Math for Machine Learning

By: Samuel Deng
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Lesson Overview

Linear dynamical systems example. Motivation for eigendecomposition as a
way to make repeated matrix multiplication easier.

Eigendecomposition. Definition of eigenvectors, eigenvalues. 7
Eigendecomposition and SVD. The eigendecomposition drops out of the SVDD
&j
¥ Spectral Theorem. Symmetric matrices are always diagonalizable. Fem

i
Positive semidefinite matrices/positive definite matrices. Definition and
some visual examples through the corresponding quadratic forms.
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Least Squares
A Quick Review



Regression

Setup
Observed: Matrix of training samples X € R and vector of training labels y € R?.
T
T T N Xl — @V\Y J
X=X ... X7 | = . X €
! ! - x5

J
Unknown: Weight vector w € R¢ with weights w, ..., w,. ] — ¥

Ty —
X =WXj;+ ... +wx,, € R,

Goal: For each i € [n], we predict: y. = W
Choose a weight vector that “fits the training data”: w € R such that y; =~ . for i € [n], or:

Xw=y~xrYy.
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Regression
Setup

Goal: For each i € [n], we predict: y; = w!

Choose a weight vector that “fits the training data”: w € [
fori1 € [n], or:

XW=yRrY.
To find W, we follow the principle of least squares.

[ W = arg min || Xw —y||°
weR?

Xi — Wlxil + ... +deid€ L .

d

such that y; & y,


Deng, Samuel


SVD and Pseudoinverse

Review

—\ L
_—  X= (VEVT) = (VHY's"y"
Let X € R™4 be a matrix, and let X = UXV' be its full SVD. RV 3 IV

If n > d, the matri 1 dXn is the (Moore-Penrose) pseudoinverse of the

matrix X, denoted X+ := (Z'X)"IX T ¢ e lmuQ‘ S*S - (3s7y'ss -7

if d > n, the matrix X+ := XXX~ Vis the pseudoinverse. «— HAIWE- fwverte .
Sst: STTCEET)

..I‘

More generally, the matrix X X\ I SVD X = UXV ' has the (Moore-

Penrose) pseudoinverselX™ := VXTU'.
S—
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Least Squares: SVQ7Perspective

Unified Picture Q

We want to solve Xw =vy.

MOVNL UWWABVWM S 2 €9csipv ¢

Ifn =dandrank(X) =d...| Ifn > dandrank(X) =d... If n < d and rank(X) = n...

We can solve exactly. We approximate by least squares: We can solve exactly, but there

x* are infinitely many solutions.
Choose W = arg min || Xw — y||°.
l weR?
w =Xy,
Choose Choose

which is an exact solution. - . _
w=X"X)"XTy = X'y, l w=X'(XX")"y= X+y,\
R ﬁ
the best approximate solution: the minimum norm solution:

IXw - ylIZ < IXw —y|I*. IWI* < fwll®. &

+ ©
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Least Squares: SVD Perspective

Unified Picture
We want to solve Xw = y.m

If n > d and rank(X) = d... If n < d and rank(X) = n...
We approximate by least squares: We can solve exactly, but there
are infinitely many solutions.
W = arg min || Xw — y||°. Z”é' @((k)
weR? — '
/v
d=2
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Singular Value Decomposition (SVD)
Matrix Decompositions E TT APPLIES TP ANY

- MATAX
A =U 2 V' T

N—— — e N——

nxd nXn_nXd_dXd
U is orthogonal, i.e. U'U = UU' = 1.

V is orthogonal, i.e. V'V = VV' = 1.

¥ € R"™4s a diagonal matrix with singular values 6, > 6, > ... > 6, > 0 on
the diagonal. rank(X) is equal to the number of 6; > 0.

(= ¢ 6<¢Co
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What other matrix
decompositions are out there?




Eigendecomposition
Motivation: Linear Dynamical System



Population Change

Example of a linear dynamical system

Consider the following example.

Suppose that

* of those who start a year in California, 60% stay in
40%

California and 40% move out of California by the end ,
of the year. @% /‘\ 9/5’%
\

Vi
e of those who start a year outside California, 95% stay ~ / 3
out and 5% move to California by the end of the year. v \\/
If we know how many people are in California x;, and how
many people are outside of California x,,, then we can find D70
the number of people inside and outside of California at California Outside

the end of the year:

# inside = 0.6x;, + 0.05x_,,

# outside = 0.4x; 4+ 0.95x .

Example and graphic from Daniel Hsu’s course:
Computational Linear Algebra (Fall 2022)
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Population Change

Modeling with a transition matrix

Consider the following example.

Suppose that

« of those who start a year in California, 60% stay in
California and 40% move out of California by the end of
the year.

« of those who start a year outside California, 95% stay out
and 5% move to California by the end of the year.

We can model this with & transition matrix

A — [ in > in  out — in ] 0.6 0.05

in — out out — outl 0.4 0.95

and a system of linear equations:

AX =

[ in > in  out — in ] Xin 0.6 0.05] [*xn
in — out out — out _xout_ _04 095_ _xaut_

40%
é /_\ 655
5%
California Outside

Example and graphic from Daniel Hsu’s course:
Computational Linear Algebra (Fall 2022)
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Population Change

Modeling with a transition matrix

Consider the transition matrix

0.6 0.05
0.4 0.95

with a corresponding system of lineafF equations:

A — in —in out—>in
n — out out — out

Ax — in —in out — in] _xinl _ [0.6 0.0S] _xinl

in = out out — out] | X, 04 095 |Xour

NS

The vector Ax € R? gives the number of people *
inside and outside of California after a year has

passed, from the initial populations in X € R?.

How to find the number of people inside/outside of
California after t years have passed?

Ax e

A(hy) —

California Outside

Example and graphic from Daniel Hsu’s course:
Computational Linear Algebra (Fall 2022)

altlev | eew
af e~ 2 {2 ow ¢

i ¢ R
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Population Change

Modeling with a transition matrix

Consider the transition matrix

A — [m — in out—>in] _ [0.6 0.05]

in = out out — out 0.4 0.95

with a corresponding system of linear equations:
Ax — [ in —> in  out — in ] Xin | 10.6  0.05] [ Xin
in — out out = out] [Xou 0.4 0.95| [*our|

The vector Ax") € R? gives the number of people inside and outside of California
after a year has passed, from the initial populations in x0) e R?.

How to find the number of people inside/outside of California after t years have
passed?

x = Ax©

x? = Ax(V = AAX© = A%

e PN

x? = AA..A x© = AxO

—

z\products
—

40%

sy 9

California Outside

Example and graphic from Daniel Hsu’s course:
Computational Linear Algebra (Fall 2022)
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Population Change

Modeling with a transition matrix

Ax — [in — in  out — in] lxinl _ [0.6 0.0S] [xin_

in = out out — out] | X, 04 095 |Xour

Concretely, suppose there are 300 million outside of

California and 40 million inside of California at the
start of a year. Then,

0) _ 4(0)
. [300]

What are the populations inside and outside of CA
after t years?

0.6 0.05]" [ 40
04 0.95| |300

40%
<6(j%> /_\ <95(7>
5%
California Outside

Example and graphic from Daniel Hsu’s course:
Computational Linear Algebra (Fall 2022)
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Population Change

Annoying computatiog s )

What are the populations inside and outside of CA after t years?

t
(0 — Alx(0) — 0.6 0.05] |40
" i [0.4 0.95| 1300

Try calculating this...

0.6 0.05 0.6 0.05] 0.6 0.05( | 40
0.4 095| (0.4 0.95] 0.4 0.95] |300
%

t Five;
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Population Change

Easy computation &
Mepically

Assume | gave you a couple of vectors,ju = (1,8) and v = (—1,1)./These two
vectors have the properties:
Ay — 0.6 0.05] |1 _ |1
> (04 0.95] 8 3

Ay = |06 005 |—1f _ 11 -]
04 095 [1] 201
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Population Change

Easy computation &

Assume | gave you a couple of vectors, u = (1,8) and v = (—1,1). These two vectors have the properties:

so-[og 0] 4 - 4

Ay |06 005 |—-1] _ 1141
04 09511 20 | 1
Now, the repeated multiplication looks like: J
[
106 005 [1] _ 1| _ [1
AU= [0.4 0.95] [8] = (1) [8] B [8]

wo=los sl 121 G) [

I
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Population Change

Using u and v for initial population

Assume | gave you a couple of vectors, u = (1,8) and v = (—1,1). These two vectors have the properties:

so-[og 0] 4 - 4

Ay |06 005 |—-1] _ 1141
04 095] 1] 201

Now, the repeated multiplication looks like:

o6 00s5]'T1] ...[11 | — O
Au= [o.4 0.95] [8] =) [8] = [8] = |Au=u_

Ay - [06 0.05] [-1] _ (1LY
04 095] | 1 20
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Population Change

Using u and v for initial population

Foru=(1,8)andv =(-—1,1),

/

Notice that u, v are a basis for R? Then, If we rewrite x) as a linear combination of u and V, I.e.

x) = qu + bv,

we can obtain X'/ with the following computation:

x) = Atgg(o) = Al(au + bv) = aA"u + bA'v = au + b(11/20)'v.
L W,

(___(____‘/' ) ¢

Q1 Srerhn <
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Population Change

Using u and v for initial population

Foru=(1,8)andv =(—1,1),

Alu=u

t 11\’
Av=—) vV
20
Notice that u, v are a basis for R2, Then, if we rewrite x) as a linear combination of u and Vv, I.e.

x© = qu + bv,

we can obtain X\ with the following computation:

x = A’xY) = Al(gu + bv) = aA'u + bA'vV =‘au + b(11/20)'v. l

~
In matrix form:
B e T ———
T T '1 0 i a
xXV=]lu v t ~) .
oy |[lo a0 lbl | ()t L
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Population Change

Using u and v for initial population

Foru=(l,8)andv =(-1,1),

0 (11/20)f] b.

where

i X(O)zau+bv.)

Writing xV in matrix form as well, we have:

X«»:[l 3] “
L

-
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Population Change

Using u and v for initial population

Foru=(1,8)andv=(-1,1),

—
|

K 1 0 |ra
() —
S, | o aieoy H

S

where

x© = qu + bv.

Writing x) in matrix form as well, we have:
1 ! a S" a

<0 —

u v = :
o=V s
RS
Because u and Vv are linearly independent, V € R?*? has rank(V) = 2, so we can invert:
‘m
[Z] =V Ix©,
—
—
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Population Change

Using u and v for initial population

Foru=(1,8)and v =(-1,1),

where

Writing xY in matrix form as well, we have:

xV=|u v —V[Z].
Because u and v are linearly independent, V € R%*? has rank(V) = 2, so we can invert:
| = v-iyo
Therefore,
%
T Tl 0 T 1 é q 0
) — _ ~14(0)
S I [o (11/20)f] Lol M [o (11/20)f] vox

T
u
l

x© = qu + bv.

.

A\

b

|

1

0

0 (11/20)f] [

a

b

|
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Population Change

Using u and v for initial population

Foru=(1,8) and v = (Lﬁé\

10
(1) — —1%(0)
=y [0 (11/2())f] e

where
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Population Change

Comparison of hard and easy computation

ALY - 4]

Hard computation: Easy computation:
() — A te(0) | 0
X" = AX (1) — ~14(0)
xm=v [0 (11/20)f] VX
For initial populations X' = (40, 300),
the population after t years is: For initial populations X = (40, 300), the
t population after 7 years is:
() — [0.6 ().()5] [40] | w_ [t =11 0 179 1/9] [ 40
0.4 0.95] |300 —[s 1| [o a1200] |=8/9 1/9] |300]
— ~— )

&) \/ & Vad
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Diagonal Matrices

Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy:

1 o |1 [t o [
0 (11/20)| — [0 (11/20)]

d !
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Diagonal Matrices

Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy:

1 o |1 [t o [
0 (11/20)| — [0 (11/20)]

But this matrix depended on a basis of vectors that we got out of nowhere:

j u=(1.8)andv=(-11). ) = dofonded on #
C{-'MS\W
o Nk )

In what cases (and how) can we obtain such nice bases?
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Eigendecomposition
Intuition and Definition



Eigenvectors and eigenvalues

Intuition T ?4—4 ﬁzcl

7

Letqg e dXdlbe a square matrix.

This represents a linear transformation from
R% to R

Eigenvectors are the vectors in | 4 that just
get scaled by A.

. -
Eigenvalues are how much each eigenvector

| gets scaled.

Eigenvectors/eigenvalues are properties of
sguare matrices!

delsy’t wole ouse ke aste G-

Mc.;ta-v'_smlc;v’ _ v\ =l=o( o

»>— Av;

"_ AV2

"_ AV3
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Eigenvectors and eigenvalues

Definition

Let A € R% pe a square matrix.

d

A nonzero vector v € [R" is an eigenvector
if there exists a scalar 4 € R such that

The scalar 4 is the eigenvalue associated
with the eigenvector v.

Eigenvectors/eigenvalues are properties of
sguare matrices!

Y

>— Av;

»— Avy

$— Av;
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Eigenvectors and eigenvalues

Example

Consider the matrix A € R**? given by

~1/2 572
A= .

What happens to the vector v, = (1,1)?

f

ﬂ\l

7

111
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Eigenvectors and eigenvalues

Example

Consider the matrix A € R>*? given by

~1/2 572
A = .

What happens to the vector ?

eI 1

!

3
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Eigenvectors and eigenvalues

Example

Consider the matrix A € R>*? given by

~1/2 572
A = .

!

3

Va

Av,

What happens to the vector ?

[0 5
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Eigenvectors and eigenvalues

Example

Consider the matrix A € R>*? given by

~1/2 5/2
A = .

0

Eigenvectors (with eigenvalues A; =2 and 4, = — 1/2):

—172 52| [1| _ |2| _, |1

0 2 11 2] |1

—-1/2 5/2 -2 1

0 2 0 2

Not an eigenvector: -
—1/2 52| |o| _ [5/2
0 2 2

N

»— Av,

> A.'V3
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Eigenvectors and eigenvalues

Example
-

v, = (l,1)and are linearly independent — they form
a basis for R?.

—1/2 35/2
0 2

We can write any X € R? in terms of vV, and v,:

d [Z"B\w,\@rww\k
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Eigenvectors and eigenvalues

Example
—1/2 5/2 “
A =
-0 2 3
v, = (l,1)and are linearly independent eigenvectors — they form
a basis for R*. Their eigenvalues are A, = 2 and 4, = — 1/2. 2

We can write any X € R? in terms of vV, and v,: 1

Repeated multiplication:

1 [
A'x = Al(av, + bv,) = aA'v; + bA'v, = a2'v, + b (——) v, .
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Eigenvectors and eigenvalues

Example
_[-12 52 4 —
A=l o 2 (3,8
i | 3 , e
v, = (l,1)and are linearly independent eigenvectors — they form a basis / = 2
for R?. Their eigenvalues are A, = 2 and A, = — 1/2. 2 _ o=
VA
We can write any X € R in terms of vV, and V5. W{J(Amf 5{ «
X = avl + sz. M M q&— /
. _ bm(‘T —
T 1 L
X = Vl V2 1
R
{7 -2
Repeated multiplication: _
1 [
A'x = Al(av, + bv,) = aA'v, + bA'v, = a2'v, + b (—5) v, |
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Eigenvectors and eigenvalues

Example
—1/2 512
A =
L O 2 -
v, = (1,1) and are linearly independent eigenvectors — they form a basis for R?. Their eigenvalues are A, = 2 and 1, = — 1/2.

We can write any x € R? in terms of vV, and V,:

T 1
b = e v

— o
Repeated multiplication: r\ b

tV — Alx =YV 2 0 Vi
2 0 =12

— P
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Eigenvectors and eigenvalues

Example

Repeated multiplication:

[ 5 5 [ [ 1 t [ 2t O —1
AX=A(CZV1+I?V2)=CZAV1+bAV2=a2V1+b —5 V2 — AX:V O (_1/2)1‘ V X

Single multiplication:
F——_Z__‘

_v|?2 O 1
AX—V[O _1/2]V X

S

2X2

where A € | is diagonal.
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Eigendecomposition VD] =
Definition L ‘ ""l’:) [ l,) .y

Prop (Eigendecomposition of a diagonalizable matrix). Let A € R4 ne a matrix with d linearly independent
eigenvectors

AVI — /11V1
: -1
Then, A has the eigendecom Scoles
0 0 _1
0 0 T ... 1
A =VAVl=|v, \ 2 Vi ... Vg,
L LY | | 0O O l l
0 O A,

Such a matrix is said to b% diagonalizable. ) ( \

— BEvyomdecom Posvev @SS
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Eigendecomposition

Example
A = [_ 2)/2 522] has the eigenvectors v, = (1,1) and v, = (1,0):
1
Av, =2v,and Av, = — Evz.
v, and Vv, are linearly independent, so A is diagonalizable with eigendecomposition:

A = QAQ™!

R ol R



Eigendecomposition Jer Cp-AT) -0 X

Example M py

I . "'mlapq eicy

(4

A = [_ 1/2 5/2] has the eigenvectors v, = (1,1) and v, = (1,0):

0 2 —_—

1 )
AVI :@'1 and AV2 —(— — -

v, and Vv, are linearly independent, so A is diagonalizable with eigendecomposition:

[ A=0QAQ! )

—1/2 5/2| _ |1 1|[2 0 |]|0 1
0 2 1 0110 —-1/21 |1 -1
a-!
Question: Butﬂhen?do (square) matrices have a basis of eigenvectors?
—
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Eigendecomposition
Connection with SVD



Connection with SVD

Eigendecomposition from SVD d |
p— ¢
Eigendecomposition only applies to square matrices A € R%4:

A =QAQ .

The SVD applies to any matrix X € | nxd.

- ] X=UEVT2
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Connection with SVD

Eigendecomposition from SVD

nXxd.

The SVD applies to any matrix X € |
X =UXV'.

Consider the square matrix A = XTX = L dxd . By the SVD:

A = XTX P |
— Y;TQTUEVT

— yz:Tz:VT
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Connection with SVD

Eigendecomposition from SVD

nxd.

The SVD applies to any matrix X € |
X =UXV'.

Consider the square matrix A = X'X & R4*d, By the SVD:
—

A=V sV

dxd dxd dxd

The eigendecomposition of A is: )
( A=Q AQ

N —

dxd dXd dxd
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A = X%

Connection with SVD —
i iti ® v\vc} ¥

Eigendecomposition from SVD 05 D) e dast. N evd J

nXxd be

Theorem (SVD and Eigendecomposition). Let X € | atrix with
rank(X) = rand A = X,T\X e R4 | et the SVD of X = UZ@have singular

F\
values ~’—,—
N
(0120, ... 20,>0, vV SRS

'OV eiwguloy or—— l |
and let v, ..., v, be the columns of V.€ R, Then, each v, is an eigenvector for A

with corresponding eigenvalue’/ll- = ag,Zand the eigendecomposition of A is:

A = VAV'

where A € R% s the diagonal matrix with entries A = al.z fori € [d].
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Connection with SVD

Eigendecomposition from SVD

”
Therefore, ifJA = X' X|(for any matrix IX e | ”X?}, we know that we have d
P

linearly independent eigenvectors — this is a case where A is diagonalizme!

Moreover, the diagonalization looks like:

where X = UXV ' is the SVD.
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A= x'x

Positive Semidefinite Matrices
Definition and Connections
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Positive Semidefinite (PSD) Matrices

First definition

A square matrix A € R%¢
—_—

X € R™4 sych that:

IS positive semidefinite (PSD) if there exists a matrix

——

Note: If you’ve seen PSD matrices before, this isn’t the usual definition (but it’s
equivalent, as we’ll see in a bit).
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Positive Semidefinite (PSD) Matrices
Symmetry of PSD Matrices

A square matrix A € |

axd

IS positive semidefinite (PSD) if there exists a

matrix X € R4 sych that:

Prop (Symmetry of PSD matrices). All positive semidefinite matrices are

symmetric. If A € [

dxd i5 PSD. then

A=A"
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Positive Semidefinite (PSD) Matrices

Example

S/2 3/2] .
A — .t. " " " .
[3/2 5/2] IS positive semidefinite



Positive Semidefinite (PSD) Matrices

Example
A= gg gg is positive semidefinite.
Its “square root” is the matrix
2 2
V2 V2
X=|(_L __1
V2 V2
0 0
To verify:
- 2 2
L L o] | -
xTx - | V2 V2 1 L2132 32] A
2 1 == 3/2 5/2
— — 0 I i




PSD Matrices and Eigendecomposition

Connection to eigenvalues

Y=vZVr?
By Theorem (SVD and Eigendecomposition), if A is PSD with@nd
X = UXV Jthen —-
A =VAV',
with orthonormal eigenvectors vy, ...,V
and nonnegative eigenvalues A, = 012, e g = 05

The reverse direction Is also true!
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PSD Matrices and Eigendecomposition

Second definition

A square matrix A € R% s positive semidefinite (PSD) if A has d
eigenvectors forming an orthonormal basis for | 4 \with corresponding
nonnegative eigenvalues 4, ..., 4, > 0.

e

A wviveg ot epemvarlves
e AT
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Positive Semidefinite (PSD) Matrices

Example

3/2  3/2
3/2  5/2

] IS positive semidefinite.

11
It has the eigenvectors v, = ( ) and v, =

N [5/2 3/2 [1/\/_} [4/\/_} [1/\/_} o
32 s 1/1/2 4//2 1/1/2 d

1/4/2 1/4/2
wefiz ]| 9] =T

The eigenvectors are orthonormal and 4;,4, > 0,s0 A = VAV,

é‘/,f


Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel


Positive Semidefinite (PSD) Matrices

Third definition

axd

is positive semidefinite (PSD) if, for any X € R",

iXTAX > (). (

This is often taken as the definition of PSD (but it is equivalent to the other two
definitions in previous slides).
-
X Ky eff.

o

A

A square matrix A € |
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Positive Semidefinite (PSD) Matrices

Example
A = [gg zg] is positive semidefinite.

d

Consider any vector X = (x;,X,) € |
AL 5/2 3/2] [x1| _ (5/2)x; + (3/2)x,
@T il [3/2 5/2] M =l l(3/2)x1 +(5/2)x,

(a3
X' Ax = (5/2)x;7 + 3x.x, + (5/2)x;

VA

flun) =X

T
/

Th x

-
i
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Positive Semidefinite (PSD) Matrices

All definitions

d

Xd is positive semidefinite (PSD) if...

A square matrix A € |

there exists X € R4 sych that A = X'X_

!

all eigenvalues of A are nonnegative: 4; > 0,...,4, > 0.

!

x'Ax > 0 for any x € R
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Positive Definite (PD) Matrices

All definitions

A square matrix A € | dxd jq positive definite (PD) if...

there exists an invertible matrix X € R%*4 sych that A = X'X.

Q)
L
all eigenvalues of A are positive: 4, > 0,...,4, > 0.

| 1

x'Ax > 0 for any x € R

(

StNeH



Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel


Spectral Theorem

Statement

Question: But when does a square matrix A € | dXd have a basis of
eigenvectors (and, hence, is diagonalizable)?

A: When A is positive semidefinite!
S
A= )(_r)( — Y = Vi, L, Vo (§ o

Vor WS

But even more generally...
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Spectral Theorem
Statement N7 ="A.
!
Theorem (Spectral Theorem). Let A & R4 pe g square, symmetric matrix
(i.,e. A' = A). Then, A is diagonalizable: A has an orthonormal basis of d

eigenvectors and an eigendecomposition ?
A =QAQ".
QO
d

‘X“' UV 1| e S0 wres B oy L:_J

But, in this generality, 4. can be negative!
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Principal Components Analysis = #podece? rov

L ————— e — .
Example: “Eigenfaces” and facial recognition

piee's g e? }
Observed: Matrix of training images X € | nxd. =
N —— - __
-X-Eg
T T — Xy -
X = X1 ... Xg| =
! ! — X' -

Each row is a “flattened” image vector. Typically, each pixel is in [0, 255] for
grayscale images.

Images are very high-dimensional: d = width in pixels X height in pixels (e.qg.

d = 1080 x 1080 = 1,166,400).
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Principal Components Analysis

Example: “Eigenfaces” and facial recognition

\,00>, 620

10801080, )

Consider a dataset of 1,000 grayscale face images Xy, ..., X{gg0 € |

Q——

; SRR N, B . 1 "_"‘(
i J e oy
) REAE 7 o X # 3 T s
¥ AN e "
W R e £ 20 2o 2
4 : e G =
AN E i
ey i
g o "
= o b 3
- '
; W T o
0, A W
t FCaloc
: 4 &
9 i 1
£ L oTm e e
e £ : @
TANN -
e
B>
f ! I

2
e b

Naive facial recognition: Get a new face, linear search over 1,000 faces for the
“closest” face (perhaps in Euclidean norm ||X — X.||).
 —

Storage: 1166400 integers X 1000 images ~ 1 GB.
e Y =
vl
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Principal Components Analysis

Example: “Eigenfaces” and facial recognition

/ \O D 0
Suppose we can find a “basis” of representative faces: v, ..., v, where k < n.
| W et
Then, we can represent any face as a linear combination of the basis faces!
+ 0.05

Improved facial recognition: Store k “eigenfaces.” Given a new face X, project the face onto the
subspace spanned by the eigenfaces to get | l(XQ). Compare [1(x) T0 each face’s projection in the
database in Euclidean norm ||II(x,) — II(x))||. S~

o G e = VR /7_, .
’ VC"’ (@v ‘\N 6#
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Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points X € R
X111 A12

x= |

x;zl x;.qz

Want to find the directions that most explain the “variance” of the data.



Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points X € | nxz,
11 A12
< — x%l x?z
xi;l x;:zz

Want to find the directions that most explain the “variance” of the data.

The matrix C = X'X € R%*? is the covariance matrix of the data.

s —_—
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Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points X € | nxz,
A11 12
T 1
A1 22
X=1": Sl =1X X

X o Sevmie ) B

?o . .
/T‘_‘ xnl an l l
The matrix C = X'X € R?*? is the covariance matrix of the data.
7\

i [X1Tx1 X1TX2]

C= T T
XX XXy

2¢ 2
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Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points X & R%2.

X111 12 T
X1 X922 -
X=1": =1 X 2
an 'xn2
The matrix C = XTX - szz IS the covariance matrix of the O
data.
T T i 2 T
C — XX XX HIxllT xix,
_ T T o T 2 2
X1 Xy X9Xp XXy %]

PCA: Find the ordered set of vectors vy, ...,V € R4 that explain
the most variance to least variance in the data.



Deng, Samuel

Deng, Samuel


Derivation of PCA - ¥ 5 sjmeerac

Eigendecomposition and PCA = pedhm = Brgemdesertov

PCA = Eigendecomposition of the covariance matrix!

Consider a (column-centered) dataset X € | nXd and construct its covariance matrix
C = X'X € R%“4 By definition, C is positive semidefinite.

Therefore, it is diagonalizable with eigendecomposition:

C=X'X :@, with eigenvectors v, ..., V.

With eigenvectors ordered 4, > 4, > ... > 4, > 0, choose a cutoff point k <« d, and
keep eigenvectors vy, ..., v,o

The eigenvectors v, ..., vV, give an orthonormal basis for a k-dimensional subspace.
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Derivation of PCA

Eigendecomposition and PCA

PCA = Eigendecomposition of the covariance matrix!

Consider a (column-centered) dataset X & R"™4 and
construct its covariance matrix C = X'X € R%4_ By
definition, C is positive semidefinite.

Therefore, it is diagonalizable with eigendecomposition:
C = X'X = VAV, with eigenvectors Vi,---s V.

With eigenvectors ordered 4; > 4, > ... > 4, > 0, choose
a cutoff point k < d, and keep eigenvectors vy, ..., V,.

The eigenvectors v, ..., v, give an orthonormal basis for a
k-dimensional subspace.

value of A;

14

12

10

20 40 60 80 100 120 140
Index of A,
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Derivation of PCA

Eigendecomposition and PCA

PCA = Eigendecomposition of the covariance matrix!

Consider a (column-centered) dataset X € | "Xd and construct its covariance matrix
C=X'X € R4 By definition, C is positive semidefinite.

Therefore, it is diagonalizable with eigendecomposition:

C=X'X=VAV'"

(Could have also just taken the right singular vectors of X = UXV ' if we have
efficient algorithm to find the SVD — true in practice).



L east Squares
Interpretation of Eigenvalues



Regression
Setup

Observed: Matrix of training samples X € R and vector of training labels y € R?.

0 0 — X, —
X = X1 ... Xyl = :
| | — X' -
Unknown: Weight vector w € R? with weights w,, ..., w,,

T

Goal: Foreach i € [n], we predict: y. = W' X, = wix;; + ... + wx,, € R.

Choose a weight vector that “fits the training data”: w € R such that y; =~ . for i € [n], or:

Xw=y~xrYy.



Regression
Setup

Goal: For each 1 € [n|, we predict: yi =w'

Choose a weight vector that “fits the training data”: w € [
fori1 € [n], or:
XW=yRrY.

To find W, we follow the principle of least squares.

A\

W = arg min || Xw —y||°
weR?

Xi — Wlxil + ... +deid€ L .

d

such that y; & y,
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Error In Regression

Error using least squares model

Choose a weight vector that “fits the training data”: W € R such that y; &y for
1 € [n], or: =
Xw=y~rYy.
d -.-).-7 X\/\/* = \/
But ¥ might not be a perfect fit to y!
Model this using a true weight vector w* € | 4 and an error term € = (€1, ...,€,) €I
g, v
y, = X! Wk + ¢; forall1 € [n] >

L L
y = XW* + .é?ee”‘
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Error In Regression

Error using least squares model

True Iabels:‘y = XW* +\€.; J/

What happens when we use the least squares weights[\Av = (X'X)" ' XTy?
2

= (X"X)" IXT(Xw* + €)

= (XMXW* + X'X)"X'Te

= %v* + X'X) ' XTe
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Error In Regression

Error using least squares model

True labels: y = XwW* + €.
o
What happens when we use the least squares weights W = (X' X)X Ty?

w=X"X)" X"y
= (X"X)" XT(Xw* + ¢)
= (X" X)"X"Xw* + X"X)"X"e

= w + (X"X)=XTe

When € = 0 (y is linearly related to X), this is perfect: w = w*!

4
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Error In Regression

Error using least squares model

True labels: y = Xw* + €.

What happens when we use the least squares weights W = (X' X)X Ty?
w=X"X)" X"y
= (X" X)"'X"(Xw* + ¢)
= (X" X)"X"Xw* + X"X)"X"e
=w*+X'X)"'X'e el T,

/\
When € # 0, we have an error of W — w* = (X' X)X e.

A

W — wW b ()()()"X' -5


Deng, Samuel

Deng, Samuel


Error In Regression

Eigendecomposition perspective

Weight vector’s error: W — w* = (X' X)X "e.

We know that X' X (the covariance matrix) is PSD, so it is diagonalizable:

\€ covariance matrix) IS ¢
X'X=VAV' = X'X)'=V'A~V.
-’—-__. S

The inverse of the diagohal matrix A~

\
/A, ... O Av 05 smnll = /ey
A = : . |, soif 4, is small, the entries of w blow up!
0 .. 1/2, - I

—
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Gradient Descent
Positive Semidefinite Matrices and Convexity
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VT x Flovry = Aol tred &
: \ Hred 7.
Lesson Overview l

f(w) = w? 2 v = * ‘ 200
-—0— descen t
100 @ start
150
80
60
100
5
40
50
20
Q (4]
w1 w2
) NS 0
0

Click to interact

—0— descent @ start



https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
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Lesson Overview

Big Picture: Gradient Descent

2 2

45 15 45

1
05

s = =

X o A X

(S (S &

0%
AP AP
2 2 A 2
/‘\.6 75 /‘\'E) 75
/‘\ 7 /‘\ 7
5 0
/Q.6 0'5 /0 )
Q 0
o 0 1 , Q 0
X X
5 N x1 - X2
x1 K3 R x2 o 0s o 05
\ \, \ \7 \ \7

(1-axis == xD_gxjs == f(x1, x2)-axis ==@mm descent @ start m— x]-gxis = xD_gxjs mmmmm f(x] x2)-axis ==@mm descent @ start
—x1-aXiS w—xD_gxjs s f(x1, x2)-axis ==@=m descent @ start


https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html

Quadratic Forms
2D Example =2 e

A quadratic function f : R — R has the form

f(x) = ax* + bx + c,

where a, b, c € R. o

Example: f(x) = 2x* —x — 1

-8
—————————————————————————
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Quadratic Forms
2D Example =2 e

A quadratic function f : R — R has the form

f(x) = ax* + bx + c,

where a, b, c € R are constants. ol

Example: f(x) = 2x* —x — 1

We will be concerned about finding minima of
quadratic functions.

-8
—————————————————————————
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Quadratic Forms
3D Example

2

— R has

In 3D, a quadratic function f : |
the form

f(x) = ax* +2bxy +cy* +dx+ey+f

where a, b, c,d,e,f € R are all constants.

Example:
fx) =2x" +4xy + 2y + 2x + 2y + 1
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Quadratic Forms
3D Example

fx) =2 2x% + 4xy + 2y% [+ 2x + 2y + 1 vs.



https://samuel-deng.github.io/math4ml_su24/assets/figs/quad242_stack.html
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Quadratic Forms
3D Example

2

In 3D, a quadratic function f : R“ — R has the form

f(x) = ax” + 2bxy + cy*+dx Fev+ - f

——

quadratic linear consiant

Let’s only examine the quadratic part!

f(x) = ax* 4 2bxy + ¢y~
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Quadratic Forms

Relationship with matrices and eigenvalues

A function f : | ’ 5> Risa quadratic form if it is a polynomial with terms of all degree
two:

(%) = ax* + 2bxy + cy”.

We can rewrite this in matrix form: I gyveeh

fox,y) =[x ¥l [Z IZ] m

(x) = XTAX’\
et T @‘«m\m "‘%b‘e:
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Quadratic Forms

Relationship with matrices and eigenvalues

Consider a quadratic form:
B a bl [X
fo,y) =[x )] [b C] H

f(x) = x'Ax

The matrix A € R**? is always symmetric, so it is diagonalizable!

l A = QAQT,’where A € R*js diagonal.
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Quadratic Forms

Relationship with matrices and eigenvalues

The matrix A € |

X2 is always symmetric, so it is diagonalizable!

A = QAQ', where A € R s diagonal.

—> f(X) = x'AX = XTQAQTX
—eeeeeeeeeeeeee —_ e J Xz J, |

—| X' AX,|where X = (STX | i‘ V‘;”
) [ " \V 4

X= M, vVi+ MV,
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Quadratic Forms

Relationship with matrices and eigenvalues

A = QAQ', where A € R s diagonal.

A A 0
(o 4,
There are three possibilities:
1. A; and 4, are both positive (positive definite).
S

2. A or A, is zero, and the other is positive (positive semidefinite). ,l( ) A2 >

’ T —

3. A, or 4, is negative (indefinite).

F
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Quadratic Forms '

Example: positive definite N | L
fq)\1 2| = 2% -4 z
- P)[."'\ 2’)[‘51'.\};*13{ x4 S /\
Example: ] - 2’oxd- vq 424

< 2,('- Zx.’ +?71 .

fle,y) =[x V] [_21 _21] m

Eigendecomposition:

[2 _1] _ '—1/ 2 1/\/§]
-1 2 112 114/2

E— ent @ start

[3 o] ~1/v/2 1/y/2
O 111 12 1n/2

N



https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
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Quadratic Forms

Example: positive semidefinite

Example:

foey) =[x Y] [_11 ‘11] 5|

Eigendecomposition: e i i s © 0
[1 _1] —1//2 11/2 [ ] —1/\/2 11/2
-1 1 17/2  114/2 17/2  114/2

ST A,

N /\Z



https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
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Quadratic Forms

Example: indefinite

Example:

1 -2 H S,
X, = |X V .
Eigendecomposition: e e — e
[1 _2] —1/A/2 1/4/2 [3 o] ~1/4/2 1/
-2 1 17/2 11/2| 10 =11 | 11/2 1/\/_
so A = .
A |



https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
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Quadratic Forms

Example: indefinite

A5

(g% ‘W

— X -aXis e D-gxjs wem f(x1 x2)-axis ==@mm descent

‘ start

@ descent @ start


https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_good.html

Quadratic Forms

Example: indefinite

m—x1-gXis we—D_gxjs wes f(x1 x2)-axis ==@m descent @ start m@um descent @ start


https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html

Quadratic Forms

Example: indefinite

m—x1-gXis we—D_gxjs wes f(x1 x2)-axis ==@m descent @ start m@um descent @ start
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Least Squares

Example of quadratic form

Consider the familiar function we’ve been thinking about:

\f(W) — IXw—yl> )

o
Xw—-y) Xw-y)=w'X'X)w-2w'X"y) +y'y.

The quadratic form w' (X' X)w is positive semidefinite!

A~ P59
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Gradient Descent

Preview

2
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m—— x]-gxis == xD-gxjs == f(x1 6 x2)-axis ==@=m descent

A

@ start

x2

\0.6\

3 0
0 1

A

— x1-aXis e xD._gxjs wesm f(x1, x2)-axis ==@mm descent

N\,
s
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2 0
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x2
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https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html




Lesson Overview

Linear dynamical systems example. Motivation for eigendecomposition as a
way to make repeated matrix multiplication easier.

Eigendecomposition. Definition of eigenvectors, eigenvalues.

Eigendecomposition and SVD. The eigendecomposition drops out of the SVD.

Positive semidefinite matrices/positive definite matrices. Definition

Spectral Theorem. Symmetric matrices are always diagonalizable.
and >
some visual examples through the corresponding quadratic forms.
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Lesson Overview -
Big Picture: Least Squares W= X
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https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls2_1.html
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Lesson Overview

Big Picture: Gradient Descent JAPRATIC FUNC TIoNS
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https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html
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