Math for Machine Learning

By: Samuel Deng
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Lesson Overview

Linearization for approximation. We explore using the linearization of a function to
approximate it. This is also called a “first-order approximation.”

Taylor series. We define the Taylor series of a function, which is an “infinite polynomial” that
approximates a function at a point.

First-order and second-order Taylor approximation. The Taylor polynomial allows us to
approximate a funciton by “chopping it off” at a certain degree.

Taylor’s Theorem. To quantify how bad our approximations are, we can use Taylor’s Theorem.
We present two forms of Taylor’s Theorem (Peano and Lagrange).

Gradient descent. We write down the full algorithm for gradient descent, the second “story” of

our course. Using Taylor’s Theorem, we can prove that, for f-smooth functions, GD makes the
function value smaller from iteration to iteration, as long as we set the “step size” small enough.
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Big Picture: Least Sauares
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Lesson Overview

Big Picture: Gradient Descent
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Linearization
Derivatives to find linear approximations



Motivation

Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization
problems.

In an optimization problem, we want to minimize an objective function
ol 4 5 R with respect to a set of constraints ¢ C | a.

minimize f(x)
X

subject to x € €



Motivation

Optimization in single-variable calculus

Ultimate goal: Find the
global minimum of
functions.

Intermediary goal: Find the
local minima.

Derivatives give us the
direction of steepest
descent!

C

@® |ocal min
@ global min



Multivariable Differentiation

Total Derivative

In this lecture, we’ll focus on scalar-valued multivariable functions f : | ¢ 5 R.

"
Letf: | 4 - R be a function and let X, € | 9 be a point. If there exists a gradient vector
V£(x,) € R?such that

f(Xo+ 8) — f(xg) — VA(xp) "6

lim — = 0,
6—0 0]

then fis differentiable at X, and has the (fotal) derivative V f(X).

Think of 5asa “change in X”: for a base point X, and a “destination point” X', think of
0 =X — X, "
%

Xo
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Multivariable Differentiation

Partial Derivative

Let f: |

d

— |

and let e; be the 1th standard basis vector in |

derivative of [ at X is

F o fxg+Be) = fix)
—(XO) = liIm —m8m8m™mMm
axl' 0—0 o)

4 The ith partial

£ e
L ¢

This is the derivative of f when keeping all but one variable constant.
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Multivariable Differentiation

Partial Derivative

Let f: |

d

_) |

and let e; be the ith standard basis vector in |

derivative of f at X, is

of f(xo + 5€)) — f(x))

—(X,) := IIm
dxl-( 0) = I8 5

4 The ith partial

This is the derivative of f when keeping all but one variable constant.

If f is differentiable at X, then:

AN R
ox; ~ 7 oxy

v/ = |



d
- = - - - ﬁ — @
Linearity and Differentiation | .,. v«o7 |

Replacing nonlinear functions with linear function
The derivative is a linear transformation (that mapsjchanges In inEuts }to

changes in outputs. We like linear transformations!

%

T : change in X — change in f(x)

approximations!
‘ ~ For X xe o Yo
‘@ < (¢ ° \

WiZ: e TR x~x) 2 o)~ £0rD

foo- [
‘ ‘@Wa') -+ V‘\effo)q.(f ~Ye) XK ‘f&c)
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Linearization

The behavior of a differentiable

function close to a point X can be
approximated with the linear
transformation given by its
derivative.

J For X close to X,
) |~ fEIFVAKDHE=X).
‘ ’ —
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Linearization ) o

8/7
Derivative definition, one more time °>2,
— _|_—>
Tim /Xy +0) _f(X_)_w— M__ 0
‘a = —
Cj o0—() Hé”

The 0 vector is the “change in X.” Think of it as X" — X, for some “destination” X'.
=

The term f(X, + 5) — f(X() is the “change in f.”
s ma

The term l 7 f(XO)T5 i% the “linear approximation of the change in 1.”

As 0 gets smaller (i.e. o — (), there is smaller and smaller difference between the
“change in f” and the “linear approximation of the change.”
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Linearization

f: R - R example ot

(x) = x?* with xo =1
What is the linearization?

TP L) = 2x
vg(xa)f 2 Ol

4?[)%7 + Vg[Yo')’rC)( ~%X5)

= | & 2(x—17) \\/
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Linearization

ol

— |

example
(x) = x?* with xo =1

What is the linearization?

J(x) = f(xg) + V(xp)x — xp)

—~~
~—
o~

approximation at 1




Linearization

ol

— |

example
(x) = x?* with xo =1
What is the linearization?

Jx) = 1+2(x = 1)

f(z)

approximation at 1




Linearization

f: R - R example

(x) = x?* with xo =1
Linearization: f(x) ~ 1 + 2(x — 1)

How good is the approximation at x = 27

vqcfm, f(z)= ['f?
Aol - B 2l2” (7'[7

flz) = a2

—~
~—
.

\



Deng, Samuel

Deng, Samuel

Deng, Samuel


Linearization

f: R - R example

(x) = x?* with xo =1
Linearization: f(x) ~ 1 + 2(x — 1)

How good is the approximation at x = 1.5?

(-
\Q-E—m,m,: ﬂC\ﬁ'): lS7- 2.25 (P 625
foee 142 C15-1) = 2

f(z)
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Linearization -+

f: R - R example

(x) = x?* with xo =1

Linearization: f(x) ~ 1 + 2(x — 1)

f(z)

How good is the approximationat x = 1.17
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Linearization

f: R? > R example

f(x), %) = x; + x5 with x, = (1,1)

\What is the linearization?

of - 2 2 o
TECH) = [ja,,] . Z,Zﬂ % &
54 Z‘/Z -+

LYY

(gx ‘WO

aya-?—‘— Vf%)’p\'r (A %)

= 7 + 2 C*’-f)-t- ZCYZ‘(.)

< 2+ 2% -2 te2 =| 2%« 2y, —?.]
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Linearization

f: R? > R example

fx), %) = xi + x5 with x, = (1,1)

Linearization: f(x;, x,) ~ 2x; + 2x, — 2

==
X 0
-
bl
~



https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/linearization3d.html
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Linearization

f: R? > R example

fx), %) = xi + x5 with x, = (1,1)

Linearization: f(x;, x,) ~ 2x; + 2x, — 2

(gx* 1X)4

How good Is the approximation at

x = (0,1)?

Acvel . o+ =) )
W: 7'D 4 2-] -2 = O



https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/linearization3d.html
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Linearization

f: R? > R example

fx), %) = xi + x5 with x, = (1,1)

Linearization: f(x;, x,) ~ 2x; + 2x, — 2

(gx* 1X)4

How good Is the approximation at

X = (1,0)?



https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/linearization3d.html

Taylor Series
In one variable




P functions and “smoothness”

Review of smooth functions

Smooth functions are functions that have (several) continuous derivatives.

A function f : | ¢ > R is continuously differentiable if all of the partial
derivatives of f exist and are continuous. We call such functions &' functions,
and the collection of all such functions are the class €.

The class € are the infinitely differentiable functions — these have
derivatives of any order.

SN
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P functions and “smoothness”

Review of smooth functions

Smooth functions are functions that have (several) continuous derivatives.

A function f : | ¢ > R is continuously differentiable if all of the partial
derivatives of f exist and are continuous. We call such functions &' functions,
and the collection of all such functions are the class €.

The class € are the infinitely differentiable functions — these have
derivatives of any order.

“Smooth” varies from problem to problem. It usually denotes a function being
“sufficiently differentiable.”



€ functions and “smoothness”
Review of smooth functions
Example. f(x) = e". e € °

2itey = e’

%l( ()ﬁ) - e

X

©
<
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P functions and “smoothness”

Review of smooth functions

Example. f(x) = sinx. ¢ € ”
{1+ oo5 ¥

o Q0
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P functions and “smoothness”

Review of smooth functions

Example. f(x;,x,) = x; + x;. Polynomials, in general.
\ s€ -
T, 10 = [Zx:}’* 2 - Sat e
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Polynomials

Single-variable definition

A single-variable polynomial function of degree m is a function f : R — R that
can be written in the form:

m m—1 2
a,x +a, X'= + ...+ daX +[a1x }I—}ao,)

where a,, ..., ay € IR are the coefficients of the polynomial.

K WE N BASILY
THUWT VF/KIVWTWﬂ/
0'3'-'4 az,—o 0"'-2

c e A, = - | ZJ\/T%C'I?’V) ’
Example: f(x) = 4494 2% — 1.5 </
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Polynomials

Single-variable definition

fx) = x

fl@) == f(z) = z?

flx) = x°

f(x)
f(x)

f(z) = 2

f(z)

flx) = x°




Polynomials

Multivariable definition

A monomial function is a function f : |

1 d

d

— |

of the form

‘ XN xRalwith integer exponents k;, ..., k; > 0.

A polynomial function is a function f : |

with real coefficients.

¢ =2 _
M'g"l ]

Example: f(x;, X,, X3) ={x1x2;—|—[ xlx)

d

— |

IS a finite sum of monomials
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X' A

Polynomials . ., )
Multi-variable definition °¢ v
\ © - K? ¥2V:
f(xl,xZ) — X12 + 2)(:% [/0 2 f(xl,)Cz) — x; + X1Xy — x22

L’/



https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/poly3d1.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/poly3d2.html
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Taylor Series

Intuition

We like polynomials — they’re easy to perform calculus on and analyze.
pry’ fx) =x>+3x° —2x*+3x -1
e
3
A Taylor series at some point X, is the representation of “smooth™ functions as
an “infinite polynomial,” expanded around Xx,,.

Canonical example (at x, = 0):


Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel


Taylor Series I X - I
Intuition
Xz x3 X4
e =Tt —it+—+—+
2 6 24

“*Cutting off” the Taylor series at some order p of derivatives gives us the pth-

order Taylor approximation.

The first-order-faylorapproximation is‘justthe+inearnization!

The second-order Taylor approximation is just a quadratic function!
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Taylor Series
Example: f(x) = ¢* e

Taylor series at x, = 0:

A

X
e = x+—+—+—+
L z

o) =, S T
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Taylor Series

Example: f(x) = ¢* e

Taylor series at x, = 0:

e’ = +x’-|——+— +...

£ L) + TED (x—%L) )
= e° 4+ €7 (X — o)
=X
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Taylor Series

Example: f(x) = ¢*

Taylor series at x, = 0:

x> x> x*

e'=1+x+—+—+—+...
2 6 24
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Taylor Series

Example: f(x) = ¢* e
Taylor series at x, = 0:

x* x| x*
e =|l+x+—+—H+—+...

2 6| 24
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Taylor Series

Example: f(x) = cosx

Taylor series at x, = 0:

x> x* X

cosx =1-—+———+

— 21 41 6!

XS

f(z) = cos(z)

1
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Taylor Series

Example: f(x) = cosx

Taylor series at x, = 0:

x| x*t ox® X8

cosx=]l—-—+F+———— 4 — — ...

201 41 6! 8!
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Taylor Series

\

-

—

Example: f(x) = cosx

Taylor series at x, = 0:

x2 x*t ) x® X8

COS X =

2! 4] 3!

-+ =+ == ...
6!

f(z) = cos(z)

—~~
~—
S—,

4
Io 0
TO
T2

b et
3 — T
2\
1 \
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Taylor Series

Single-variable definition

g4

For simplicity, let’s first consider f : R — R.

For a smooth function f € € ( f has derivatives of all orders), the Taylor series of | at x,)is defined as:
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R “
& et 6"(»«,,

) ¢ @E A
m = — - L
TayIOr Serles g we W MDL__’,D. .)_ AVALTSIS
When is the Taylor series the function? I I m 2 9Ck)
N—=06D ucs |

A function that is equal to its Taylor series at x;, in' some neighboerhood around X, is called
analytic. We won’t get into the finer points of Taylor series and analytic functions in this

COUTrSe. \ gg(u,,): {XG@’- | X =¥, | 8%

For all intents and purposes, ) —| €| = £ .. -
n (k) /)
| SO~ T () = Z ! k(,XO) (x — xp)* = fx) + f(xp)(x — xp) + / ;O) (X — Xg)* + ...

k=0

usually alreadvy pretty good!

for all x that are sufficiently close to x, and sufficiently large n (we’ll usually study n < 2).

.. \ xe Q
. t?‘l‘“a O YeER
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Taylor Series

When is the Taylor series the function?

A function that is equal to its Taylor series at x;, in some neighborhood around X;, is called
analytic.

For all intents and purposes,
n (k) /7
Jx) = T, (x) = 2 / k(!xo) (x — x0)* = floxg) + f(xg)(x — x) + / ;O) (X —Xxp)* + ...

k=0 \ 5 )
usually already pretty good!

for all x that are sufficiently close to x, and sufficiently large n (we’ll usually study n < 2).

Takeaway. For many common functions, a second-order Taylor polynomial is a good
approximation of the function close to the point we do the expansion about.



Taylor Series

Example

All polynomials are in €°° and have exact Taylor series representations.

Consider the Taylor series of f(x) = 2x° + x> <X 4T

Xo =0

{[b)—(- ‘((“)Cﬁ o) £ —— (r-1)

e = | I

('[*ﬁ)z Lxte 2vx - =2 &Co)= f] = ] 4+ CT)) (R —o) + '2—[K~o)
@"(_%)—: \2¢ £ 2 = ¢'C(o) = 2 2

ol = 12 . o < ‘2 | t —;l—cx— 0) + O tot,

(n )

)= O

J;)-C(S{TZO = I — X & 2)(2_'_ ZXQ’{‘O‘F..

4

':! Z\cg«-2scz~\("f'l /
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Taylor Series

Example

Many of the “nice” functions of calculus are infinitely differentiable.

Consider the Taylor series of f(x) = sin x + COS x.



Taylor Series

Example

Many of the “nice” functions of calculus are infinitely differentiable.

J
Consider the Taylor series of f(x) = ¢e”. o= O .
K t
$0) - ¢ LX) *+ £ rp oy o ggi")ocsof
(‘Ch=e” | [ a
( - pX e L.
{'Ca=¢€ Jx [ |
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Taylor Series
In multiple variables




Taylor Series

Multivariable definition

There’s a reason we started with f : R — R...

Let : R" — R be a function with derivatives of all orders (i.e., in €°). The
Taylor series of | at X, = (xy;.....Xy,) € R" is given by:

00 00 o k _ k, ki+...+k,
= 3 Z#(a_f)()

kl'kn' dxl axnn

Thankfully — we won’t ever need to use this — at most, we’ll use the second-
order Taylor approximation of a function in multiple variables.
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Hessian

The multivariable second derivative

The Hessian for f: R* — [
partial derivatives:

The Hessian for general f : |

»
= Numwmie~rs

at some point X, is the 2 X 2 matrix of all second-order

V3f(x) =

n N L

of 0f _

dxlz 6x18x2 vz #[%) T — va ‘CK)
& P — |
axzﬁxl axzz

IS given by the n X n matrix of all second-order

partial derivatives, constructed similarly.

Fortwice-continuously differentiable f.& &>, the.Hessian'is symmetric.
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Taylor Series

Just the second-order terms s T <

For f : R" — R, the second-order terms of the Taylor lseries of f at X, are:

1
7 (x) = fiok) + WARIGIAR) + 3R A0k txn)

T = @Cxn + E0%) Cr-%) + -‘—‘ D) v %o
c.
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Taylor Series

Just the second-order terms

For f: R" — R, the second-order terms of the Taylor series of f at X, are:

2 _ T(v _ l — v )\ 2 _
I (X) = f(Xp) + Vf(Xp) (X —X) + 2(X Xg) V(X)X — X).

The part kvf (xo)' (X — X,) i$ a linear flinction(@L)! TR -F
(0= 9 X
AL
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Taylor Series

Just the second-order terms

For f: R" — R, the second-order terms of the Taylor series of f at X, are:

2 (v Tro Lo T »
15 (X) =J(Xp)=+=VHAXy) (X —X5)—+ 2(X X V(X (X=X

- - s - 05
GoNSron

N OV
Linte O M- v C .

The part —(X — XO)T sz(xo)(x — X)) is a quadratic form!

2L,__A A I
X7 A ¢

| XA
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First-order Taylor Approximation

Just linearization

For a function f : R — R, the Taylor series at x, is

7,0 = fxg) + 5 ay + 0

(x—x0)2+

first-order terms

For f: R" — R, the Taylor series at X, is

1
T, (x) = f(Xy) + VA(xp) ' (x — X) + E(X — X)) VX)X — Xg) + ...

first-order terms

Linearization of f at X;. This is just taking the first-order terms of the Taylor series!



First-order Taylor Approximation

Single-variable example f) = e
flx) = e e (l /
First-order Taylor expansion at x, = 1: : 1—
12¢y — 1 1 ya
1 p € =1 - (
Po=ei+—— ;

S
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Second-order Taylor Approximation

Approximation by a quadratic

Forf: R - R,
,(X) //x ///x 3
T(x):x0+f1'0 (x—x0)+f;'0)(x—x0)2+f (3'0) (x—x0)3+...
second-order terms
Forf: R" - R,

1
I, (X) =f(Xp) + V f(x) ' (x — Xp) + E(X — X)) VX)X — Xg) + ...

second-order terms



Second-order Taylor Approximation

Single-variable example

f(@) = e

f(x) — ex/Z 4 —n
Second-order Taylor expansion at x, = 1:
1/2 1/2 2
Tz(x)=61/2+e (x—l)_l_e (x — 1) s

2 ] | RS

]

f(z)
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Taylor Approximations

Summary

The first-order Taylor approximation (linearization) of a function at X, Is:

JX) @ f(Xg) + V(X)) (X —X).

The second-order Taylor approximation of a function at X, Is:

|
J(x) B (X)) + VJC(X())T(X — X)) + E(X — X())T sz(XO)(X — X)) -

A natural question to ask is: how good are these approximations?
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Taylor's Theorem
Quantifying the approximation



Taylor’s Theorem

Intuition

How much do we lose by approximating f with a Taylor approximation? We'll
think of this in terms of the “remainder” — how much more Taylor series is left

after “chopping it off” at order n.
First-order approximation:

J(X) = f(Xg) + Vi (Xo)T(X — X))

The remainder ISs:

/’\
| A0 = (i) + V) T(x = %) [
O
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Taylor’s Theorem

Intuition

How much do we lose by approximating f with a Taylor approximation? We'll
think of this in terms of the “remainder” — how much more Taylor series is left

after “chopping it off” at order n.

Second-order approximation:

|
f(x) =~ f(X) + V]C(X())T(X — X,) + E(X — Xo)T sz(XO)(X — X)) -
- s

The remain(iler IS:
J(X) — (f(xo) + V(X)) (X — X) + E(X —Xo) ' V(X)X — Xo)) -

L\_e____“J
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Remainder of Taylor Polynomial

Definition

The remainder of a function and its Taylor polynomial at X, is the function:

What behavior would we like? Ideally, R"(x) — 0 as X — X, (the approximation
| I
gets better as we approach X).
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Definition

The remainder of a function and its Taylor
polynomial at X, is the function:

R(x) := f(x) — T} (X)

What behavior would we like? Ideally,
R"(x) = 0 as X = X, (the approximation
gets better as we approach X).

Remainder of Taylor Polynomial

f(z) = €2

i

i
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Remainder of Taylor Polynomial

Definition

f(z) = e —T'(2)

The remainder of a function and its Taylor
polynomial at X, is the function:

R(x) := f(x) — T} (X)

What behavior would we like? Ideally, g .
R"(x) = 0 as X = X, (the approximation
gets better as we approach X).
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Taylor’s Theorem :_y'
Idea: Taylor’s Theorem (Peano’s Form) C >'s ’

Say we want the value of f at X and we have a Taylor approximation at X,.

-?

Then, the direction to go fromxtoXyisd =x—Xx,. &

—_——e T e

By taking a constant o > 0, we can make the direction ad as small as we want:

lad|| = aHdH
+—
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Taylor’s Theorem 2

2805
ldea: Taylor’s Theorem (Peano’s Form) €\~
By taking a constant & > 0, we can make the direction ad as small as we want:
[ad][ = af|d]].

Peano’s Form of Taylor’s Theorem says that for any direction d, as a — 0,
Seye M ey e =

I"(xg +ad) = f(x) = f(x, + ad),

l.e. the approximation when we “chop off” the Taylor series at n approaches the
function’s actual value.


Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel


Little O Asymptotics fen=x e o0x®

| | | 2 \
Definition Xzt o
Lo X C.

For two functions, f : R — R andg==R*™="R, with ¢ nonnegative, fis
asympotically smaller than g or “little-oh” of g, denoted

. — wtte - o &F
f(x) = 0(g(x)) ¢ RO ® K
— et

If
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o

/xo

Taylor’s Theorem

Remainder Theorem 1: Peano’s Form Taylor’s Theorem

Theorem (Taylor’s Theorem: Peano’s Form). Let f : R¢ — R be a k-times differentiable
. . . l__,———\_l
function at X,,. Then, for every direction d € R4 —J

. — N
Xy +d) = Ty (xg+ d) + o(||d]"), asd — 0,
(. @ ==
where o(||d||[¥) as d — 0 means that if Rk(XO +d) :=f(xg+d) — T,’(‘O(XO +d),

, Rk(xo + d)
Iim =

= (). s Clover
d—0 CHde) % - -

We’ll usually only go up to kK = 2 (quadratic approximation), so we’ll only need...



Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel


f(ad) — |sEtdy (- el MG
Taylor’'s Theorem peton | =

Remainder Theorem 1: Peano’s Form Taylor’s Theorem Hdn™  — -

Theorem (2nd Order Taylor’s Theorem: Peano’s Form). Let f : R¢ - R be a twice differentiable
function at X,. Then, for every direction d € R

1
J(Xg+d) = f(Xo) + Vf(Xp) d + Ed Vf(xo)d + o(||d||?) .
—

The remainder Is

0 _ B R
R°(xy +d) = f(xy + d) (f(Xo)'l‘Vf(Xo) d+ 2d Vf(Xo)d),
S —

and the claim is that R*(x, + d) = o(]|d||?), meaning that lim R*(x, + d)/||d||* = 0.
d—0

" Tre awemt Hat we'va 6¢F grons qloefl Huom
hon far weve  WPPVFuAy
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Theorem (Taylor’s Theorem: Lagrange Form). Letf: R — R be a Gl - 4;,; e [0 <)
function on the closed interval between x, and x. Then, there exists some number
Z € R between x;, and x such that =

_ f" () 1
Jx) = T"(x) + m(x —Xp) .

So, in terms of the remainder: - | 1++
f(n_l_l)(z) 1 s~
(rg) T A

X— X,
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Deng, Samuel

Deng, Samuel
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Az .
.- ———o0—°¢ )(D*J

Xo /= \/,

Taylor’s Theorem

Remainder Theorem 2: Lagrange’s Form Taylor’s Theorem

Theorem (1st Order Taylor’s Theorem - Lagrange Form). Let f : | 4 5 R be
a €~ function. For Xo,ld € R", |there exists 4 € (0,1) such that for X )j X, + Ad
on the line segment between x, and x, + d

-
f(xo +d) = fixg) + Vfi(xp)'d *‘]%QT Vfi%d ~
Ecﬂ v X
Or, in terms of the remainder: ’_7; J Z/
Ri(xq+d) = ldT V2A(X)d. %:

e
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Gradient Descent
Intuition and Algorithm
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Motivation

Optimization in calculus

We want to minimize an objective function f : | 45 R

minimize f(X)
X



Gradient Descent

Idea

How do you get to the minimum?

f(z)
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Gradient Descent

Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let f : R? - R be
differentiable at X, € RY. Ifd € R%is a unit vector making angle @ with the

gradient V f(X), then:

Vf(xo)'d = || Vx|l cos 6.

Therefore, the directional derivative of f at X, in the direction d is maximized in
the direction Vf(Xx,)!

P

] Gradient is the direction of steepest ascent at the rate || Vf(X,)||!
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Gradient Descent

X
The direction of steepest descent "o g }

Going in the direotion/— V(X)) ?gives the direction of steepest descent.

Here’s a candidate algorithm:

1. Initialize at a point X,. ”’\

=

2. Obtain X; by moving in the direction — V f(X,)).

3. Obtain X, by moving in the direction — V(X ).

4. Repeat until convergence to a minimum...

- )

-



Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel


Gradient Descent

Algorithm ch/ 2
!
d

Input: Function f : R® — R. Initial point X, € | 9 Step size n e R.

Fort = 1,2.3,.

Compute: &9 nVix._).

f Vf(x,) = 0 or X, — X,_, is sufficiently small, then return f(X,).

1%

L —
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Gradient Descent
Taylor's Theorem for Convergence Theorem



Taylor Approximation A

1st Order Taylor Approximation X

Recall the first-order Taylor approximation:

' J(X) ~ f(X() + Vf(X())T(X — X)) - ‘

As long as X Is close enough to X, this is a good approximation.
N

At time ¢ > 0, we are at the point X, € | 4 We wa | Irection
d € R? such that f(x, + d) < f(X)). Our choice?|d = — n Vf(x)).
e = | —

L7J —
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Taylor Approximation

1st Order Taylor Approximation

Recall the first-order Taylor approximation:

00 2 %) + Vfxg)T(x = Xo). .

As long as X Is close enough to X, this is a good approximation.

At time ¢ > 0, we are at the point X, € | 4 \We want to move in a direction d € I
such that f(x, + d) < f(x,). Our ChOlce’? d=-7nVfXx)

"‘HJ

Why? If 5 is small enough, then X, + d is close to X,, and: n,/

) ' fx, +d) ~ f(x,) + Vf(x,)'d. e
—
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Taylor Approximation

1st Order Taylor Approximation

At time ¢ > 0, we are at the point X, € | 4. We want to move in a direction
d € R? such that f(x, + d) < f(X,). Our choice? d = — n Vf(Xx)).

Why? If 57 is small enough, then X, 4+ d is close to X,, and:

J(X; + d)Qf(Xt) + V(X)) gl

X, +d

/

This explains the gradient descent step X, =X, —nVfX). -

J(X; ) = (X)) — 7 Vf(Xt)T Vf(x,) < f(Xx,) as long as 1 is small.
| __ =
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Taylor Approximation

1st Order Taylor Approximation

At time ¢t > 0, we are at the point X, € | 4. We want to move in a direction d € R such

that f(x, + d) < f(X,). Our choice? d = —  Vf(X)).
Why? If 17 is small enough, then X, + d is close to X,, and:
fix,+d) ~ f(x) + Vfix,)'d.
This explains the gradient descent step: X, | = X, — 1 Vf(X)).
fx.)=fx)—nV f(Xt)T Vf(x,) < f(x,) as long as 7 is small.

To quantify the =, we had Taylor’s theorem. We will use the Lagrange form of Taylor’s
theorem.

|
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Taylor’s Theorem

Remainder Theorem 2: Lagrange Form of Taylor’s Theorem
d

Theorem (1st Order Taylor’s Theorem - Lagrange Form). Let f : R — R be
a €~ function. For Xy, d € R", there exists 4 € (0,1) such that for X = x, + Ad

on the line segment between x, and x, + d — L

J N %+ of

1 .
fixo +d) = f(x) + Vfixy) 'd + EdT VAAX)d
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Gradient Descent and 7

Example
Move in the direction: d = — 1 Vf(X)).

If 17 is small enough, then X, + d is close to
X,, and:

X +d) = f(x) + VAX) d.



https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etabig.html

Gradient Descent and 7

Example
Move in the direction: d = — 1 Vf(X)).

If 17 is small enough, then X, + d is close to
X,, and:

X +d) = f(x) + VAX) d.



https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html

Gradient Descent and 7

Example
Move in the direction: d = — 1 Vf(X)).

If 17 is small enough, then X, + d is close to
X,, and:

X +d) = f(x) + VAX) d.

y

Qe ¢ ¢ ¢

\

\
/
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Gradient Descent and 7

Example
Move in the direction: d = — 1 Vf(X)).

If 17 is small enough, then X, + d is close to
X,, and:

X +d) = f(x) + VAX) d.



https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etasmall.html

Gradient Descent and 7
Applying the first-order Taylor Approximation

Z(Xé! ) =f(X)—nV f(Xt)T V/(x,) < f(x,) as long as 7 is small.

We would like the assurance that gradient descent is always decreasing our

function:
i J(x,) < f(x,_;) at each step 1,
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Gradient Descent and 7
Applying the first-order Taylor Approximation

J(X; ) = (X)) — 7 Vf(Xt)T Vf(x,) < f(Xx,) as long as 7 is small.

We would like the assurance that gradient descent is always decreasing our
function:

f(x)) < f(x,_,) at each step 1.

Strategy: Use Taylor’'s Theorem to analyze the first-order approximation! This
works if the first derivative doesn’t change too much.
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Bounding change in gradients

p-smoothness gyM’? |
For a matrix A € R%, the largest eigenvalue of A is A_. (A).
|\
A symmetric matrix A € | dXd s g [-smooth matrix if its eigenvalues are at

most [

/lmaX(A) S ﬁ‘
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Bounding change in gradients

p-smoothness ~ smeTd
A twice-differentiable function f: R - Ris a p-smooth function if the

eigenvalues of its Hessian at any point X € R? are at most p. That is:

Anax( V(X)) < B
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Bounding change in gradients

p-smoothness

Property (Smoothness bounds quadratic forms). If A € [ dxd g [f-smooth,

then for any unit vector v € | a l ‘
VAy <p)|
[ vIAV <B.| ,

—
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Bounding change in gradients

p-smoothness
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Bounding change in gradients

ol

p-smoothness



https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/smooth1.html

)

Gradient Descent

Applying Taylor’s Theorem j
neorem (Gradient descent makes the function value smaller). Lety - RY > R e a
[ = @ mooth|function. Then, forany t = 1,2,3,..., a gradie ate

e AveN
Wa‘ \Ii‘: X, < X, —nVfX,_) &
oD s o ooy
as the property:

with step sizeln =

?X“ﬁ P

| 1
fx) < fx,_) —=IIVAx,_DII"

= rFCyE\ < f[ff'l
| — :—3

This theorem says that gradient descent always makes our tunction value smaller, as long
as the function’s gradients don’t change too much!
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Gradient Descent

Main tool for proof of GD Theorem

d

Theorem (1st Order Taylor’s Theorem - Lagrange Form). Let f : R — R be
a €~ function. For Xy, d € R", there exists 4 € (0,1) such that for X = x, + Ad

on the line segment between x, and x, + d

1 3
f(xo +d) = f(x) + Vfixy) 'd + EdT V(X)d



Gradient Descent
Proof of GD Theorem

1 2
VA I~

Want to shov{: fx. ) < f(x) 25

Step 1: Use Lagrange’s Form of Taylor’s Theorem to get an expression for f(X, + d).

There exists 4 € (0,1) such that for X = x, + Ad, Xo & Y4

1 N
fix,+d) =f(x)+ Vfix)'d + EdT VZf(X)d
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Gradient Descent
Proof of GD Theorem

1
Want to show: f(x,. ) < f(Xx,) — %Ilvf( x,_DII”.

Step 2: Use f#-smoothness to bound the first-order approximation.

S
1
fix,+d) = f(x,) + Vfix)'d +}—dT V2A(X%)d

Upper bound the quadratic term: 7 _J

J )
1
EdT VZA(X)d = EHdﬂz(d/HdH)T 2f(X)(d/HdH)

idil i

(bound on quadratic forms)
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? K2 > 2&5(

Gradient Descent ;
Proof of GD Theorem P d c/ = ZF c,

1
Want to show: f(X,, |) < f(X,) — ﬁnv fx,_DII%

Step 3: Optimize the quadratic upper bound to find the direction and magnitude to take a step.

) 1
d Vix)'d + —||d]||?
fx,+d) < f(x,) + Vf(X,) +2H I

We need to choose a direction d € R to take a step in. To do this, optimize the RHS:

1
Va(f(x) + Vfix)'d + EHdIIZﬁ) = Vf(x) + fd
—_ = l
Set the gradient to () and solve: / /) )9

Vfx)+pd=0 = d=- %Vﬂxt)
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Gradient Descent
Proof of GD Theorem

Want to show: f(x,, ) < f(X,) — iﬂHVf(xt_l)nZ.

: ala= Joi

Step 4: Plug optimal value of the quadratic upper bound back in to get our result.

W

Notice that d = — — Vf(X,) is exactly how we get our gradient step:

. ks

‘ X, 1 < X, —nVf(x,) withy = 1/p.

Plug this back into the quadratic upper bound: f(x, + d) < f(x,) + Vf(Xt)Td + Elldllzﬁ

f(izi-l') =f<@_%vf(xt)) < f(xp) _l f(Xt)TVf(Xt) L| Vf(Xt)Hz

p 2p
—J

< f(Xt) R ﬁ”Vf(Xt)”z

P
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Gradient Descent
Applying Taylor’s Theorem

Theorem (Gradient descent makes the function value smaller). Let f : R - R be a
G~ [p-smooth function. Then, for any t = 1,2,3,..., a gradient descent update

X, < X,_; —n VAX,_)

1
with step size 7 = — has the property:

p
1
{ f(x) < f(x,_1) — %I\Vf(xt_l)\lz-

This theorem says that gradient descent always makes our function value smaller, as long
as the function’s gradients don’t change too much!
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Gradient Descent

Preview of convexity

Problem: gradient
descent gets us to a
local minimum, but
perhaps not a global
minimum.

f(z)
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Gradient Descent

Preview of convexity

Solution: Convex functions
are functions that “look like
bowls.”

These have nice properties,
the main one being: all local
minima are global minima.

f(z)




Gradient Descent

Preview of convexity

' Theorem (Convergence of GD for smooth, convex functions). Let
f:R" > Rbea %”2, [p-smooth, and function. Let X* be a minimizer of

f,i.e. f(x*) < f(x) forall x € R".

1

If we run gradient descent with step size # = — and initial point X, € R" for T

p

iterations, we have:

fixp) — fix) < % (lIxo = x*I12 = [1xy = x*[12)
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Lesson Overview

Linearization for approximation. We explore using the linearization of a function to
approximate it. This is also called a “first-order approximation.”

Taylor series. We define the Taylor series of a function, which is an “infinite polynomial” that
approximates a function at a point.

First-order and second-order Taylor approximation. The Taylor polynomial allows us to
approximate a funciton by “chopping it off” at a certain degree.

Taylor’s Theorem. To quantify how bad our approximations are, we can use Taylor’s Theorem.
We present two forms of Taylor’s Theorem (Peano and Lagrange).

Gradient descent. We write down the full algorithm for gradient descent, the second “story” of

our course. Using Taylor’s Theorem, we can prove that, for f-smooth functions, GD makes the
function value smaller from iteration to iteration, as long as we set the “step size” small enough.




Lesson Overview

Big Picture: Least Sauares
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Lesson Overview

Big Picture: Gradient Descent
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