic

Consider any vector $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^d$.

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 5/2 & 3/2 \\ 3/2 & 5/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} (5/2)x_1 \\ (3/2)x_1 \end{bmatrix}$$
$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = (5/2)x_1^2 + 3x_1x_2 + (5/2)x_1^2 + 3x_1x_2 + (5/2)x_1 \end{bmatrix}$$



Positive Semidefinite (PSD) Matrices All definitions

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite (PSD)</u> if... there exists $\mathbf{X} \in \mathbb{R}^{n \times d}$ such that $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X}$.

all eigenvalues of A are nonnegative: $\lambda_1 \ge 0, ..., \lambda_d \ge 0$.

 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \ge 0$ for any $\mathbf{x} \in \mathbb{R}^d$.

Positive Definite (PD) Matrices All definitions

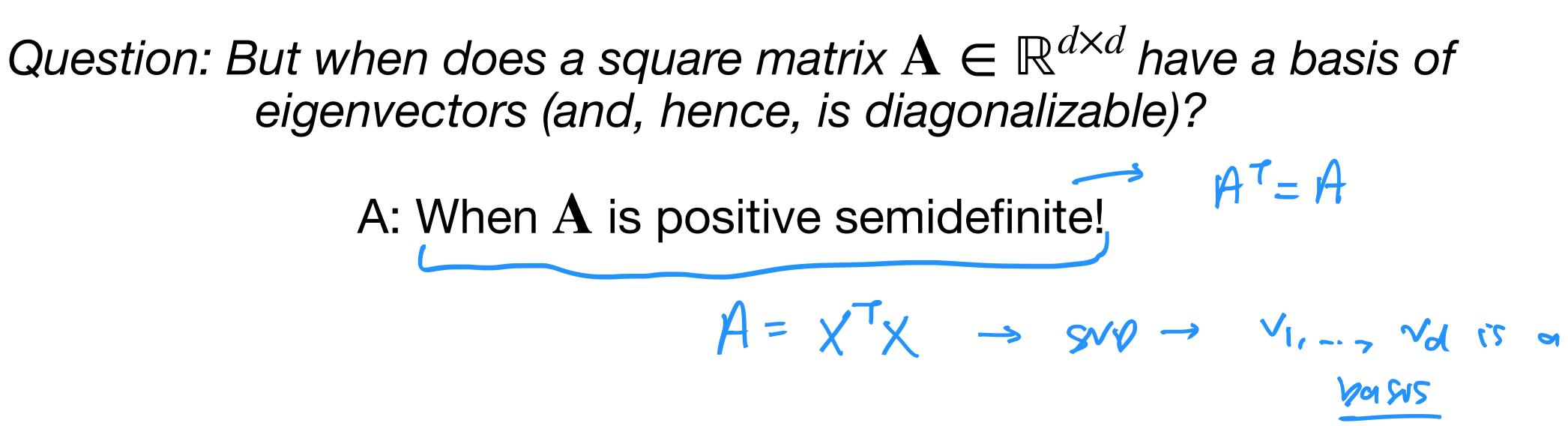
A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is <u>positive definite (PD)</u> if...

Strictly

- there exists an invertible matrix $\mathbf{X} \in \mathbb{R}^{d \times d}$ such that $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X}$. all eigenvalues of **A** are positive: $\lambda_1 > 0, \dots, \lambda_d > 0$. $\lambda_1 = 4$ $\lambda_2 = 1$
 - $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} > 0$ for any $\mathbf{x} \in \mathbb{R}^{d}$.

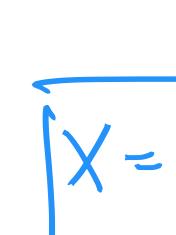
Spectral Theorem Statement

But even more generally...



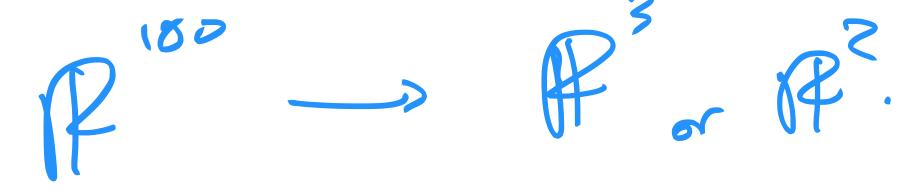
Spectral Theorem Statement

(i.e. $A^{\top} = A$). Then, A is diagonalizable: A has an orthonormal basis of d eigenvectors and an eigendecomposition



But, in this generality, λ_i can be negative!

Theorem (Spectral Theorem). Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a square, symmetric matrix $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}.$ X= UZVT E SVD mons for any mxd.

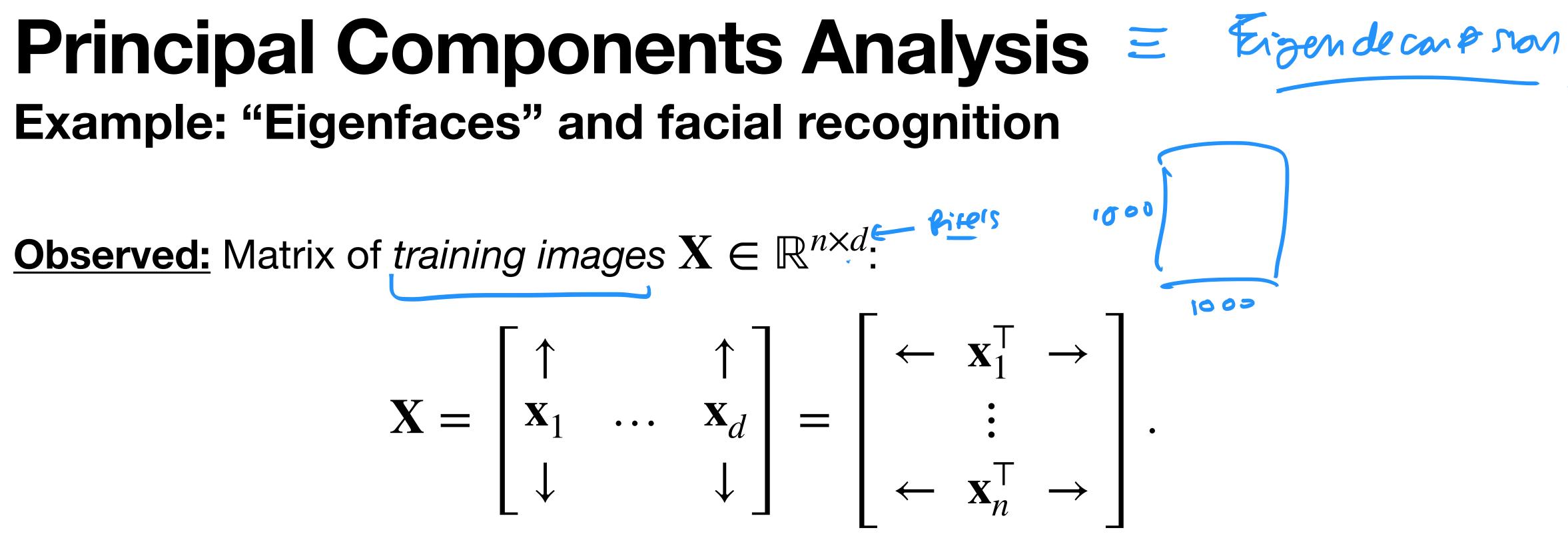


Principal Components Analysis Application of Eigendecomposition

Example: "Eigenfaces" and facial recognition

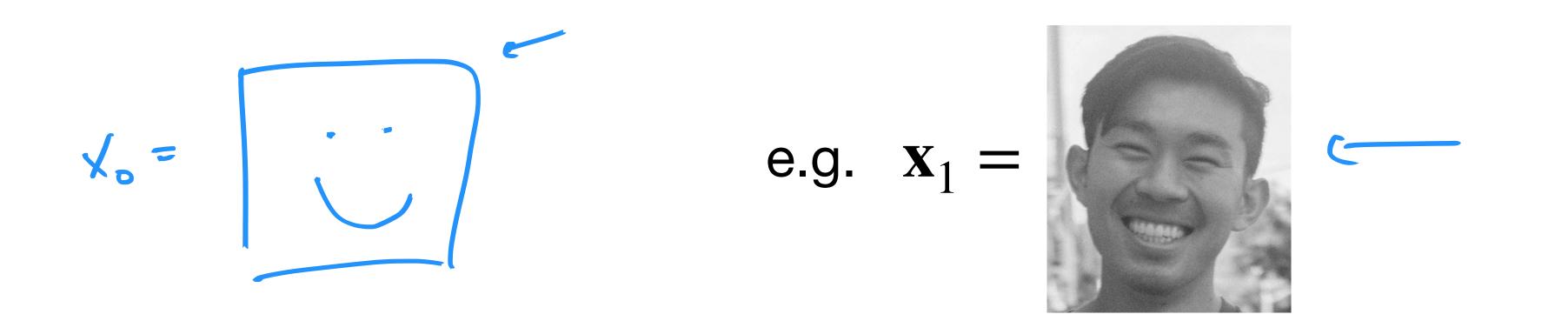
Each row is a "flattened" image vector. Typically, each pixel is in [0, 255] for grayscale images.

Images are very high-dimensional: d = width in pixels X height in pixels (e.g. $d = 1080 \times 1080 = 1,166,400$).



Principal Components Analysis Example: "Eigenfaces" and facial recognition

Consider a dataset of 1,000 grayscale face images $\mathbf{x}_1, \dots, \mathbf{x}_{1000} \in \mathbb{R}^{1080 \times 1080}$



"closest" face (perhaps in Euclidean norm $||\mathbf{x} - \mathbf{x}_i||$).

Storage: 1166400 integers \times 1000 images \approx 1 GB.

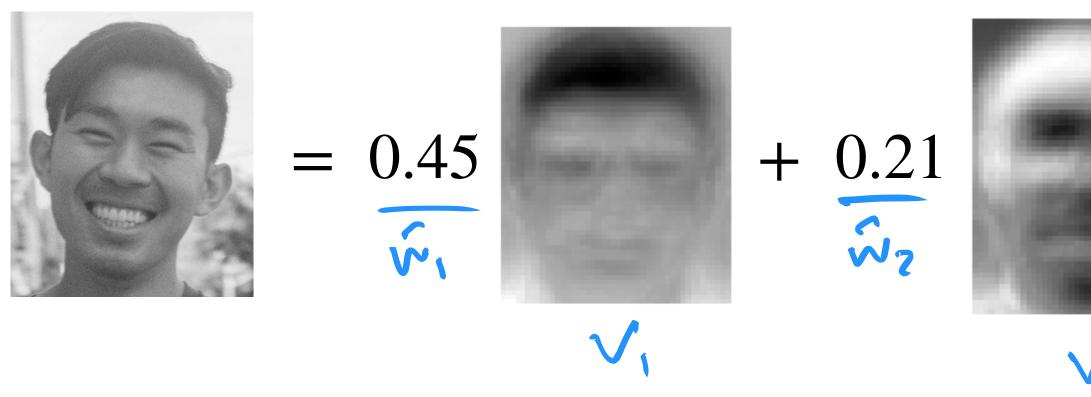
Byte

1,000,000

Naive facial recognition: Get a new face, linear search over 1,000 faces for the

Principal Components Analysis Example: "Eigenfaces" and facial recognition

Suppose we can find a "basis" of representative faces: v_1, \ldots, v_k where $k \ll n$. Then, we can represent any face as a linear combination of the basis faces!



+ 0.12+0.05 Ŵ $\sqrt{2}$ $\sqrt{2}$

1000

Improved facial recognition: Store k "eigenfaces." Given a new face \mathbf{x}_0 , project the face onto the subspace spanned by the eigenfaces to get $\Pi(\mathbf{x}_0)$. Compare $\Pi(\mathbf{x}_0)$ to each face's projection in the database in Euclidean norm $\|\Pi(\mathbf{x}_0) - \Pi(\mathbf{x}_i)\|$. $\widehat{\mathbf{x}} \to \widehat{\mathbf{x}} = \widehat{\mathbf{x}} =$

 $+\ldots$

Principal Components Analysis Example: PCA in 2D

<u>**Observed:**</u> Matrix of *training points* $\mathbf{X} \in \mathbb{R}^{n \times 2}$:

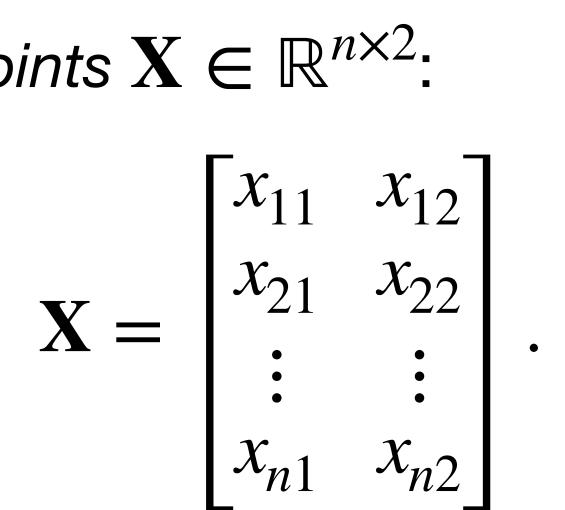
Want to find the directions that most explain the "variance" of the data.

 $\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix}.$

Principal Components Analysis Example: PCA in 2D

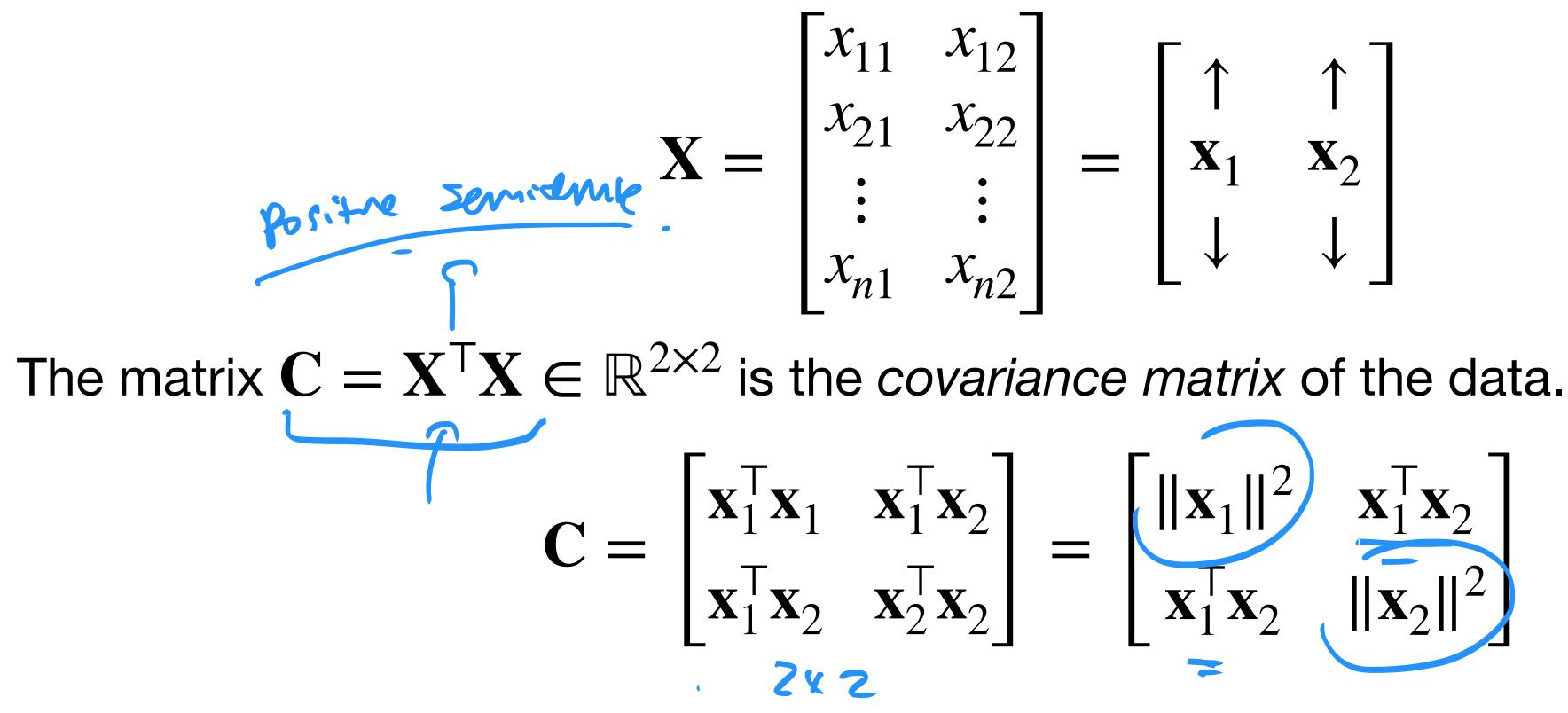
<u>**Observed:**</u> Matrix of *training points* $\mathbf{X} \in \mathbb{R}^{n \times 2}$:

Want to find the directions that most explain the "variance" of the data. The matrix $\mathbf{C} = \mathbf{X}^{\mathsf{T}} \mathbf{X} \in \mathbb{R}^{2 \times 2}$ is the covariance matrix of the data.



Principal Components Analysis Example: PCA in 2D

<u>**Observed:**</u> Matrix of *training points* $\mathbf{X} \in \mathbb{R}^{n \times 2}$:



Principal Components Analysis Example: PCA in 2D

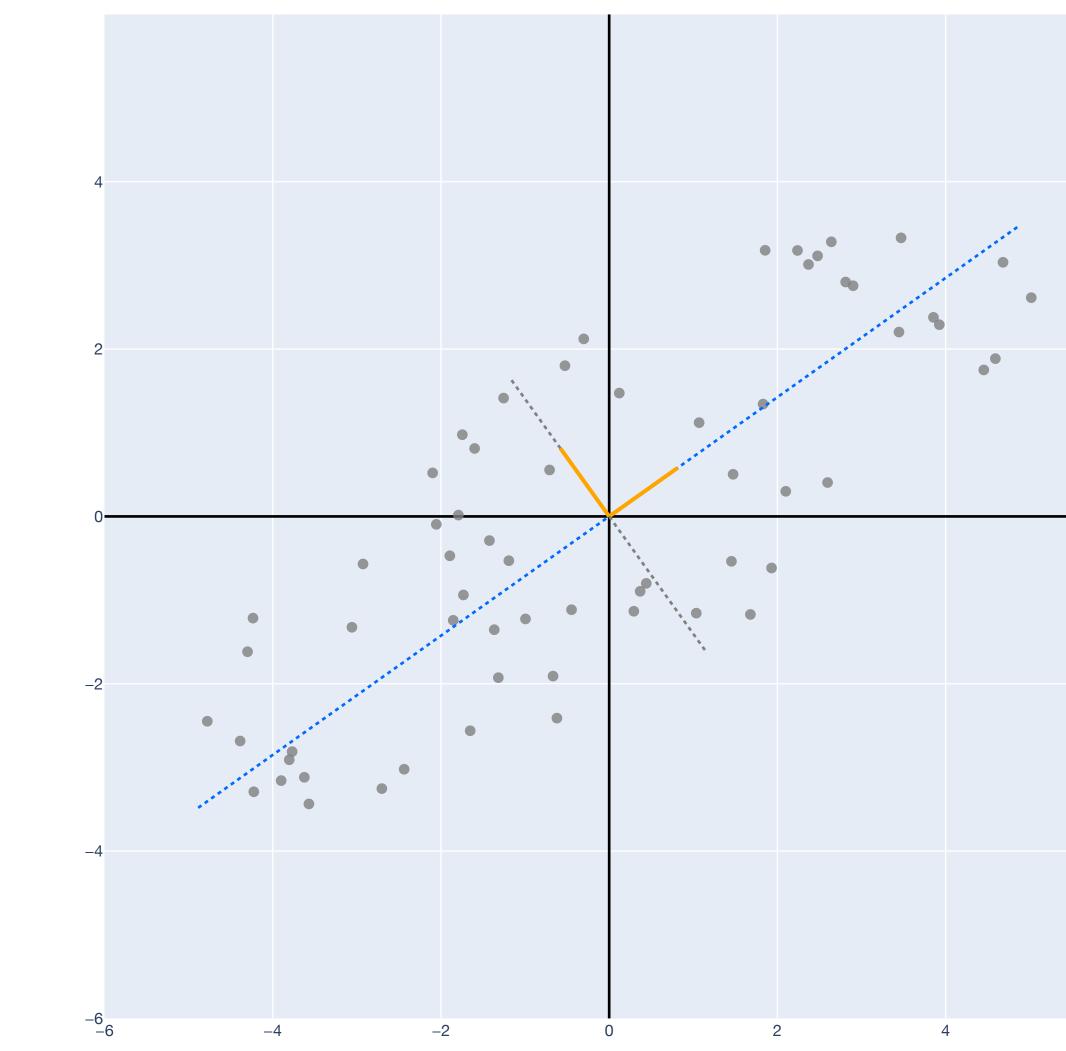
<u>**Observed:**</u> Matrix of *training points* $\mathbf{X} \in \mathbb{R}^{n \times 2}$:

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{x}_1 & \mathbf{x}_2 \\ \downarrow & \downarrow \end{bmatrix}$$

The matrix $\mathbf{C} = \mathbf{X}^{\mathsf{T}} \mathbf{X} \in \mathbb{R}^{2 \times 2}$ is the covariance matrix of the data.

$$\mathbf{C} = \begin{bmatrix} \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_1 & \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 \\ \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 & \mathbf{x}_2^{\mathsf{T}} \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \|\mathbf{x}_1\|^2 & \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 \\ \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 & \|\mathbf{x}_2\|^2 \end{bmatrix}$$

PCA: Find the ordered set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_d \in \mathbb{R}^d$ that explain the most variance to least variance in the data.



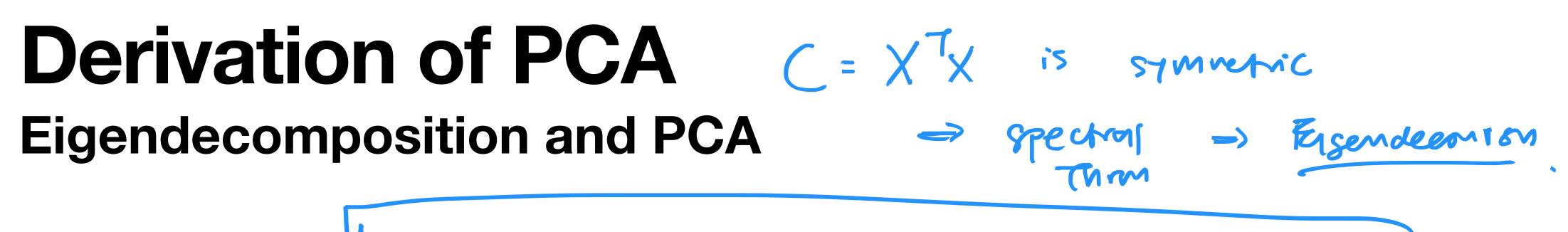
 $\mathbf{C} = \mathbf{X}^{\mathsf{T}} \mathbf{X} \in \mathbb{R}^{d \times d}$. By definition, **C** is positive semidefinite.

Therefore, it is diagonalizable with eigendecomposition:

$$\mathbf{C} = \mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}},$$

keep eigenvectors $\mathbf{V}_1, \ldots, \mathbf{V}_k$.

The eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ give an orthonormal basis for a k-dimensional subspace.



PCA = Eigendecomposition of the covariance matrix!

- Consider a (column-centered) dataset $\mathbf{X} \in \mathbb{R}^{n imes d}$ and construct its covariance matrix

 - with eigenvectors $\mathbf{V}_1, \ldots, \mathbf{V}_d$.
- With eigenvectors ordered $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d \geq 0$, choose a cutoff point $k \ll d$, and

Derivation of PCA Eigendecomposition and PCA

PCA = Eigendecomposition of the covariance matrix!

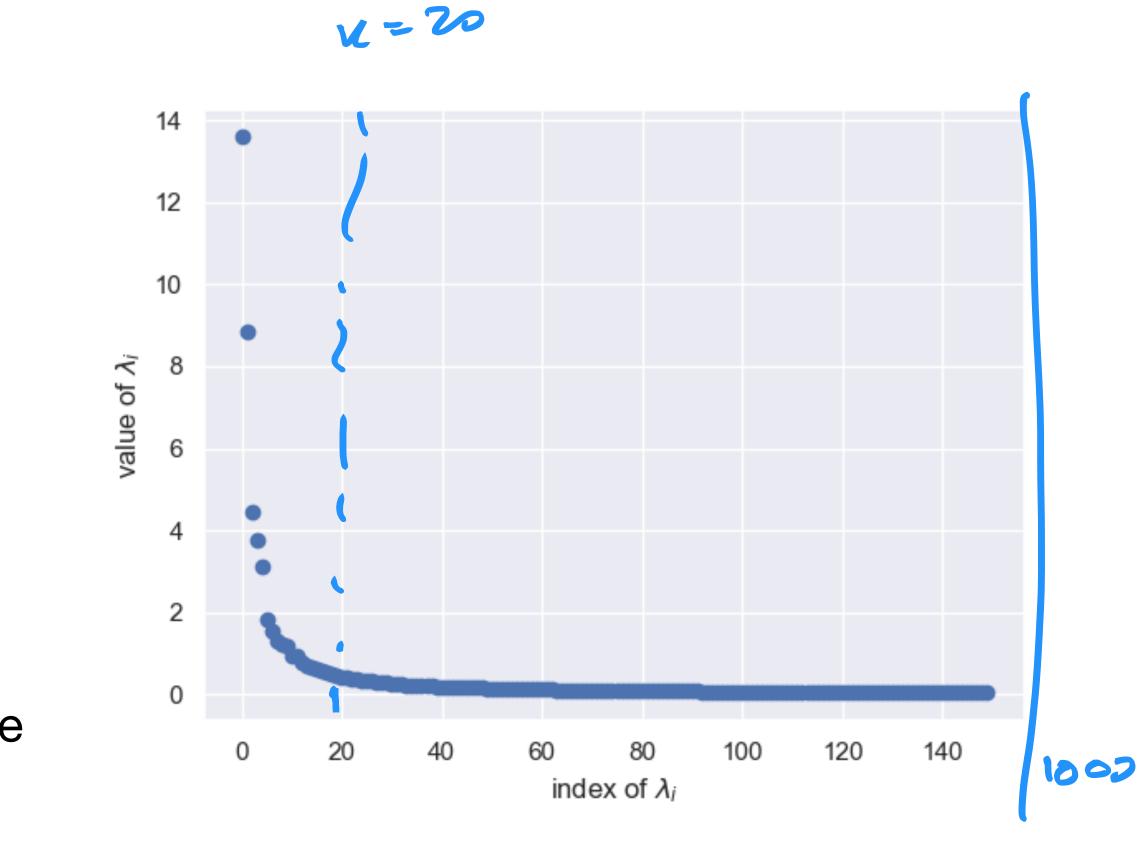
Consider a (column-centered) dataset $\mathbf{X} \in \mathbb{R}^{n \times d}$ and construct its covariance matrix $\mathbf{C} = \mathbf{X}^{\mathsf{T}} \mathbf{X} \in \mathbb{R}^{d \times d}$. By definition, C is positive semidefinite.

Therefore, it is diagonalizable with eigendecomposition:

 $\mathbf{C} = \mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}}$, with eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$.

With eigenvectors ordered $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d \geq 0$, choose a cutoff point $k \ll d$, and keep eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$.

The eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ give an orthonormal basis for a k-dimensional subspace.



150

Derivation of PCA Eigendecomposition and PCA

 $\mathbf{C} = \mathbf{X}^{\mathsf{T}} \mathbf{X} \in \mathbb{R}^{d \times d}$. By definition, \mathbf{C} is positive semidefinite.

Therefore, it is diagonalizable with eigendecomposition:

efficient algorithm to find the SVD — true in practice).

- PCA = Eigendecomposition of the covariance matrix!
- Consider a (column-centered) dataset $\mathbf{X} \in \mathbb{R}^{n \times d}$ and construct its covariance matrix

 - $\mathbf{C} = \mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}}.$

(Could have also just taken the right singular vectors of $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op$ if we have

Least Squares Interpretation of Eigenvalues

Regression Setup

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \to \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \to \end{bmatrix}$$

<u>Unknown</u>: Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

<u>**Goal:</u>** For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.</u>

<u>**Observed:**</u> Matrix of *training* samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of *training* labels $\mathbf{y} \in \mathbb{R}^{d}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

 $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

Regression Setup

for $i \in [n]$, or:

To find $\hat{\mathbf{W}}$, we follow the *principle of least squares*.

 $\mathbf{w} \in \mathbb{R}^d$

- **<u>Goal</u>:** For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$. Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$
 - $\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y}$.

 $\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$

 $i \in [n]$, or:

But $\hat{\mathbf{y}}$ might not be a perfect fit to \mathbf{y} ! Model this using a *true weight vector* \mathbf{w}^*

 $y_i = \mathbf{x}_i^{\mathsf{T}} \mathbf{w}^* -$

y =

Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for

$$\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y} . \qquad \qquad \mathbf{X}\mathbf{w}^* = \mathbf{\chi}.$$

$$\in \mathbb{R}^{d} \text{ and an error term } \epsilon = (\epsilon_{1}, \dots, \epsilon_{n}) \in \mathbb{R}^{n}$$
$$+ \epsilon_{i} \text{ for all } i \in [n]$$
$$\epsilon_{i} \sim \mathcal{D}.$$
$$\mathbf{X}\mathbf{w}^{*} + \overline{\epsilon} \in \mathcal{P}^{*}$$

True labels:
$$\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$$
.

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$
$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$
$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$
$$= \mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\mathsf{T}}$$

$\mathbf{T}(\mathbf{X}\mathbf{W}^* + \epsilon)$ $\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \epsilon$ $\mathbf{X}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \epsilon$

What happens when we use the least squares weights $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

True labels: $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$.

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$
$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$
$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$
$$= \mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{*}$$

When $\epsilon = 0$ (y is linearly related to X), this is perfect: $\hat{w} = w^*$!

- $\mathbf{\bar{X}}\mathbf{W}^* + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon}$
- $(\mathbf{X}\mathbf{W}^* + \epsilon)$
- y
- What happens when we use the least squares weights $\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{v}$?

True labels: $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$.

What happens when we use the least squares weights $\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$?

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ $= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w}^{*} + \epsilon)$ When $\epsilon \neq 0$, we have an error of $\hat{\mathbf{w}} - \mathbf{w}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$.

 $= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$ $= \mathbf{W}^* + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \epsilon \quad \nearrow \quad \text{Spectral This}$ $\hat{W} - W^* = (x^T x)^T x^T c$

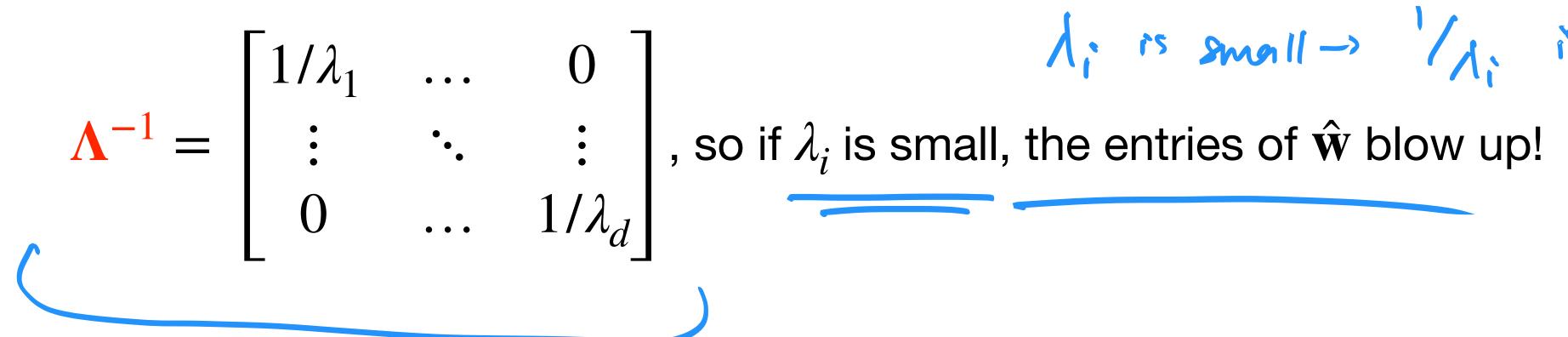
Error in Regression Eigendecomposition perspective

Weight vector's error:

We know that $\mathbf{X}^{\top}\mathbf{X}$ (the *covariance matrix*) is PSD, so it is diagonalizable:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}}$$

The inverse of the diagonal matrix Λ^{-1} :

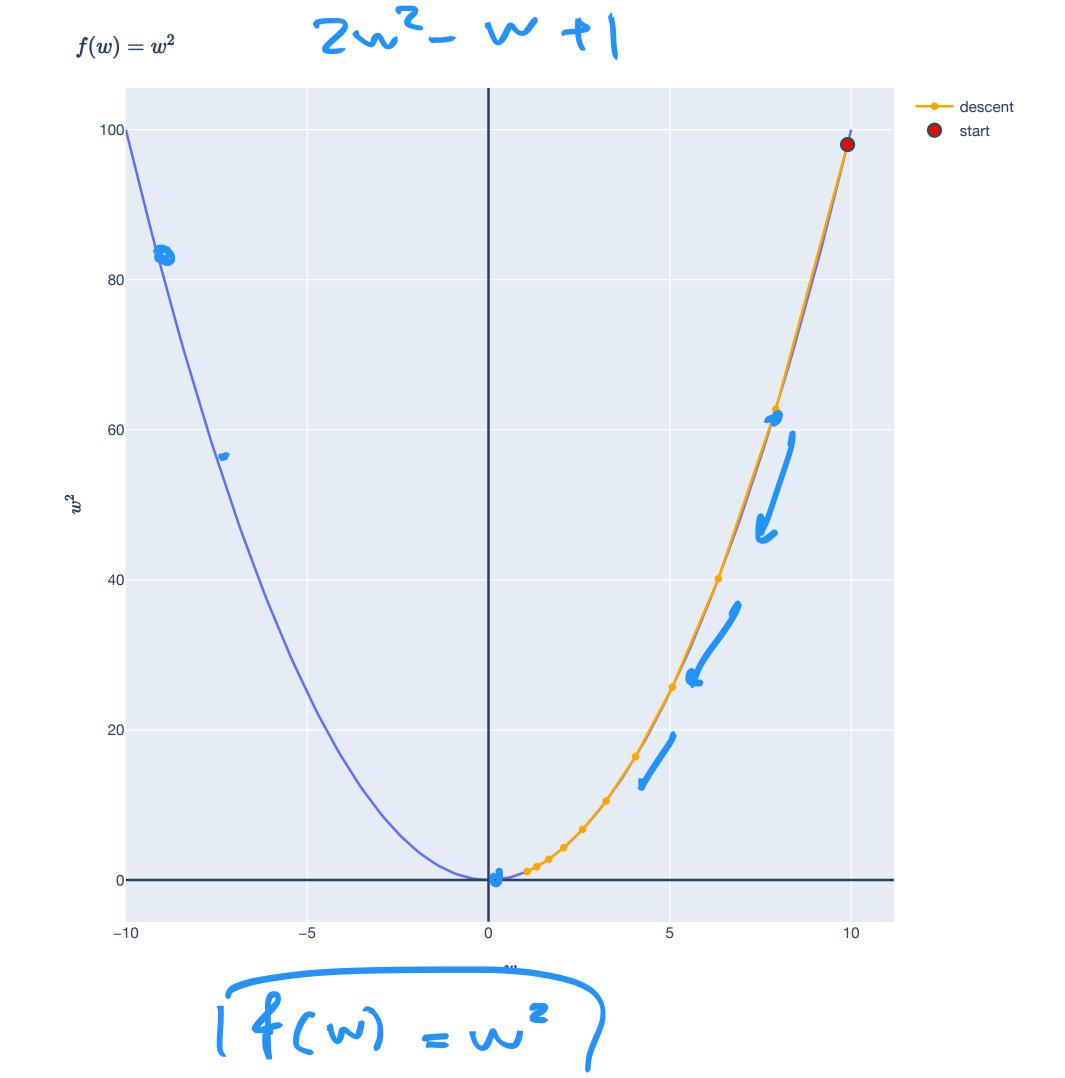


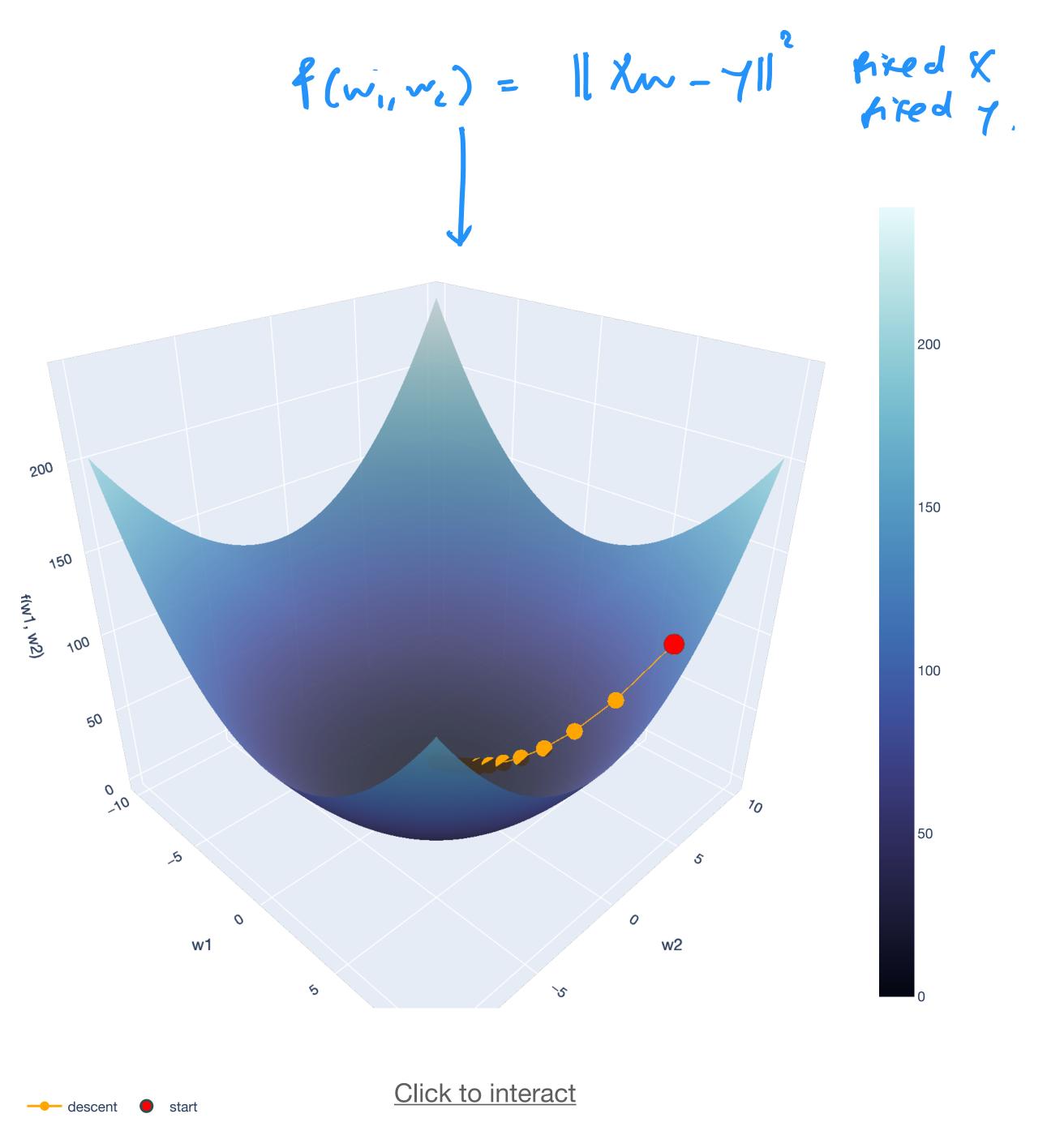
$$: \hat{\mathbf{w}} - \mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \epsilon.$$

$$\Rightarrow (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = \mathbf{V}^{\mathsf{T}}\mathbf{\Lambda}^{-1}\mathbf{V}$$

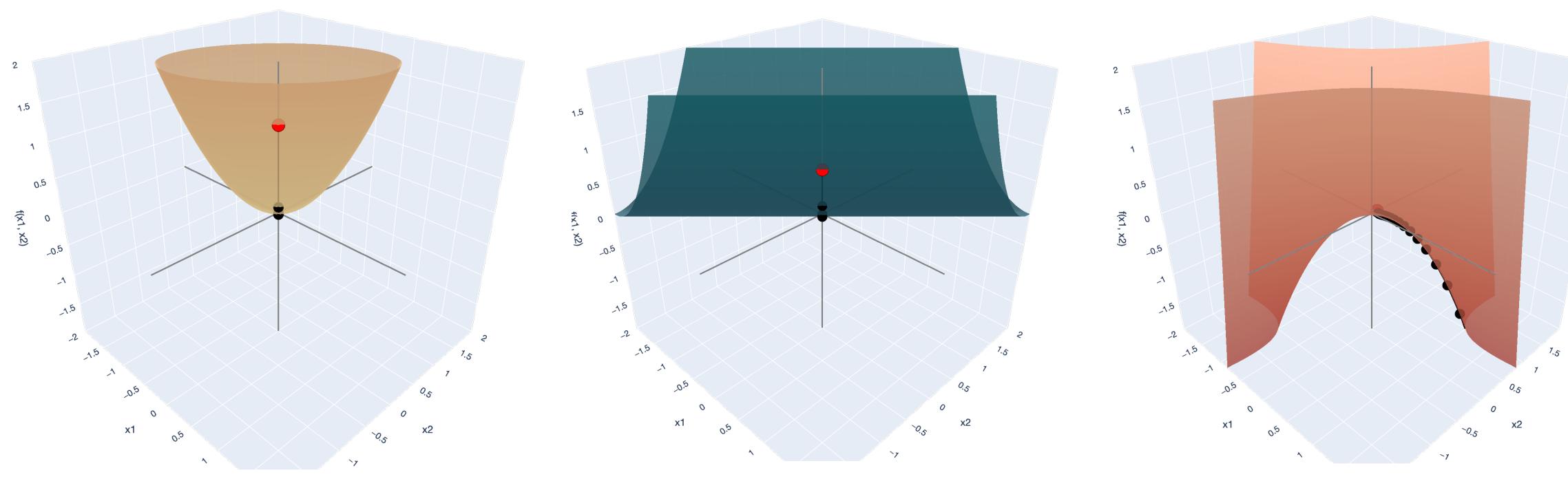
Gradient Descent Positive Semidefinite Matrices and Convexity

Lesson Overview Big Picture: Gradient Descent





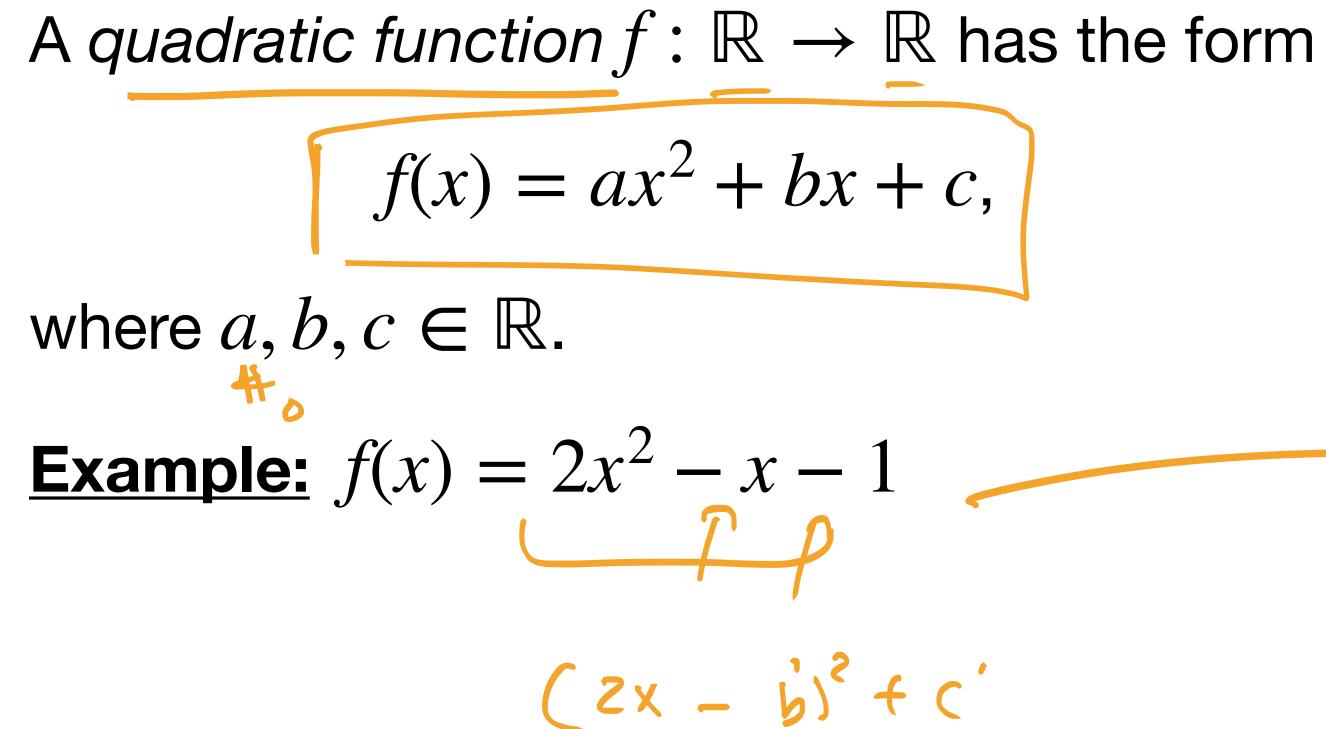
Lesson Overview **Big Picture: Gradient Descent**

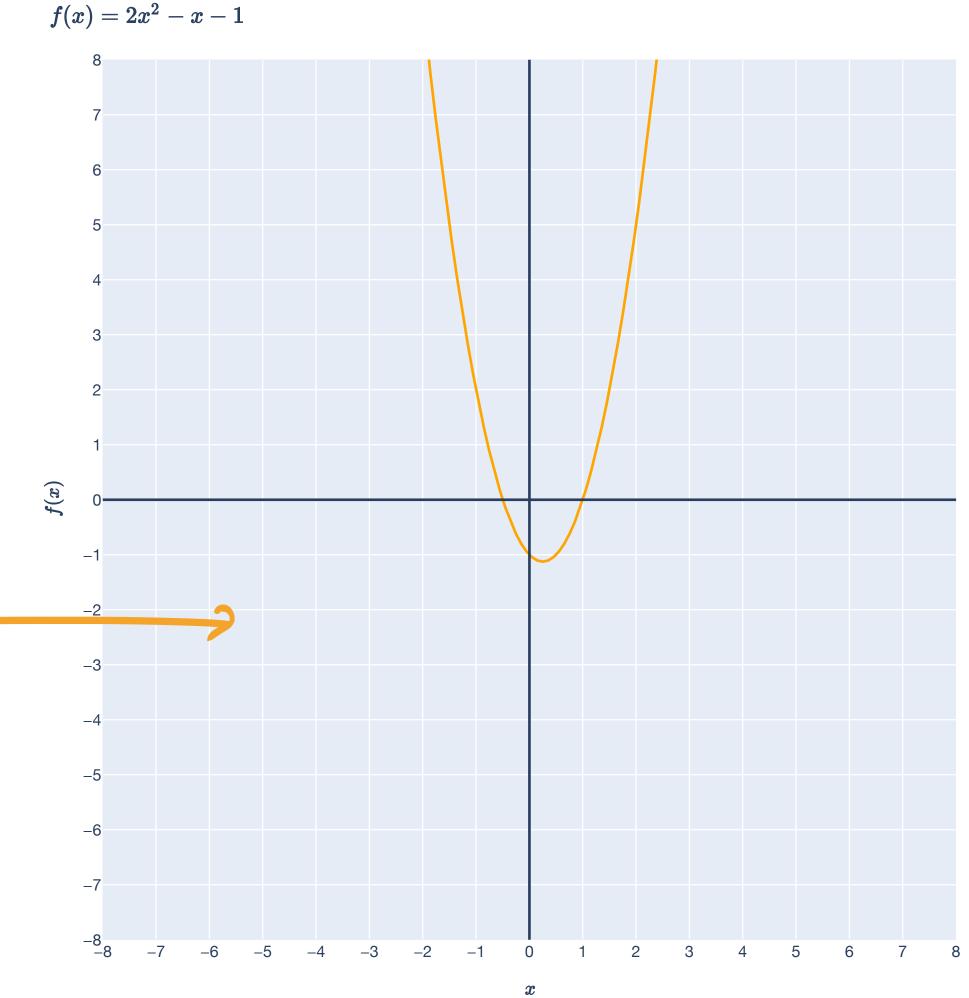


(1-axis — x2-axis — f(x1, x2)-axis — descent 🥚 start

x1-axis x2-axis f(x1, x2)-axis descent start

Quadratic Forms 2D Example





Quadratic Forms 2D Example

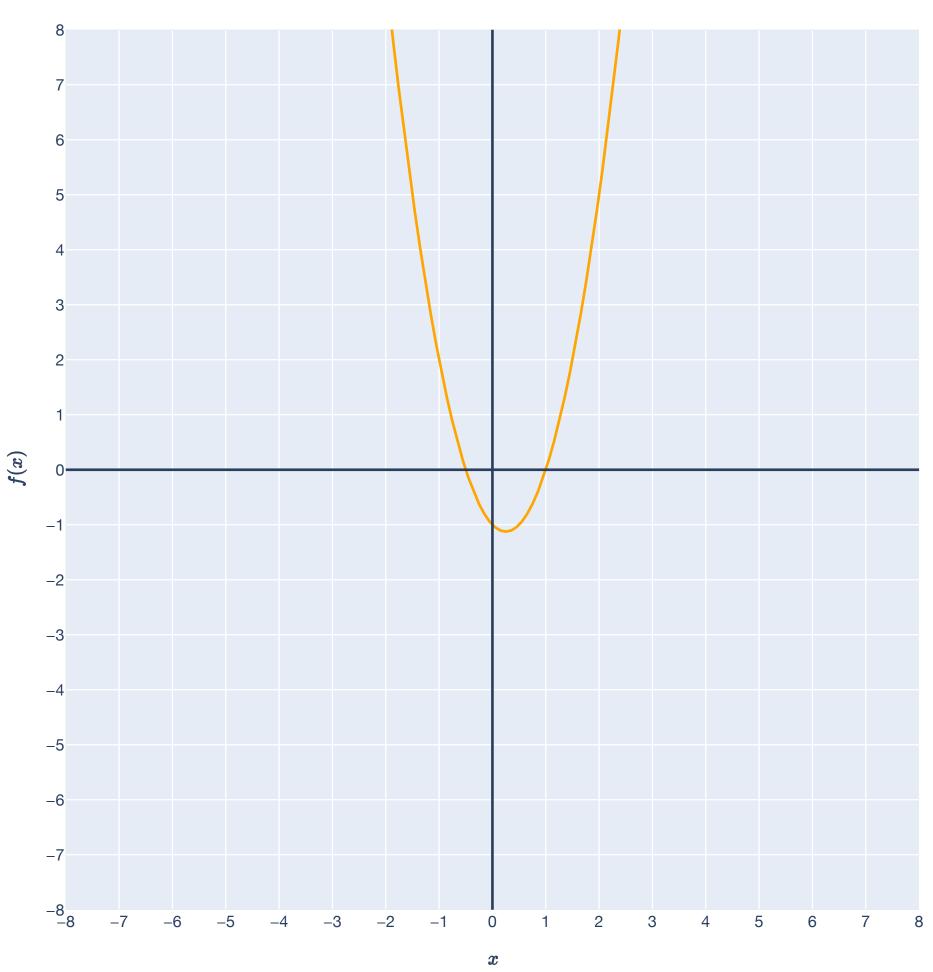
A quadratic function $f : \mathbb{R} \to \mathbb{R}$ has the form $f(x) = ax^2 + bx + c,$

where $a, b, c \in \mathbb{R}$ are constants.

Example: $f(x) = 2x^2 - x - 1$

We will be concerned about finding *minima* of quadratic functions.

 $f(x) = 2x^2 - x - 1$

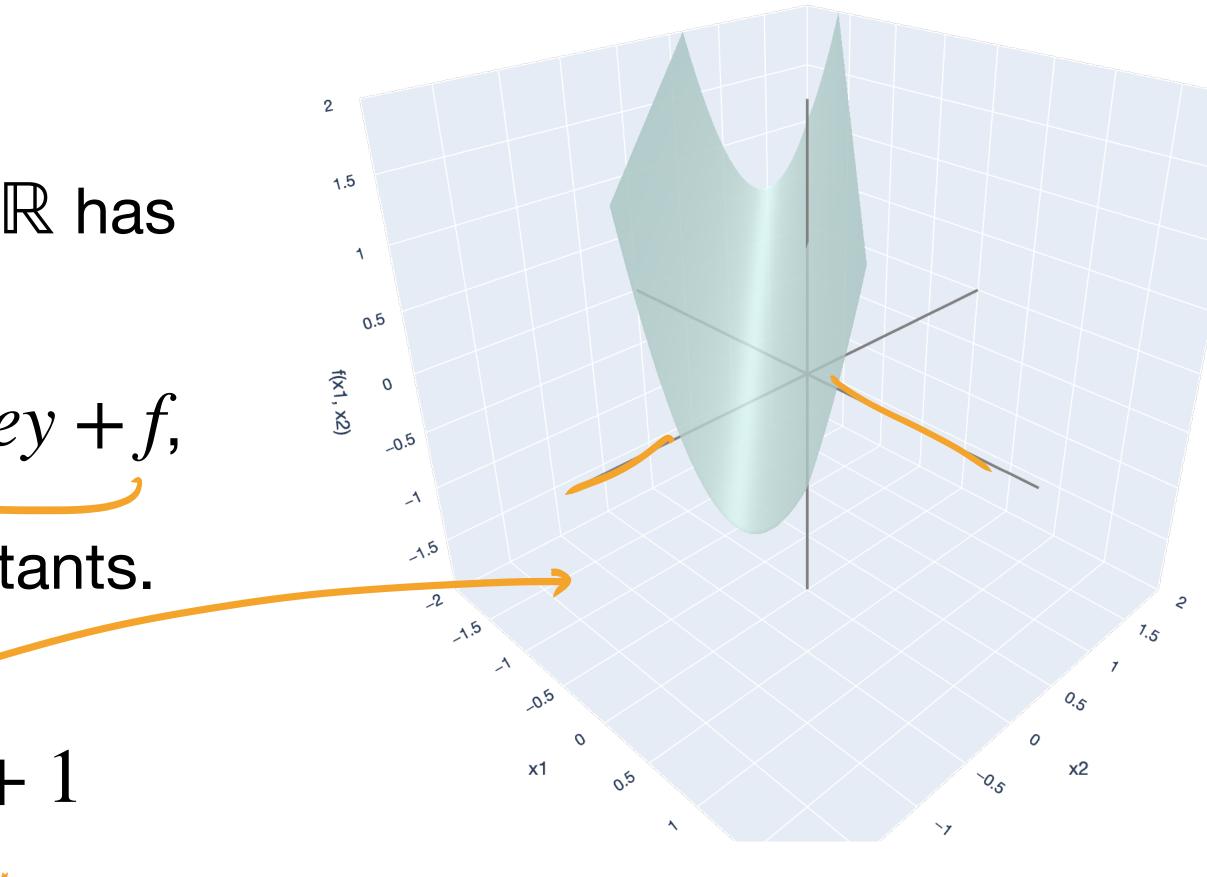


Quadratic Forms 3D Example

In 3D, a quadratic function $f: \mathbb{R}^2 \to \mathbb{R}$ has the form

$$f(x) = ax^{2} + 2bxy + cy^{2} + dx + e$$

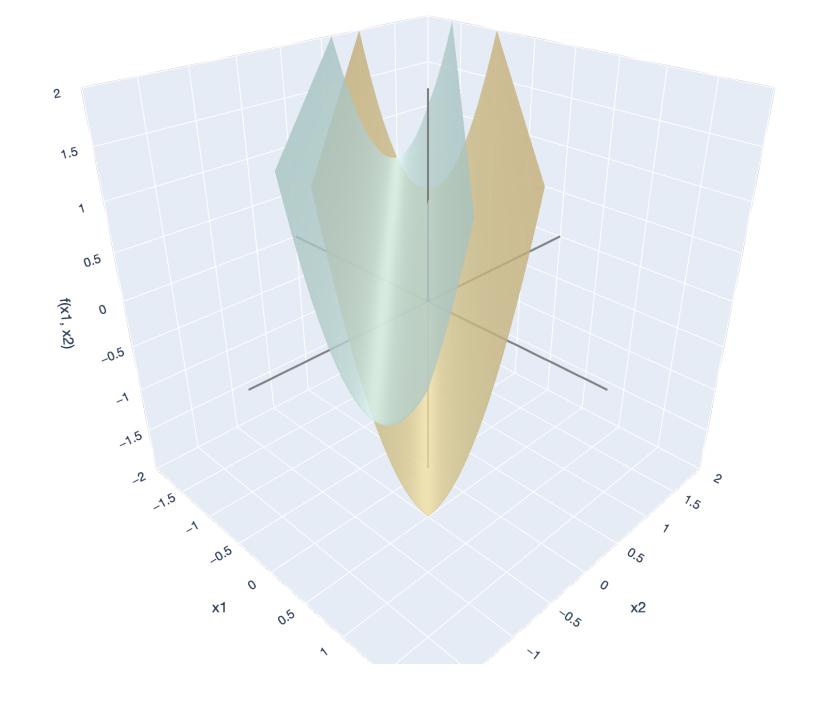
where $a, b, c, d, e, f \in \mathbb{R}$ are all const
$$\underbrace{\text{Atom}}_{f(x)} = 2x^{2} + 4xy + 2y^{2} + 2x + 2y + e$$

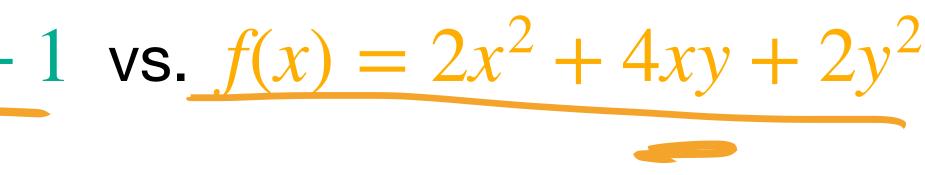


x1-axis x2-axis f(x1, x2)-axis

Quadratic Forms 3D Example

 $f(x) = 2x^2 + 4xy + 2y^2 + 2x + 2y + 1 \text{ vs. } f(x) = 2x^2 + 4xy + 2y^2$





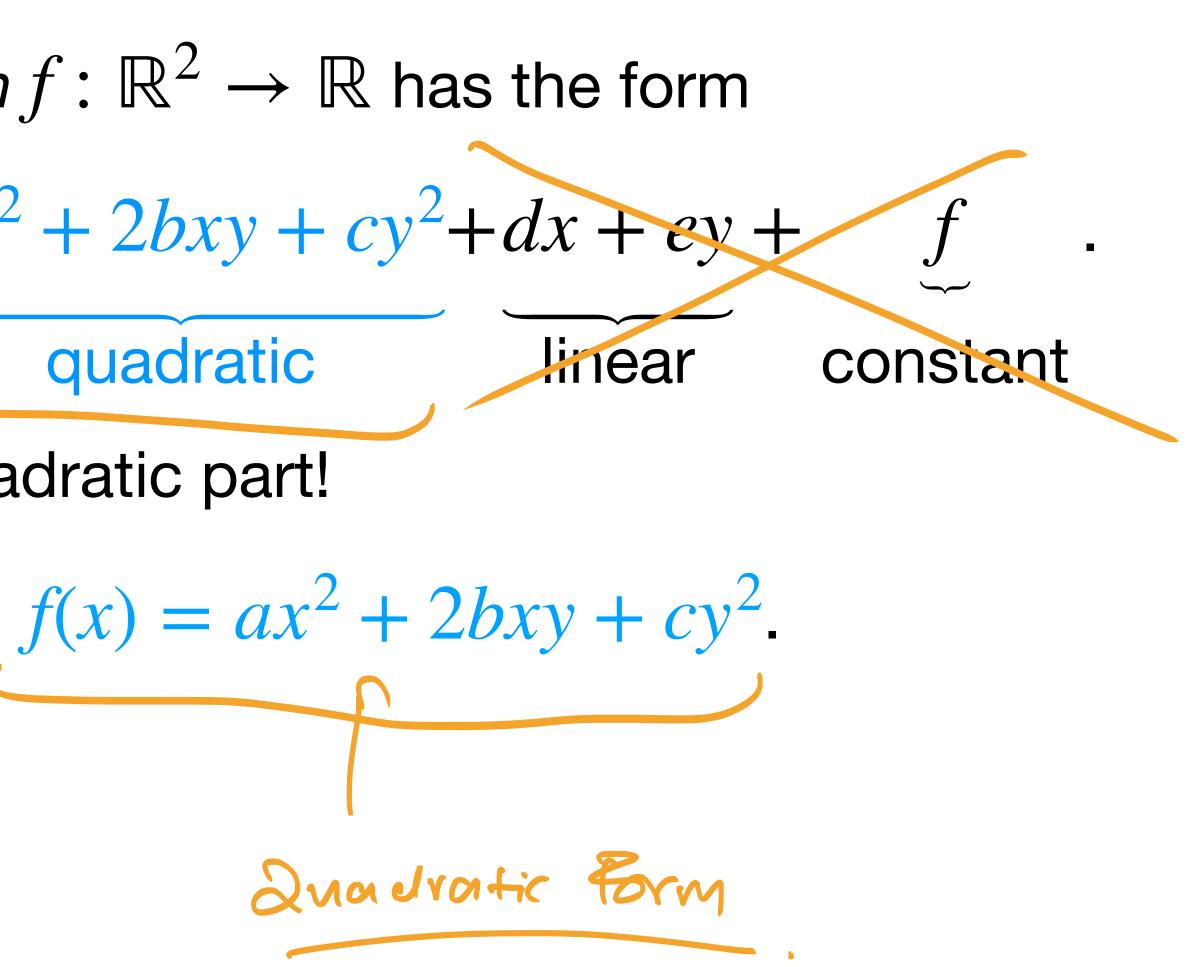
Quadratic Forms 3D Example

In 3D, a quadratic function $f : \mathbb{R}^2 \to \mathbb{R}$ has the form

$$f(x) = ax^2 + 2bxy + ax^2 + bxy +$$

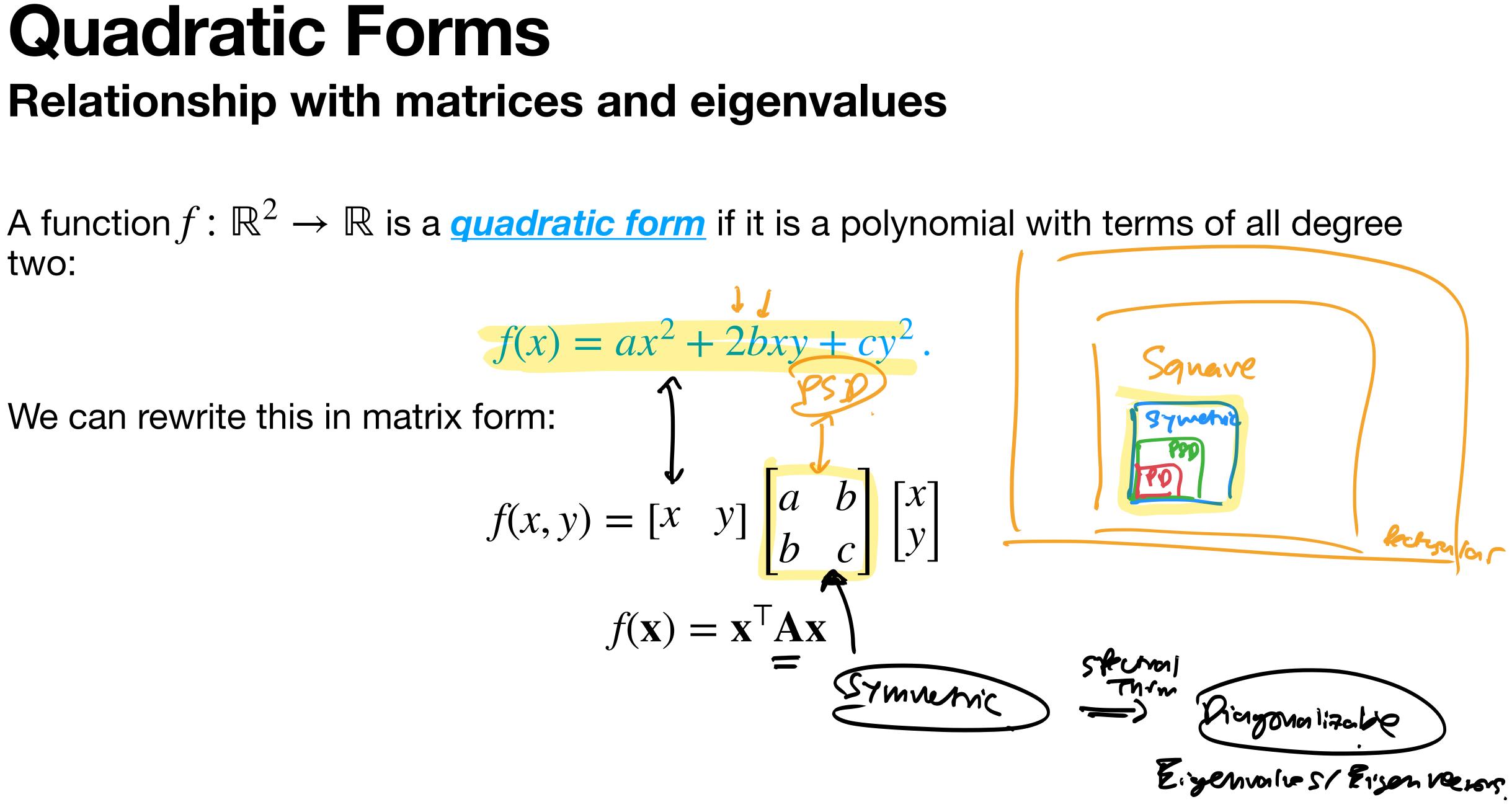
quadratic

Let's only examine the quadratic part!



two:

We can rewrite this in matrix form:



Consider a quadratic form:

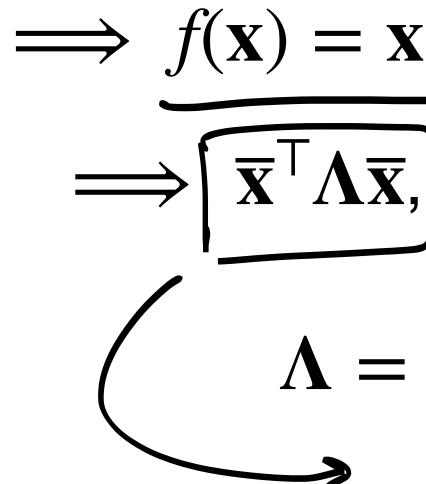
f(x, y) = [x]

 $f(\mathbf{x})$

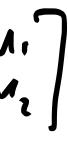
The matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ is always symmetric, so it is diagonalizable! $\mathbf{A} = \mathbf{Q} \mathbf{A} \mathbf{Q}^{\mathsf{T}}$, where $\mathbf{A} \in \mathbb{R}^{d \times d}$ is diagonal.

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$

The matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ is always symmetric, so it is diagonalizable!



- $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$, where $\mathbf{\Lambda} \in \mathbb{R}^{d \times d}$ is diagonal.



There are three possibilities:

- 1. λ_1 and λ_2 are both positive (positive definite).
- 2. λ_1 or λ_2 is zero, and the other is positive (positive semidefinite).

3. λ_1 or λ_2 is negative (*indefinite*).

 $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$, where $\mathbf{\Lambda} \in \mathbb{R}^{d \times d}$ is diagonal. $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$

 $\Lambda_1, \Lambda_2 \ge 0$

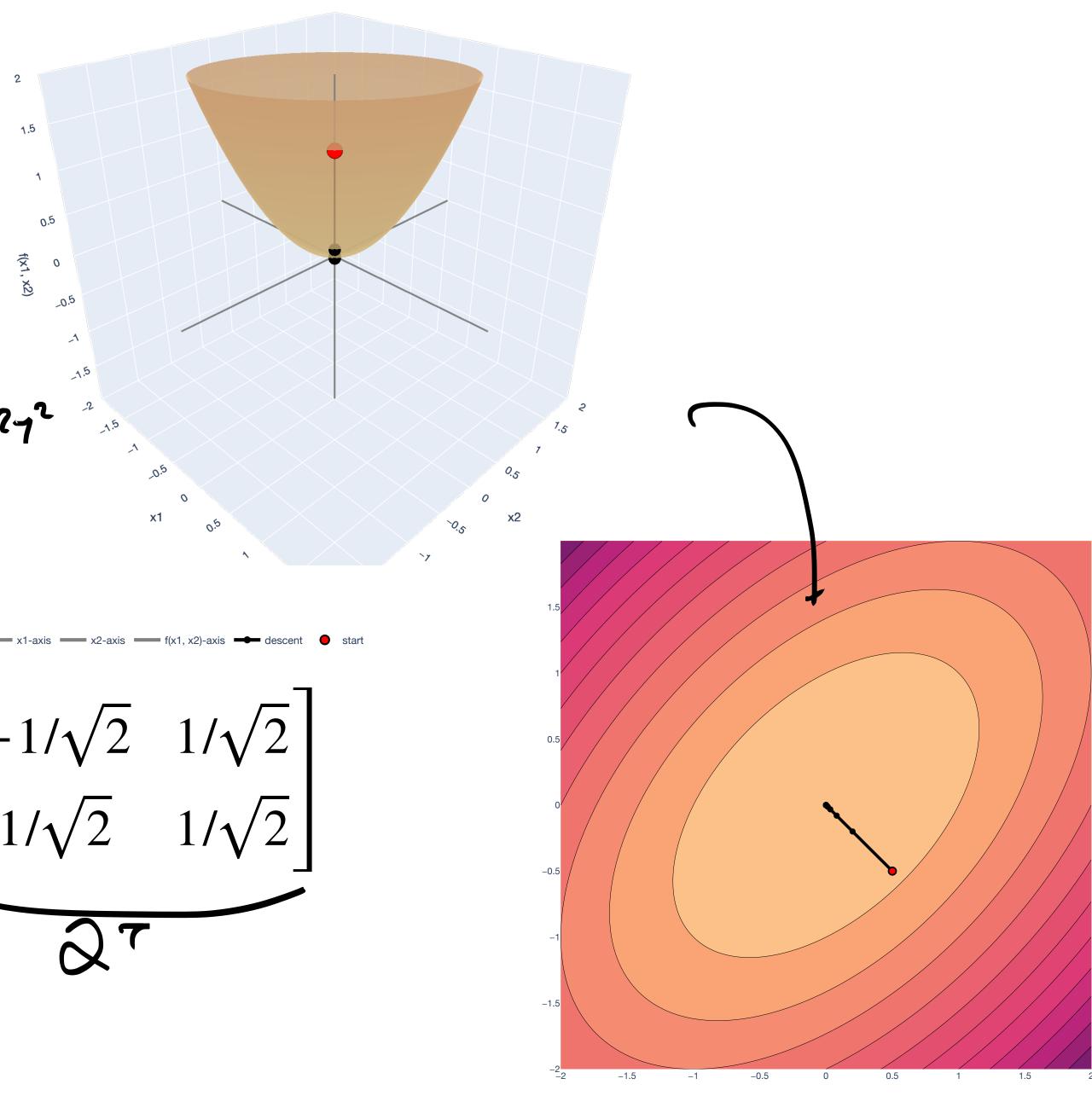
Quadratic Forms
Example: positive definite

$$\begin{bmatrix} t \neq y \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} = \begin{bmatrix} 2 \times -4 \\ -3 \times 27 \end{bmatrix}$$
Example:

$$f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Eigendecomposition:

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix}$$



----- descent O start

24
22
20
18
16
 14
12
 10
8
6
4
 2
0

Quadratic Forms Example: positive semidefinite

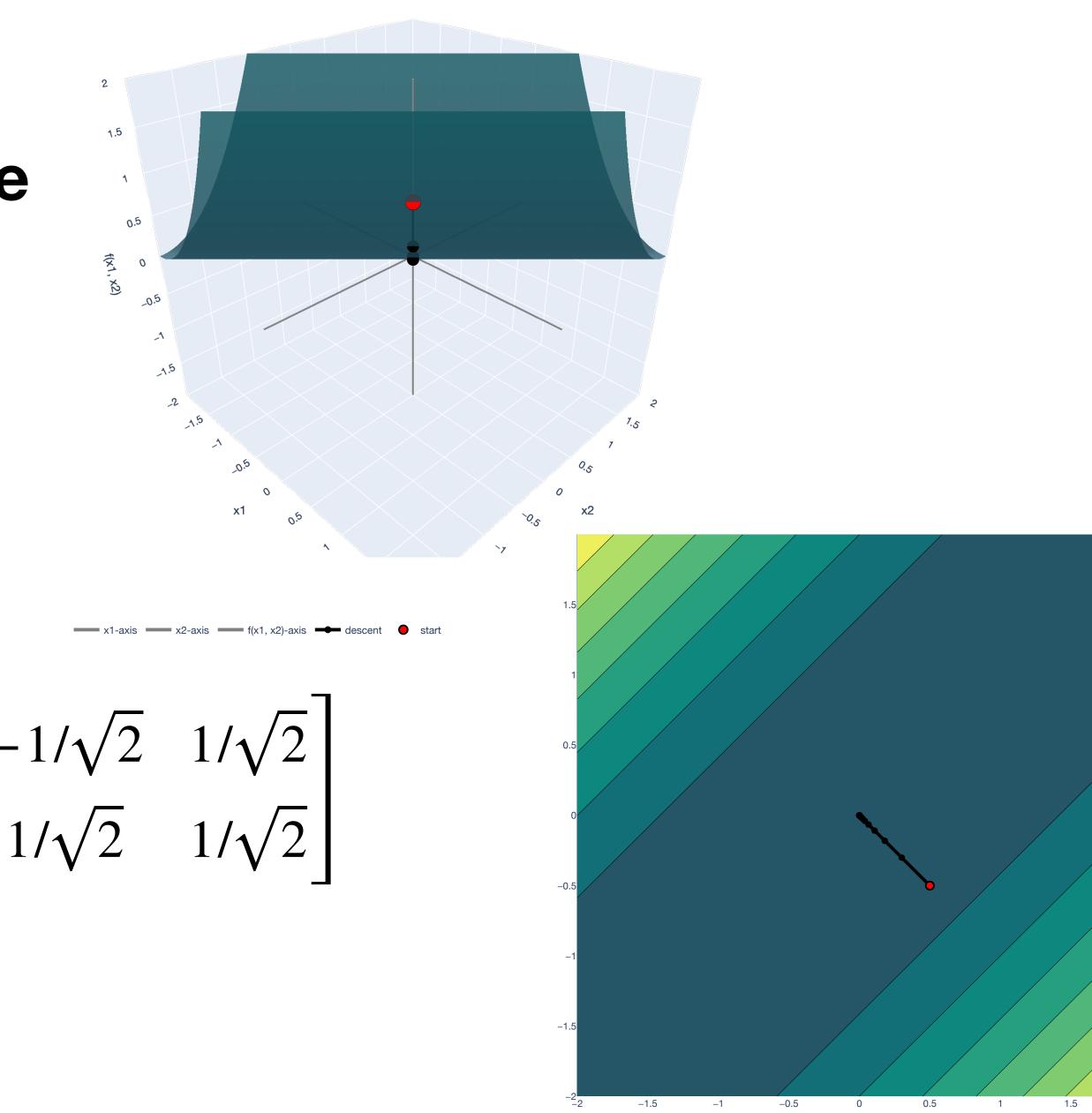
Example:

$$f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Eigendecomposition:

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 \end{bmatrix}$$

so $\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$. $\lambda_l = 2$
 $\lambda_l = 2$

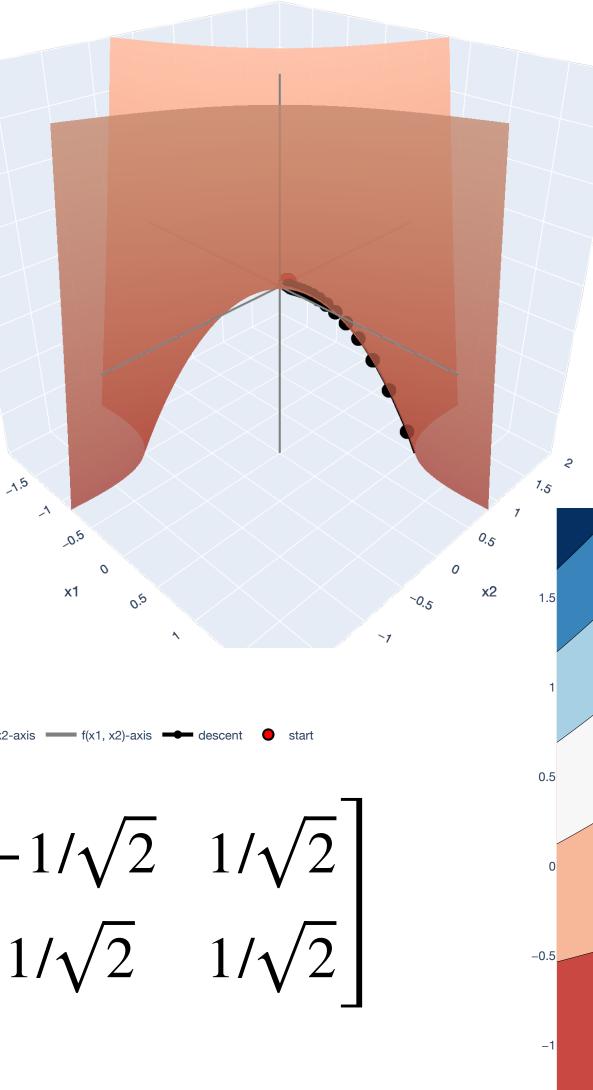


Example:

$$f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Eigendecomposition:

$$\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
so $\Lambda = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$.



1.5

1

0.5

0

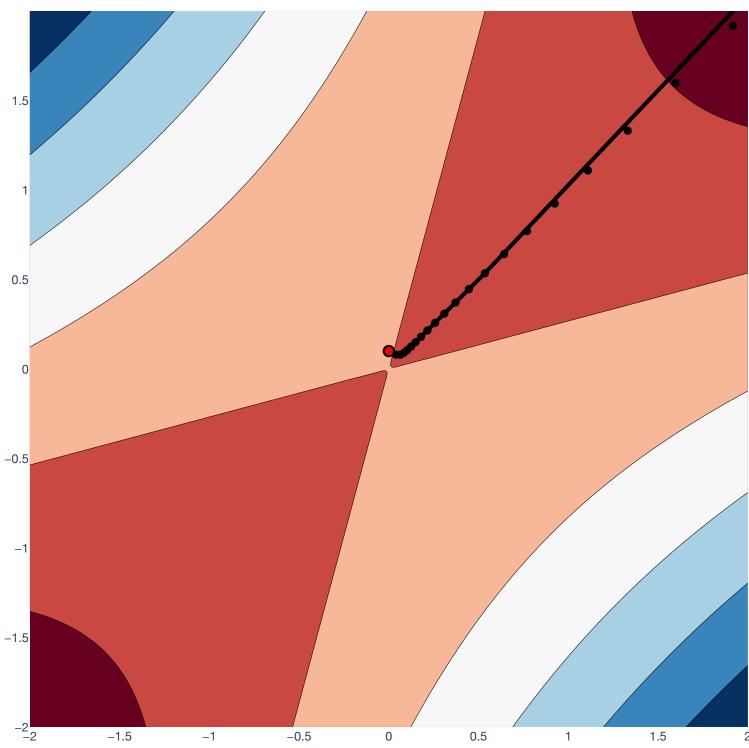
_0.5

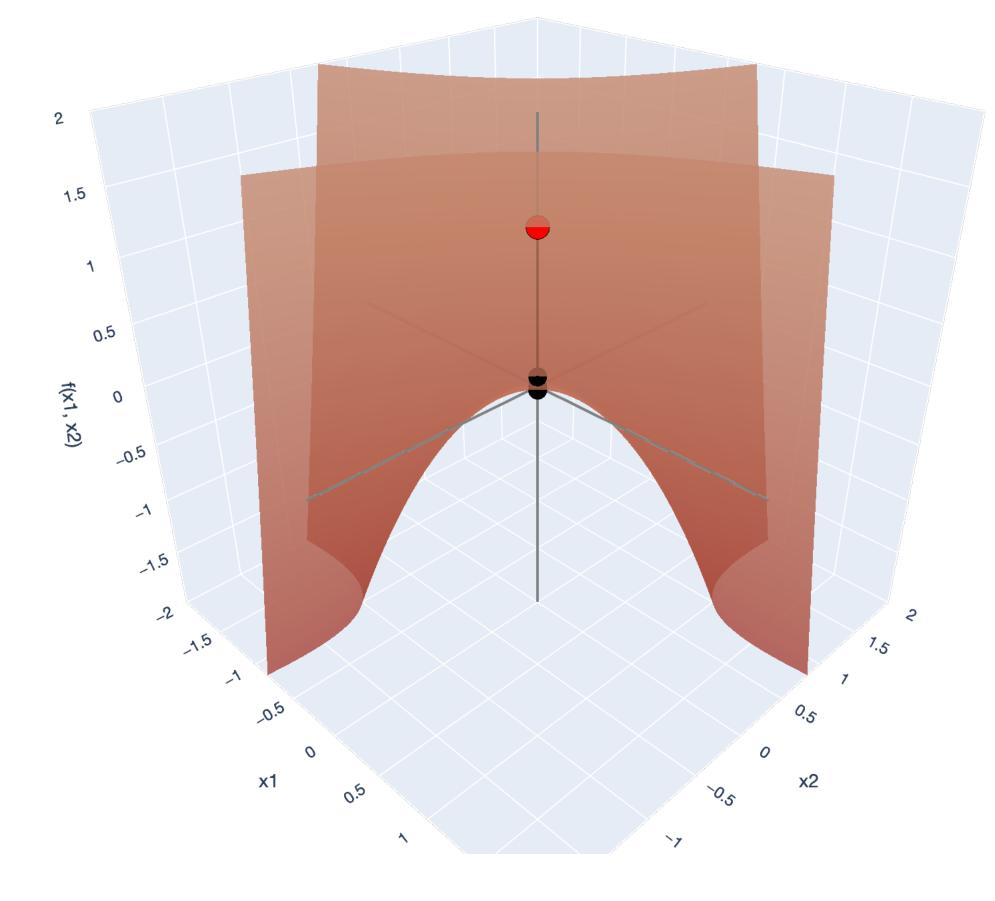
1

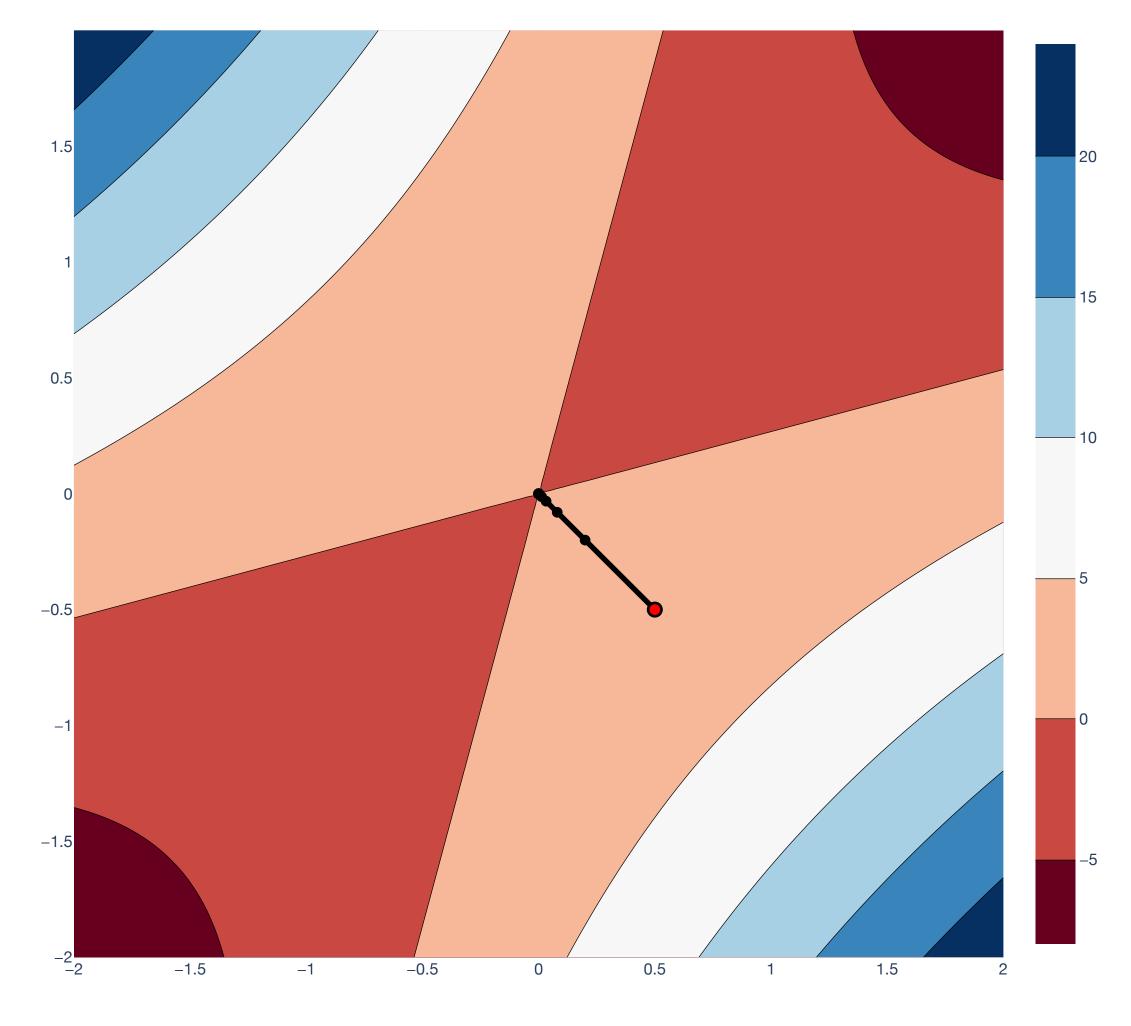
1.5

2

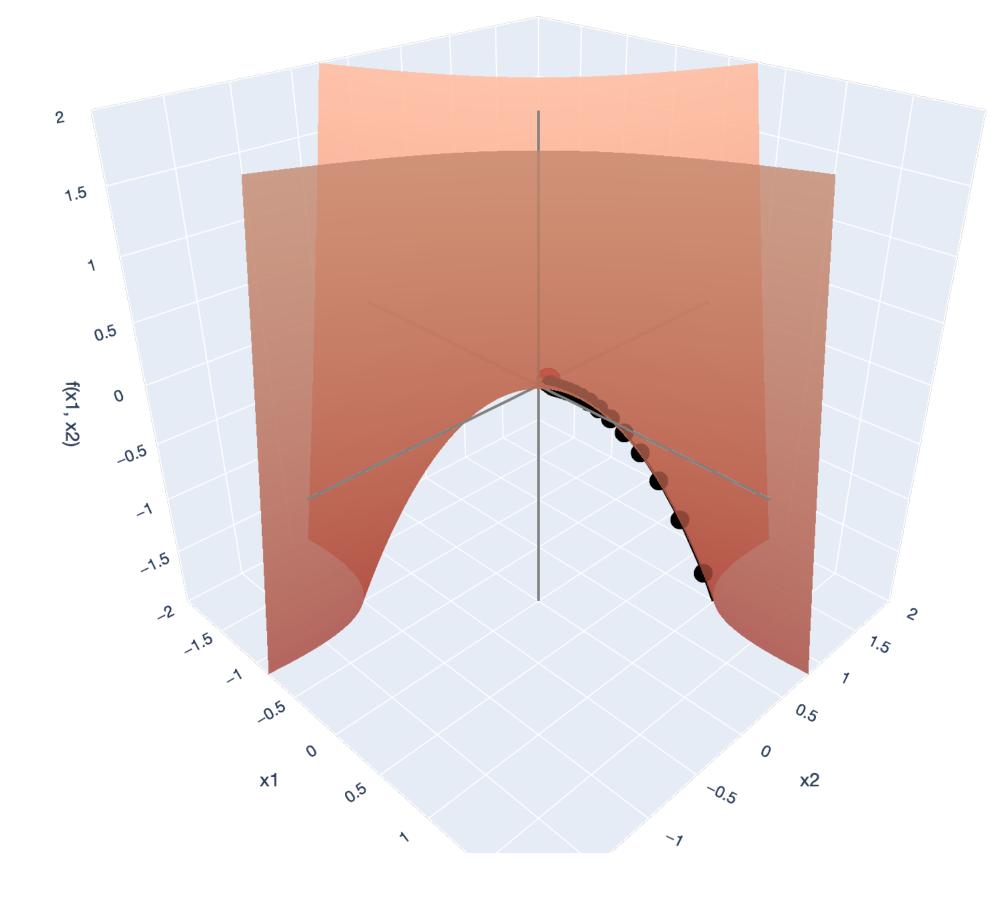
f(x1, x2)

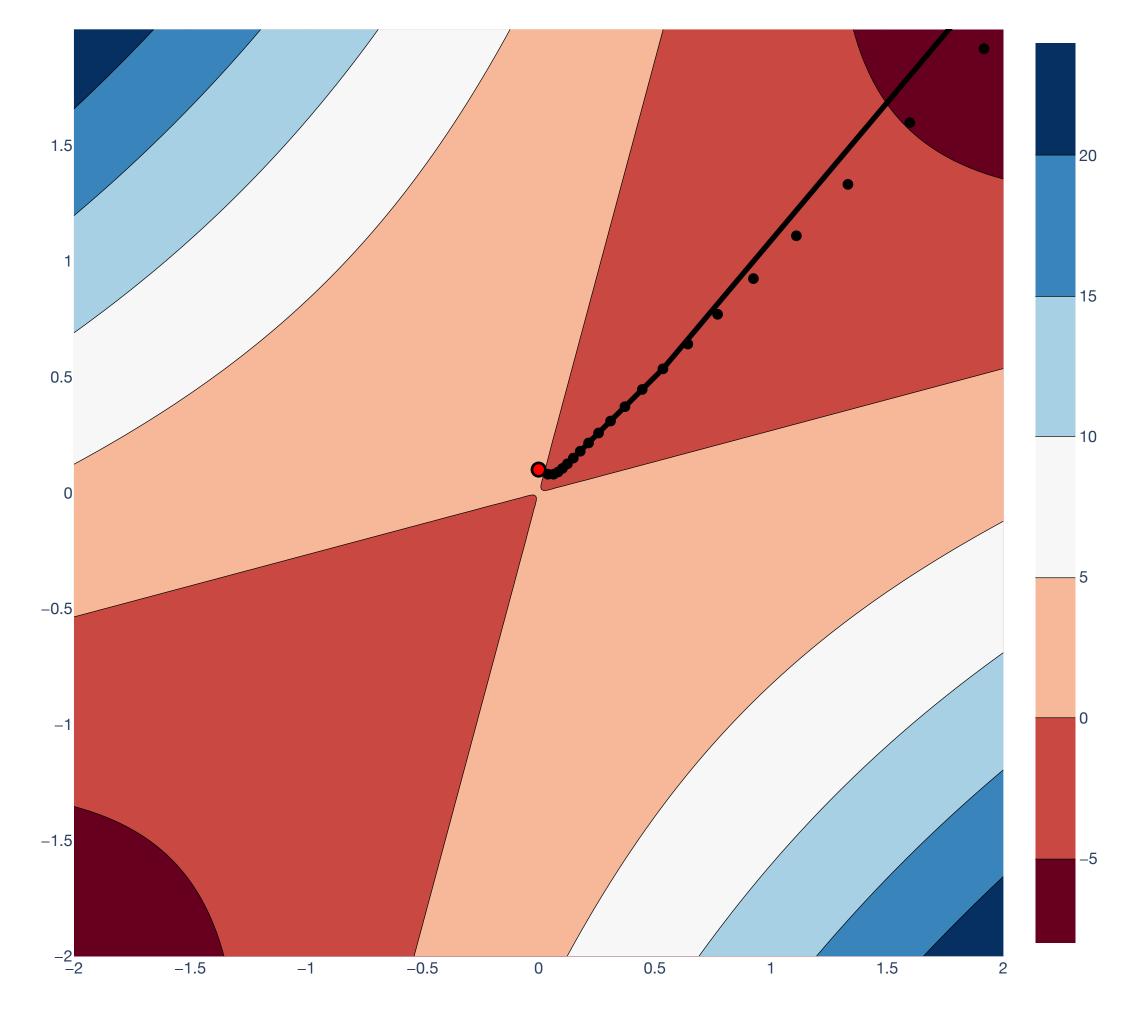


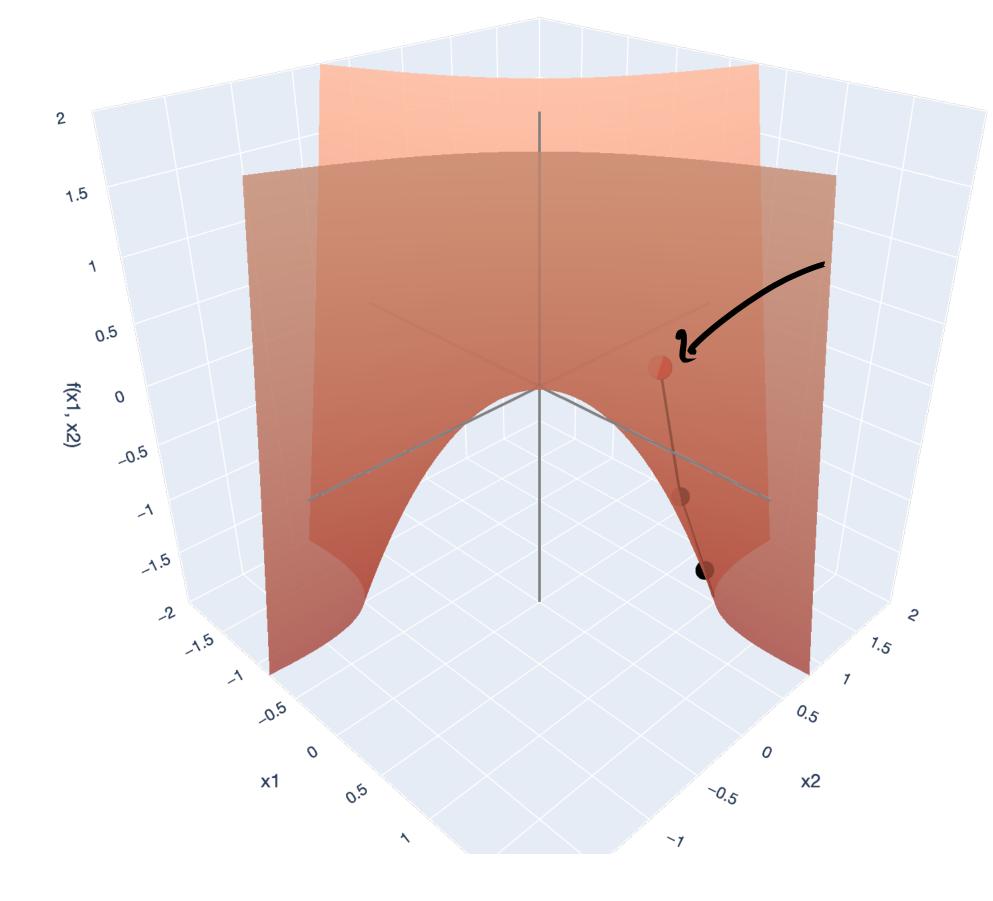


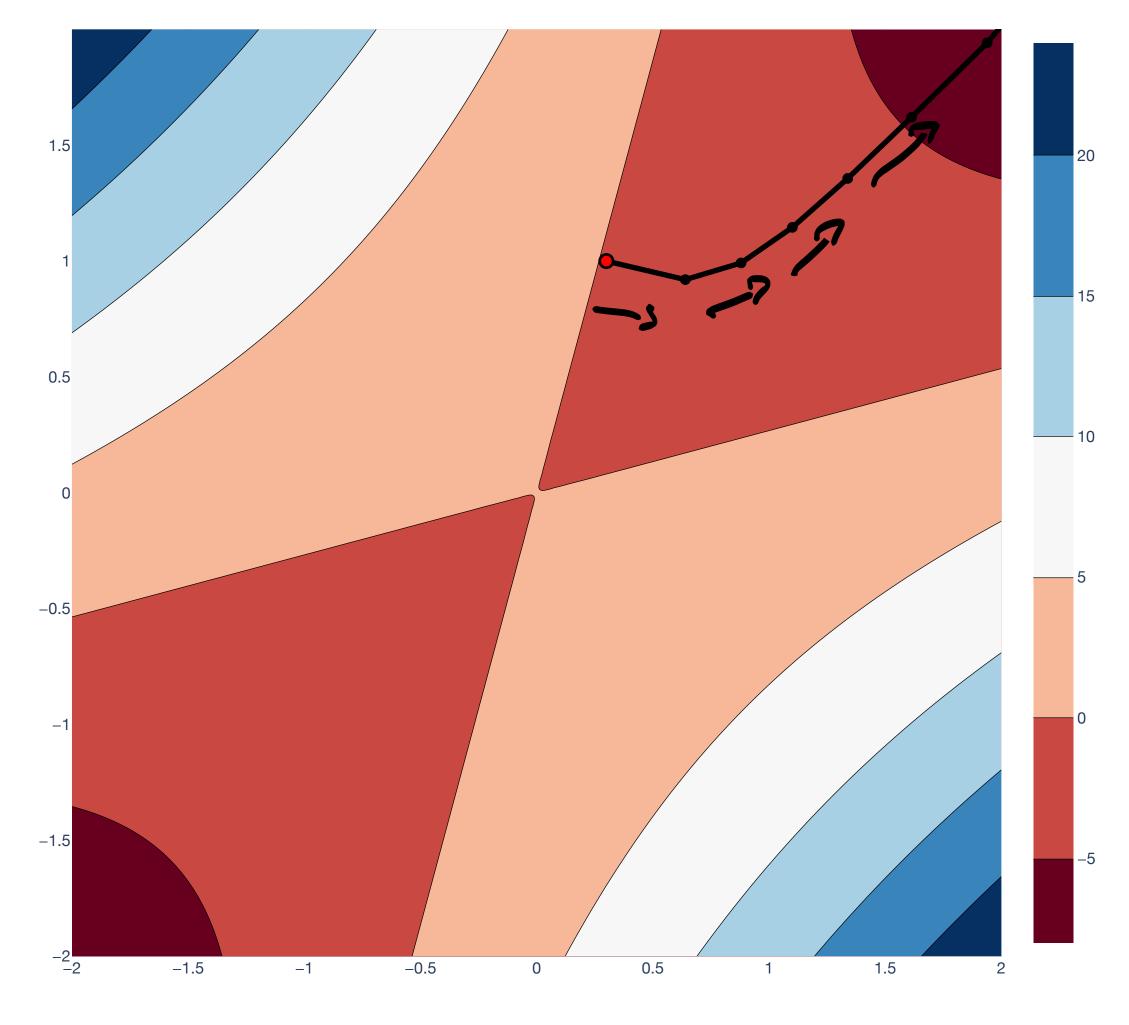


descent **O** start







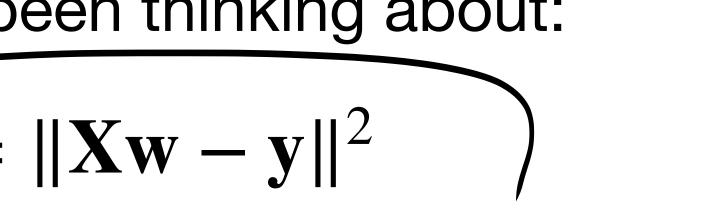


descent **O** start

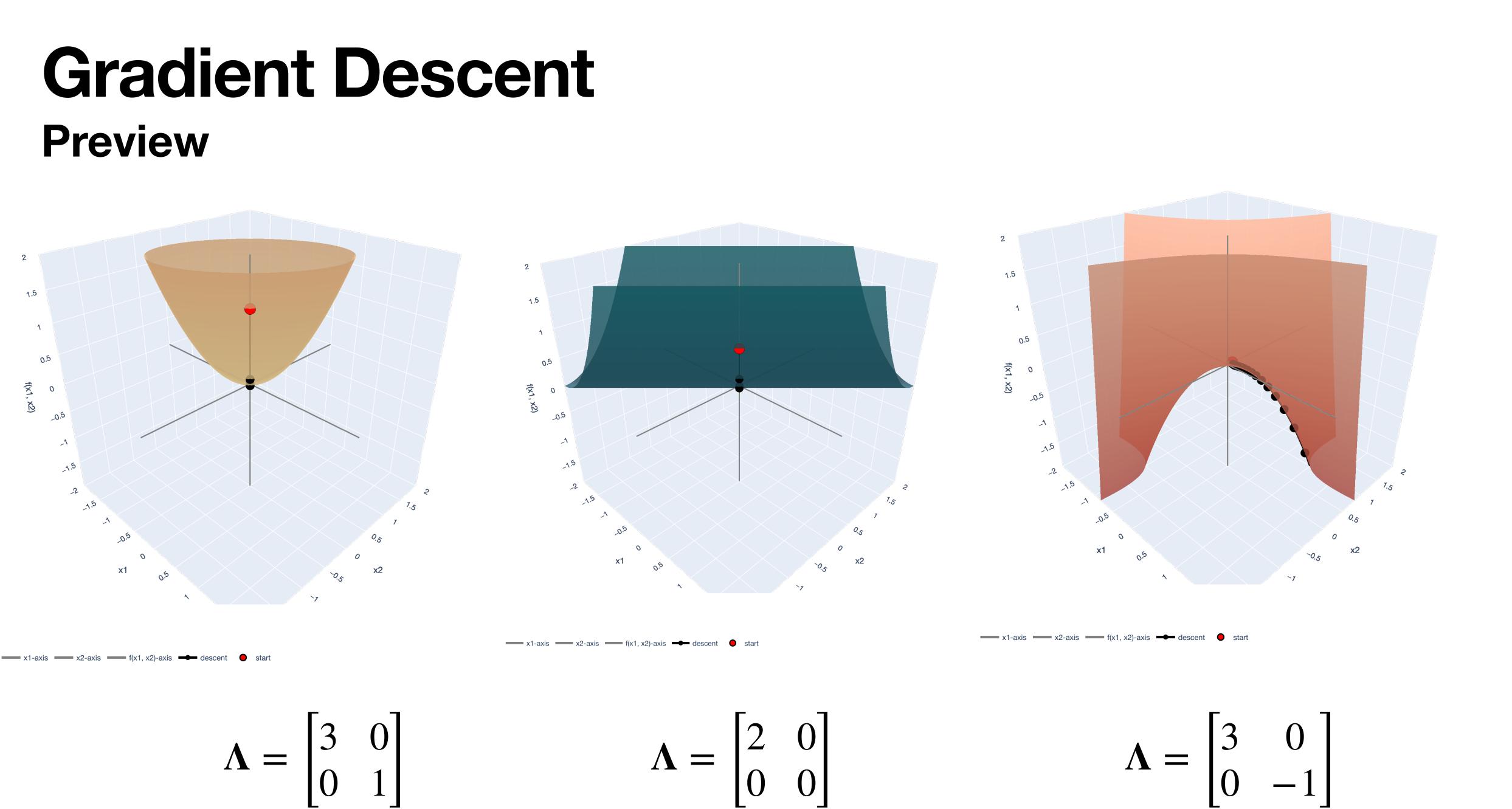
art

Least Squares **Example of quadratic form**

 $f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$ $(\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{y}) = \mathbf{w}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w}$ form $\mathbf{w}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})$ Consider the familiar function we've been thinking about: The quadratic form $\mathbf{W}^{\top}(\mathbf{X}^{\top}\mathbf{X})\mathbf{W}$ is positive semidefinite! A=XX is PSO



$$\int (\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{y}) + \mathbf{y}^{\mathsf{T}}\mathbf{y}.$$



 $\Lambda = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$

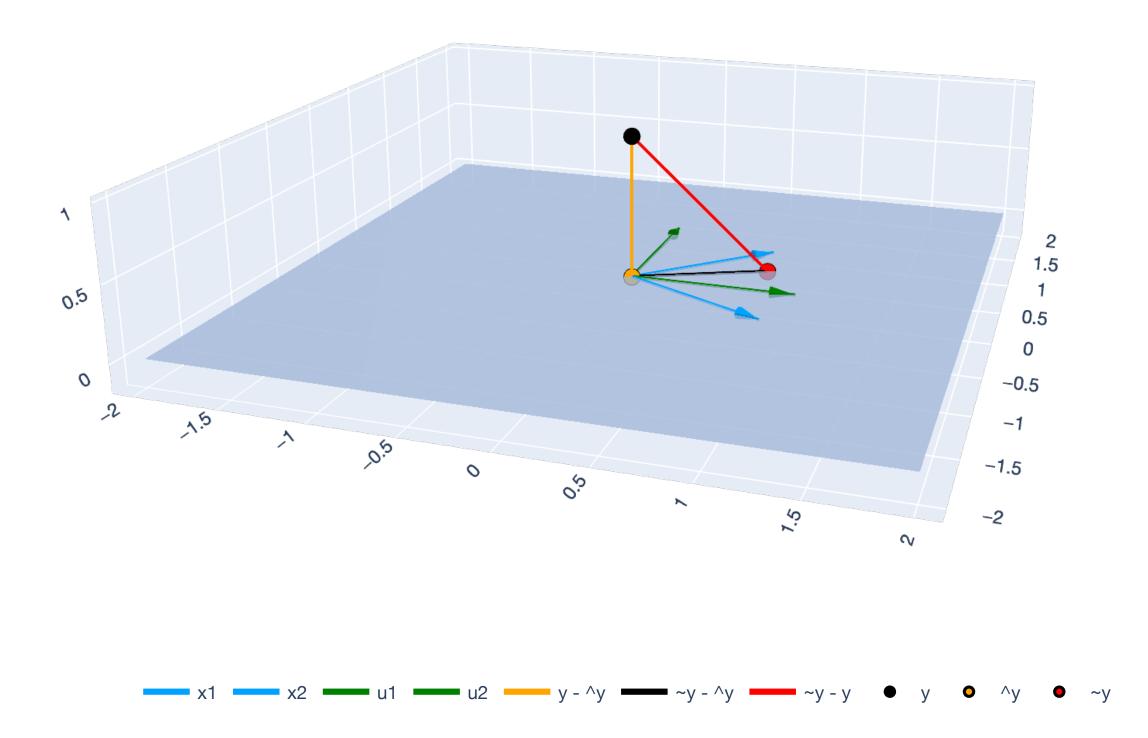
 $\Lambda = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$

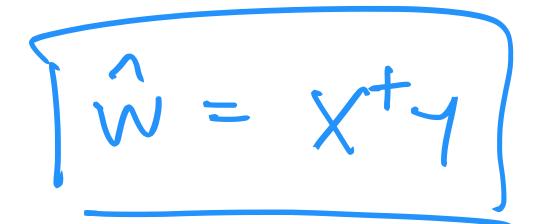
Recap

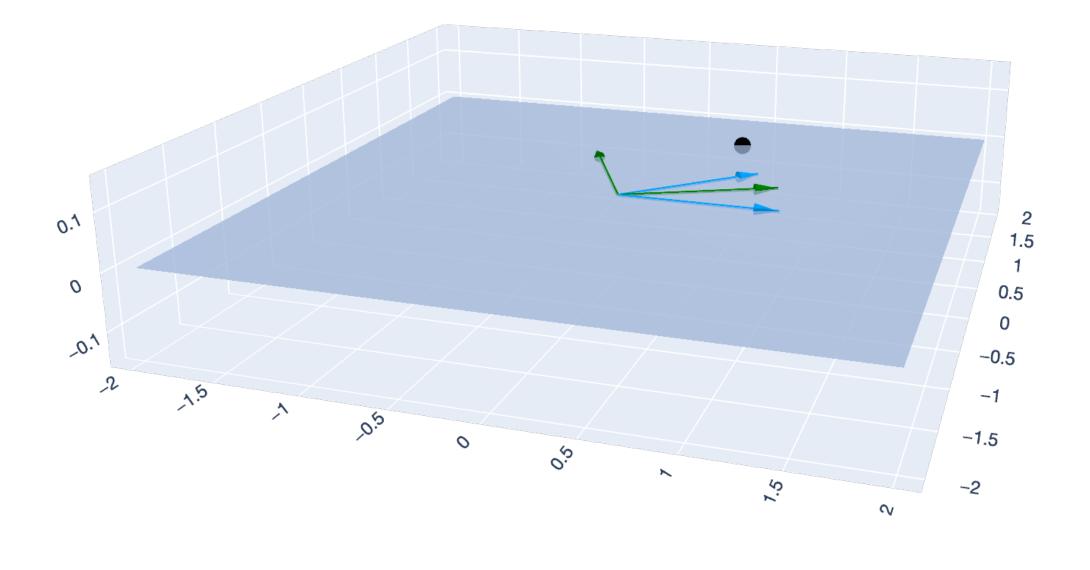
Lesson Overview

- **Linear dynamical systems example.** Motivation for eigendecomposition as a way to make repeated matrix multiplication easier.
- Eigendecomposition. Definition of eigenvectors, eigenvalues.
- Eigendecomposition and SVD. The eigendecomposition drops out of the SVD.
- Spectral Theorem. Symmetric matrices are always diagonalizable.
- **Positive semidefinite matrices/positive definite matrices.** Definition and some visual examples through the corresponding quadratic forms.

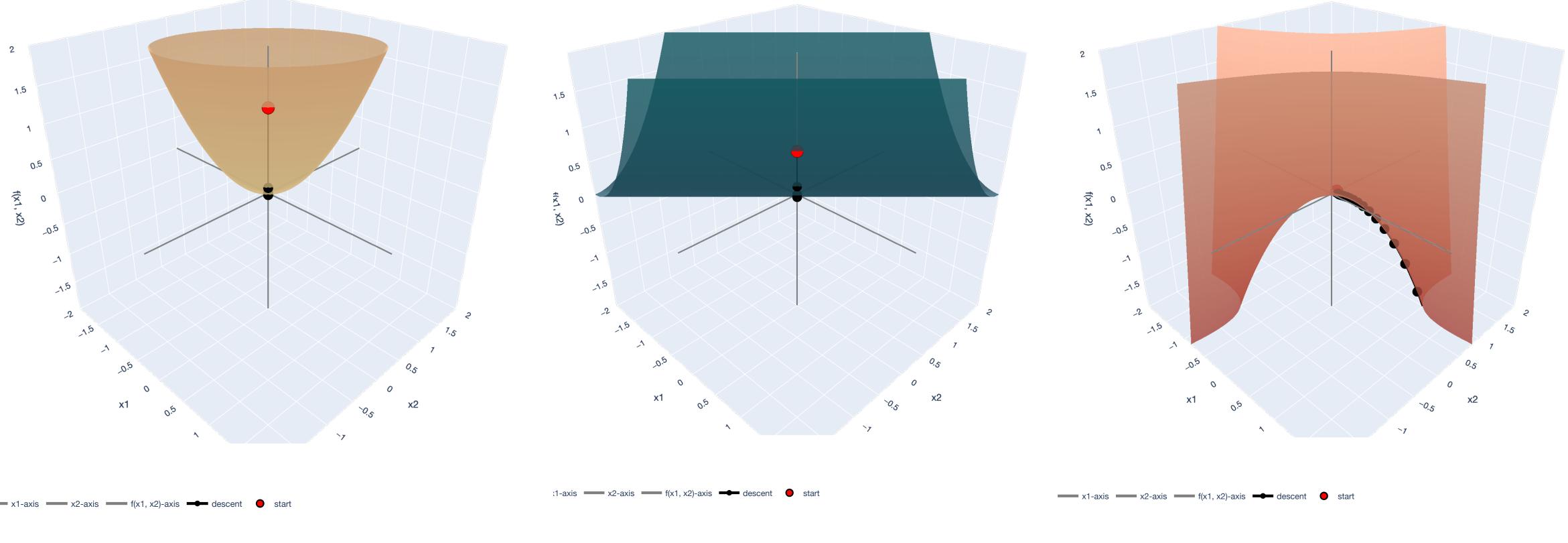
Lesson Overview Big Picture: Least Squares







Lesson Overview **Big Picture: Gradient Descent**



· QUADRATIC FUNCTIONS

References

Mathematics for Machine Learning. Marc Pieter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.

Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach. John H. Hubbard and Barbara Burke Hubbard.

Computational Linear Algebra Lecture Notes: Eigenvalues and eigenvectors. Daniel Hsu.