Math for Machine Learning

By: Samuel Deng
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Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which
require finding global minima.

Single-variable differentiation review. In single-variable differentiation, the derivative is still a
1 X 1 “matrix” mapping change in input to change in output.

Multivariable differentiation. Derivatives in multiple variables become harder because we can
approach from an infinite number of directions, not just two.

Total, directional, and partial derivatives. When a function is smooth it has a total derivative
(it is differentiable). In this case, the directional derivative and partial derivative is comes
directly from the total derivative (Jacobian/gradient).

OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear
algebra. We provide a heuristic derivation of the OLS estimator again.
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Lesson Overview

Big Picture: Gradient Descent
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https://samuel-deng.github.io/math4ml_su24/assets/figs/localglobal3d.html

A Motivation for Calculus
Optimization
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Motivation Ml SIS 2

Optimization in single-variable calculus '« = O
£ 20

In much of machine learning, we design algorithms for well-defined optimization
problems.

In an optimization problem, we want to minimize an objective function f
Il 4 — R with respect to a set of constraints € C R%: «— ¥ o

— —
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Motivation

Optimization in single-variable calculus

In much of machine learning, we design algorithms for well-defined optimization
problems.

In an optimization problem, we want to minimize an objective function
ol 4 5 R with respect to a set of constraints ¢ C | a.

minimize f(x)
X

subject to x € €

How do we know how to do this from single-variable calculus?
- s
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Motivation

Optimization in single-variable calculus éf: - @

@ global min
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Motivation

Optimization in single-variable calculus

C @® |ocal min

Ultimate goal: Find the | o
global minimum of |

unctions.

Intermediary goal: Find the
local minima.
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Motivation

Optimization in single-variable calculus

Ultimate goal: Find the
global minimum of
functions.

Intermediary goal: Find the
local minima.

Derivatives give us the
direction of steepest
descent!

iC

@® |ocal min
@ global min
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Motivation
Optimization A ulti-variable calculus
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Single-variable Differentiation
Review of (some) single-variable calculus



Single-variable Differentiation ilj_ 3

Difference quotient

For a function f : R — R, the difference quotient computes the slope
between two points x and x +(0: ) §e¢¥®

B 5_y .=f(x+5) — /() % )(,=Z % Se «-xe|

Sx 5 i
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Single-variable Differentiation

Difference quotient

For a function f : R — R, the difference quotient computes the slope between
two points x and x + o:

oy _ fx +0) — f(x)
ox )

Throughout, 0 denotes “change in the inputs.” For any two points x, y € R, we

can write?é =y —X. /

For a linear function, this is the slope everywhere.
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Single-variable Differentiation

Difference quotient

<8) - fcx)
Example. f(x) = — 2x X = 2 dy _ fcr

Example. f(x) = x* — 2x + 1

t
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Single-variable Differentiation
iR -

oy  flx+om) — f(x)
Sx SM
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Single-variable Differentiation \’_H:? — .

Definition of the derivative ~_ €7 o)

For a function f: R — R, the derivative offét the point )g)is the value Y Ca)
r—/’_\

7f{ ot S+ ) — )
— ;= 1lim— = lim ]
d.X o—(0 5)Lx o—0 5

/

If the limit exists.

In this lecture, we will assume that all functions are everywhere differentiable. Not always the case,

e.g. f(x) =lxl. —s L@(W?: o ¢ 2,0(765 |
We will also denote this ag f'(x) or v f(x)./ \nevlg
{7l ofiin)

Important: The derivative is defined at a point!
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Single-variable Differentiation

Definition of the derivative

For a function f : R — R, the derivative of f at the point x is the value

a .. ox . f(x+90)—fx)
— = ]lim— = lim —_—,
dx o0—( 5)/ o0—0 O

If the limit exists.



Single-variable Differentiation

Definition of the derivative

For a function f : R — R, the derivative of f at the point x is the value

d . ox . fx+0)—fx)
— = ]lim— = lim ]
dx 0—0 5}7 0—0 O

If the limit exists.

In this lecture, we will assume that all functions are everywhere differentiable. Not always the case,
eg. f(x) = x .
We will also denote this as f'(x) or V£(x).

Important: The derivative is defined at a point!



Single-variable Differentiation

Definition of the derivative

J

Example. f(x) = — 2x im  FLxe8) - £6)  jm 2L b2
820 & 579 ¢
_ w Dex —z8 « R«
590 = § =

= 'w - It j
8_;>° .-.%gs Si:;’ "2 :[—2. |
Example. f(x) = x* — 2x + 1
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Single-variable Differentiation

A qllio) = T:~-F
Get used to thinking, for all x that are \’E"D
“close” to x; Yy

w\—v}xo)(x — Xp) ~ f(x) — f(xp) [(

Wx; e g - €Lk

The derivative gives a good local, linear
approximation to the change in f(x). ¢ &

ox)
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Single-variable Differentiation
iR -

Get used to thinking, for all x that are
“close” to X

V(xo)(x — xp) = f(x) — f(x)

We can always write the “target point” as
Vf(xp) - 0 = f(xy + 0) — f(xp)

The derivative gives a good local, linear
approximation to the change in f(x).

ox)


Deng, Samuel


Single-variable Differentiation

Review: basic derivative rules

Product rule:

V(f(x)g(x) = g(x) V(x) + f(x) Vg(x)

Quotient rule:

v (f(X) ) _ 8W0) Vi(x) — f(x) Vg()
g(x) g(x)?
Sum rule:
V(f(x) + gx) = Vfx) + Vg(x)

Chain rule:

V(g(f(x)) = V(gef)x) = Vg(flx)) Vf(x)



Linearity

Review from linear algebra

Linearity is the central property in linear algebra. Cooking is linear.

Bacon, eqgg, cheese (on rolll  Bacon, egg, cheese (on bagel) Lox sandwich
1 egg 1 egg 0 egg
1 slice of cheese 1 slice of cheese 0 slice of cheese
1 slice bacon 1 slice bacon 0 slice bacon
1 Kaiser roll 0 Kaiser roll 0 Kaiser roll
0 cream cheese 0 cream cheese 1 cream cheese
0 slices of lox 0 slices of lox 2 slices of lox

0 bagel 1 bagel 1 bagel



Linearity

Review from linear algebra

Linearity is the central property in linear algebra. A function (“transformation”)
T : RY - R"is linear if T satisfies these two properties for any two vectors

a,i) c R?
I'(a+b) =1T(a) + T(b)
‘ T(ca) = cT(a)foranyc € R. |
—
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Linearity B (vemr= Ay

Review from linear algebra

Linearity is the central property in linear algebra. A function (“transformation”)
I : R — R is linear if 1 satisfies these two properties for any two veetors

a,b e R: Scolors

— . )

T(a+ b) =T(a) + T(b)

T(ca) = c1T(a) for any c € R.

’—’/_\
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Single-variable Differentiation

Linearity and differentiation

Why do we like linear transformations?
VI(xp)(x — xp) & f(x) — f(Xp)
Recall: 7(x + y) = T(x) + 1(y) and T(cx) = cI(x).

j Derivative exploits the fact that, on small scales, things behave linearly!
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= = = = = \/
Single-variable Differentiation /7

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes
in y. We like linear transformations! T

L 2 ’

R

T : change in X — change iny Qo ortve
: L
V — ~ —
\ f (on)([x xo)’ f (%) = f(xp) one Cras s
i 3 ee.
“poiar

F\ —2 T;a:h?dl—?@ﬂ

(%)= B

+
) — vln) €
T(a)= Vi) a
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e I
Single-variable Differentiation o bl b ko
Linearity and differentiation . x.,.-i{ C#a)

The derivative is a linear transformation that maps changes in x to changes in y. We like
linear transformations!

T : change in X — change in y

Vf(xo)x = xp) & flx) — fxp) *‘L_‘;(*) = £
| < ¢C\) = 2
. . 2 L _ 1 _ "7_47
Consider the function f(x) = x“. The derivative of fatx = 1 is Vf(1) = 2. ]Tvécw () = 2o

The derivative is nothing more than a 1 X 1 matrix in single-variable differentiation:
V() = [2].6—

A goal of differential calculus, for us, is to replace nonlinear functions with linear approximations!
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Single-variable Differentiation

Linearity and differentiation oy

lculate some e ples of
\Vf(l) (x=1). | = &£c0- D
Ko Ko
Consider the function f(x) = x?. T )= 2x

The derivative of fat x = 1 is V(1) = 2.

f(z)

\
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Single-variable Differentiation

Linearity and differentiation

f(z) = 2*
Calculate some examples of —— o g 1

VA1) - (x—1). Togen (A0 = 2 (=0

Consider the function f(x) = x°.

The derivative of fat x = 1 is V(1) = 2.

w—l\_\‘a

f(z)

T (2 ) =2/ 1
f(z) = 2*=—U \\

fC2) —§() = -1 .,@
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Single-variable Differentiation

Linearity and differentiation

Calculate some examples of

V() - (x = 1).
Consider the function f(x) = x°.

The derivative of fat x = 1 is V(1) = 2.

f(z) = «*

f(z)

—&— approx. change b/w 1 and 2

/

-
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Single-variable Differentiation 7 0~ i} &0

- o) C)(o it
Linearity and differentiation )= | qAORDCA%) & fORD) & £16)

—e&— approx. change b/w 1 and 2
approx. change b/w 1 and 1.5
Calculate some examples of — apro. chango - and 1

V() - (x = 1).
Consider the function f(x) = x°.

The derivative of fatx = 1 is Vf(1) =2

f(z)

VAD)(1.1-1)=12](1.1 —1)=0.2 = change in f(x) between 1 and 1.1

() (1 -1)= @ c_\

gl = LV -1= 12l-1= o) (Zm_ Uv) = oo -

—
—
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Single-variable Differentiation

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.
We like linear transformations!

T : change in x — change in y [

V(xo)(x — xp) =~ f(x) — f(x) (

The derivative is nothing more than a 1 X 1 matrix in single-variable
differentiation.
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Multivariable Differentiation
Review of multivariable notions of derivative



Multivariable Differentiation

Scalar-valued vs. vector-valued functions

f’[d

— |

s a scalar-valued multivariable function, { :

valued multivariable function.

f(xg) = (f1(Xp)s -+ -5 [,(Xp))

-

But f is just made up of n scalar-valued functions.

f ¥

X/CW) = \\ XW

RY | R

I

~ \\‘2.

S a vector-

V\QW-VO‘I’M 0{

(’\ .

Upshot: Just treat vector-valued functions as a collection of n scalar-valued
functions, and deal with each coordinate individually.
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Multivariable Differentiation

Big picture: total, partial, and directional derivatives.

The total derivative (or just derivative) of f at X, is a linear transformation Df(x,)) : RY — R".

The gradient of f at X is the vector Vf(X,) € R¢ associated with the total derivative of a scalar-
valued f: R - R.

—_

The Jacobian of f at X, is the n X d matrix VI(X,) associated with the total derivative of a vector-
d n e
valued f : R - R".

The directional derivative of f at X, in the direction v € R is the derivative applied to v:

. . - L e
V 1(x,) v ,via matrix-vector multiplication.

nxd dx1

. of
The 1’th partial derivative of f at X, is the directional derivative in the unit basis direction e, € RX
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Multivariable Differentiation

Why is multivariable differentiation harder to pin down than single-variable
differentiation?

In R, there are only two directions from which we can approach x;, (on a
standard Cartesian plane, the “left” and the “right”).

In R", we can approach X, from infinitely many directions!

@ F
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Multivariable Differentiation

Approach directions

f:R* >R

fTR->R



https://samuel-deng.github.io/math4ml_su24/assets/figs/localglobal3d.html
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Multivariable Differentiation

Approach directions

a fiR* >R
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Multivariable Differentiation
Directional and partial derivatives



X2
Multivariable Differentiation 5
Directional and partial derivatives ‘1 ,C\?
VV\ )L’

For f : R — R" and point X,,... | |
| N L —

The directional derivative is change in f when we approach X, from the

direction defined by some vector v.
—_— =

The ith partial derivative is change in f when we approach X, from the
standard basis direction €.

Z Vz =
J, o

o(‘l'v)é_, Cj'

-— ’)L|
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Multivariable Differentiation

Directional derivative
, pase)

Let f : RY - R" be a function. The directional derivative of f at Xy In the

direction v € R% is ralo Ya&8Y)
sl (./* & (%)

li o) e @

30 il
gz \ / V2 -~ A=z
34 C =1
{56% L 43\3 — (4o Z  N=C)
7%

L —

>
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Multivariable Differentiation

Partial derivative

Let e; be the ith standard basis vector in |

The ith partial derivative of f at X, is the directional derivative in the direction

Iso written as:

lm———— .
o—0 0
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Multivariable Differentiation

Partial derivative

The ith partial derivative of f at X can also be written:

(X ) -— lim lim f(x(),l’ EEERON T 59 .. -x(),n) — f(’x(),l’ ce s XOjo - .,Xo’n)
0) -

8xl- 0—( 0 0—( O

Mechanically: take the derivative of variable x. while keeping all the others
St |
constant.
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Multivariable Differentiation AP

Example:lf(x, V)= x° + x%y + y* - +
. 2

Example. Compute the partial derivatives of f: R“ — R defined by
f(x,y) :1ixz& iczy )—_I-( y2) What are the partial derivatives at (1,2)?

& TAKE OBAVATWVE W-&T. X Ve (<4 ~ D_ﬁvlsi—_a_ul‘ C/Xe o)

PY- b‘e _ %XZ+ 2% AF CL2) = 2,.+L(:\ﬂ Povita, 0 ey

; = -b—";(' — Aveefr'5 :”:: cr, 2
\
of _ oF _ > 2+ HECD) o frg=15) Bl @ e.
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Multivariable Differentiation
Example: f(x,y) = x° + x*y + y?

——60
3
—50
2
40
2
1 30
\
20
= 0
X
=<
0 10
A
0
2
- -10 3
A
-20
A
-2 0
-30
X
A
-40
-3
-3 -2 -1 0 1 2 3
— X-QXiS e—y_oXjs e f(x y)-aXiS
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Multivariable Differentiation

Examples

Example. Compute the partial derivatives of f : [ > - R? defined by

f(x,y) = (x*y, cos y). What are the partial derivatives at (1,2)?
=z \—V"
g\ F-z'

o4
%

>f,
o !
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Multivariable Differentiation
Total derivatives
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Multivariable Differentiation

Jacobian and gradient idea

The gradient is the vector in | 4 that contains the partial derivatives of | conlow—ortey
f: RY - R)as each entry.

d

The Jacobian n X d matrix that contains the partial derivatives of f : R* — [

collected column-by-column. = r@gers)
-7 \IQUW'-\M‘V(’J

—

Viewing f as a collection of 7 functiond f = (fi, -
what we get by “stacking” all the gradie

..,J,), the Jacobian is also
-to-bottom In a matrix.
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Multivariable Differentiation
Gradient

Let f: R? — R be a function. The gradient of f at X, is the vector
V(X € R? composed of all the partial derivatives of f at X

VI(X,) 1= : o
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Multivariable Differentiation
Gradient

Example. What’s a formula for the gradient of f(x, y) = x° + x%y + y*?

¢
Q)—Q = 3&2-? Zf\‘/ T 21" < 2y ?
a@ VGt - t “ 2 ‘¥
0 2 X
— = X -927 N

>
V‘@C[/L>" [24"{’\]:
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Multivariable Differentiation
Example: f(x,y) = x° + x*y + y?

——60
3
—50
2
40
2
1 30
\
20
= 0
X
=<
0 10
A
0
2
- -10 3
A
-20
A
-2 0
-30
X
A
-40
-3
-3 -2 -1 0 1 2 3
— X-QXiS e—y_oXjs e f(x y)-aXiS



https://samuel-deng.github.io/math4ml_su24/assets/figs/partial1.html

Multivariable Differentiation — &
Jacobian Lcoo- (\ﬁ Lx),)-..,l ")

Let f : RY— RPbe a function. The Jacobian of f at X is the n X d matrix
composed of all the partial derivatives of f at X,:

of; of,

a_xl(XO) S vy SXO)
VI(x,) := : —

Of a™ Ofig ™

()_xl(XO) ... a_x“ SXO)

'gd\(,o\p\'av‘ 0‘& Soallo.J-Vm[vccl C. F.‘ ﬁZOL'" “2 n= 1 m
(———’_/—_—_— . —
[ — VFC;(’o')T‘—) ]
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Multivariable Differentiation

Jacobian

Example. What’s the Jacobian of f(x,y) = (x*y, cos y)?



“Local” to a Point

Definition of an open ball/neighborhood

Lletx € R%be a point. For some real value 0 > 0, the open ball or
neighborhood of radius@Daround X Is the set of all points:

By(x) := {a €| 4. llx —al|l <8).

(&
(=) ...+ Cxyg—ag) Z &

- = )

R ¢
7/3.\//"’\‘ (+—,) +-- € Cra—ord > ¢ &
/% [r
\\/7,
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“Local” to a Point

Definition of an open ball/neighborhood

Example. Consider X = (1,1) € |
around Xx?

2. What is the open ball of radius 6 = 1
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“Local” to a Point

Definition of an open ball/neighborhood

Example. Consider X = (1,1) € R?. What is the open ball of radius 6 = 1
around X7

An open ball lets us approach x from all directions.



Multivariable Differentiation

Total Derivative

The total derivative is the linear transformation that “best approximates” the
local change in f at a point x|,

The total derivative, like the univariate derivative, takes “change in X” and
outputs “change iny.”

Recall: Vf(xy)(x —xy) = f(x) — fxy) ( »e Y=
0
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Multivariable Differentiation

Total Derivative 94 (O (x-%D % £00 - (%)

Let f : RY — R" be a function and let Xp € | “ be a point. If there exists a linear
transformation)DfXO R4 — R kuch that

Jeat Raeanon §

K L i\
lim — ((f(xo+ 3) — f(XO)) —DfXO(5)> 0.
o—0 o), \p /L

- liv+ m’;w.
then f is differentiable at X, and has the unique (fotal) derivative DfXO.

As we get closer to X, from any direction 5 the change f(x, + 5) — f(x,)) can be
approximated by DfXO.
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Multivariable Differentiation

Total Derivative

Good news: in many cases, we don’t have to deal with the clunky expression

. 1 o .
lim — ((f(xo +35) — f(xo)) _ DfXO(5)> — 0,

=0 |5l =

&

~  FcebTov /Wa’/l‘awf
because we can replace DfXO by the Jacobian/gradient for all “nice” functions (the

functions we usually care about)!

The “nice” functions is the class of continuously differentiable (smooth)
functions.
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Multivariable Differentiation
Smoothness and consequences



Multivariable Differentiation

Smoothness 9v§m4’b \

A function f : RY —» R" s continuously differentiable if all of the partial
derivatives of f exist and are continuous. — Jruw svoren /s ,;a;ﬂ? s,

‘

& functions,\ and the collection of all such functions are the class &1

AKA:\

Generally] €7
functions—

or some p > 1 are the p-times continuously differentiable

6 e ZWJ dopvares eSSt - porHivueus )(g‘FZsc-\
£7 - 77 donmber  ermy € Ofndwnss Gtz
) G Lx
. G
G o
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S

Multivariable Differentiation e‘@ dwdyay

Smoothness

| Theorem (Sufficient criterion for differentiability). If f ;: R — R" is a

function, then I is differentiable, and its total derivative is equal to its Jacobian
matrix. L— ] —

" 5

|

l
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Multivariable Differentiation

Directional derivatives from total derivative

Theorem (Computing directional derivatives). Iff : [ 4 _ R"is differentiable

with n X d Jacobian matrix!V I(x), 1he directional derivative of I at X, in the

direction v € R is given by the matrix-vector product:
T

[Vf(xo) v .

> 4

n;d ax1

Remember from our linear algebra lectures: multiplying a vector by a matrix is
applying a linear transformation to that vector!
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Multivariable Differentiation

Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let f : R? - R be
differentiable at X, € | 4 It v € R%is a unit vector making angle @ with the

gradient Vf(x,), them .~
Vfxg) TV = Vx| cos 0

Gradient is the direction of steepest ascent at the rate || Vf(X,)||!

-
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Multivariable Differentiation
Example: f(x,y) = (1/2)x’y



https://samuel-deng.github.io/math4ml_su24/assets/figs/partial2.html

Multivariable Differentiation

Big picture: how do all these objects connect?

The total derivative is a linear transformation that maps “changes in inputs” to
“changes in outputs.”

When we apply a total derivative to a vector, think of mapping the “change”
represented by that vector to a “change” in output space.

The partial derivative tells us how our function changes in each basis vector
direction. The directional derivative tells us change in any direction.

For all the “smooth” continuously differentiable functions we care about, the total
derivative is given by the Jacobian matrix (the gradient for scalar-valued functions).

Applying the Jacobian/gradient to a vector is the same as matrix-vector multiplication!



Multivariable Differentiation

. _ : ?
Big picture: how do all these objects connect® s Qo foonvoves

¥ \ @' function %zb total derivative = Jacobian/gradient

— all directional/partial derivatives from matrix-vector product!

V{(x,)v for Jacobian (f : R? — R") s— dwecko|

Vf(x,) v for gradient (f : R? — R) <__ duwecre|
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Multivariable Differentiation
Example: f(x,y) = x° + x*y + y?

——60
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1 30
\
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= 0
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https://samuel-deng.github.io/math4ml_su24/assets/figs/partial1.html

Multivariable Differentiation
The Hessian and the “Second Derivative”



Multivariable Differentiation: Hessian J

Hessian matrix {- \@4 N

The Hessjan is the “second derivative” for scalar-valued multivariable functions. It
IS a w or really smooth functions, it is symmetric. —

The Hessian contains the local “second-order” information, or curvature of the
function. It describes how “bowl-shaped” the function is around a point.

Note: The Hessian is only defined for scalar-valued functions f :
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Multivariable leferentlatlon Hessian

Hessian matrix for 1 : |

The Hessian matrix for f : |

il
Ox?

0°f
axian

2 5]

is the 2 X 2 matrix of all second-order partial derivatives:

is the second partial derivative of f with respect to x;.

s the partial derivative from differentiating w.r.t. x; first and then differentiating w.r.t. x;.
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Multivariable le!‘erentlatlon Hessian

Hessian matrix for /: R*
PR

The Hessian matrix for f : R* — R is the s X & matrix of all second-order
partial derivatives. _'
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Multivariable Differentiation: Hessian

[Equality of mixed partials —

Theorem (Equality of mixed partials). If f : | L . Ris atwice continuously
differentiable function (i.e., in class ?52), then, for all pairs (i, j):

0°f B 0°f /62 _ Second darerres

— . =t
a.xia)(:j ax]'axi CoON o S

A

This means that for €~ functions, the Hessian is a symmetric matrix.

N
- N

‘52, the class of twice continuously differentiable functions, is the collection of all
functions whose second-order partial derivatives all exist and are continuous.
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Multivariable Differentiation ...~

Wrap-up example o = Yy

Consider the function f : [

y* re
qzs(ﬁ = @%1 L[x'z

N
\ s
}D._('z = Y2

>
S
0 % :{7
.5/@— = g’\[
5%67 %7


Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel


Multivariable Differentiation

Wrap-up example

2

- R’ given by

Consider the function f : [
1
f(x,y) := (3x3y 2x%y? xy).

What’s the formula for the Jacobian of £?

1
What'’s the formula for the gradient of f,(x, y) = 5x3y? What is the Jacobian/
gradient at X, = (1,2)?



Multivariable Differentiation

Wrap-up example

2

- R’ given by

Consider the function f : [
1
f(x,y) := (3x3y 2x%y? xy).

What'’s the total derivative of f at x, = (1,0)?



Multivariable Differentiation

Wrap-up example

2

- R’ given by

Consider the function f : |
f(x,y) := (%ﬁy 2x%y? xy).
What'’s the directional derivative of f at X, in the direction v = (1,1)?

How about in the direction €;?



Multivariable Differentiation
Common Derivative Rules



Multivariable Differentiation

Basic derivative rules

Same as single-variable differentiation rules, but we need to “type-check”
dimensions.

0

Let — be the differentiation “operator.”

9).¢

Derivatives of f : |

d

— R" from reasoning about each scalar-valued f, ..., /, .



Multivariable Differentiation

Sum Rule

Forf: R > Rand g : R - R:

: %
g(f(X) + 8(X)) = e e



Multivariable Differentiation
Product Rule

Forf: R > Rand g : R - R:

i(()())—a—f(H()a—g
oX USYS _anX Jx 0X



Multivariable Differentiation

Chain Rule

Forf: I

d

— |

and g : |

i( )()—i(())—
()ngX—anfX =

— R

0g odf
of ox



Multivariable Differentiation

Example of chain rule

2

Example. Let g : R“ — R be defined as g(y;, y,) = y12 + 2y,. Let
f: R* — R* be defined as f(x;, x,) := (sin(xl) + cos(x,) x1x3).

We can also write this as:

g(f(x)) = (g o £)(x, x)) = (sin(x)) + cos(x,))* + 2(x,x;)

d(g o 1)
9).¢

What is ?




Multivariable Differentiation

Example of chain rule

g(f(x)) = (g » £)(x}, xp) = (sin(x;) + c0s(x))” + 2(x;x;)



https://samuel-deng.github.io/math4ml_su24/assets/figs/partial3.html

“Matrix Calculus”

- J ,
Useful identities in machine learning ’foad f(:2
i Py
U\[‘ X?j ‘ gx 2 =e.a@ ¢ 2
y/ OX @()ﬁ)-': Sx
a | @ ()= 1o
A X — 4 =2 - Cgk).
0A
~8) A h
0X A S\,WVUF"C'
ox'A - .
Q = (A +A")x 2 Ax
X ( -

More in The Matrix Cookbook (Petersen and Pederson, 2012).
e ——
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“Matrix Calculus”

Example
ox'a
Why = a”?
0X
da'x
Why do we get “for free?”

9).¢



east Squares
Optimization Perspective



Regression
Setup

Observed: Matrix of training samples X € R and vector of training labels y € R4 "'

0 0 — X, —
X = X1 ... Xyl = :
| | — x' -
Unknown: Weight vector w € R? with weights w,, ..., w,,

T

Goal: Foreach i € [n], we predict: y. = W' X, = wix;; + ... + wx,, € R.

Choose a weight vector that “fits the training data”: w € R such that y; =~ . for i € [n], or:

Xw=y~xrYy.
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Regression
Setup

Goal: For each 1 € [n|, we predict: yl. =w'

Choose a weight vector that “fits the training data”: w € [
fori1 € [n], or:

XW=yRrY.

To find W, we follow the principle of least squares.

) . 7

W = arg min || Xw —y||°
weR?

B —— ——

-

Xi: Wlxil + ... +deid€ L .

d

such that y; & y,
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Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let X € R"™>¢

andy € R”. Let w € R be the least squares
minimizer:

Va\

W = arg min || Xw — y||?
weR¢

If n > d and rank(X) = d, then:

To get predictions y € R":

¥ =Xw=XX"X "Xy


https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
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Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let X € R"™>¢
andy € R". Let w € R be the least squares

minimizer: 2
w = arg min|| || Xw — y||? .
weR? ___(%§J S

If n > d and rank(X) = d, then:

w=X"X)"X'y.
To get predictions y € R":

¥ =Xw=XX"X "Xy



https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares

Optimization Problem

Let X € R™ and y € R". Letw € [ “ be the least squares minimizer:

A\

W = arg min || Xw —y||?
weR?

What if we consider this as an optimization problem instead?



Least Squares

Optimization Problem

Let X € R™ and y € R". Letw € [ “ be the least squares minimizer:

A\

W = arg min || Xw —y||?
weR?

What if we consider this as an optimization problem instead?

f:RY - €JFCTIVE
FUN cTieN
fiw) = [IXw -y <
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Least Squares

Optimization Problem

fiRY— |

fiw) = || Xw —y||*




Least Squares

Least Squares Objective
Before, we called this the squared error or sum of squared residuals...
fiRY— |

fiw) = || Xw —y||*

We can also consider this the objective function of an optimization problem:
the least squares objective.




Least Squares

Least Squares Objective In |

R -
fw) = IXw —y||* = fiw) = |lwx -y




Least Squares

Least Squares Objective In |

Consider the datasetx = (1, — 1)andy = (3, — 3), wheren =2,d = 1.

fw) = lwx —y||2
@(VQ = [_‘('] W - 3{) ”Q
[ [0

I[ ([ v-7% Z—W)”Q

= (w- ﬂ + (13- V") = wfbv‘"\’('ol’bw‘“"'
N TS
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Least Squares

Least Squares Objective In |

Fw) = (w — 3)% + (3 — w)?

Consider the dataset x = (1, — 1) and
y=3,—3),wheren=2,d=1.

fw) = |lwx —y||°




Least Squares

Least Squares Objective In |

2

fiR* > |

fiw) = || Xw —y||*




Least Squares

Least Squares Objective In |

Consider the dataset X = [(1) (1)] andy = [_11] wheren=2,d = 2.

fiw) = || Xw —y]||*



Least Squares

Least Squares Objective In |

2

0 1
y = [_1],wheren=2,d=2.

1 N

fw) = || Xw —y||°

Consider the dataset X = [1 O] and



https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares

Least Squares Objective In |

Consider the dataset X = [(1) 8] andy = [_11] , Wheren = 2, d = 2.

fiw) = || Xw —y]||*



Least Squares

Least Squares Objective In |

. 1 O
C der the dataset X =
onsider the datase [ 0 O]
—1

1],wheren=2,a’=2.

fw) = || Xw —y||°

andy = [



https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html

Least Squares
OLS from Optimization

Theorem (Ordinary Least Squares). Let X € |
be the least squares minimizer:

A\

W = arg min || Xw —y||?
weR?

If n > d and rank(X) = d, then:

Xdandy € |

" Letw € [


Deng, Samuel


Least Squares
OLS from Optimization

Theorem (Full rank and eigenvalues). Let A € [ dXd e g square matrix with

all real eigenvalues 4, ..., 4, € R. (=
——

rank(A) =d )< 4. > Oforalli € [d].

s LS

4%
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Least Squares

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

fw) = 4w? — 4w + 17



Least Squares

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

fw) = 4w? — 4w + 17

First derivative test. Take the derivative f'(w) and set equal to O to find
candidates for optima, w.



Least Squares

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

fw) = 4w? — 4w + 17

First derivative test. Take the derivative f'(w) and set equal to O to find
candidates for optima, w.

Second derivative test. Check f"(w) > 0O for minimum; check f"(w) < O for
maximum.



Least Squares

OLS from Optimization

Let X € |

Xdandy € |

". Consider the function f : |

flw) = || Xw —y||*.




Least Squares

OLS from Optimization

let X € R andy € |

". Consider the function f : |

flw) = || Xw —y||*.

Expand the squared norm:

J(w)

= || Xw —y|* < :)

= (XW —Y) (Xw —Y)

— WT}Q(W 2w' X'y +y'y
< d¥d ~
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Quadratic Forms

Review

A function f : | ’ 5> Risa quadratic form if it is a polynomial with terms of all degree
two:

f(x) = ax* + 2bxy + cy*.

We can rewrite this in matrix form:

fox,y) =[x ¥l [Z IZ] m

f(x) = x'AX

=
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Least Squares

OLS from Optimization

Let X € |

Xdandy € |

". Consider the function f : |

flw) = || Xw —y||*.

Expand the squared norm:

fw)=w' X' Xw-2w'X'y+y'y

This I1s a quadratic function, with the quadratic form:

=y
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Positive Semidefinite (PSD) Matrices

Review

d

Xd is positive semidefinite (PSD) if...

A square matrix A € |

there exists X € R4 sych that A = X'X_

————
)
all eigenvalues of A are nonnegative: 4; > 0,...,4, > 0.
)

x'Ax > 0 for any x € R
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Least Squares

OLS from Optimization

Let X € |

Xdandy € |

". Consider the function f : |

flw) = || Xw —y||*.

Expand the squared norm:

fw)=w' X' Xw-2w'X'y+y'y

This I1s a quadratic function, with the quadratic form:

{ w' X' Xw )

We know that X ' X is PSD.
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Least Squares
OLS from Optimization

Let X € R™“ and y € R". Consider the function f: R? — R,

fiw) = || Xw —y]||*
Expand the squared norm:

e Cef
? fw)=w'X'Xw-2w'X'y+y'y fos Susdrerhic
-_— e o-m——m- - rmr-e—e———— e

This is a quadratic function, with the quadratic form: @
w' X' ' Xw

Even better: rank(X) = d, so rank(X ' X) = d and therefore Ay ..os Ay > 0and X'X

IS positive definite! R
A



Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel


“Matrix Calculus”

Useful identities in machine learning

More in The Matrix Cookbook (Petersen and Pederson, 2012).
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Least Squares
OLS from Optimization

fw)=w'X'Xw-2w'X'y+y'y
“First derivative test.” Take the gradient.

0
SSJ@,WC(W) =\@JD(WTXTXW) o VW(ZWTXT)’) + VWyTy (sum rule)
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Least Squares
OLS from Optimization

fw) =w X" Xw—2w' Xy +y'y
“First derivative test.” Take the gradient.
Vo fiw)=V_ (W'X'Xw) -V _ Q2w'X'y) + V_y'y (sum rule)

« A
ox ' AX ’“'fw ;
= (A+ANHx =" 2A%

V(W' X" Xw) = 2(X" X)W because

X
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Least Squares
OLS from Optimization

fw)=w'X'Xw-2w'X'y+y'y
“First derivative test.” Take the gradient.

Vo fiw)=V_ (W'X'Xw) -V _ Q2w'X'y) + V_y'y (sum rule)

0x' Ax
V, (W X' Xw) =2(X"'X)w becagrsae =(A+A )X
- X
da'x
V2w X'y) = 2X 'y because = a

U L 0X
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Least Squares
OLS from Optimization

fiw)=w'X'Xw-2w'X'y +y'y
“First derivative test.” Take the gradient.
Vo fiw)=V_ (W' X'Xw) - V_2w'X'y) + V_y'y (sum rule)
ox ' AX

VW(WTXTXW) = 2(X"X)W because = (A +Ax
X
da'x
V..2w'X'y) = 2X"y because r = a
X

V.y'y=0



Least Squares
OLS from Optimization

fw) = wX Xw— 2w Xy +yTy
“First derivative test.” Take the gradient.

V. fiw)=V_(w'X'Xw) = V_2w'X"y) + V_y'y (sum rule)

T T T ox' Ax T
V,(W' X' Xw) = 2(X " X)W because =(A+A')X
X
da'
V..2w'X'y) = 2X"y because r = a
X

V.y'y=0

=>| V., fiw) = 2(X' X)w — ZXTy;
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Least Squares

OLS from Optimization

fw)=w' X' Xw-2w'X'y+vy'y

“First derivative test.” Take the gradient.

V. fiw) = 2X"X)w — 2XTy.

Set it equal to ().
2(X

X)w — 2X

}XXW=X

—

We have again obtained the normal equations!
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Least Squares

Obtaining normal equations from linear algebra

Because y — Yy is perpendicular to

span(col(X)), we obtain the normal
equations:

X'Xw=X'y.


https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html

Least Squares

Obtaining normal equations from optimization

Because the gradient is
wa(W) — 2(XTX)W — ZXTY,

setting it equal to 0, we obtain the normal
equations:

X'Xw=X'y.

4



https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html

Least Squares
OLS from Optimization

fw)=w'X'Xw-2w'X'y+y'y
“First derivative test.” Take the gradient.
V.. fiw) = 2(X"'X)w — 2Xy.
Set it equal to 0.
2X'X)w-—2X'y=0 = X'Xw=Xl'y

Because rank(X) = d, we know rank(X'X) = d and X' X is invertible. Solve the
normal equations to get a candidate forthe minimizer: ——

w=X"X)"X'y.
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Least Squares
OLS from Optimization

Objective: f(w) = w'X'Xw -2w'X'y +y'y
Gradient: V f(wW) = 2(X"X)w — 2Xy. )

Candidate minimizer; w = (X' X)"'Xy.
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Least Squares

OLS from Optimization d Ax _

54
Objective: (w) = W' X' Xw — 2w Xy +y'y

Gradient:\VW fiw) =2X"X)w —2Xy.

iy

Candidate minimizer: w = (X' X)"'Xy.
“Second derivative test.” Take the Hessian of f(W).

VZ flw) =2X'X. ¢
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Least Squares
OLS from Optimization

Objective: (w) = w' X' Xw—-2w'X'y+vy'y
Gradient: V f(w) = 2X"X)w — 2Xy.
Candidate minimizer: w = (X' X) ' Xy.
“Second derivative test.” Take the Hessian of f(W).
VZ flw) = 2X'X.
rank(X) =d = rankX'X)=d = 4;,...,4,> 0

:

— X 'Xis positive definite!
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AV

PSD and PD Quadratic Forms 7
“Proof by graph” A — :‘, > VTR VA= AT

20‘

2
2 9
-
b
N
i

Aiveeisdy > 0 Aveeesdy> 0


https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares

Showing w is the minimizer from linear algebra

By Pythagorean Theorem, any other vector
y € span(col(X)) gives a larger error:

1§ —ylI* < Iy =yl
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Least Squares

Showing w is the minimizer from optimization

Because the Hessian of f(W) is

Vz flw) = 2X'X,

and we assumed rank(X) = d, the matrix 'Z

X ' X must be positive definite, and f(w) 2 >
therefore has a “positive” second derivative :
(Hessian).
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Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let X € R"™>¢

andy € R”. Let w € R be the least squares
minimizer:

Va\

W = arg min || Xw — y||?
weR¢

If n > d and rank(X) = d, then:
w=X"X)"X'y.
To get predictions y € R":

¥ =Xw=XX"X "Xy
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Gradient Descent
Preview of the Algorithm



Multivariable Differentiation

Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let f : R? - R be p
differentiable at X, € | 4 It v € R%is a unit vector making angle 6 with the

gradient V f(X), then:

Vix)TV = [ Vf(xy)|l cos 6.

Gradient is the direction of steepest ascent at the rate || Vf(X,)||!


Deng, Samuel


Gradient Descent

Algorithm

Input: Function f : |

Fort = 1,2,3,...

n

— |

. Initial point X, € |

Compute: X, < X,_; — 1 Vf(X,_)).

" Step sizen € R.

fVf(x,) = 0orXx, —X,_, is sufficiently small, then return f(x,).



f(z)

Gradient Descent

Preview
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Gradient Descent

Preview
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Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which
require finding global minima.

Single-variable differentiation review. In single-variable differentiation, the derivative is still a
1 X 1 “matrix” mapping change in input to change in output.

Multivariable differentiation. Derivatives in multiple variables become harder because we can
approach from an infinite number of directions, not just two.

Total, directional, and partial derivatives. When a function is smooth it has a total derivative
(it is differentiable). In this case, the directional derivative and partial derivative is comes
directly from the total derivative (Jacobian/gradient).

OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear
algebra. We provide a heuristic derivation of the OLS estimator again.



Lesson Overview

Big Picture: Least Sauares
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Lesson Overview

Big Picture: Gradient Descent
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