
By: Samuel Deng

Math for Machine Learning
Week 3.2: Taylor Series, Linearization, and Gradient Descent



Logistics & Announcements

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Lesson Overview

Linearization for approximation. We explore using the linearization of a function to 
approximate it. This is also called a “first-order approximation.”


Taylor series. We define the Taylor series of a function, which is an “infinite polynomial” that 
approximates a function at a point.


First-order and second-order Taylor approximation. The Taylor polynomial allows us to 
approximate a funciton by “chopping it off” at a certain degree.


Taylor’s Theorem. To quantify how bad our approximations are, we can use Taylor’s Theorem. 
We present two forms of Taylor’s Theorem (Peano and Lagrange).


Gradient descent. We write down the full algorithm for gradient descent, the second “story” of 
our course. Using Taylor’s Theorem, we can prove that, for -smooth functions, GD makes the 
function value smaller from iteration to iteration, as long as we set the “step size” small enough.

β



Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etabig.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html


Linearization 
Derivatives to find linear approximations



Motivation
Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization 
problems. 

In an optimization problem, we want to minimize an objective function 
 with respect to a set of constraints :
f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x

f(x)

subject to x ∈ 𝒞



Motivation
Optimization in single-variable calculus
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local min
global minUltimate goal: Find the 

global minimum of 
functions.


Intermediary goal: Find the 
local minima. 

Derivatives give us the 
direction of steepest 

descent!



In this lecture, we’ll focus on scalar-valued multivariable functions .


Let  be a function and let  be a point. If there exists a gradient vector 
 such that





then  is differentiable at  and has the (total) derivative . 


Think of  as a “change in ”: for a base point  and a “destination point” , think of 
.

f : ℝd → ℝ

f : ℝd → ℝ x0 ∈ ℝd

∇f(x0) ∈ ℝd

lim
⃗δ→0

f(x0 + ⃗δ) − f(x0) − ∇f(x0)⊤ ⃗δ

∥ ⃗δ∥
= 0,

f x0 ∇f(x0)

⃗δ x x0 x′￼

⃗δ = x′￼− x0

Total Derivative
Multivariable Differentiation
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Let  and let  be the th standard basis vector in . The th partial 
derivative of  at  is





This is the derivative of  when keeping all but one variable constant.

f : ℝd → ℝ ei i ℝd i
f x0

∂f
∂xi

(x0) := lim
δ→0

f(x0 + δei) − f(x0)
δ

f

Partial Derivative
Multivariable Differentiation
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Let  and let  be the th standard basis vector in . The th partial 
derivative of  at  is





This is the derivative of  when keeping all but one variable constant.


If  is differentiable at , then:


f : ℝd → ℝ ei i ℝd i
f x0

∂f
∂xi

(x0) := lim
δ→0

f(x0 + δei) − f(x0)
δ

f

f x

∇f(x) = [ ∂f(x)
∂x1

, …, ∂f(x)
∂xd ]

⊤
∈ ℝd

Partial Derivative
Multivariable Differentiation



Linearity and Differentiation
Replacing nonlinear functions with linear function

The derivative is a linear transformation that maps changes in inputs to 
changes in outputs. We like linear transformations! 

 

 

A goal of differential calculus, for us, is to replace nonlinear functions with linear 
approximations! 

T : change in x → change in f(x)

∇f(x0)⊤(x − x0) ≈ f(x) − f(x0)
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Linearization
The behavior of a differentiable 
function close to a point  can be 
approximated with the linear 
transformation given by its 
derivative.


For  close to , 
.


x

x x0
f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)
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Linearization
Derivative definition, one more time




The  vector is the “change in .” Think of it as  for some “destination” .


The term  is the “change in .”


The term  is the “linear approximation of the change in .”


As  gets smaller (i.e. ), there is smaller and smaller difference between the  
“change in ” and the “linear approximation of the change.”

lim
⃗δ→0

f(x0 + ⃗δ) − f(x0) − ∇f(x0)⊤ ⃗δ

∥ ⃗δ∥
= 0

⃗δ x x′￼− x0 x′￼

f(x0 + ⃗δ) − f(x0) f

∇f(x0)⊤ ⃗δ f

⃗δ ⃗δ → 0
f
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Linearization
 examplef : ℝ → ℝ

 with 


What is the linearization? 

f(x) = x2 x0 = 1
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Linearization
 examplef : ℝ → ℝ

 with 


What is the linearization? 




f(x) = x2 x0 = 1

f(x) ≈ f(x0) + ∇f(x0)(x − x0)
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approximation at 1



Linearization
 examplef : ℝ → ℝ

 with 


What is the linearization? 




f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)
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approximation at 1



Linearization
 examplef : ℝ → ℝ

 with 


Linearization: 


How good is the approximation at ?


f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 2
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Linearization
 examplef : ℝ → ℝ

 with 


Linearization: 


How good is the approximation at ?


f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 1.5
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Linearization
 examplef : ℝ → ℝ

 with 


Linearization: 


How good is the approximation at ?


f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 1.1
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Linearization
 examplef : ℝ2 → ℝ

 with 


What is the linearization?

f(x1, x2) = x2
1 + x2

2 x0 = (1,1)

x1-axis x2-axis f(x1, x2)-axis (1, 1)

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/linearization3d.html
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Linearization
 examplef : ℝ2 → ℝ

 with 


Linearization: 


f(x1, x2) = x2
1 + x2

2 x0 = (1,1)

f(x1, x2) ≈ 2x1 + 2x2 − 2

x1-axis x2-axis f(x1, x2)-axis (1, 1)

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/linearization3d.html
Deng, Samuel



Linearization
 examplef : ℝ2 → ℝ

 with 


Linearization: 


How good is the approximation at 
?


f(x1, x2) = x2
1 + x2

2 x0 = (1,1)

f(x1, x2) ≈ 2x1 + 2x2 − 2

x = (0,1)

x1-axis x2-axis f(x1, x2)-axis (1, 1)

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/linearization3d.html
Deng, Samuel



Linearization
 examplef : ℝ2 → ℝ

 with 


Linearization: 


How good is the approximation at 
?


f(x1, x2) = x2
1 + x2

2 x0 = (1,1)

f(x1, x2) ≈ 2x1 + 2x2 − 2

x = (1,0)

x1-axis x2-axis f(x1, x2)-axis (1, 1)

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/linearization3d.html


Taylor Series 
In one variable



 functions and “smoothness”𝒞p

Review of smooth functions
Smooth functions are functions that have (several) continuous derivatives.


A function  is continuously differentiable if all of the partial 
derivatives of  exist and are continuous. We call such functions  functions, 
and the collection of all such functions are the class .


The class  are the infinitely differentiable functions — these have 
derivatives of any order.

f : ℝd → ℝ
f 𝒞1

𝒞1

𝒞∞
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 functions and “smoothness”𝒞p

Review of smooth functions
Smooth functions are functions that have (several) continuous derivatives.


A function  is continuously differentiable if all of the partial 
derivatives of  exist and are continuous. We call such functions  functions, 
and the collection of all such functions are the class .


The class  are the infinitely differentiable functions — these have 
derivatives of any order.


“Smooth” varies from problem to problem. It usually denotes a function being 
“sufficiently differentiable.”

f : ℝd → ℝ
f 𝒞1

𝒞1

𝒞∞



 functions and “smoothness”𝒞p

Review of smooth functions

Example. .f(x) = ex
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 functions and “smoothness”𝒞p

Review of smooth functions

Example. .f(x) = sin x
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 functions and “smoothness”𝒞p

Review of smooth functions

Example. . Polynomials, in general.f(x1, x2) = x2
1 + x2

2
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Polynomials
Single-variable definition

A single-variable polynomial function of degree  is a function  that 
can be written in the form:


,


where  are the coefficients of the polynomial. 


Example: .

m f : ℝ → ℝ

amxm + am−1xm−1 + … + a2x2 + a1x + a0

am, …, a0 ∈ ℝ

f(x) = 4x3 + 2x − 1
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Polynomials
Single-variable definition

f(x) = x f(x) = x2 f(x) = x3
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Polynomials
Multivariable definition

A monomial function is a function  of the form


 with integer exponents .


A polynomial function is a function  is a finite sum of monomials 
with real coefficients.


Example: .

f : ℝd → ℝ

xk1
1 …xkd

d k1, …, kd ≥ 0

f : ℝd → ℝ

f(x1, x2, x3) := x2
1 x2 + 3x1x3
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Polynomials
Multi-variable definition
f(x1, x2) = x2

1 + 2x2
2 f(x1, x2) = x3

1 + x1x2 − x2
2

x1-axis x2-axis f(x1, x2)-axis

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/poly3d1.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/poly3d2.html
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Taylor Series
Intuition

We like polynomials — they’re easy to perform calculus on and analyze.





A Taylor series at some point  is the representation of “smooth” functions as 
an “infinite polynomial,” expanded around .


Canonical example (at ):


f(x) = x5 + 3x3 − 2x2 + 3x − 1

x0
x0

x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …
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Taylor Series
Intuition




“Cutting off” the Taylor series at some order  of derivatives gives us the th-
order Taylor approximation. 

The first-order Taylor approximation is just the linearization!


The second-order Taylor approximation is just a quadratic function!

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …

p p
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Taylor Series
Example: f(x) = ex

Taylor series at :
x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …
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Taylor Series
Example: f(x) = ex

Taylor series at :
x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …
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Taylor Series
Example: f(x) = ex

Taylor series at :
x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …
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Taylor Series
Example: f(x) = ex

Taylor series at :
x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …
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Taylor Series
Example: f(x) = cos x

Taylor series at :





x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …
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Taylor Series
Example: f(x) = cos x

Taylor series at :





x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …
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Taylor Series
Example: f(x) = cos x

Taylor series at :





x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …
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Taylor Series
Single-variable definition
For simplicity, let’s first consider .


For a smooth function  (  has derivatives of all orders), the Taylor series of  at  is defined as:





The Taylor polynomial of degree  of  at  is defined as:


 


Note: It only make sense to talk about a Taylor series/polynomial at a point!

f : ℝ → ℝ

f ∈ 𝒞∞ f f x0

Tx0
(x) :=

∞

∑
k=0

f (k)(x0)
k!

(x − x0)k .

n f x0

Tn
x0

(x) :=
n

∑
k=0

f (k)(x0)

k!
(x − x0)k .
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Taylor Series
When is the Taylor series the function?
A function that is equal to its Taylor series at  in some neighborhood around  is called 
analytic. We won’t get into the finer points of Taylor series and analytic functions in this 
course. 

For all intents and purposes,





for all  that are sufficiently close to  and sufficiently large  (we’ll usually study ). 

x0 x0

f(x) ≈ Tn
x0

(x) =
n

∑
k=0

f (k)(x0)
k!

(x − x0)k = f(x0) + f′￼(x0)(x − x0) +
f′￼′￼(x0)

2!
(x − x0)2

usually already pretty good!

+ …

x x0 n n ≤ 2
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Taylor Series
When is the Taylor series the function?
A function that is equal to its Taylor series at  in some neighborhood around  is called 
analytic. 

For all intents and purposes,





for all  that are sufficiently close to  and sufficiently large  (we’ll usually study ). 

Takeaway. For many common functions, a second-order Taylor polynomial is a good 
approximation of the function close to the point we do the expansion about.

x0 x0

f(x) ≈ Tn
x0

(x) =
n

∑
k=0

f (k)(x0)
k!

(x − x0)k = f(x0) + f′￼(x0)(x − x0) +
f′￼′￼(x0)

2!
(x − x0)2

usually already pretty good!

+ …

x x0 n n ≤ 2



Taylor Series
Example
All polynomials are in  and have exact Taylor series representations.


Consider the Taylor series of .

𝒞∞

f(x) = 2x3 + x2 − x + 1
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Taylor Series
Example

Many of the “nice” functions of calculus are infinitely differentiable.


Consider the Taylor series of .f(x) = sin x + cos x



Taylor Series
Example

Many of the “nice” functions of calculus are infinitely differentiable.


Consider the Taylor series of .f(x) = ex
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Taylor Series 
In multiple variables



Taylor Series
Multivariable definition

There’s a reason we started with …


Let  be a function with derivatives of all orders (i.e., in ). The 
Taylor series of  at  is given by:





Thankfully — we won’t ever need to use this — at most, we’ll use the second-
order Taylor approximation of a function in multiple variables.

f : ℝ → ℝ

f : ℝn → ℝ 𝒞∞

f x0 = (x01, …, x0n) ∈ ℝn

T(x1, …, xn) :=
∞

∑
k1=0

…
∞

∑
kn=0

(x1 − x01)k1…(xn − x0n)kn

k1!…kn! ( ∂k1+…+knf
∂xk1

1 …∂xkn
n )(x01, …, x0n) .
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Hessian
The multivariable second derivative
The Hessian for  at some point  is the  matrix of all second-order 
partial derivatives:


 


The Hessian for general  is given by the  matrix of all second-order 
partial derivatives, constructed similarly.


For twice-continuously differentiable , the Hessian is symmetric.

f : ℝ2 → ℝ x0 2 × 2

∇2f(x) =

∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

f : ℝn → ℝ n × n

f ∈ 𝒞2
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Taylor Series
Just the second-order terms

For , the second-order terms of the Taylor series of  at  are:


.

f : ℝn → ℝ f x0

T2
x0

(x) = f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)
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Taylor Series
Just the second-order terms

For , the second-order terms of the Taylor series of  at  are:


.


The part  is a linear function(al)!

f : ℝn → ℝ f x0

T2
x0

(x) = f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)

∇f(x0)⊤(x − x0)
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Taylor Series
Just the second-order terms

For , the second-order terms of the Taylor series of  at  are:


.


The part  is a quadratic form!

f : ℝn → ℝ f x0

T2
x0

(x) = f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)

1
2

(x − x0)⊤ ∇2f(x0)(x − x0)

Deng, Samuel

Deng, Samuel

Deng, Samuel



First-order Taylor Approximation
Just linearization

For a function , the Taylor series at  is





For , the Taylor series at  is





Linearization of  at . This is just taking the first-order terms of the Taylor series!

f : ℝ → ℝ x0

Tx0
(x) = f(x0) +

f′￼(x0)
1!

(x − x0)

first-order terms

+
f′￼′￼(x0)

2!
(x − x0)2 + …

f : ℝn → ℝ x0

Tx0
(x) = f(x0) + ∇f(x0)⊤(x − x0)

first-order terms

+
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) + …

f x0



First-order Taylor Approximation
Single-variable example




First-order Taylor expansion at :


f(x) = ex/2

x0 = 1

T1(x) = e1/2 +
e1/2(x − 1)

2
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Second-order Taylor Approximation
Approximation by a quadratic

For ,





For ,


f : ℝ → ℝ

T(x) = x0 +
f′￼(x0)

1!
(x − x0) +

f′￼′￼(x0)
2!

(x − x0)2

second-order terms

+
f′￼′￼′￼(x0)3

3!
(x − x0)3 + …

f : ℝn → ℝ

Tx0
(x) = f(x0) + ∇f(x0)⊤(x − x0) +

1
2

(x − x0)⊤ ∇2f(x0)(x − x0)

second-order terms

+ …



Second-order Taylor Approximation
Single-variable example




Second-order Taylor expansion at :


f(x) = ex/2

x0 = 1

T2(x) = e1/2 +
e1/2(x − 1)

2
+

e1/2(x − 1)2

8
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Taylor Approximations
Summary

The first-order Taylor approximation (linearization) of a function at  is:





The second-order Taylor approximation of a function at  is:





A natural question to ask is: how good are these approximations?

x0

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) .

x0

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) .
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Taylor’s Theorem 
Quantifying the approximation



Taylor’s Theorem
Intuition

How much do we lose by approximating  with a Taylor approximation? We’ll 
think of this in terms of the “remainder” — how much more Taylor series is left 
after “chopping it off” at order .


First-order approximation: 

  

The remainder is:


 

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

f(x) − ( f(x0) + ∇f(x0)⊤(x − x0))
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Taylor’s Theorem
Intuition

How much do we lose by approximating  with a Taylor approximation? We’ll 
think of this in terms of the “remainder” — how much more Taylor series is left 
after “chopping it off” at order .


Second-order approximation:

 

The remainder is: 

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) .

f(x) − (f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)) .
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Remainder of Taylor Polynomial
Definition

The remainder of a function and its Taylor polynomial at  is the function:





What behavior would we like? Ideally,  as  (the approximation 
gets better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0
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Remainder of Taylor Polynomial
Definition

The remainder of a function and its Taylor 
polynomial at  is the function:





What behavior would we like? Ideally, 
 as  (the approximation 

gets better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0
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Remainder of Taylor Polynomial
Definition

The remainder of a function and its Taylor 
polynomial at  is the function:





What behavior would we like? Ideally, 
 as  (the approximation 

gets better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0
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Taylor’s Theorem
Idea: Taylor’s Theorem (Peano’s Form)

Say we want the value of  at  and we have a Taylor approximation at .


Then, the direction to go from  to  is . 


By taking a constant , we can make the direction  as small as we want:


f x x0

x x0 d = x − x0

α > 0 αd

∥αd∥ = α∥d∥.
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Taylor’s Theorem
Idea: Taylor’s Theorem (Peano’s Form)

By taking a constant , we can make the direction  as small as we want:





Peano’s Form of Taylor’s Theorem says that for any direction , as ,


,


i.e. the approximation when we “chop off” the Taylor series at  approaches the 
function’s actual value.

α > 0 αd

∥αd∥ = α∥d∥.

d α → 0

Tn(x0 + αd) → f(x) = f(x0 + αd)

n
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Little O Asymptotics
Definition

For two functions,  and , with  nonnegative,  is 
asympotically smaller than  or “little-oh” of , denoted





if


.


f : ℝ → ℝ g : ℝ → ℝ g f
g g

f(x) = o(g(x))

lim
x→∞

f(x)
g(x)

= 0
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Taylor’s Theorem
Remainder Theorem 1: Peano’s Form Taylor’s Theorem

Theorem (Taylor’s Theorem: Peano’s Form). Let  be a -times differentiable 
function at . Then, for every direction :


 as ,


where  as  means that if ,





We’ll usually only go up to  (quadratic approximation), so we’ll only need…


f : ℝd → ℝ k
x0 d ∈ ℝd

f(x0 + d) = Tk
x0

(x0 + d) + o(∥d∥k), d → 0

o(∥d∥k) d → 0 Rk(x0 + d) := f(x0 + d) − Tk
x0

(x0 + d)

lim
d→0

Rk(x0 + d)
∥d∥k

= 0.

k = 2
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Taylor’s Theorem
Remainder Theorem 1: Peano’s Form Taylor’s Theorem

Theorem (2nd Order Taylor’s Theorem: Peano’s Form). Let  be a twice differentiable 
function at . Then, for every direction :





The remainder is





and the claim is that , meaning that  


f : ℝd → ℝ
x0 d ∈ ℝd

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d + o(∥d∥2) .

R2(x0 + d) = f(x0 + d) − (f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d),

R2(x0 + d) = o(∥d∥2) lim
d→0

R2(x0 + d)/∥d∥2 = 0.
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Taylor’s Theorem
Remainder Theorem 2: Lagrange’s Form Taylor’s Theorem
Theorem (Taylor’s Theorem: Lagrange Form). Let  be a  
function on the closed interval between  and . Then, there exists some number 

 between  and  such that





So, in terms of the remainder:


f : ℝ → ℝ 𝒞k+1

x0 x
z ∈ ℝ x0 x

f(x) = Tn(x) +
f (n+1)(z)
(n + 1)!

(x − x0)n+1 .

Rn(x) =
f (n+1)(z)
(n + 1)!

(x − x0)n+1 .
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Taylor’s Theorem
Remainder Theorem 2: Lagrange’s Form Taylor’s Theorem
Theorem (1st Order Taylor’s Theorem - Lagrange Form). Let  be 
a  function. For , there exists  such that for  
on the line segment between  and 





Or, in terms of the remainder:


.

f : ℝd → ℝ
𝒞2 x0, d ∈ ℝn λ ∈ (0,1) x̃ = x0 + λd

x0 x0 + d

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d

R1(x0 + d) =
1
2

d⊤ ∇2f(x̃)d
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Gradient Descent 
Intuition and Algorithm
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Motivation
Optimization in calculus

We want to minimize an objective function 
f : ℝd → ℝ
minimize

x
f(x)



Gradient Descent
Idea
How do you get to the minimum?
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Gradient Descent
Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let  be 
differentiable at . If  is a unit vector making angle  with the 
gradient , then:


.


Therefore, the directional derivative of  at  in the direction  is maximized in 
the direction ! 


Gradient is the direction of steepest ascent at the rate !

f : ℝd → ℝ
x0 ∈ ℝd d ∈ ℝd θ

∇f(x0)

∇f(x0)⊤d = ∥∇f(x0)∥ cos θ

f x0 d
∇f(x0)

∥∇f(x0)∥

Deng, Samuel

Deng, Samuel

Deng, Samuel



Gradient Descent
The direction of steepest descent

Going in the direction  gives the direction of steepest descent. 

Here’s a candidate algorithm:


1. Initialize at a point .


2. Obtain  by moving in the direction .


3. Obtain  by moving in the direction .


4. Repeat until convergence to a minimum… 

−∇f(x0)

x0

x1 −∇f(x0)

x2 −∇f(x1)
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Gradient Descent
Algorithm

Input: Function . Initial point . Step size .


For 


Compute: .


If  or  is sufficiently small, then return .

f : ℝd → ℝ x0 ∈ ℝd η ∈ ℝ

t = 1,2,3,…

xt ← xt−1 − η∇f(xt−1)

∇f(xt) = 0 xt − xt−1 f(xt)
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Gradient Descent 
Taylor’s Theorem for Convergence Theorem



Taylor Approximation
1st Order Taylor Approximation
Recall the first-order Taylor approximation:





As long as  is close enough to , this is a good approximation.


At time , we are at the point . We want to move in a direction 
 such that . Our choice? .

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) .

x x0

t ≥ 0 xt ∈ ℝd

d ∈ ℝd f(xt + d) < f(xt) d = − η∇f(xt)
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Taylor Approximation
1st Order Taylor Approximation
Recall the first-order Taylor approximation:





As long as  is close enough to , this is a good approximation.


At time , we are at the point . We want to move in a direction  
such that . Our choice? .


Why? If  is small enough, then  is close to , and:


.

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) .

x x0

t ≥ 0 xt ∈ ℝd d ∈ ℝd

f(xt + d) < f(xt) d = − η∇f(xt)

η xt + d xt

f(xt + d) ≈ f(xt) + ∇f(xt)⊤d
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Taylor Approximation
1st Order Taylor Approximation
At time , we are at the point . We want to move in a direction 

 such that . Our choice? .


Why? If  is small enough, then  is close to , and:


.


This explains the gradient descent step: .


 as long as  is small.

t ≥ 0 xt ∈ ℝd

d ∈ ℝd f(xt + d) < f(xt) d = − η∇f(xt)

η xt + d xt

f(xt + d) ≈ f(xt) + ∇f(xt)⊤d

xt+1 = xt − η∇f(xt)

f(xt+1) = f(xt) − η∇f(xt)⊤ ∇f(xt) < f(xt) η
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Taylor Approximation
1st Order Taylor Approximation
At time , we are at the point . We want to move in a direction  such 
that . Our choice? .


Why? If  is small enough, then  is close to , and:


.


This explains the gradient descent step: .


 as long as  is small.


To quantify the , we had Taylor’s theorem. We will use the Lagrange form of Taylor’s 
theorem.

t ≥ 0 xt ∈ ℝd d ∈ ℝd

f(xt + d) < f(xt) d = − η∇f(xt)

η xt + d xt

f(xt + d) ≈ f(xt) + ∇f(xt)⊤d

xt+1 = xt − η∇f(xt)

f(xt+1) = f(xt) − η∇f(xt)⊤ ∇f(xt) < f(xt) η

≈
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Taylor’s Theorem
Remainder Theorem 2: Lagrange Form of Taylor’s Theorem
Theorem (1st Order Taylor’s Theorem - Lagrange Form). Let  be 
a  function. For , there exists  such that for  
on the line segment between  and 


f : ℝd → ℝ
𝒞2 x0, d ∈ ℝn λ ∈ (0,1) x̃ = x0 + λd

x0 x0 + d

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
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Gradient Descent and η
Example
Move in the direction: .


If  is small enough, then  is close to 
, and:


.

d = − η∇f(xt)

η xt + d
xt

f(xt + d) ≈ f(xt) + ∇f(xt)⊤d

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etabig.html


Gradient Descent and η
Example
Move in the direction: .


If  is small enough, then  is close to 
, and:


.

d = − η∇f(xt)

η xt + d
xt

f(xt + d) ≈ f(xt) + ∇f(xt)⊤d

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html


Gradient Descent and η
Example
Move in the direction: .


If  is small enough, then  is close to 
, and:


.

d = − η∇f(xt)

η xt + d
xt

f(xt + d) ≈ f(xt) + ∇f(xt)⊤d

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etabig.html


Gradient Descent and η
Example
Move in the direction: .


If  is small enough, then  is close to 
, and:


.

d = − η∇f(xt)

η xt + d
xt

f(xt + d) ≈ f(xt) + ∇f(xt)⊤d

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etasmall.html


Gradient Descent and η
Applying the first-order Taylor Approximation

 as long as  is small.


We would like the assurance that gradient descent is always decreasing our 
function:


 at each step .

f(xt+1) = f(xt) − η∇f(xt)⊤ ∇f(xt) < f(xt) η

f(xt) ≤ f(xt−1) t

Deng, Samuel

Deng, Samuel

Deng, Samuel



Gradient Descent and η
Applying the first-order Taylor Approximation

 as long as  is small.


We would like the assurance that gradient descent is always decreasing our 
function:


 at each step .


Strategy: Use Taylor’s Theorem to analyze the first-order approximation! This 
works if the first derivative doesn’t change too much.

f(xt+1) = f(xt) − η∇f(xt)⊤ ∇f(xt) < f(xt) η

f(xt) ≤ f(xt−1) t

Deng, Samuel



Bounding change in gradients
-smoothnessβ

For a matrix , the largest eigenvalue of  is .


A symmetric matrix  is a -smooth matrix if its eigenvalues are at 
most :


A ∈ ℝd×d A λmax(A)

A ∈ ℝd×d β
β

λmax(A) ≤ β .
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Bounding change in gradients
-smoothnessβ

A twice-differentiable function  is a -smooth function if the 
eigenvalues of its Hessian at any point  are at most . That is:


f : ℝd → ℝ β
x ∈ ℝd β

λmax(∇2f(x)) ≤ β .
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Bounding change in gradients
-smoothnessβ

Property (Smoothness bounds quadratic forms). If  is -smooth, 
then for any unit vector ,


. 

A ∈ ℝd×d β
v ∈ ℝd

|v⊤Av | ≤ β
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Bounding change in gradients
-smoothnessβ

Λ = [5 0
0 1]

x1-axis x2-axis f(x1, x2)-axis
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Bounding change in gradients
-smoothnessβ

Λ = [1 0
0 1]
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https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/smooth1.html


Gradient Descent
Applying Taylor’s Theorem

Theorem (Gradient descent makes the function value smaller). Let  be a 
, -smooth function. Then, for any , a gradient descent update





with step size   has the property:


.


This theorem says that gradient descent always makes our function value smaller, as long 
as the function’s gradients don’t change too much! 

f : ℝd → ℝ
𝒞2 β t = 1,2,3,…

xt ← xt−1 − η∇f(xt−1)

η =
1
β

f(xt) ≤ f(xt−1) −
1

2β
∥∇f(xt−1)∥2
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Gradient Descent
Main tool for proof of GD Theorem
Theorem (1st Order Taylor’s Theorem - Lagrange Form). Let  be 
a  function. For , there exists  such that for  
on the line segment between  and 


f : ℝd → ℝ
𝒞2 x0, d ∈ ℝn λ ∈ (0,1) x̃ = x0 + λd

x0 x0 + d

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d



Gradient Descent
Proof of GD Theorem

Want to show: .


Step 1: Use Lagrange’s Form of Taylor’s Theorem to get an expression for .


There exists  such that for ,





f(xt+1) ≤ f(xt) −
1

2β
∥∇f(xt−1)∥2

f(xt + d)

λ ∈ (0,1) x̃ = xt + λd

f(xt + d) = f(xt) + ∇f(xt)⊤d +
1
2

d⊤ ∇2f(x̃)d
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Gradient Descent
Proof of GD Theorem

Want to show: .


Step 2: Use -smoothness to bound the first-order approximation.





Upper bound the quadratic term:


f(xt+1) ≤ f(xt) −
1

2β
∥∇f(xt−1)∥2

β

f(xt + d) = f(xt) + ∇f(xt)⊤d +
1
2

d⊤ ∇2f(x̃)d

1
2

d⊤ ∇2f(x̃)d =
1
2

∥d∥2(d/∥d∥)⊤ ∇2f(x̃)(d/∥d∥)

≤
1
2

∥d∥2β (bound on quadratic forms)
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Gradient Descent
Proof of GD Theorem

Want to show: .


Step 3: Optimize the quadratic upper bound to find the direction and magnitude to take a step.





We need to choose a direction  to take a step in. To do this, optimize the RHS:





Set the gradient to  and solve:


 

f(xt+1) ≤ f(xt) −
1

2β
∥∇f(xt−1)∥2

f(xt + d) ≤ f(xt) + ∇f(xt)⊤d +
1
2

∥d∥2β

d ∈ ℝd

∇d( f(xt) + ∇f(xt)⊤d +
1
2

∥d∥2β) = ∇f(xt) + βd

0

∇f(xt) + βd = 0 ⟹ d = −
1
β

∇f(xt)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Gradient Descent
Proof of GD Theorem
Want to show: .


Step 4: Plug optimal value of the quadratic upper bound back in to get our result.


Notice that  is exactly how we get our gradient step:


 with .


Plug this back into the quadratic upper bound: 





f(xt+1) ≤ f(xt) −
1

2β
∥∇f(xt−1)∥2

d = −
1
β

∇f(xt)

xt+1 ← xt − η∇f(xt) η = 1/β

f(xt + d) ≤ f(xt) + ∇f(xt)⊤d +
1
2

∥d∥2β

f(xt+1) = f (xt −
1
β

∇f(xt)) ≤ f(xt) −
1
β

∇f(xt)⊤ ∇f(xt) +
1

2β
∥∇f(xt)∥2

≤ f(xt) −
1

2β
∥∇f(xt)∥2
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Gradient Descent
Applying Taylor’s Theorem

Theorem (Gradient descent makes the function value smaller). Let  be a 
, -smooth function. Then, for any , a gradient descent update





with step size   has the property:


.


This theorem says that gradient descent always makes our function value smaller, as long 
as the function’s gradients don’t change too much! 

f : ℝd → ℝ
𝒞2 β t = 1,2,3,…

xt ← xt−1 − η∇f(xt−1)

η =
1
β

f(xt) ≤ f(xt−1) −
1

2β
∥∇f(xt−1)∥2
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Gradient Descent
Preview of convexity
Problem: gradient 
descent gets us to a 
local minimum, but 
perhaps not a global 
minimum.
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Gradient Descent
Preview of convexity
Solution: Convex functions 
are functions that “look like 
bowls.” 


These have nice properties, 
the main one being: all local 
minima are global minima. 
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Gradient Descent
Preview of convexity
Theorem (Convergence of GD for smooth, convex functions). Let 

 be a , -smooth, and convex function. Let  be a minimizer of 
, i.e.  for all . 


If we run gradient descent with step size  and initial point  for  

iterations, we have:


f : ℝn → ℝ 𝒞2 β x*
f f(x*) ≤ f(x) x ∈ ℝn

η =
1
β

x0 ∈ ℝn T

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) .
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Recap



Lesson Overview

Linearization for approximation. We explore using the linearization of a function to 
approximate it. This is also called a “first-order approximation.”


Taylor series. We define the Taylor series of a function, which is an “infinite polynomial” that 
approximates a function at a point.


First-order and second-order Taylor approximation. The Taylor polynomial allows us to 
approximate a funciton by “chopping it off” at a certain degree.


Taylor’s Theorem. To quantify how bad our approximations are, we can use Taylor’s Theorem. 
We present two forms of Taylor’s Theorem (Peano and Lagrange).


Gradient descent. We write down the full algorithm for gradient descent, the second “story” of 
our course. Using Taylor’s Theorem, we can prove that, for -smooth functions, GD makes the 
function value smaller from iteration to iteration, as long as we set the “step size” small enough.

β



Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etabig.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html

