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Week 3.1: Basic Differentiation and Vector Calculus
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Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which 
require finding global minima. 

Single-variable differentiation review. In single-variable differentiation, the derivative is still a 
 “matrix” mapping change in input to change in output.


Multivariable differentiation. Derivatives in multiple variables become harder because we can 
approach from an infinite number of directions, not just two.


Total, directional, and partial derivatives. When a function is smooth it has a total derivative 
(it is differentiable). In this case, the directional derivative and partial derivative is comes 
directly from the total derivative (Jacobian/gradient).


OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear 
algebra. We provide a heuristic derivation of the OLS estimator again.

1 × 1



Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Lesson Overview
Big Picture: Gradient Descent
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A Motivation for Calculus 
Optimization
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Motivation
Optimization in single-variable calculus

In much of machine learning, we design algorithms for well-defined optimization 
problems. 

In an optimization problem, we want to minimize an objective function 
 with respect to a set of constraints :
f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x

f(x)

subject to x ∈ 𝒞
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Motivation
Optimization in single-variable calculus

In much of machine learning, we design algorithms for well-defined optimization 
problems. 

In an optimization problem, we want to minimize an objective function 
 with respect to a set of constraints :





How do we know how to do this from single-variable calculus?

f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x

f(x)

subject to x ∈ 𝒞
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Motivation
Optimization in single-variable calculus
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Motivation
Optimization in single-variable calculus
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Intermediary goal: Find the 
local minima. 
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Motivation
Optimization in single-variable calculus
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functions.


Intermediary goal: Find the 
local minima. 

Derivatives give us the 
direction of steepest 

descent!
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Motivation
Optimization in multi-variable calculus
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Single-variable Differentiation 
Review of (some) single-variable calculus



Single-variable Differentiation
Difference quotient

For a function , the difference quotient computes the slope 
between two points  and : 

f : ℝ → ℝ
x x + δ

δy
δx

:=
f(x + δ) − f(x)

δ
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Single-variable Differentiation
Difference quotient

For a function , the difference quotient computes the slope between 
two points  and : 

 

Throughout,  denotes “change in the inputs.” For any two points , we 
can write . 


For a linear function, this is the slope everywhere.

f : ℝ → ℝ
x x + δ

δy
δx

:=
f(x + δ) − f(x)

δ

δ x, y ∈ ℝ
δ = y − x
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Single-variable Differentiation
Difference quotient

Example.  

Example. 

f(x) = − 2x

f(x) = x2 − 2x + 1
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Single-variable Differentiation
f : ℝ → ℝ



δy
δx

:=
f(x + δx) − f(x)

δx
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Single-variable Differentiation
Definition of the derivative
For a function , the derivative of  at the point  is the value





if the limit exists.


In this lecture, we will assume that all functions are everywhere differentiable. Not always the case, 
e.g. .


We will also denote this as  or . 


Important: The derivative is defined at a point! 

f : ℝ → ℝ f x
df
dx

:= lim
δ→0

δx
δy

= lim
δ→0

f(x + δ) − f(x)
δ

,

f(x) = |x |

f′￼(x) ∇f(x)
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Single-variable Differentiation
Definition of the derivative

For a function , the derivative of  at the point  is the value





if the limit exists.

f : ℝ → ℝ f x
df
dx

:= lim
δ→0

δx
δy

= lim
δ→0

f(x + δ) − f(x)
δ

,



Single-variable Differentiation
Definition of the derivative
For a function , the derivative of  at the point  is the value





if the limit exists.


In this lecture, we will assume that all functions are everywhere differentiable. Not always the case, 
e.g. .


We will also denote this as  or . 


Important: The derivative is defined at a point! 

f : ℝ → ℝ f x
df
dx

:= lim
δ→0

δx
δy

= lim
δ→0

f(x + δ) − f(x)
δ

,

f(x) = |x |

f′￼(x) ∇f(x)



Single-variable Differentiation
Definition of the derivative

Example.  

Example. 

f(x) = − 2x

f(x) = x2 − 2x + 1
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Single-variable Differentiation
f : ℝ → ℝ

Get used to thinking, for all  that are 
“close” to :


 

The derivative gives a good local, linear 
approximation to the change in .

x
x0

∇f(x0)(x − x0) ≈ f(x) − f(x0)

f(x)
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Single-variable Differentiation
f : ℝ → ℝ

Get used to thinking, for all  that are 
“close” to :


 

We can always write the “target point” as 
.


 

The derivative gives a good local, linear 
approximation to the change in .

x
x0

∇f(x0)(x − x0) ≈ f(x) − f(x0)

x = x0 + δ

∇f(x0) ⋅ δ ≈ f(x0 + δ) − f(x0)

f(x)
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Single-variable Differentiation
Review: basic derivative rules
Product rule:





Quotient rule:





Sum rule:


 


Chain rule: 


 

∇( f(x)g(x)) = g(x)∇f(x) + f(x)∇g(x)

∇( f(x)
g(x) ) =

g(x)∇f(x) − f(x)∇g(x)
g(x)2

∇( f(x) + g(x)) = ∇f(x) + ∇g(x)

∇(g( f(x)) = ∇(g ∘ f )(x) = ∇g( f(x))∇f(x)



Linearity
Review from linear algebra

Linearity is the central property in linear algebra. Cooking is linear.

Bacon, egg, cheese (on roll) 

1 egg


1 slice of cheese


1 slice bacon


1 Kaiser roll


0 cream cheese


0 slices of lox


0 bagel

Lox sandwich 

0 egg


0 slice of cheese


0 slice bacon


0 Kaiser roll


1 cream cheese


2 slices of lox


1 bagel

Bacon, egg, cheese (on bagel) 

1 egg


1 slice of cheese


1 slice bacon


0 Kaiser roll


0 cream cheese


0 slices of lox


1 bagel



Linearity
Review from linear algebra

Linearity is the central property in linear algebra. A function (“transformation”) 
 is linear if  satisfies these two properties for any two vectors 

:





 for any .

T : ℝd → ℝn T
a, b ∈ ℝd

T(a + b) = T(a) + T(b)

T(ca) = cT(a) c ∈ ℝ
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Linearity
Review from linear algebra

Linearity is the central property in linear algebra. A function (“transformation”) 
 is linear if  satisfies these two properties for any two vectors 

:





 for any .

T : ℝ → ℝ T
a, b ∈ ℝ

T(a + b) = T(a) + T(b)

T(ca) = cT(a) c ∈ ℝ
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Single-variable Differentiation
Linearity and differentiation
Why do we like linear transformations? 

 

Recall:  and . 

Derivative exploits the fact that, on small scales, things behave linearly!

∇f(x0)(x − x0) ≈ f(x) − f(x0)

T(x + y) = T(x) + T(y) T(cx) = cT(x)
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Single-variable Differentiation
Linearity and differentiation

The derivative is a linear transformation that maps changes in  to changes 
in . We like linear transformations! 

 

x
y

T : change in x → change in y

∇f(x0)(x − x0) ≈ f(x) − f(x0)
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Single-variable Differentiation
Linearity and differentiation

The derivative is a linear transformation that maps changes in  to changes in . We like 
linear transformations! 

 

 

Consider the function . The derivative of  at  is 


The derivative is nothing more than a  matrix in single-variable differentiation: 
.


A goal of differential calculus, for us, is to replace nonlinear functions with linear approximations! 

x y

T : change in x → change in y

∇f(x0)(x − x0) ≈ f(x) − f(x0)

f(x) = x2 f x = 1 ∇f(1) = 2.

1 × 1
∇f(1) = [2]
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Single-variable Differentiation
Linearity and differentiation
Calculate some examples of 

.


Consider the function . 


The derivative of  at  is 


∇f(1) ⋅ (x − 1)

f(x) = x2

f x = 1 ∇f(1) = 2.
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Single-variable Differentiation
Linearity and differentiation
Calculate some examples of 

.


Consider the function . 


The derivative of  at  is 


∇f(1) ⋅ (x − 1)

f(x) = x2

f x = 1 ∇f(1) = 2.

∇f(1)(2 − 1) = [2](2 − 1) = 2 ≈ change in f(x) between 1 and 2

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approx. change b/w 1 and 2
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Single-variable Differentiation
Linearity and differentiation
Calculate some examples of 

.


Consider the function . 


The derivative of  at  is 





∇f(1) ⋅ (x − 1)

f(x) = x2

f x = 1 ∇f(1) = 2.

∇f(1)(2 − 1) = [2](2 − 1) = 2 ≈ change in f(x) between 1 and 2

∇f(1)(1.5 − 1) = [2](1.5 − 1) = 1 ≈ change in f(x) between 1 and 1.5

0 1
−1

0

1

2

3

approx. change b/w 1 and 2
approx. change b/w 1 and 1.5
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Single-variable Differentiation
Linearity and differentiation
Calculate some examples of 

.


Consider the function . 


The derivative of  at  is 








∇f(1) ⋅ (x − 1)

f(x) = x2

f x = 1 ∇f(1) = 2.

∇f(1)(2 − 1) = [2](2 − 1) = 2 ≈ change in f(x) between 1 and 2

∇f(1)(1.5 − 1) = [2](1.5 − 1) = 1 ≈ change in f(x) between 1 and 1.5

∇f(1)(1.1 − 1) = [2](1.1 − 1) = 0.2 ≈ change in f(x) between 1 and 1.1

0 1

0

1

approx. change b/w 1 and 2
approx. change b/w 1 and 1.5
approx. change b/w 1 and 1.1
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Single-variable Differentiation
Linearity and differentiation

The derivative is a linear transformation that maps changes in  to changes in . 
We like linear transformations!


 

 

The derivative is nothing more than a  matrix in single-variable 
differentiation.

x y

T : change in x → change in y

∇f(x0)(x − x0) ≈ f(x) − f(x0)

1 × 1
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Multivariable Differentiation 
Review of multivariable notions of derivative



Multivariable Differentiation
Scalar-valued vs. vector-valued functions

 is a scalar-valued multivariable function,  is a vector-
valued multivariable function.





But  is just made up of  scalar-valued functions.


Upshot: Just treat vector-valued functions as a collection of  scalar-valued 
functions, and deal with each coordinate individually.

f : ℝd → ℝ f : ℝd → ℝn

f(x0) = ( f1(x0), …, fn(x0)) .

f n

n
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Multivariable Differentiation
Big picture: total, partial, and directional derivatives.

The total derivative (or just derivative) of  at  is a linear transformation .


The gradient of  at  is the vector  associated with the total derivative of a scalar-
valued .


The Jacobian of  at  is the  matrix  associated with the total derivative of a vector-
valued .


The directional derivative of  at  in the direction  is the derivative applied to : 
, via matrix-vector multiplication.


The ’th partial derivative of  at  is the directional derivative in the unit basis direction .

f x0 Df(x0) : ℝd → ℝn

f x0 ∇f(x0) ∈ ℝd

f : ℝd → ℝ

f x0 n × d ∇f(x0)
f : ℝd → ℝn

f x0 v ∈ ℝd v
∇ f(x0)

⏟
n×d

v
⏟

d×1

i f x0 ei ∈ ℝn
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Multivariable Differentiation
Why is multivariable differentiation harder to pin down than single-variable 
differentiation? 

In , there are only two directions from which we can approach  (on a 
standard Cartesian plane, the “left” and the “right”).


In , we can approach  from infinitely many directions!

ℝ x0

ℝn x0
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Multivariable Differentiation

x1-axis x2-axis f(x1, x2)-axis
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f : ℝ2 → ℝ
f : ℝ → ℝ

Approach directions
Multivariable Differentiation

https://samuel-deng.github.io/math4ml_su24/assets/figs/localglobal3d.html
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Multivariable Differentiation

x1-axis x2-axis f(x1, x2)-axis

f : ℝ2 → ℝ

Approach directions
Multivariable Differentiation
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Multivariable Differentiation 
Directional and partial derivatives



Multivariable Differentiation
Directional and partial derivatives

For  and point …


The directional derivative is change in  when we approach  from the 
direction defined by some vector .


The th partial derivative is change in  when we approach  from the 
standard basis direction . 


f : ℝd → ℝn x0

f x0
v

i f x0
ei
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Let  be a function. The directional derivative of  at  in the 
direction  is


f : ℝd → ℝn f x0
v ∈ ℝd

lim
δ→0

f(x0 + δv) − f(x0)
δ

.

Multivariable Differentiation
Directional derivative
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Let  be the th standard basis vector in . 


The th partial derivative of  at  is the directional derivative in the direction 
, also written as:


ei i ℝd

i f x0
ei

lim
δ→0

f(x0 + δei) − f(x0)
δ

.

Multivariable Differentiation
Partial derivative
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The th partial derivative of  at  can also be written:





Mechanically: take the derivative of variable  while keeping all the others 
constant.

i f x0

∂f
∂xi

(x0) := lim
δ→0

f(x0 + δei) − f(x0)
δ

= lim
δ→0

f(x0,1, …, x0,i + δ, …x0,n) − f(x0,1, …, x0,i, …, x0,n)
δ

xi

Multivariable Differentiation
Partial derivative
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Example. Compute the partial derivatives of  defined by 
. What are the partial derivatives at ?


f : ℝ2 → ℝ
f(x, y) = x3 + x2y + y2 (1,2)

Multivariable Differentiation
Example: f(x, y) = x3 + x2y + y2
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Multivariable Differentiation
Example: f(x, y) = x3 + x2y + y2
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Example. Compute the partial derivatives of  defined by 
. What are the partial derivatives at ?

f : ℝ2 → ℝ2

f(x, y) = (x2y, cos y) (1,2)

Multivariable Differentiation
Examples
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Multivariable Differentiation 
Total derivatives
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Multivariable Differentiation
Jacobian and gradient idea

The gradient is the vector in  that contains the partial derivatives of 
 as each entry. 

The Jacobian  matrix that contains the partial derivatives of , 
collected column-by-column.


Viewing  as a collection of  functions , the Jacobian is also 
what we get by “stacking” all the gradients top-to-bottom in a matrix.

ℝd

f : ℝd → ℝ

n × d f : ℝd → ℝn

f n f = ( f1, …, fn)
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Multivariable Differentiation
Gradient

Let  be a function. The gradient of  at  is the vector 
 composed of all the partial derivatives of  at :


f : ℝd → ℝ f x0
∇f(x0) ∈ ℝd f x0

∇f(x0) :=

∂f
∂x1

(x0)

⋮
∂f
∂xn

(x0)
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Multivariable Differentiation
Gradient

Example. What’s a formula for the gradient of ?
f(x, y) = x3 + x2y + y2
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Multivariable Differentiation
Example: f(x, y) = x3 + x2y + y2
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Multivariable Differentiation
Jacobian

Let  be a function. The Jacobian of  at  is the  matrix 
composed of all the partial derivatives of  at :


f : ℝd → ℝn f x0 n × d
f x0

∇f(x0) :=

∂f1
∂x1

(x0) … ∂f1
∂xn

(x0)

⋮ ⋮
∂fm
∂x1

(x0) …
∂fm
∂xn

(x0)

=
← ∇f1(x0)⊤ →
⋮ ⋮ ⋮
← ∇fn(x0)⊤ →
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Multivariable Differentiation
Jacobian

Example. What’s the Jacobian of ?f(x, y) = (x2y, cos y)



“Local” to a Point
Definition of an open ball/neighborhood
Let  be a point. For some real value , the open ball or 
neighborhood of radius  around  is the set of all points:





x ∈ ℝd δ > 0
δ x

Bδ(x) := {a ∈ ℝd : ∥x − a∥ < δ} .
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“Local” to a Point
Definition of an open ball/neighborhood
Example. Consider . What is the open ball of radius  
around ?


x = (1,1) ∈ ℝ2 δ = 1
x
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“Local” to a Point
Definition of an open ball/neighborhood
Example. Consider . What is the open ball of radius  
around ?


An open ball lets us approach  from all directions.

x = (1,1) ∈ ℝ2 δ = 1
x

x



Multivariable Differentiation
Total Derivative

The total derivative is the linear transformation that “best approximates” the 
local change in  at a point .


The total derivative, like the univariate derivative, takes “change in ” and 
outputs “change in .” 


Recall: 

f x0

x
y

∇f(x0)(x − x0) ≈ f(x) − f(x0)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Multivariable Differentiation
Total Derivative

Let  be a function and let  be a point. If there exists a linear 
transformation  such that





then  is differentiable at  and has the unique (total) derivative . 

As we get closer to  from any direction , the change  can be 
approximated by .

f : ℝd → ℝn x0 ∈ ℝd

Dfx0
: ℝd → ℝn

lim
⃗δ→0

1

∥ ⃗δ∥2
((f(x0 + ⃗δ) − f(x0)) − Dfx0

( ⃗δ)) = 0,

f x0 Dfx0

x0 ⃗δ f(x0 + ⃗δ) − f(x0)
Dfx0
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Multivariable Differentiation
Total Derivative
Good news: in many cases, we don’t have to deal with the clunky expression 

 

because we can replace  by the Jacobian/gradient for all “nice” functions (the 
functions we usually care about)!


The “nice” functions is the class of continuously differentiable (smooth) 
functions.

lim
⃗δ→0

1

∥ ⃗δ∥2
((f(x0 + ⃗δ) − f(x0)) − Dfx0

( ⃗δ)) = 0,

Dfx0

Deng, Samuel



Multivariable Differentiation 
Smoothness and consequences



Multivariable Differentiation
Smoothness

A function  is continuously differentiable if all of the partial 
derivatives of  exist and are continuous. 


AKA:  functions, and the collection of all such functions are the class . 


Generally:  for some  are the -times continuously differentiable 
functions.


f : ℝd → ℝn

f

𝒞1 𝒞1

𝒞p p ≥ 1 p
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Multivariable Differentiation
Smoothness

Theorem (Sufficient criterion for differentiability). If  is a  
function, then  is differentiable, and its total derivative is equal to its Jacobian 
matrix.


f : ℝd → ℝn 𝒞1

f

Deng, Samuel
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Deng, Samuel
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Multivariable Differentiation
Directional derivatives from total derivative

Theorem (Computing directional derivatives). If  is differentiable 
with  Jacobian matrix , the directional derivative of  at  in the 
direction  is given by the matrix-vector product:





Remember from our linear algebra lectures: multiplying a vector by a matrix is 
applying a linear transformation to that vector!

f : ℝd → ℝn

n × d ∇f(x0) f x0
v ∈ ℝd

∇f(x0)

n×d

v
⏟

d×1

.
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Multivariable Differentiation
Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let  be 
differentiable at . If  is a unit vector making angle  with the 
gradient , then:


.


Gradient is the direction of steepest ascent at the rate !

f : ℝd → ℝ
x0 ∈ ℝd v ∈ ℝd θ

∇f(x0)

∇f(x0)⊤v = ∥∇f(x0)∥ cos θ

∥∇f(x0)∥

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel
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Multivariable Differentiation
Example: f(x, y) = (1/2)x3y

x-axis y-axis f(x, y)-axis
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https://samuel-deng.github.io/math4ml_su24/assets/figs/partial2.html


Multivariable Differentiation
Big picture: how do all these objects connect?
The total derivative is a linear transformation that maps “changes in inputs” to 
“changes in outputs.”


When we apply a total derivative to a vector, think of mapping the “change” 
represented by that vector to a “change” in output space. 

The partial derivative tells us how our function changes in each basis vector 
direction. The directional derivative tells us change in any direction.


For all the “smooth” continuously differentiable functions we care about, the total 
derivative is given by the Jacobian matrix (the gradient for scalar-valued functions). 


Applying the Jacobian/gradient to a vector is the same as matrix-vector multiplication!



Multivariable Differentiation
Big picture: how do all these objects connect?

 function  total derivative = Jacobian/gradient


 all directional/partial derivatives from matrix-vector product!


 for Jacobian ( )


 for gradient ( )


𝒞1 ⟹

⟹

∇f(x0)v f : ℝd → ℝn

∇f(x0)⊤v f : ℝd → ℝ
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Multivariable Differentiation
Example: f(x, y) = x3 + x2y + y2

x-axis y-axis f(x, y)-axis
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Multivariable Differentiation 
The Hessian and the “Second Derivative”



Multivariable Differentiation: Hessian
Hessian matrix
The Hessian is the “second derivative” for scalar-valued multivariable functions. It 
is a matrix. For really smooth functions, it is symmetric.


The Hessian contains the local “second-order” information, or curvature of the 
function. It describes how “bowl-shaped” the function is around a point.


Note: The Hessian is only defined for scalar-valued functions .f : ℝn → ℝ

Deng, Samuel

Deng, Samuel

Deng, Samuel
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Multivariable Differentiation: Hessian
Hessian matrix for f : ℝ2 → ℝ
The Hessian matrix for  is the  matrix of all second-order partial derivatives:


 


 is the second partial derivative of  with respect to .


 is the partial derivative from differentiating w.r.t.  first and then differentiating w.r.t. .

f : ℝ2 → ℝ 2 × 2

∇2f(x0) =

∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

∂2f
∂x2

i
f xi

∂2f
∂xi∂xj

xj xi
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Multivariable Differentiation: Hessian
Hessian matrix for f : ℝn → ℝ

The Hessian matrix for  is the  matrix of all second-order 
partial derivatives.

f : ℝn → ℝ n × n

Deng, Samuel

Deng, Samuel



Multivariable Differentiation: Hessian
Equality of mixed partials
Theorem (Equality of mixed partials). If  is a twice continuously 
differentiable function (i.e., in class ), then, for all pairs :





This means that for  functions, the Hessian is a symmetric matrix.


, the class of twice continuously differentiable functions, is the collection of all 
functions whose second-order partial derivatives all exist and are continuous.

f : ℝn → ℝ
𝒞2 (i, j)

∂2f
∂xi∂xj

=
∂2f

∂xj∂xi
.

𝒞2

𝒞2
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Multivariable Differentiation
Wrap-up example

Consider the function  given by 


.


Is  smooth (i.e. in )? How about ? What does that tell us?

f : ℝ2 → ℝ3

f(x, y) := ( 1
2 x3y 2x2y2 xy)

f 𝒞1 𝒞2
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Multivariable Differentiation
Wrap-up example

Consider the function  given by 


.


What’s the formula for the Jacobian of ?  

What’s the formula for the gradient of ? What is the Jacobian/

gradient at ?


f : ℝ2 → ℝ3

f(x, y) := ( 1
2 x3y 2x2y2 xy)

f
f1(x, y) =

1
2

x3y
x0 = (1,2)



Multivariable Differentiation
Wrap-up example

Consider the function  given by 


.


What’s the total derivative of  at ?


f : ℝ2 → ℝ3

f(x, y) := ( 1
2 x3y 2x2y2 xy)

f x0 = (1,0)



Multivariable Differentiation
Wrap-up example

Consider the function  given by 


.


What’s the directional derivative of  at  in the direction ? 


How about in the direction ?


f : ℝ2 → ℝ3

f(x, y) := ( 1
2 x3y 2x2y2 xy)

f x0 v = (1,1)

e1



Multivariable Differentiation 
Common Derivative Rules



Multivariable Differentiation
Basic derivative rules
Same as single-variable differentiation rules, but we need to “type-check” 
dimensions.


Let  be the differentiation “operator.” 


Derivatives of  from reasoning about each scalar-valued .

∂
∂x

f : ℝd → ℝn f1, …, fn



Multivariable Differentiation
Sum Rule

For  and :
f : ℝd → ℝ g : ℝd → ℝ
∂

∂x
( f(x) + g(x)) =

∂f
∂x

+
∂g
∂x



Multivariable Differentiation
Product Rule

For  and :
f : ℝd → ℝ g : ℝd → ℝ
∂

∂x
( f(x)g(x)) =

∂f
∂x

g(x) + f(x)
∂g
∂x



Multivariable Differentiation
Chain Rule

For  and :
f : ℝd → ℝ g : ℝ → ℝ
∂

∂x
(g ∘ f )(x) =

∂
∂x

g( f(x)) =
∂g
∂f

∂f
∂x



Multivariable Differentiation
Example of chain rule

Example. Let  be defined as . Let 
 be defined as .


We can also write this as:





What is ?

g : ℝ2 → ℝ g(y1, y2) = y2
1 + 2y2

f : ℝ2 → ℝ2 f(x1, x2) := (sin(x1) + cos(x2) x1x3
2)

g(f(x)) = (g ∘ f)(x1, x2) = (sin(x1) + cos(x2))2 + 2(x1x3
2)

∂(g ∘ f)
∂x



Multivariable Differentiation
Example of chain rule

g(f(x)) = (g ∘ f)(x1, x2) = (sin(x1) + cos(x2))2 + 2(x1x3
2)
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“Matrix Calculus”
Useful identities in machine learning




More in The Matrix Cookbook (Petersen and Pederson, 2012).

∂x⊤a
∂x

= a

∂a⊤x
∂x

= a

∂Ax
∂x

= A

∂x⊤Ax
x

= (A + A⊤)x

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel
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Deng, Samuel



“Matrix Calculus”
Example

Why ?


Why do we get  “for free?”

∂x⊤a
∂x

= a

∂a⊤x
∂x



Least Squares 
Optimization Perspective



Regression
Setup

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝd

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Deng, Samuel



Regression
Setup

Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  
for , or:





To find , we follow the principle of least squares. 


i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

Deng, Samuel



Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  
and . Let  be the least squares 
minimizer:





If  and , then:


 .


To get predictions :


.


X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
Deng, Samuel



Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  
and . Let  be the least squares 
minimizer:





If  and , then:


 .


To get predictions :


.


X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares
Optimization Problem

Let  and . Let  be the least squares minimizer:





What if we consider this as an optimization problem instead?

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2



Least Squares
Optimization Problem

Let  and . Let  be the least squares minimizer:





What if we consider this as an optimization problem instead? 

 

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

f : ℝd → ℝ

f(w) = ∥Xw − y∥2

Deng, Samuel



Least Squares
Optimization Problem

 f : ℝd → ℝ

f(w) = ∥Xw − y∥2



Least Squares
Least Squares Objective

Before, we called this the squared error or sum of squared residuals…


 

 

We can also consider this the objective function of an optimization problem: 
the least squares objective.

f : ℝd → ℝ

f(w) = ∥Xw − y∥2



Least Squares
Least Squares Objective in ℝ

 f : ℝ → ℝ

f(w) = ∥Xw − y∥2 ⟹ f(w) = ∥wx − y∥2



Least Squares
Least Squares Objective in ℝ

Consider the dataset  and , where , .
x = (1, − 1) y = (3, − 3) n = 2 d = 1

f(w) = ∥wx − y∥2

Deng, Samuel
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Least Squares
Least Squares Objective in ℝ
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Consider the dataset  and 
, where , .


x = (1, − 1)
y = (3, − 3) n = 2 d = 1

f(w) = ∥wx − y∥2



Least Squares
Least Squares Objective in ℝ2

 f : ℝ2 → ℝ

f(w) = ∥Xw − y∥2



Least Squares
Least Squares Objective in ℝ2

Consider the dataset  and , where , .
X = [1 0
0 1] y = [−1

1 ] n = 2 d = 2

f(w) = ∥Xw − y∥2



Least Squares
Least Squares Objective in ℝ2

Consider the dataset  and 

, where , .


X = [1 0
0 1]

y = [−1
1 ] n = 2 d = 2

f(w) = ∥Xw − y∥2

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
Deng, Samuel



Least Squares
Least Squares Objective in ℝ2

Consider the dataset  and , where , .
X = [1 0
0 0] y = [−1

1 ] n = 2 d = 2

f(w) = ∥Xw − y∥2



Least Squares
Least Squares Objective in ℝ2

Consider the dataset  

and , where , .


X = [1 0
0 0]

y = [−1
1 ] n = 2 d = 2

f(w) = ∥Xw − y∥2

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html


Least Squares
OLS from Optimization

Theorem (Ordinary Least Squares). Let  and . Let  
be the least squares minimizer:





If  and , then:


 .


X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

Deng, Samuel



Least Squares
OLS from Optimization

Theorem (Full rank and eigenvalues). Let  be a square matrix with 
all real eigenvalues .


 for all . 


A ∈ ℝd×d

λ1, …, λd ∈ ℝ

rank(A) = d ⟺ λi > 0 i ∈ [d]

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Least Squares
Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:


?
f(w) = 4w2 − 4w + 1



Least Squares
Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:


?


First derivative test. Take the derivative  and set equal to  to find 
candidates for optima, .

f(w) = 4w2 − 4w + 1

f′￼(w) 0
ŵ



Least Squares
Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:


?


First derivative test. Take the derivative  and set equal to  to find 
candidates for optima, .


Second derivative test. Check  for minimum; check  for 
maximum. 

f(w) = 4w2 − 4w + 1

f′￼(w) 0
ŵ

f′￼′￼(ŵ) > 0 f′￼′￼(ŵ) < 0



Least Squares
OLS from Optimization

Let  and . Consider the function ,





X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.



Least Squares
OLS from Optimization

Let  and . Consider the function ,





Expand the squared norm:


 

X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.

f(w) = ∥Xw − y∥2

= (Xw − y)⊤(Xw − y)
= w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel
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Quadratic Forms
Review

A function  is a quadratic form if it is a polynomial with terms of all degree 
two:





We can rewrite this in matrix form:








f : ℝ2 → ℝ

f(x) = ax2 + 2bxy + cy2 .

f(x, y) = [x y] [a b
b c] [x

y]
f(x) = x⊤Ax

Deng, Samuel



Least Squares
OLS from Optimization

Let  and . Consider the function ,





Expand the squared norm:





This is a quadratic function, with the quadratic form:


X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

w⊤X⊤Xw

Deng, Samuel
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Positive Semidefinite (PSD) Matrices
Review

A square matrix  is positive semidefinite (PSD) if…


there exists  such that .





all eigenvalues of  are nonnegative: .





 for any .

A ∈ ℝd×d

X ∈ ℝn×d A = X⊤X

↕

A λ1 ≥ 0,…, λd ≥ 0

↕

x⊤Ax ≥ 0 x ∈ ℝd

Deng, Samuel
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Least Squares
OLS from Optimization

Let  and . Consider the function ,





Expand the squared norm:





This is a quadratic function, with the quadratic form:





We know that  is PSD.

X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

w⊤X⊤Xw

X⊤X

Deng, Samuel



Least Squares
OLS from Optimization

Let  and . Consider the function ,





Expand the squared norm:





This is a quadratic function, with the quadratic form:





Even better: , so  and therefore  and  
is positive definite!

X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

w⊤X⊤Xw

rank(X) = d rank(X⊤X) = d λ1, …, λd > 0 X⊤X

Deng, Samuel

Deng, Samuel

Deng, Samuel
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“Matrix Calculus”
Useful identities in machine learning




More in The Matrix Cookbook (Petersen and Pederson, 2012).

∂x⊤a
∂x

= a

∂a⊤x
∂x

= a

∂Ax
∂x

= A

∂x⊤Ax
x

= (A + A⊤)x

Deng, Samuel



Least Squares
OLS from Optimization




“First derivative test.” Take the gradient.


 (sum rule)

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = ∇w(w⊤X⊤Xw) − ∇w(2w⊤X⊤y) + ∇wy⊤y

Deng, Samuel

Deng, Samuel



Least Squares
OLS from Optimization




“First derivative test.” Take the gradient.


 (sum rule)


 because 

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = ∇w(w⊤X⊤Xw) − ∇w(2w⊤X⊤y) + ∇wy⊤y

∇w(w⊤X⊤Xw) = 2(X⊤X)w
∂x⊤Ax

x
= (A + A⊤)x
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“First derivative test.” Take the gradient.


 (sum rule)


 because 


 because 

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = ∇w(w⊤X⊤Xw) − ∇w(2w⊤X⊤y) + ∇wy⊤y

∇w(w⊤X⊤Xw) = 2(X⊤X)w
∂x⊤Ax

x
= (A + A⊤)x

∇w(2w⊤X⊤y) = 2X⊤y
∂a⊤x
∂x

= a
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“First derivative test.” Take the gradient.


 (sum rule)


 because 


 because 


f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = ∇w(w⊤X⊤Xw) − ∇w(2w⊤X⊤y) + ∇wy⊤y
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“First derivative test.” Take the gradient.


 (sum rule)


 because 


 because 





f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = ∇w(w⊤X⊤Xw) − ∇w(2w⊤X⊤y) + ∇wy⊤y

∇w(w⊤X⊤Xw) = 2(X⊤X)w
∂x⊤Ax

x
= (A + A⊤)x

∇w(2w⊤X⊤y) = 2X⊤y
∂a⊤x
∂x

= a

∇wy⊤y = 0

⟹ ∇w f(w) = 2(X⊤X)w − 2X⊤y
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Least Squares
OLS from Optimization




“First derivative test.” Take the gradient.


.


Set it equal to .





We have again obtained the normal equations!

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

Deng, Samuel



Least Squares
Obtaining normal equations from linear algebra

Because  is perpendicular to 
, we obtain the normal 

equations:


.

ŷ − y
span(col(X))

X⊤Xŵ = X⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html


Least Squares
Obtaining normal equations from optimization

Because the gradient is 


,


setting it equal to , we obtain the normal 
equations:


.

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

X⊤Xŵ = X⊤y

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Least Squares
OLS from Optimization




“First derivative test.” Take the gradient.


.


Set it equal to .





Because , we know  and  is invertible. Solve the 
normal equations to get a candidate for the minimizer:


.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d rank(X⊤X) = d X⊤X

ŵ = (X⊤X)−1X⊤y

Deng, Samuel

Deng, Samuel
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Least Squares
OLS from Optimization

Objective: 


Gradient: .


Candidate minimizer: .


f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

ŵ = (X⊤X)−1X⊤y
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Least Squares
OLS from Optimization

Objective: 


Gradient: .


Candidate minimizer: .


“Second derivative test.” Take the Hessian of .


.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

ŵ = (X⊤X)−1X⊤y

f(w)

∇2
w f(w) = 2X⊤X
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Least Squares
OLS from Optimization

Objective: 


Gradient: .


Candidate minimizer: .


“Second derivative test.” Take the Hessian of .


.





 is positive definite!

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

ŵ = (X⊤X)−1X⊤y

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



PSD and PD Quadratic Forms
“Proof by graph”

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares
Showing  is the minimizer from linear algebraŵ

By Pythagorean Theorem, any other vector 
 gives a larger error:
ỹ ∈ span(col(X))

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
Deng, Samuel



Least Squares
Showing  is the minimizer from optimizationŵ

Because the Hessian of  is


,


and we assumed , the matrix 
 must be positive definite, and  

therefore has a “positive” second derivative 
(Hessian).

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d
X⊤X f(w)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  
and . Let  be the least squares 
minimizer:





If  and , then:


 .


To get predictions :


.


X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Gradient Descent 
Preview of the Algorithm



Multivariable Differentiation
Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let  be 
differentiable at . If  is a unit vector making angle  with the 
gradient , then:


.


Gradient is the direction of steepest ascent at the rate !

f : ℝd → ℝ
x0 ∈ ℝd v ∈ ℝd θ

∇f(x0)

∇f(x0)⊤v = ∥∇f(x0)∥ cos θ

∥∇f(x0)∥

Deng, Samuel



Gradient Descent
Algorithm

Input: Function . Initial point . Step size .


For 


Compute: .


If  or  is sufficiently small, then return .

f : ℝn → ℝ x0 ∈ ℝn η ∈ ℝ

t = 1,2,3,…

xt ← xt−1 − η∇f(xt−1)

∇f(xt) = 0 xt − xt−1 f(xt)



Gradient Descent
Preview

x1-axis x2-axis f(x1, x2)-axis
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https://samuel-deng.github.io/math4ml_su24/assets/figs/localglobal3d.html


Gradient Descent
Preview

x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/indef_gd_bad.html


Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which 
require finding global minima. 

Single-variable differentiation review. In single-variable differentiation, the derivative is still a 
 “matrix” mapping change in input to change in output.


Multivariable differentiation. Derivatives in multiple variables become harder because we can 
approach from an infinite number of directions, not just two.


Total, directional, and partial derivatives. When a function is smooth it has a total derivative 
(it is differentiable). In this case, the directional derivative and partial derivative is comes 
directly from the total derivative (Jacobian/gradient).


OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear 
algebra. We provide a heuristic derivation of the OLS estimator again.

1 × 1



Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis
x1-axis x2-axis f(x1, x2)-axis



Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis
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