Math for Machine Learning Week 3.2: Taylor Series, Linearization, and Gradient Descent

By: Samuel Deng

Logistics & Announcements

• EXTENSION ON PSZ - WE NEXT MONDAY 11:59 PMET. LATE DAT DEADLINE THURS • OVT OF POWN NEXT NEEK -> lecorded bedrues. Virtual OH. A OBTIONAL PECT-PATION: Chris SPM/ 16PM/

Lesson Overview

Linearization for approximation. We explore using the *linearization* of a function to approximate it. This is also called a "first-order approximation."

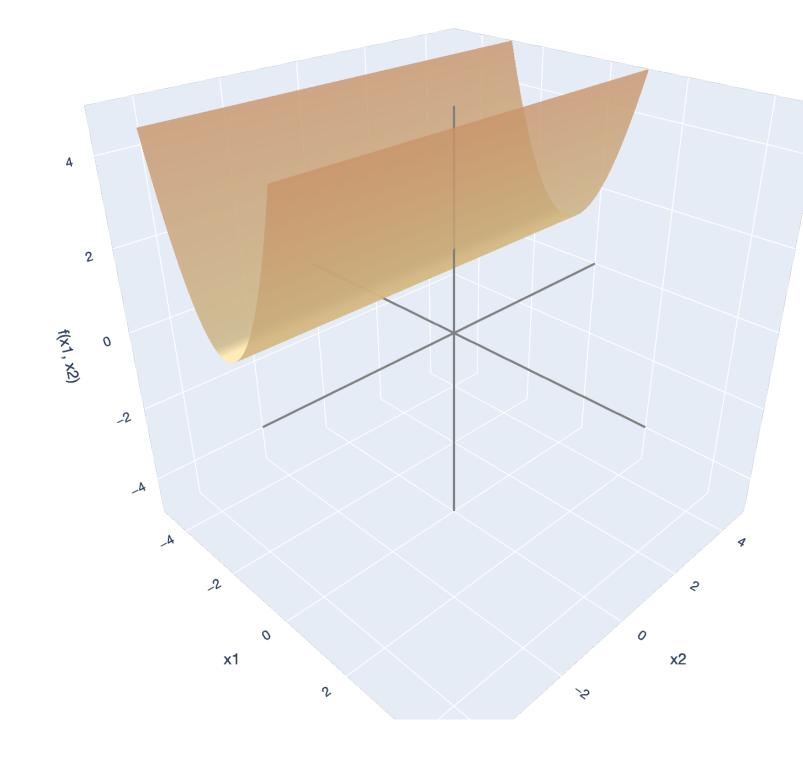
Taylor series. We define the <u>Taylor series</u> of a function, which is an "infinite polynomial" that approximates a function at a point.

First-order and second-order Taylor approximation. The Taylor polynomial allows us to approximate a funciton by "chopping it off" at a certain degree.

Taylor's Theorem. To quantify how bad our approximations are, we can use <u>Taylor's Theorem.</u> We present two forms of Taylor's Theorem (Peano and Lagrange).

Gradient descent. We write down the full algorithm for <u>gradient descent</u>, the second "story" of our course. Using Taylor's Theorem, we can prove that, for <u> β -smooth functions</u>, GD makes the function value smaller from iteration to iteration, as long as we set the "step size" small enough.

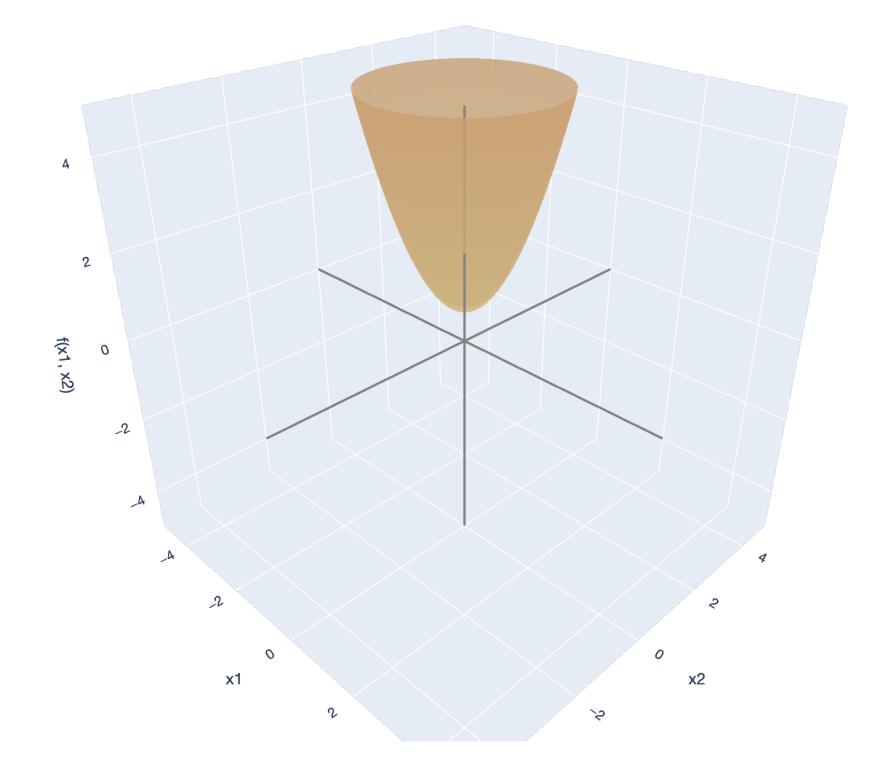
Lesson Overview Big Picture: Least Squares



x1-axis x2-axis f(x1, x2)-axis

 $\lambda_1, \ldots, \lambda_d \geq 0$

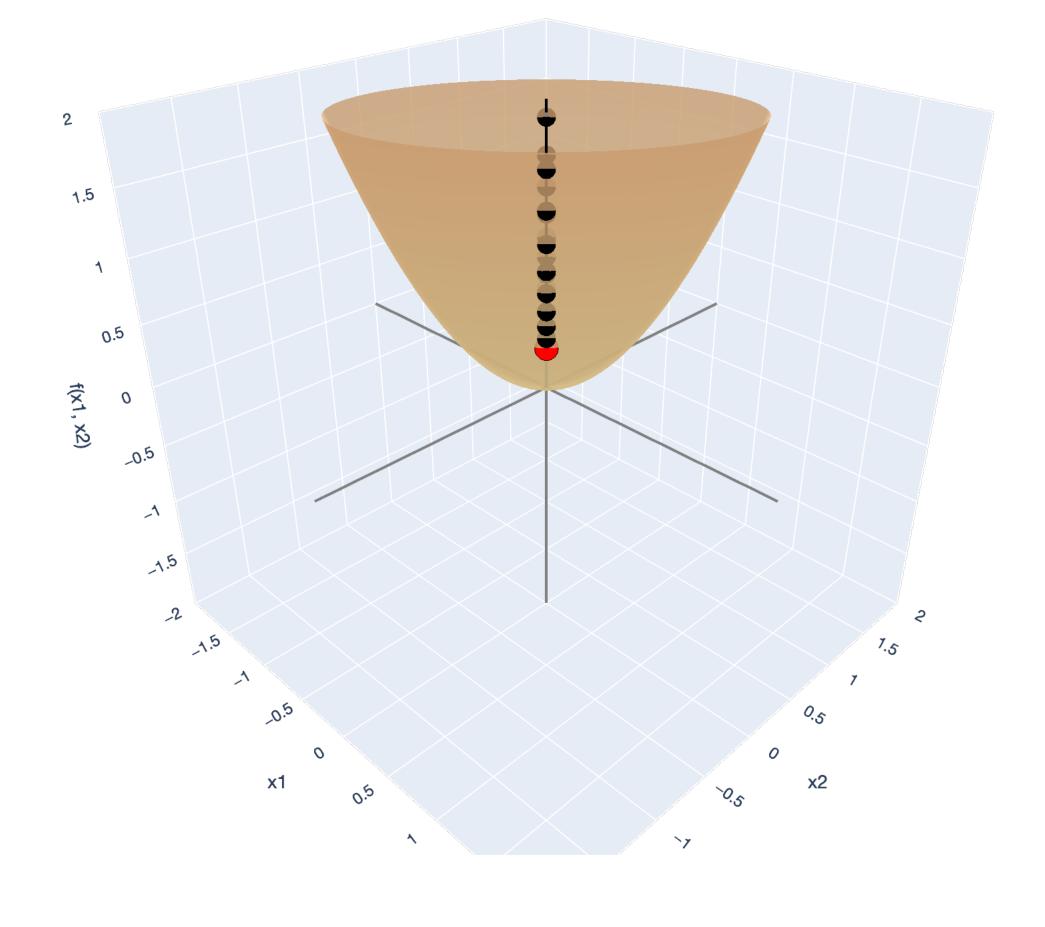
f(m) = || Xw - 7/12 for fixed X.7

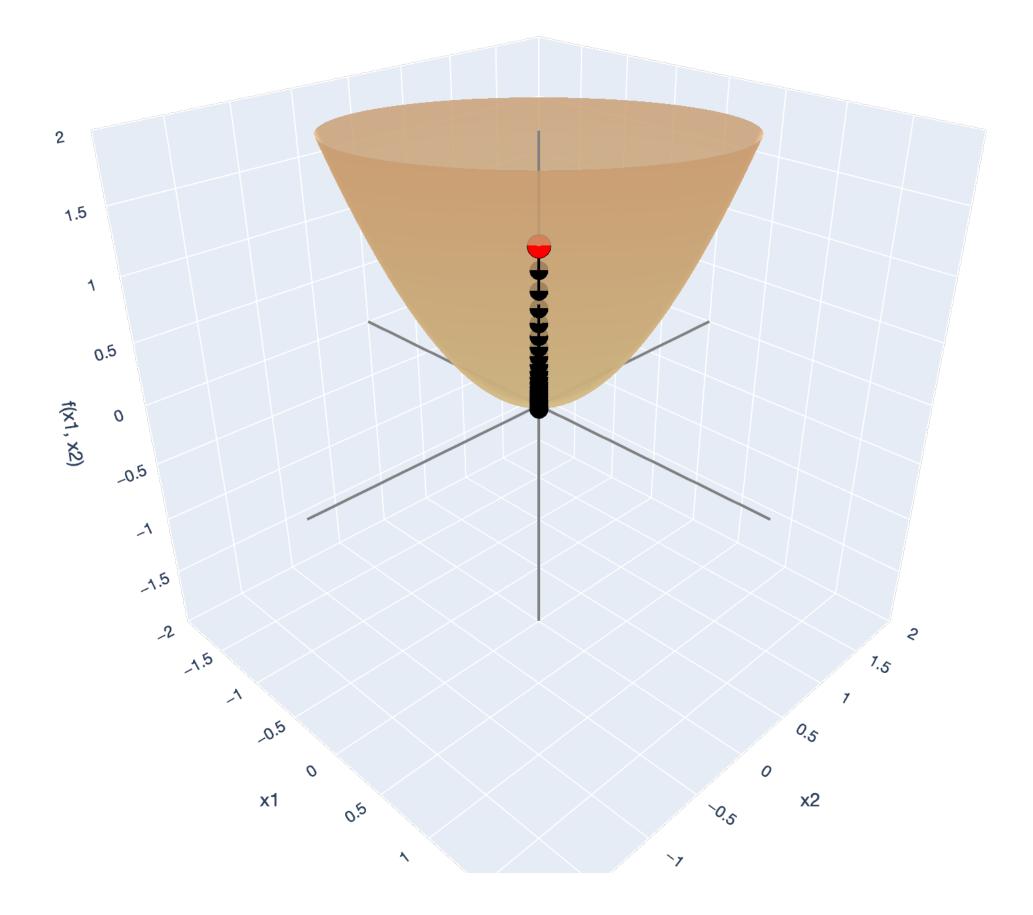


x1-axis x2-axis f(x1, x2)-axis

 $\lambda_1, \ldots, \lambda_d > 0$

Lesson Overview Big Picture: Gradient Descent





Linearization Derivatives to find linear approximations

Motivation **Optimization in calculus**

problems.

In an optimization problem, we want to minimize an <u>objective function</u> $f: \mathbb{R}^d \to \mathbb{R}$ with respect to a set of constraints $\mathscr{C} \subseteq \mathbb{R}^d$:

 ${\mathcal X}$

- In much of machine learning, we design algorithms for well-defined optimization

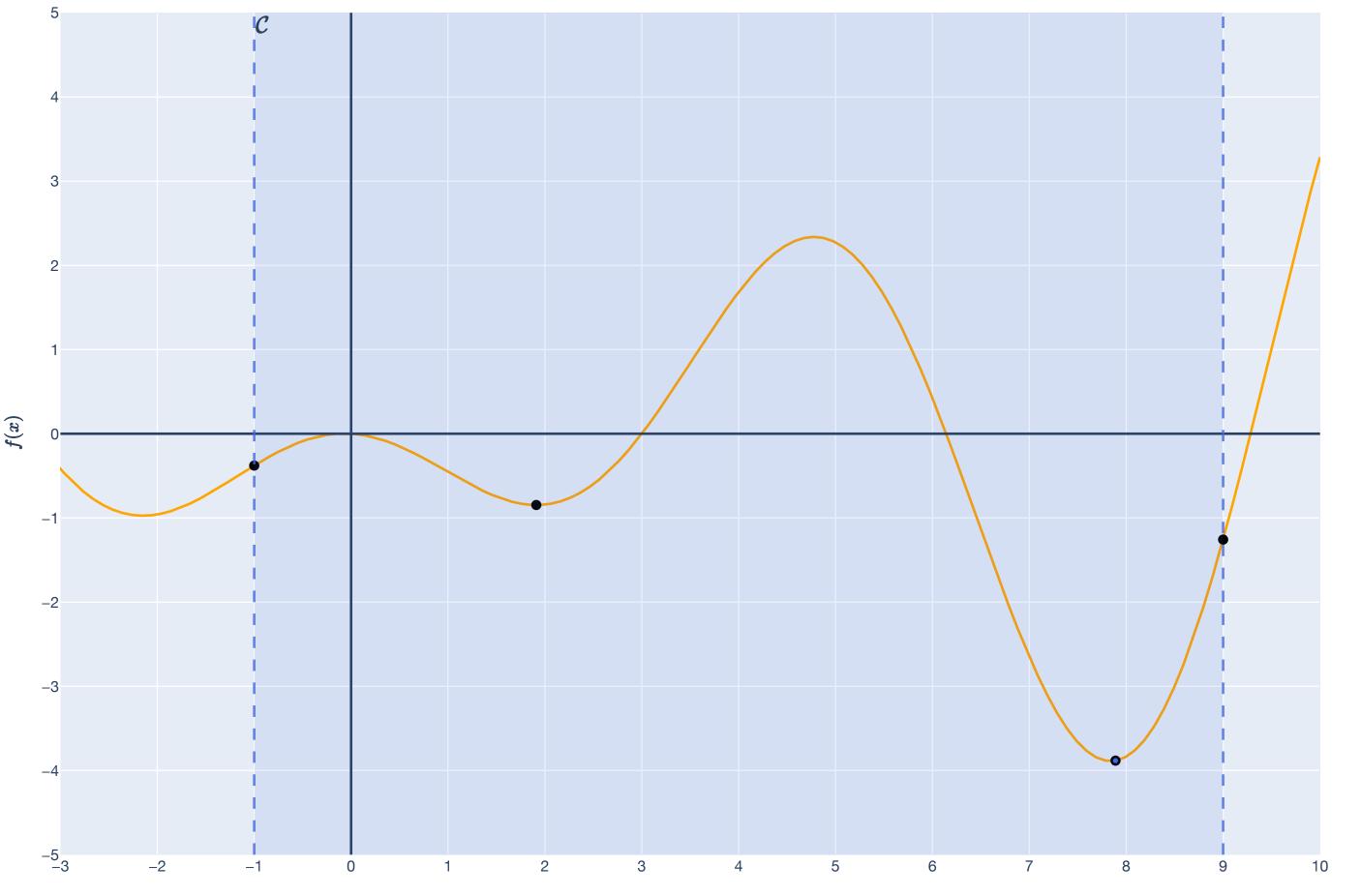
 - minimize f(x)
 - subject to $x \in \mathscr{C}$

Motivation **Optimization in single-variable calculus**

Ultimate goal: Find the global minimum of functions.

Intermediary goal: Find the local minima.

> Derivatives give us the direction of steepest descent!



global mi

Multivariable Differentiation Total Derivative

In this lecture, we'll focus on scalar-valued multivariable functions $f : \mathbb{R}^d \to \mathbb{R}$. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function and let $\mathbf{x}_0 \in \mathbb{R}^d$ be a point. If there exists a gradient vector $\nabla f(\mathbf{x}_0) \in \mathbb{R}^d$ such that

$$\lim_{\vec{\delta} \to \mathbf{0}} \frac{f(\mathbf{x}_0 + \vec{\delta}) - f(\mathbf{x}_0) - \nabla f(\mathbf{x}_0)^{\mathsf{T}} \vec{\delta}}{\|\vec{\delta}\|} = 0,$$

then f is differentiable at \mathbf{x}_0 and has the (total) derivative $\nabla f(\mathbf{x}_0)$. Think of $\vec{\delta}$ as a "change in **x**": for a base point \mathbf{x}_0 and a "destination point" \mathbf{x}' , think of $\vec{\delta} = \mathbf{x}' - \mathbf{x}_0$.

U

Multivariable Differentiation Partial Derivative

derivative of f at \mathbf{x}_0 is

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_0) := \lim_{\delta \to 0} \frac{f(\mathbf{x}_0 + \delta \mathbf{e}_i) - f(\mathbf{x}_0)}{\delta}$$

This is the derivative of f when keeping all but one variable constant.

Let $f: \mathbb{R}^d \to \mathbb{R}$ and let \mathbf{e}_i be the *i*th standard basis vector in \mathbb{R}^d . The *ith partial*

P² ez Î ez

Multivariable Differentiation Partial Derivative

Let $f: \mathbb{R}^d \to \mathbb{R}$ and let \mathbf{e}_i be the *i*th standard basis vector in \mathbb{R}^d . The *ith partial* derivative of f at \mathbf{X}_0 is

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_0) := \lim_{\delta \to 0} \frac{f(\mathbf{x}_0 + \delta \mathbf{e}_i) - f(\mathbf{x}_0)}{\delta}$$

This is the derivative of f when keeping all but one variable constant.

If f is differentiable at \mathbf{X} , then:

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_d}\right]^{\mathsf{T}} \in \mathbb{R}^d$$

Replacing nonlinear functions with linear function

The derivative is a linear transformation that maps changes in inputs to changes in outputs. We like linear transformations!

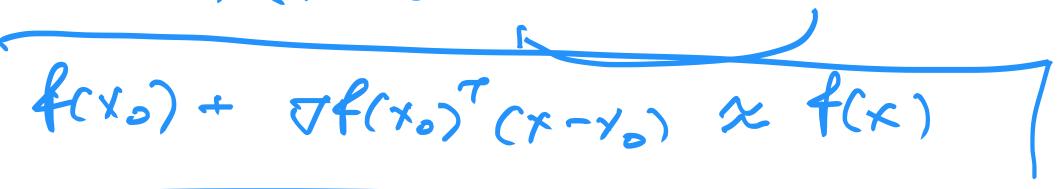
T: change in

A goal of differential calculus, for us, is to replace nonlinear functions with linear

$$\mathbf{x} \to \text{change in } f(\mathbf{x})$$

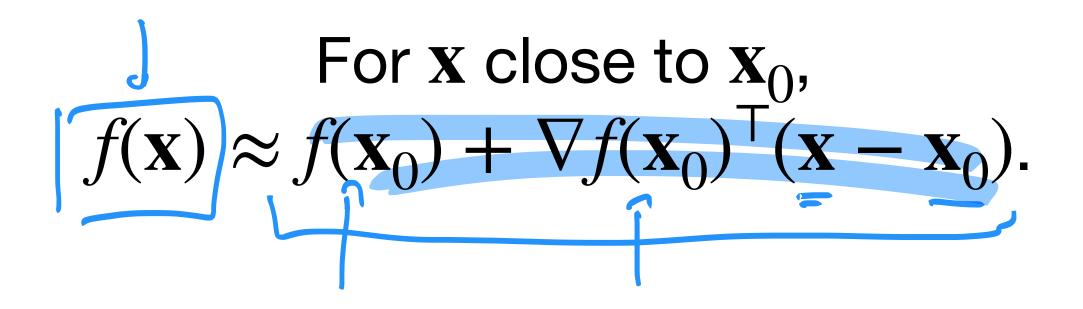
$$\frac{d\gamma}{dx} \cdot dx = o$$

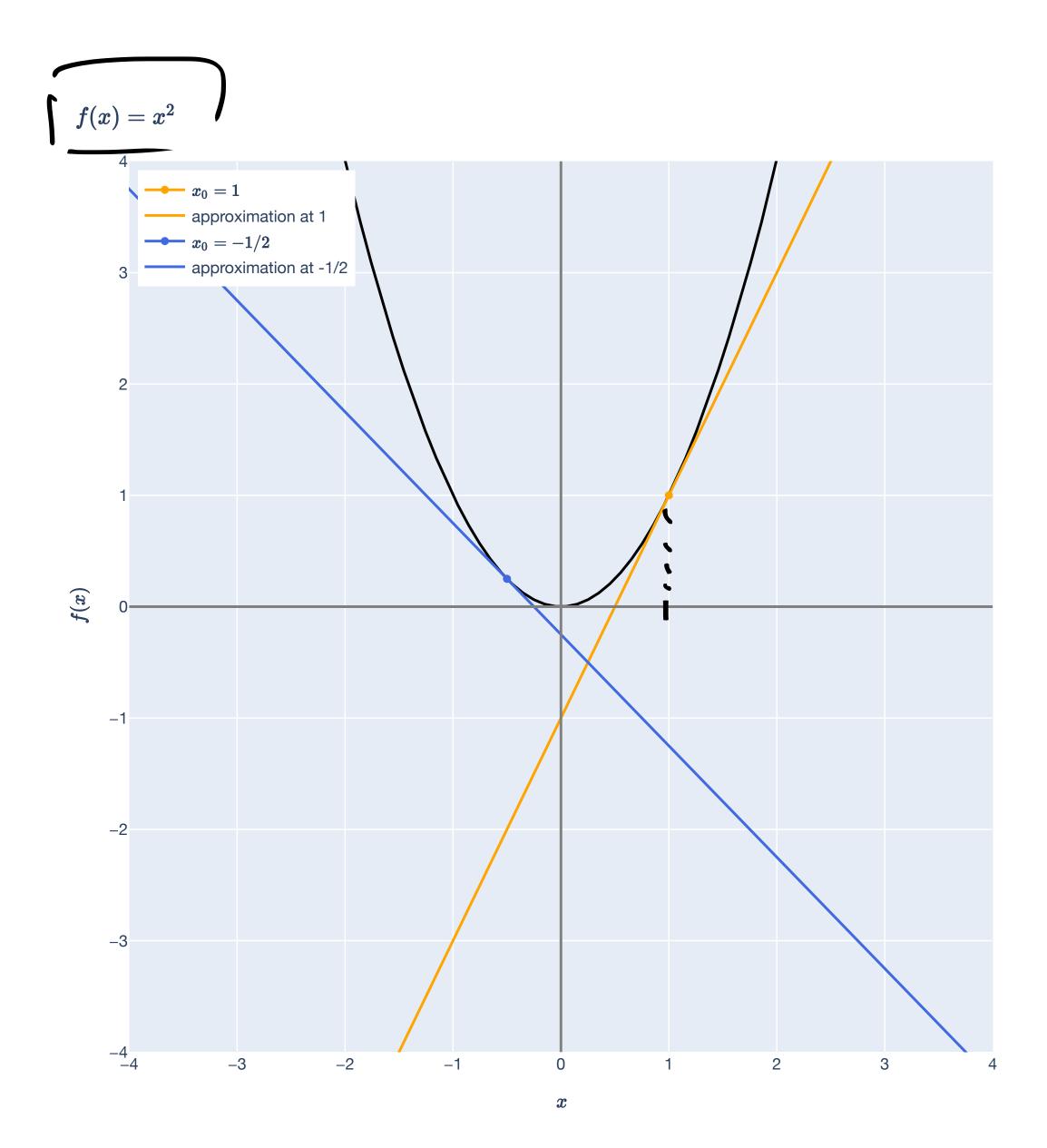
$$\frac{d\gamma}{dx} \cdot dx = o$$



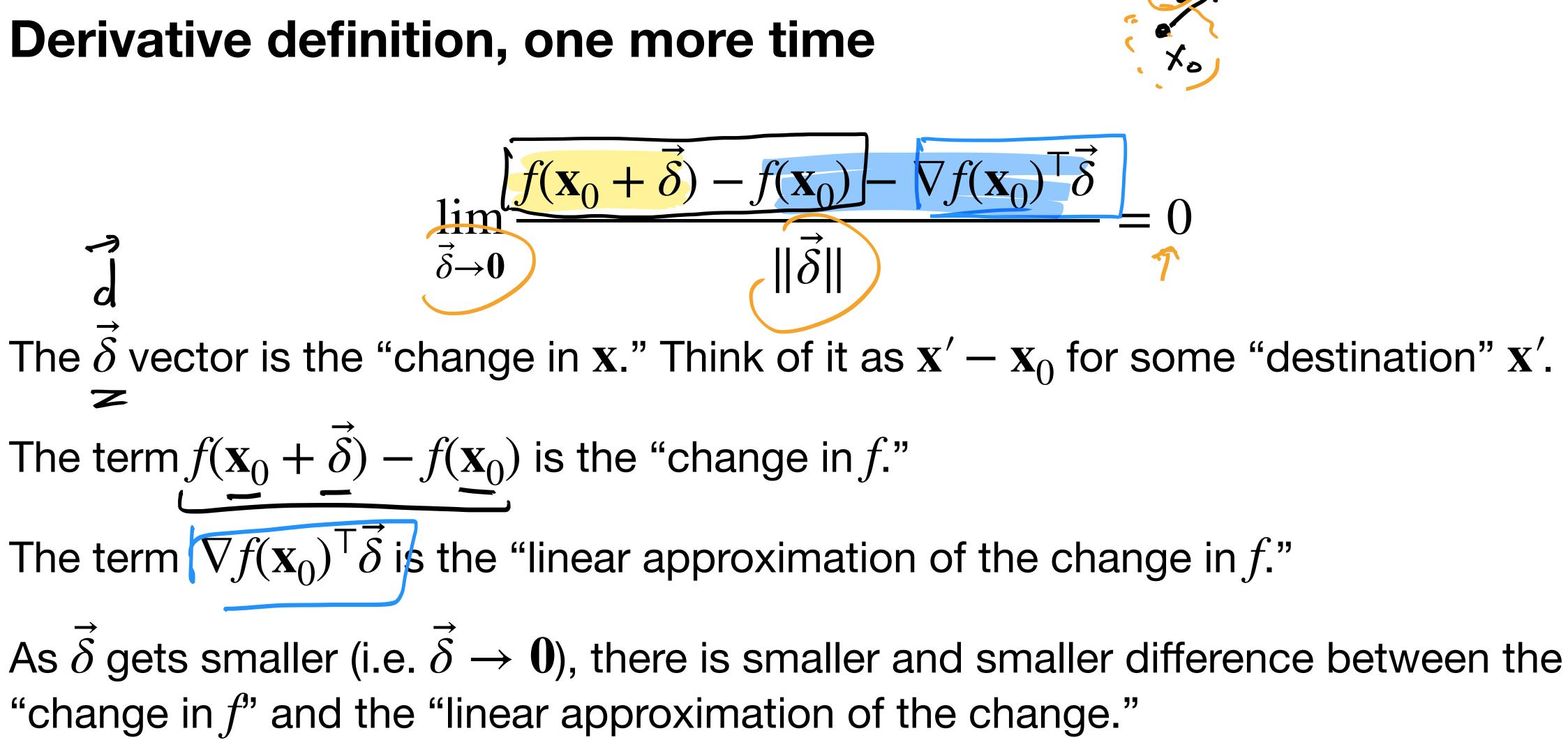
Linearization

The behavior of a differentiable function close to a point **x** can be approximated with the linear transformation given by its derivative.

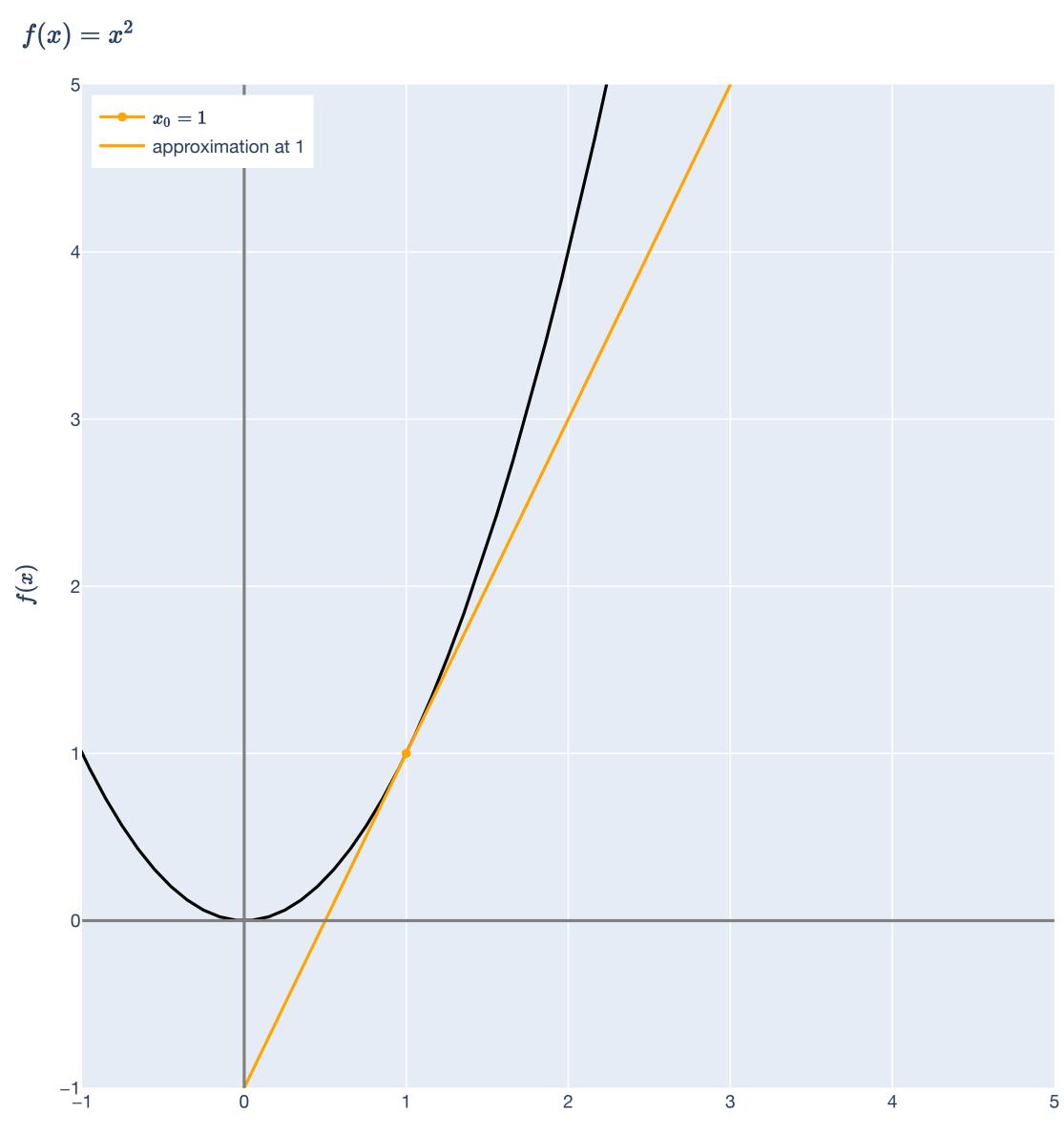




Linearization



Linearization $f: \mathbb{R} \to \mathbb{R}$ example $f(x) = x^2$ with $x_0 = 1$ What is the linearization? $\nabla F(x) = 2x$ $\nabla f(x_0) = 2$ f(x)+ √f(x) (x-x) = | + Z(X-1)



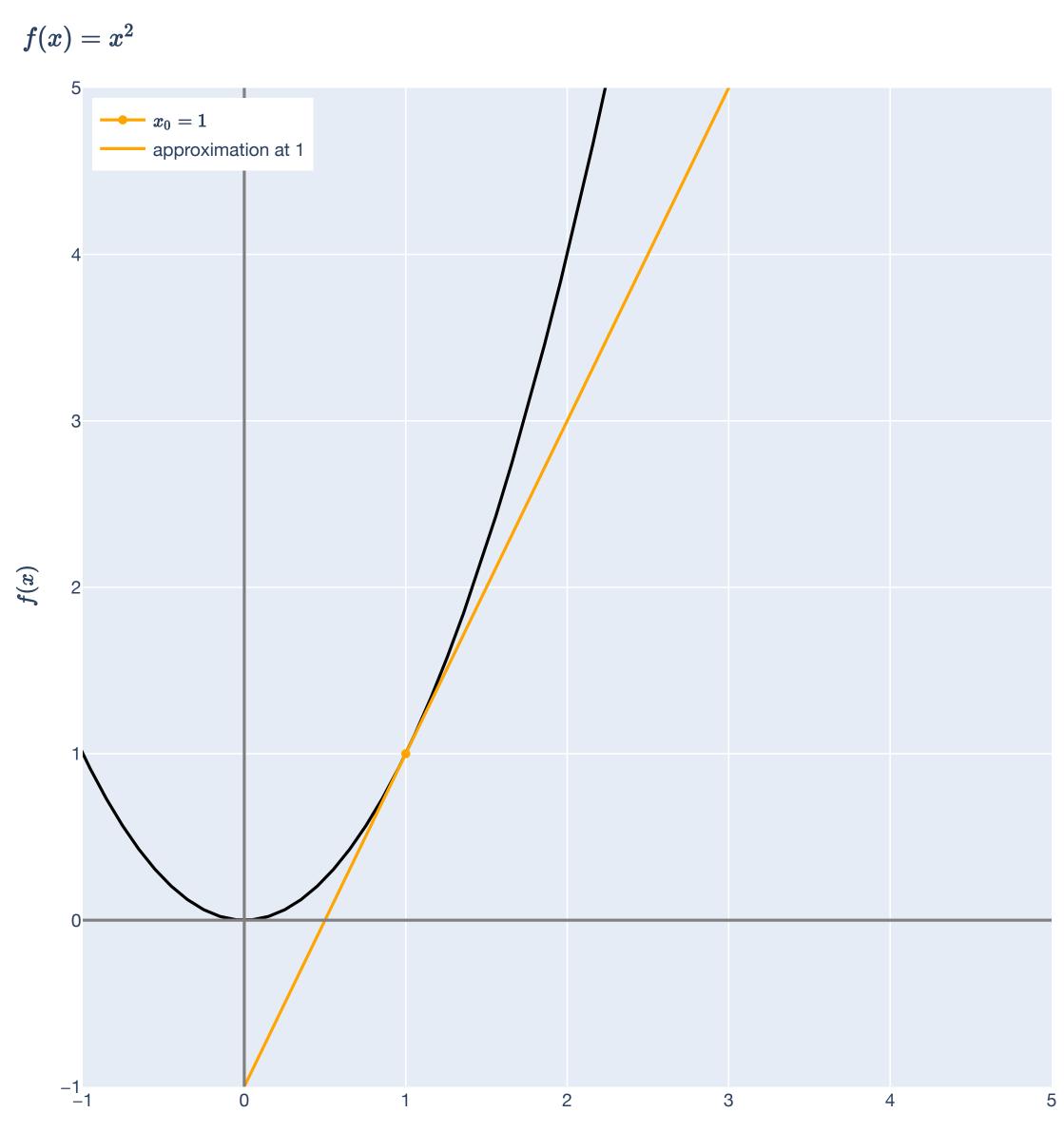
 \boldsymbol{x}

Linearization $f: \mathbb{R} \to \mathbb{R}$ example

 $f(x) = x^2$ with $x_0 = 1$

What is the linearization?

 $f(x) \approx f(x_0) + \nabla f(x_0)(x - x_0)$



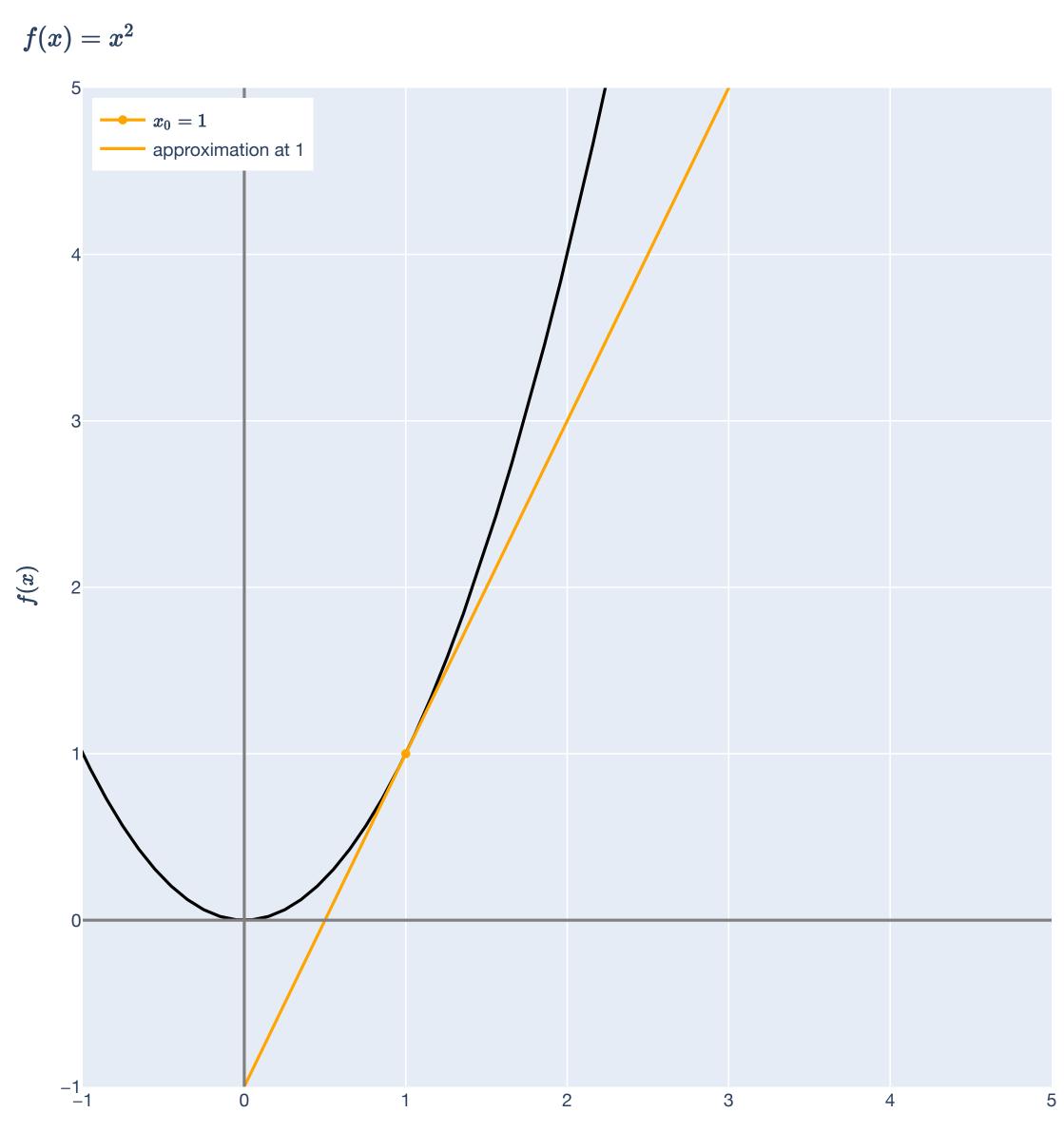
 \boldsymbol{x}

Linearization $f: \mathbb{R} \to \mathbb{R}$ example

 $f(x) = x^2$ with $x_0 = 1$

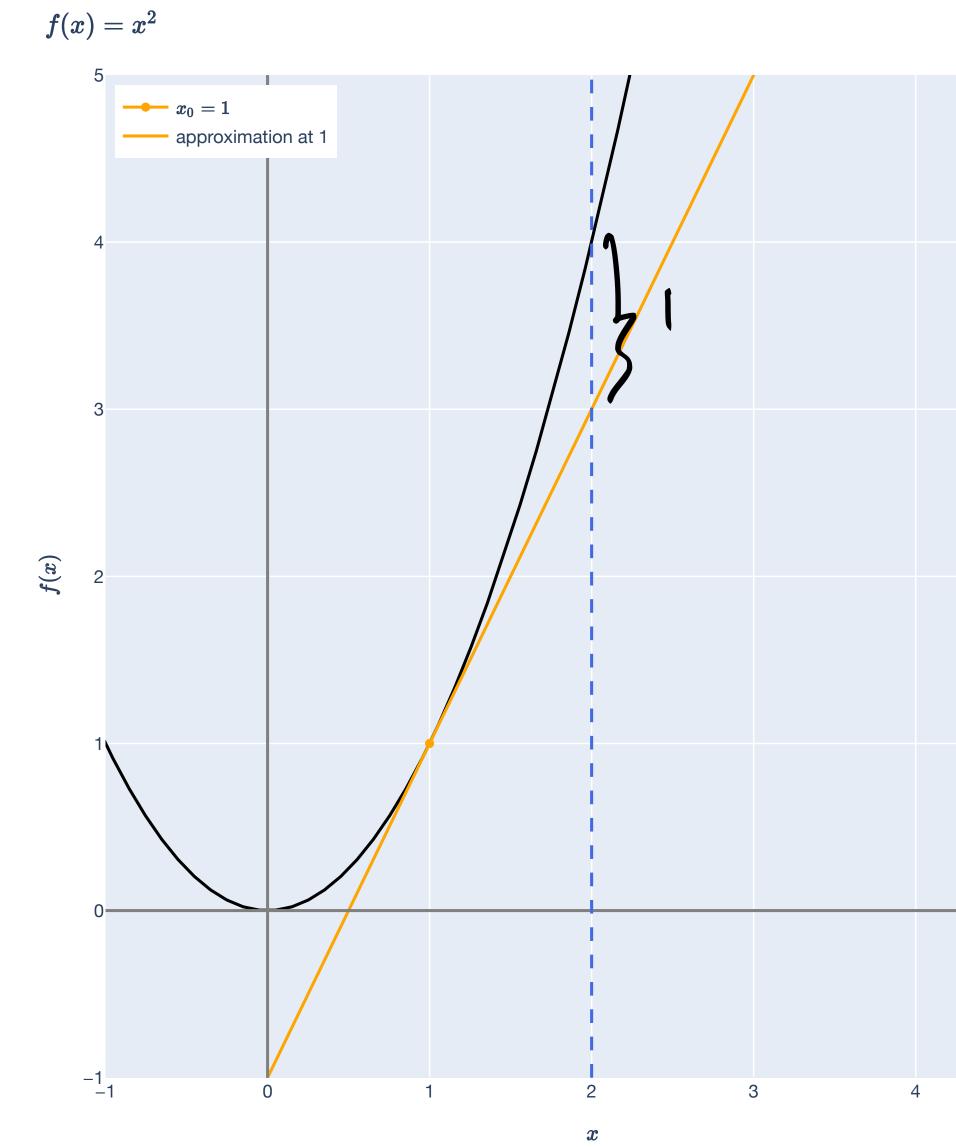
What is the linearization?

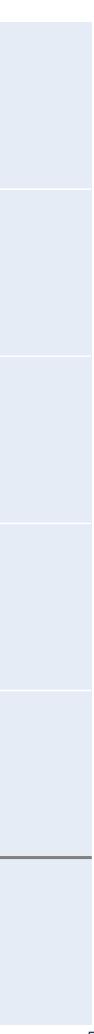
 $f(x) \approx 1 + 2(x - 1)$



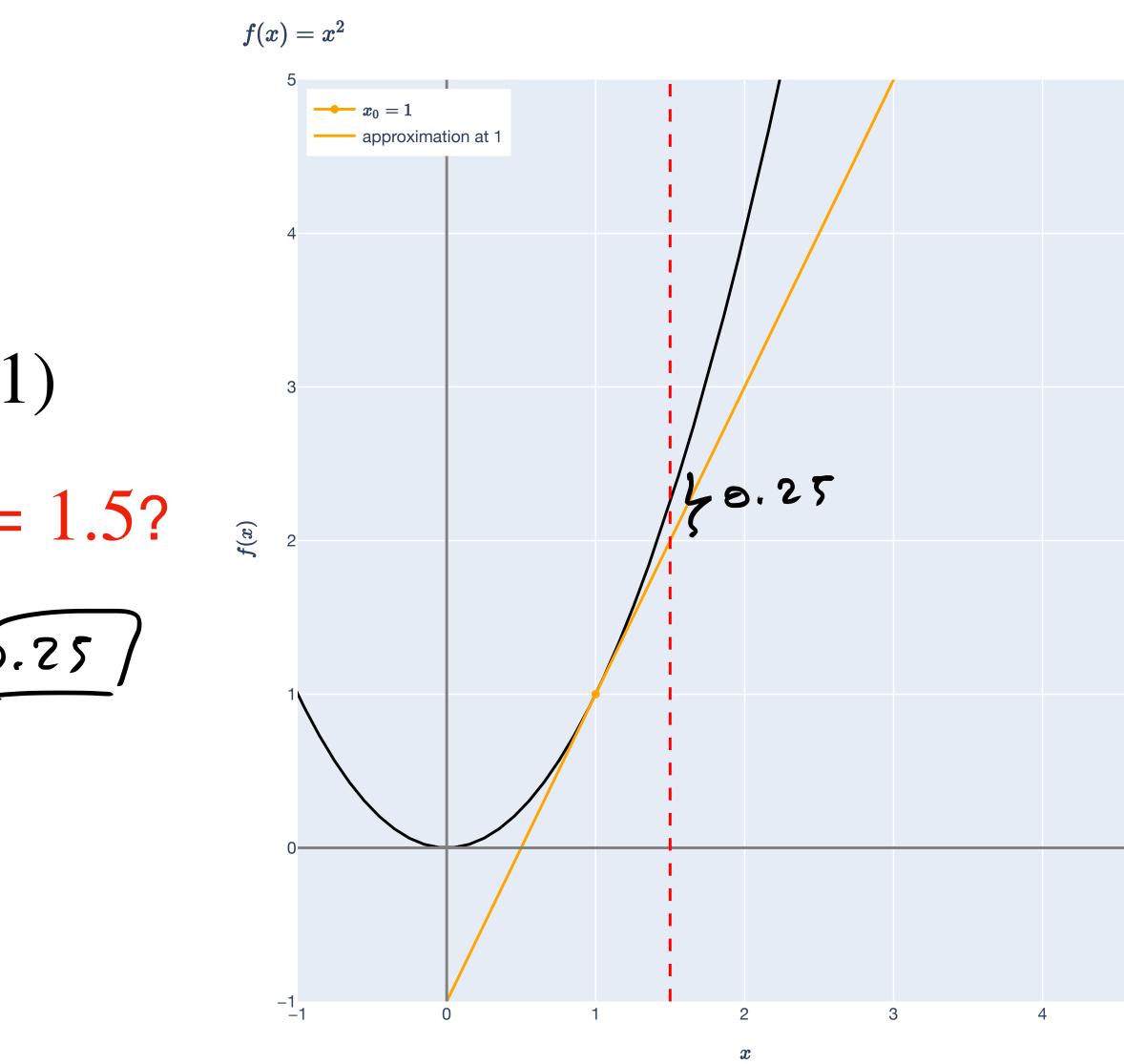
 \boldsymbol{x}

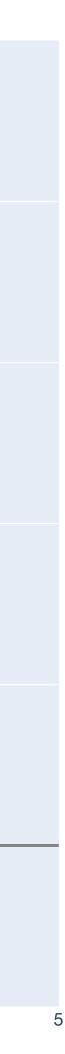
Linearization $f: \mathbb{R} \to \mathbb{R}$ example $f(x) = x^2$ with $x_0 = 1$ Linearization: $f(x) \approx 1 + 2(x - 1)$ How good is the approximation at x = 2? Actual: f(z) = iqAppmor: f(z-i) = i37





Linearization $f: \mathbb{R} \to \mathbb{R}$ example $f(x) = x^2$ with $x_0 = 1$ Linearization: $f(x) \approx 1 + 2(x - 1)$ How good is the approximation at x = 1.5? Actual: $f(x) = 1.5^2 = 2.25$ () 10.25Approx (+2(1.5-1)) = 2



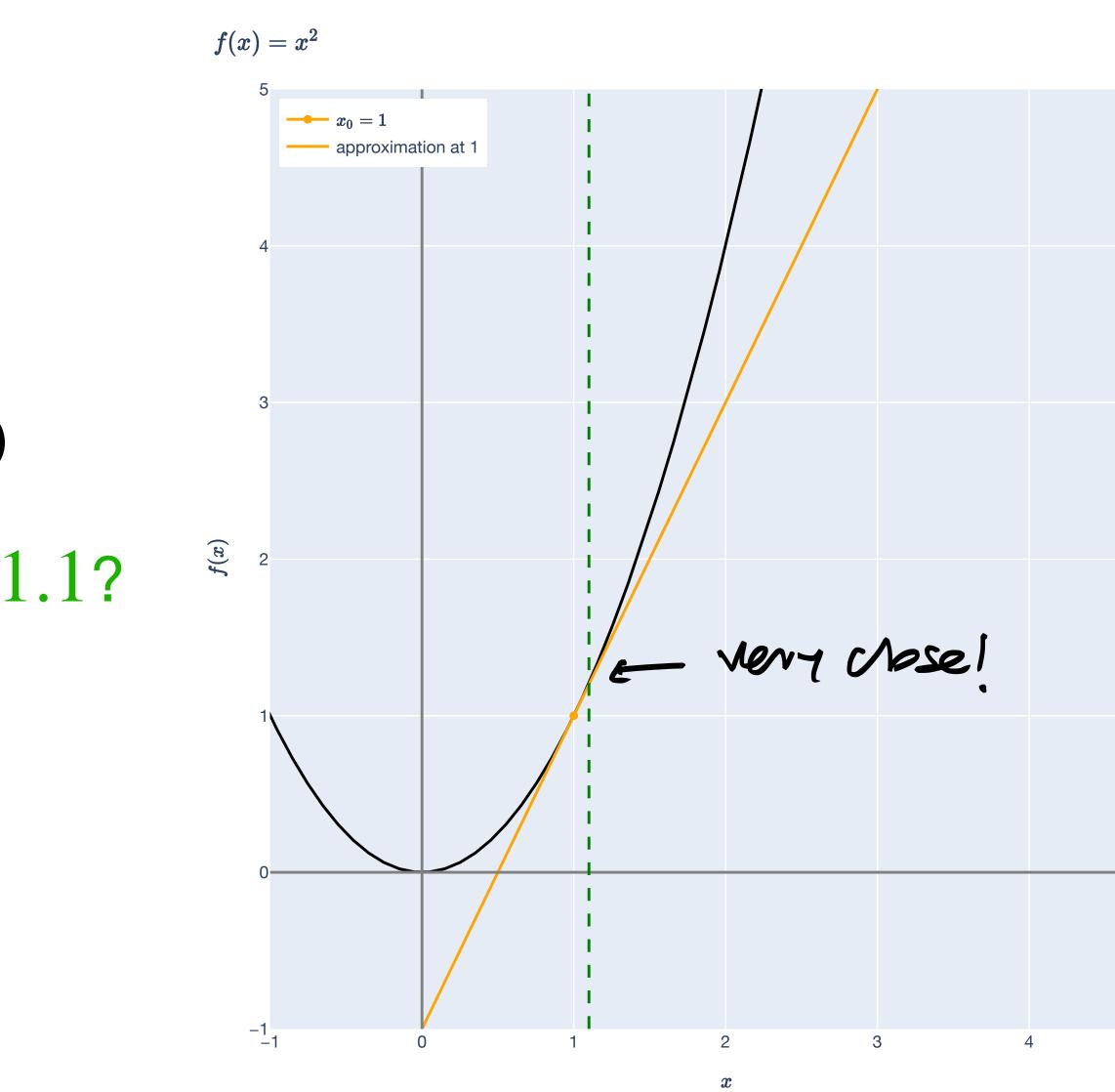


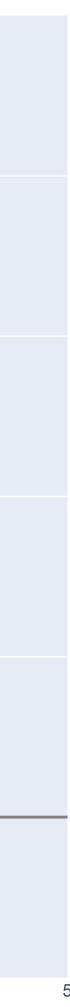
Linearization $f: \mathbb{R} \to \mathbb{R}$ example

$$f(x) = x^2$$
 with $x_0 = 1$

Linearization: $f(x) \approx 1 + 2(x - 1)$

How good is the approximation at x = 1.1?





Linearization $f: \mathbb{R}^2 \to \mathbb{R}$ example

 $f(x_1, x_2) = x_1^2 + x_2^2$ with $\mathbf{x}_0 = (1, 1)$

What is the linearization?

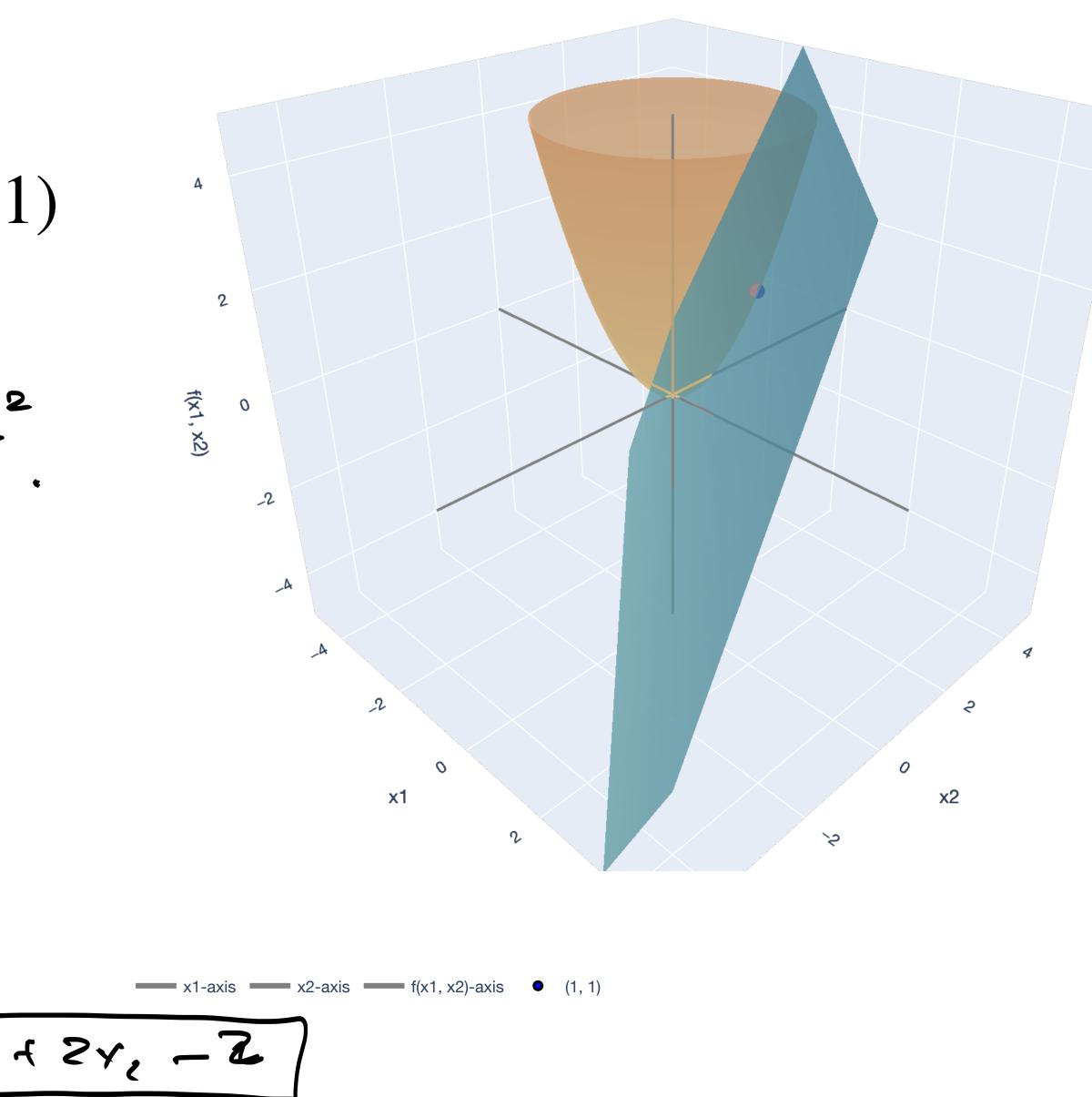
$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 2y_2 \end{bmatrix} \int ff$$

\$(x)+ T\$(x)(x-x0)

$$2 + [z 2] [x_{2} - 1] [x_{2} - 1]$$

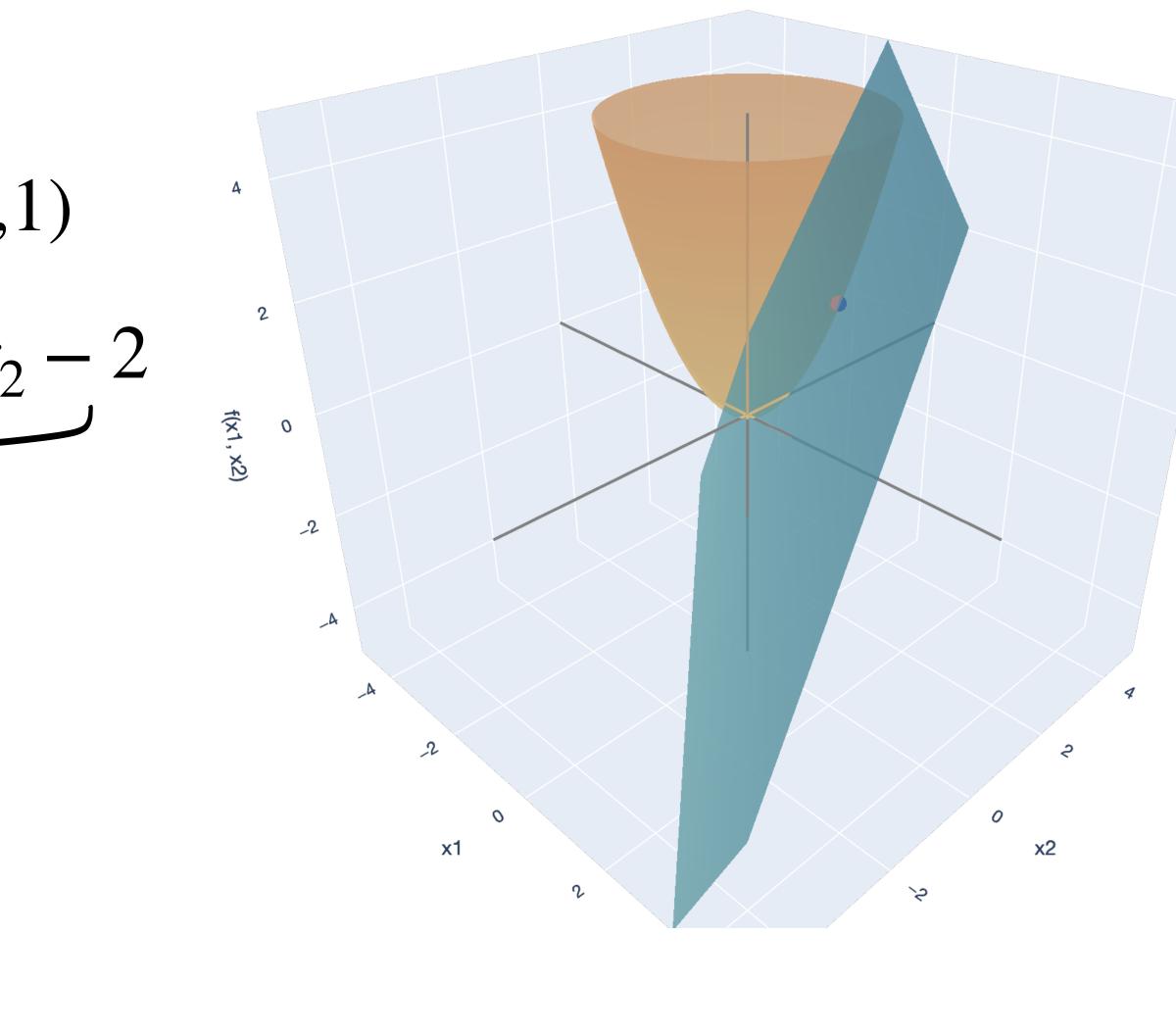
 $= 2 + 2 (x_{2} - 1) + 2 (x_{2} - 1)$

= Z + Zx1 - Z + Zx2 - Z = [Zx1 + Zx2 - Z



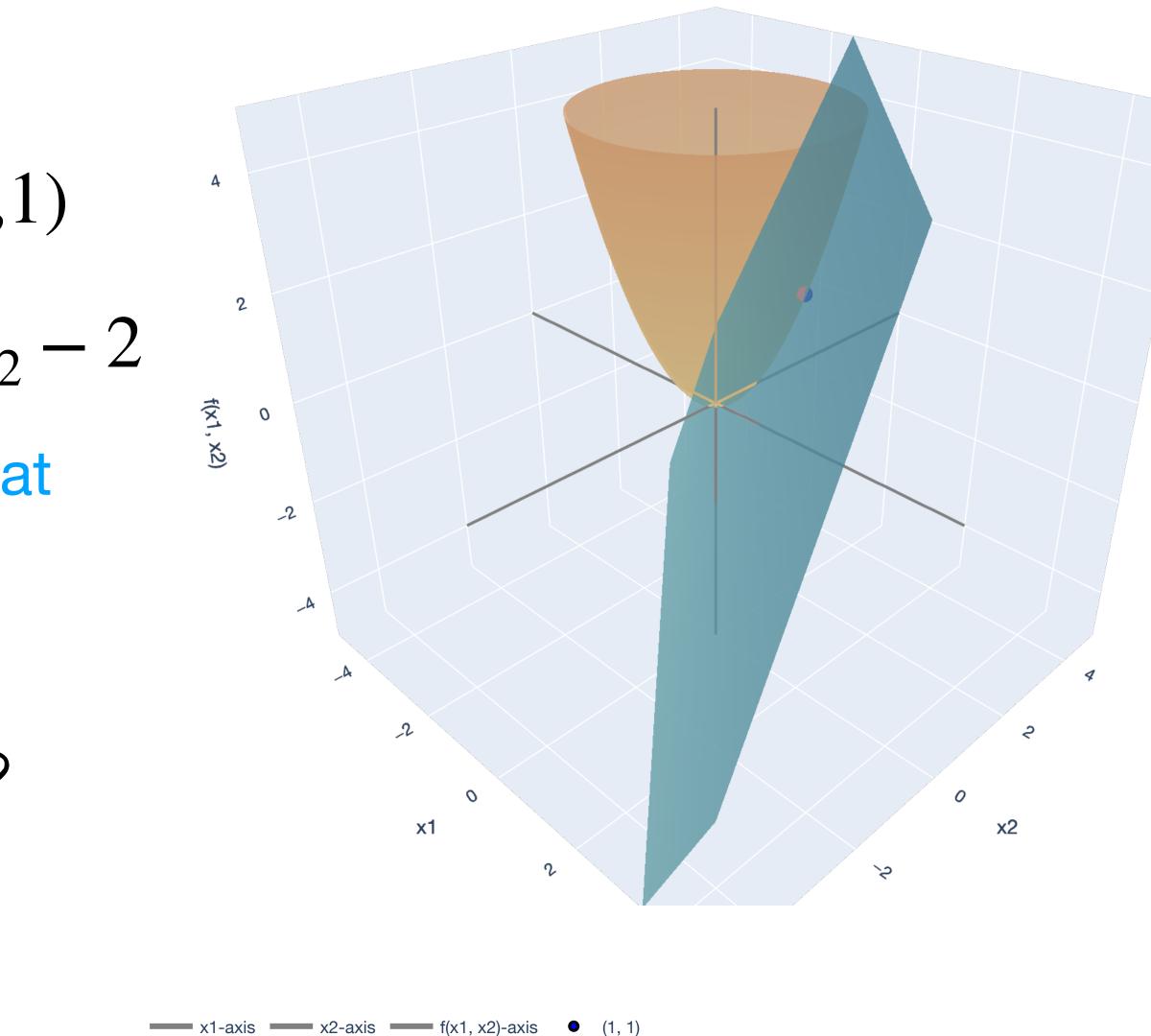
Linearization $f: \mathbb{R}^2 \to \mathbb{R}$ example

 $f(x_1, x_2) = x_1^2 + x_2^2$ with $\mathbf{x}_0 = (1, 1)$ Linearization: $f(x_1, x_2) \approx 2x_1 + 2x_2 - 2$



Linearization $f: \mathbb{R}^2 \to \mathbb{R}$ example $f(x_1, x_2) = x_1^2 + x_2^2$ with $\mathbf{x}_0 = (1, 1)$ Linearization: $f(x_1, x_2) \approx 2x_1 + 2x_2 - 2$ How good is the approximation at $\mathbf{x} = (0,1)?$

Actual: $0^{7} + 1^{2} = 1$ () Affmax: $2 \cdot 0 + 2 \cdot 1 - 2 = 0$

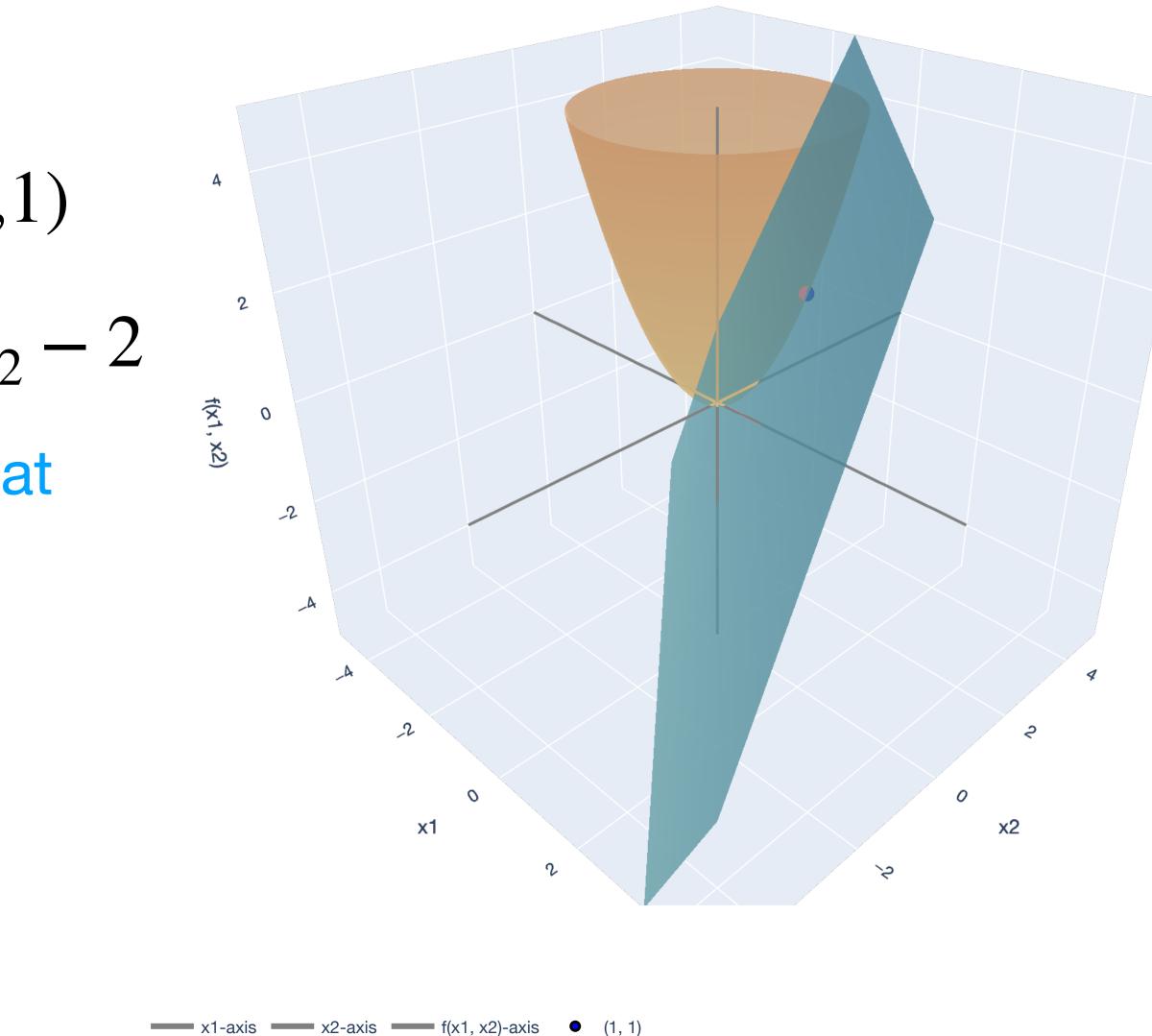


Linearization $f: \mathbb{R}^2 \to \mathbb{R}$ example

 $f(x_1, x_2) = x_1^2 + x_2^2$ with $\mathbf{x}_0 = (1, 1)$

Linearization: $f(x_1, x_2) \approx 2x_1 + 2x_2 - 2$

How good is the approximation at $\mathbf{x} = (1,0)$?



Taylor Series In one variable

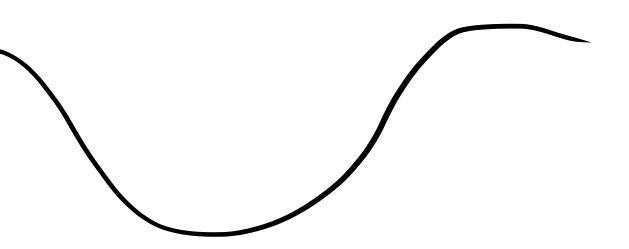
\mathscr{C}^p functions and "smoothness" **Review of smooth functions**

Smooth functions are functions that have (several) continuous derivatives.

A function $f: \mathbb{R}^d \to \mathbb{R}$ is <u>continuously differentiable</u> if all of the partial and the collection of all such functions are the class \mathscr{C}^1 .

The class \mathscr{C}^{∞} are the *infinitely differentiable* functions — these have derivatives of any order.

derivatives of f exist and are continuous. We call such functions \mathscr{C}^1 functions,



\mathscr{P}^p functions and "smoothness" **Review of smooth functions**

Smooth functions are functions that have (several) continuous derivatives.

A function $f: \mathbb{R}^d \to \mathbb{R}$ is <u>continuously differentiable</u> if all of the partial and the collection of all such functions are the class \mathscr{C}^1 .

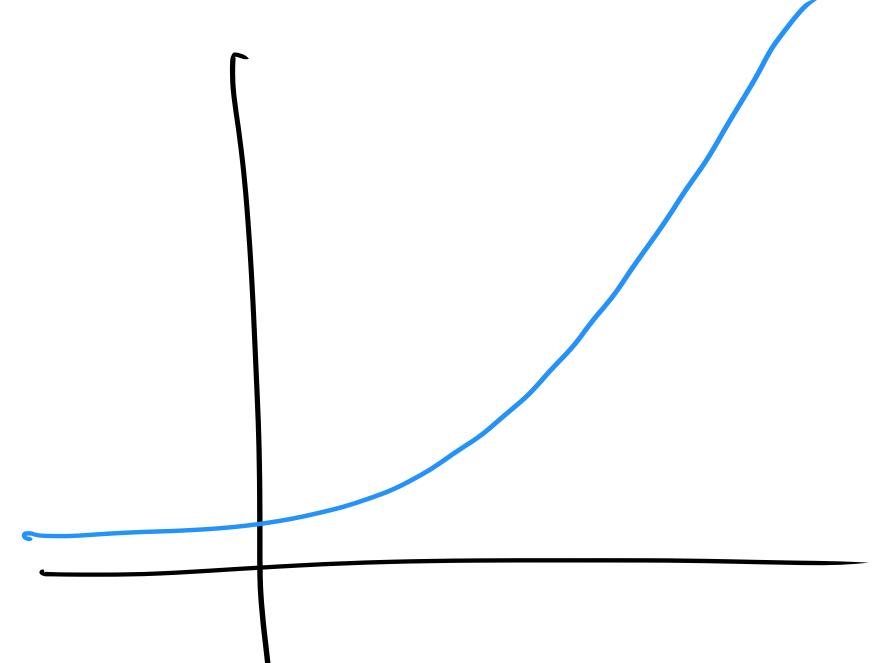
The class \mathscr{C}^{∞} are the *infinitely differentiable* functions — these have derivatives of any order.

"Smooth" varies from problem to problem. It usually denotes a function being "sufficiently differentiable."

derivatives of f exist and are continuous. We call such functions \mathscr{C}^1 functions,

C^p functions and "smoothness" Review of smooth functions

Example.
$$f(x) = e^{x}$$
. $\in \mathcal{C}^{\infty}$
 $f'(x) = e^{x}$
 $f''(x) = e^{x}$
 \vdots



C^p functions and "smoothness" Review of smooth functions

Example. $f(x) = \sin x$. $\in \mathcal{C}^{\infty}$ $f'(x) = \infty \leq x$ $\xi''(x) = - \leq n x$

0

0

\mathscr{P}^p functions and "smoothness" **Review of smooth functions**

Example. $f(x_1, x_2) = x_1^2 + x_2^2$. Polynomials, in general. $\nabla f(x_1, x_2) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} \rightarrow \frac{\partial f}{\partial x_1} \rightarrow \frac{\partial f}{\partial x_2} = 2$

Polynomials Single-variable definition

A single-variable <u>polynomial function</u> of degree m is a function $f : \mathbb{R} \to \mathbb{R}$ that can be written in the form:

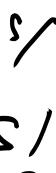
$$a_m x^m + a_{m-1} x^{m-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

where $a_m, \ldots, a_0 \in \mathbb{R}$ are the *coefficients* of the polynomial.

$$a_{3} = 4 \quad a_{2} = 0 \quad a_{1} = 2$$

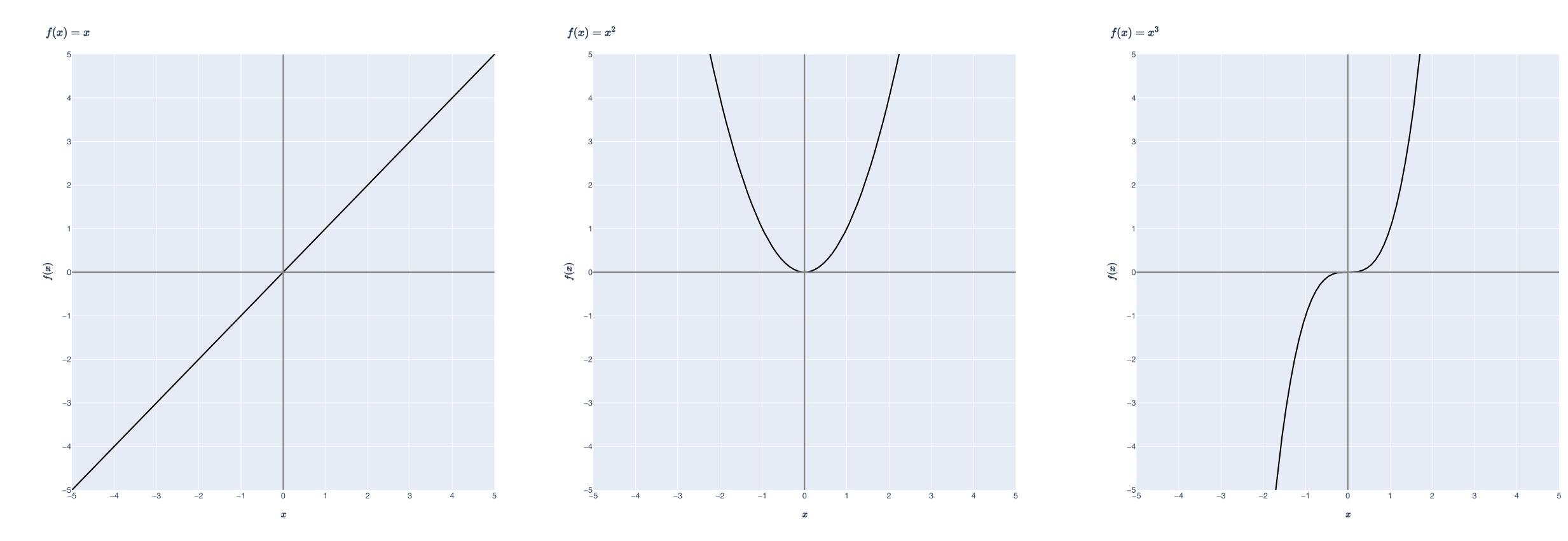
Example: $f(x) = 4x^{3} + 2x - 1$.

 $o_0 = -1$

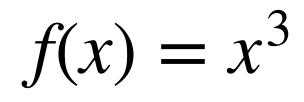


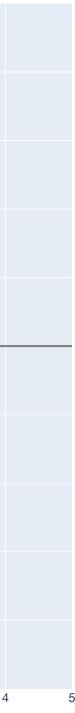
Polynomials Single-variable definition

$$f(x) = x$$



 $f(x) = x^2$



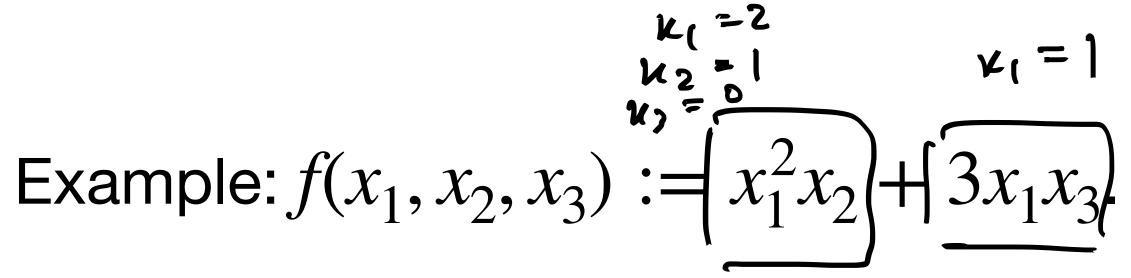


Polynomials **Multivariable definition**

A <u>monomial function</u> is a function $f : \mathbb{R}^d \to \mathbb{R}$ of the form

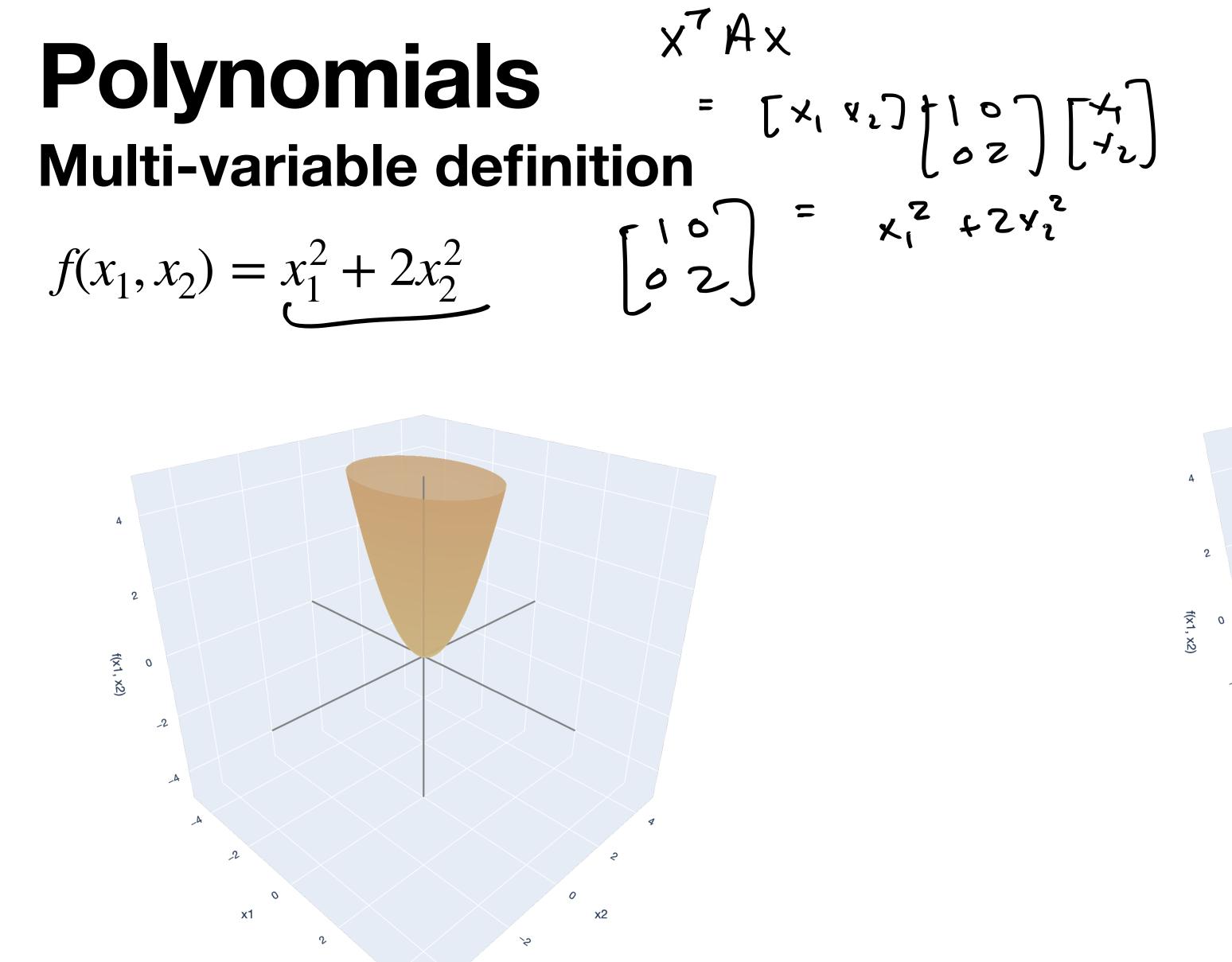
$$\begin{bmatrix} x_1^{k_1} \dots x_d^{k_d} \end{bmatrix}$$
 with intege

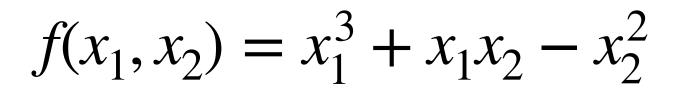
with real coefficients.

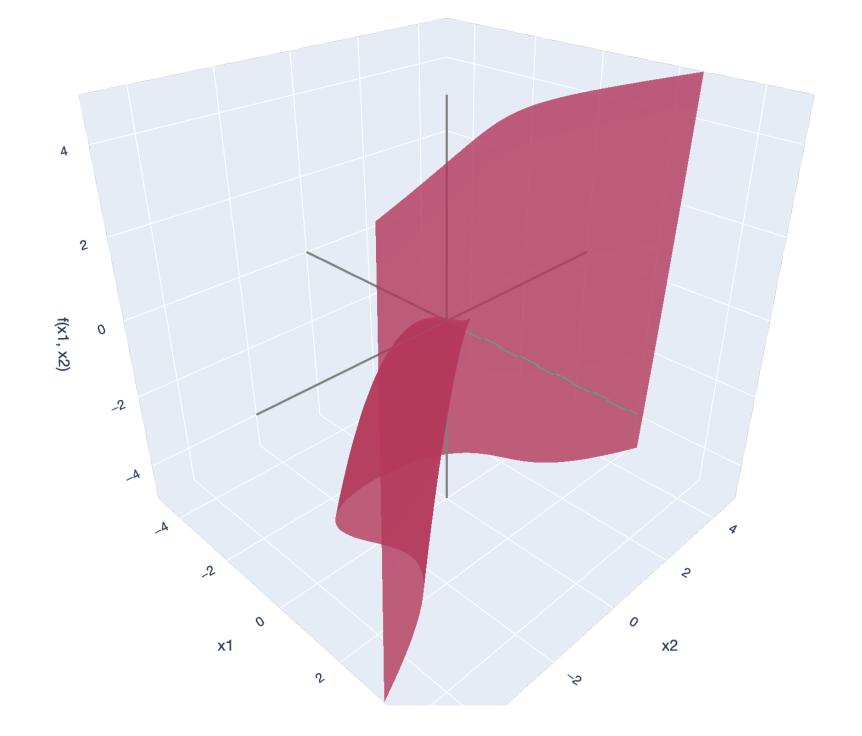


- er exponents $k_1, \ldots, k_d \geq 0$.

- A <u>polynomial function</u> is a function $f : \mathbb{R}^d \to \mathbb{R}$ is a finite sum of monomials
 - $k_1 = 1$ $k_2 = 0$ $k_3 = 1$



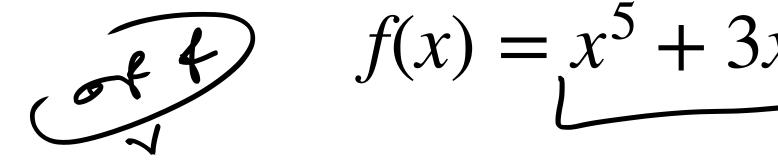




x1-axis x2-axis f(x1, x2)-axis

Taylor Series Intuition

We like *polynomials* — they're easy to perform calculus on and analyze.

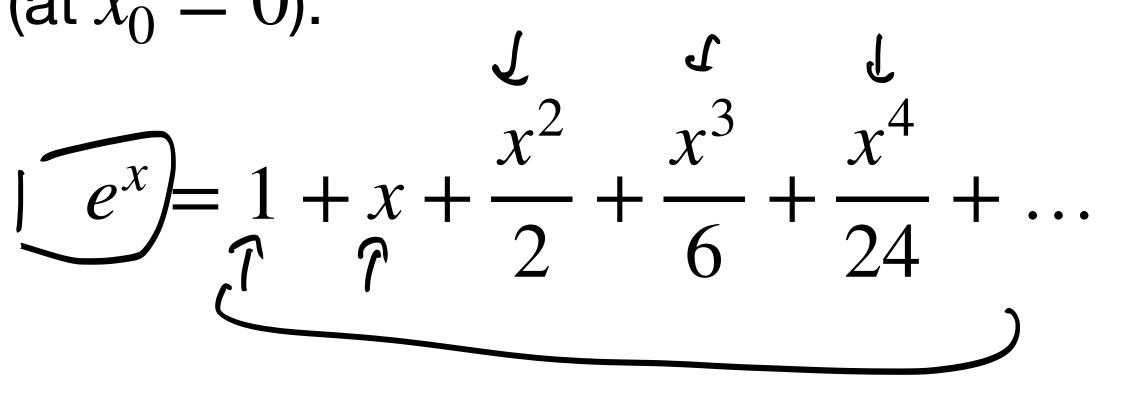


an "infinite polynomial," expanded around x_0 .

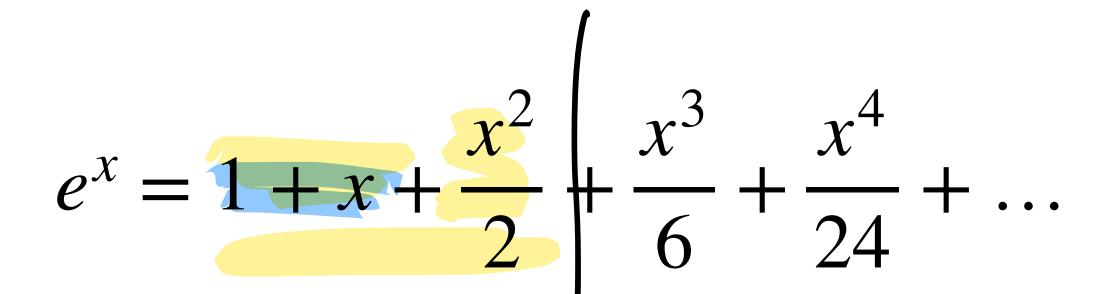
Canonical example (at $x_0 = 0$):

$$x^3 - 2x^2 + 3x - 1$$

A <u>Taylor series</u> at some point x_0 is the representation of "smooth" functions as



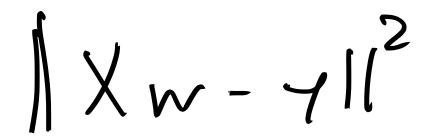
Taylor Series Intuition



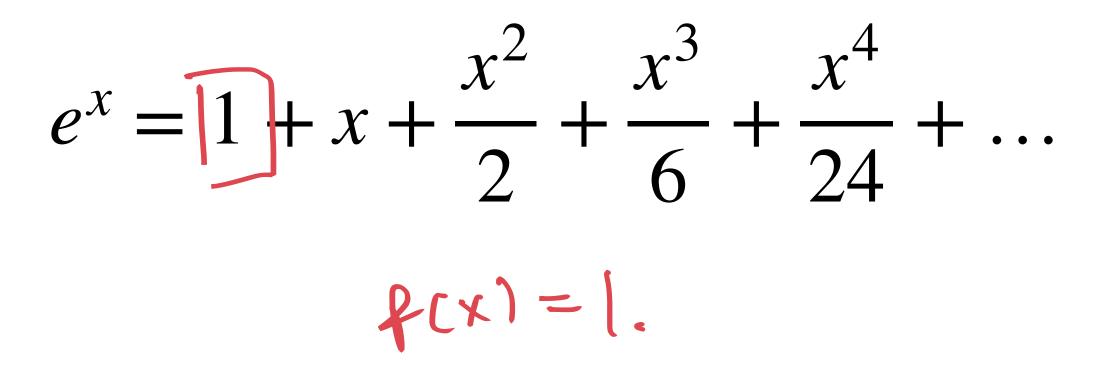
"Cutting off" the Taylor series at some order p of derivatives gives us the <u>pth-</u> order Taylor approximation.

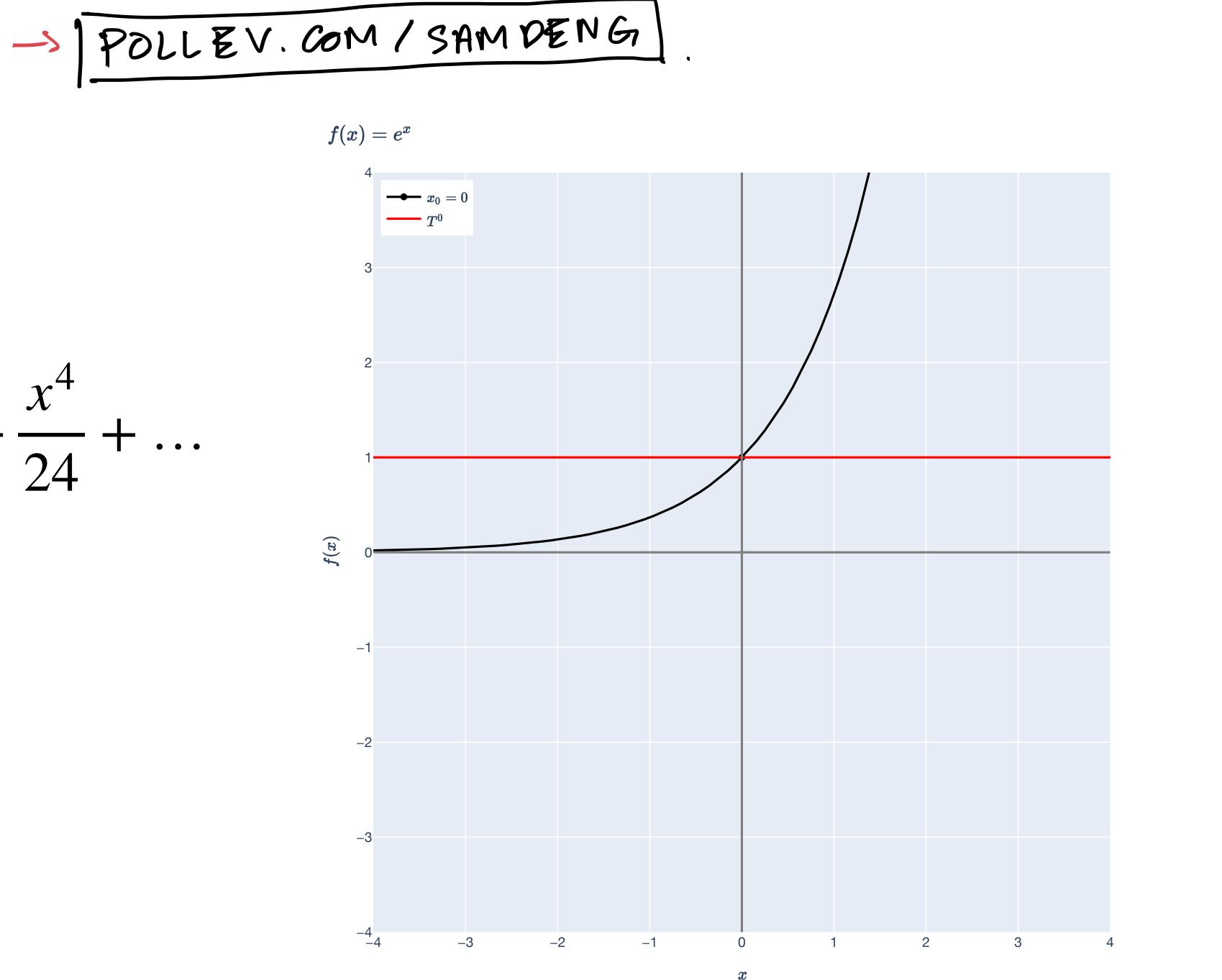
The first-order Taylor approximation is just the *linearization*!

The second-order Taylor approximation is just a quadratic function!

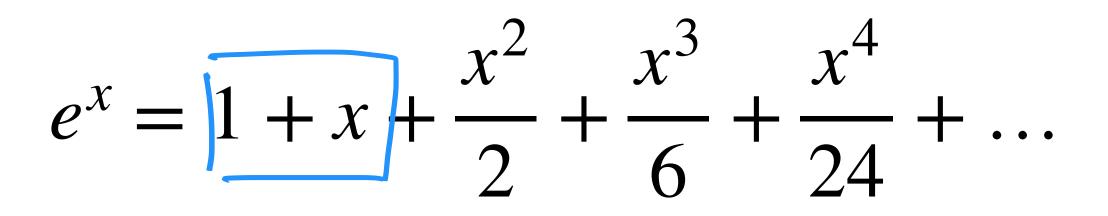


Taylor series at $x_0 = 0$:

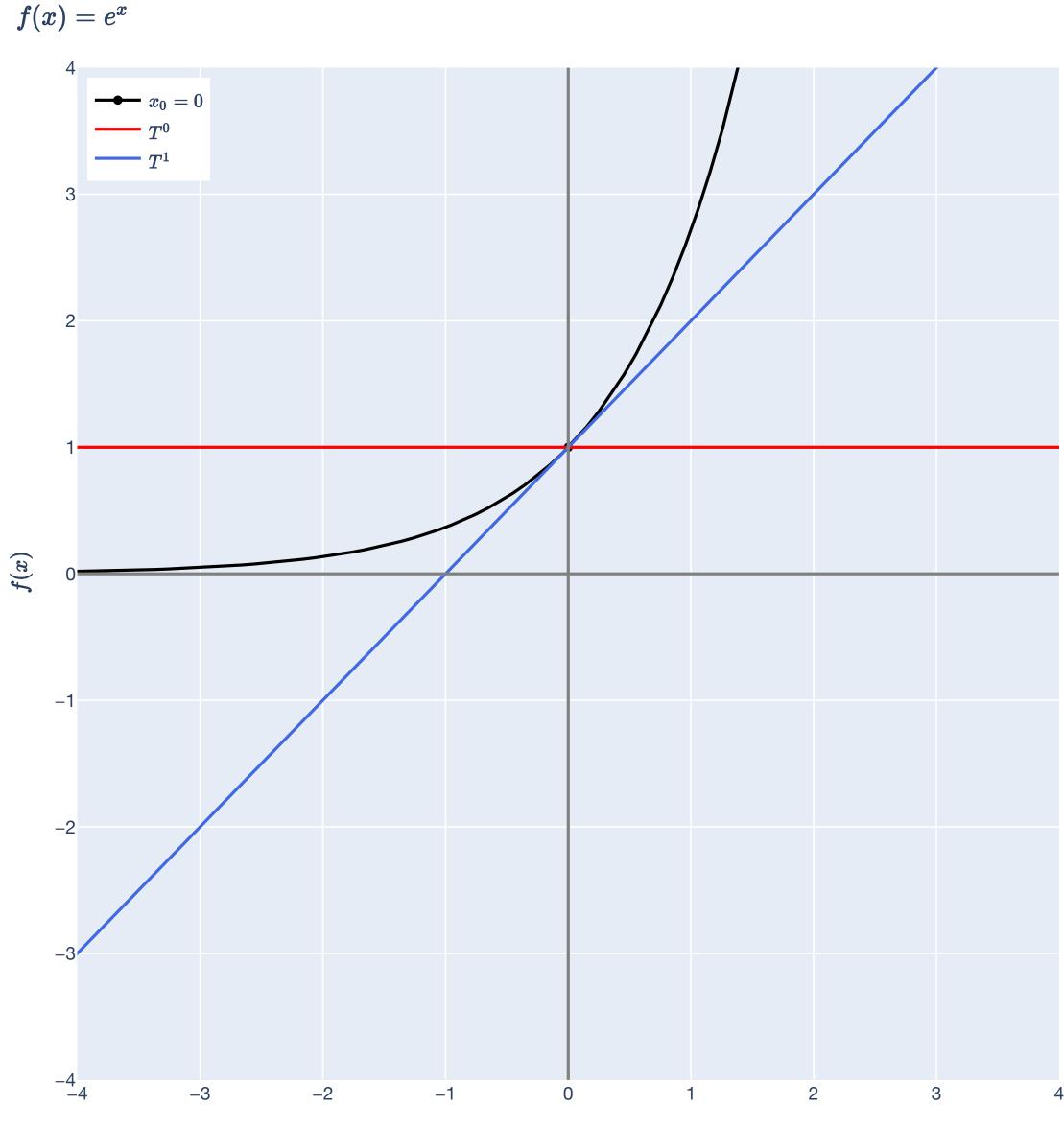




Taylor series at $x_0 = 0$:

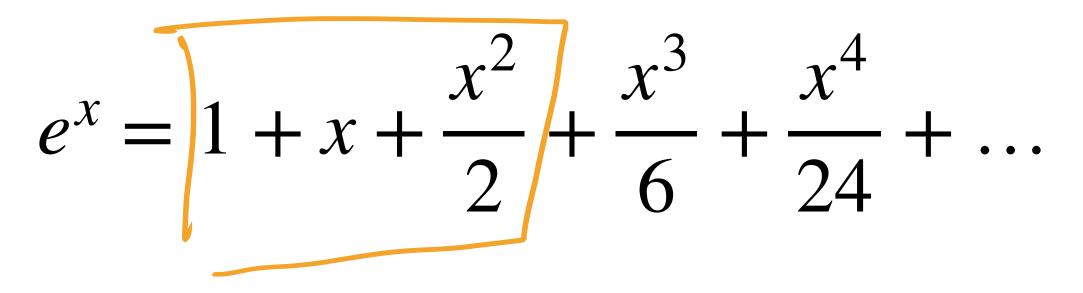


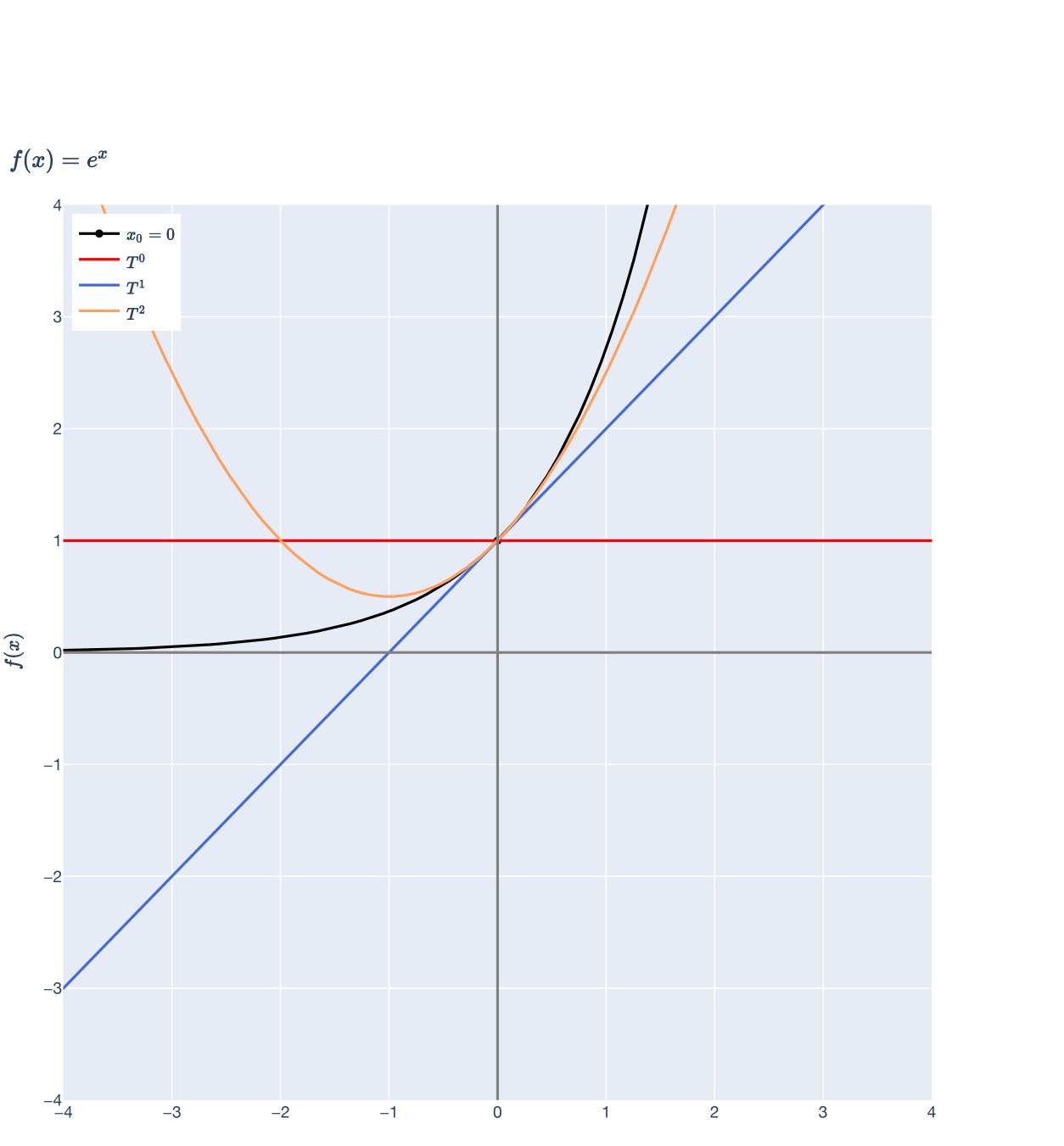
 $f(X_0) + \nabla f(Y_0)(X - X_0)$ $= e^{\circ} + e^{\circ}(X - 0)$ = 1 + X



 \boldsymbol{x}

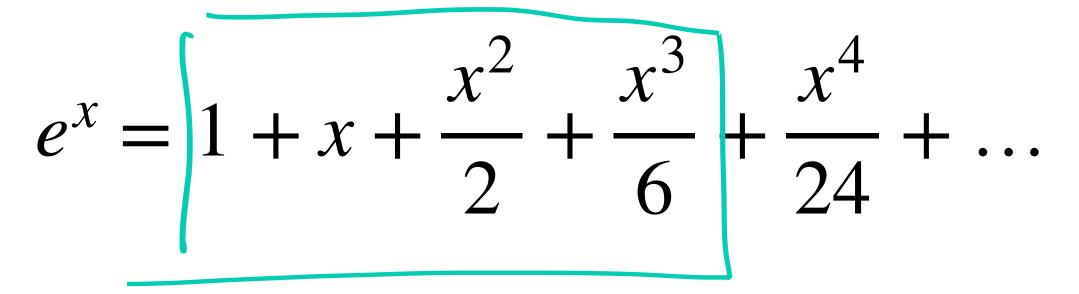
Taylor series at $x_0 = 0$:

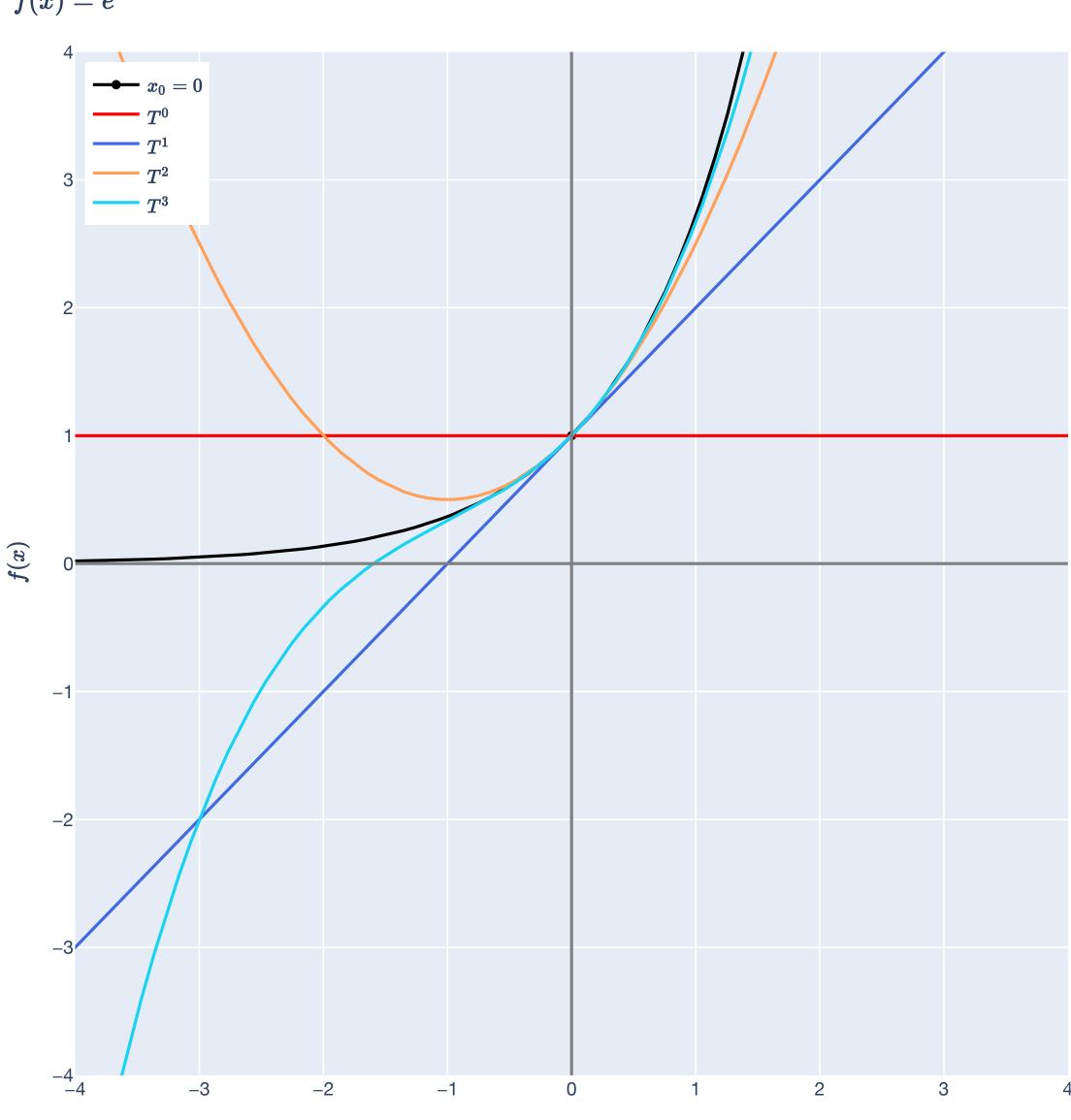




 \boldsymbol{x}

Taylor series at $x_0 = 0$:

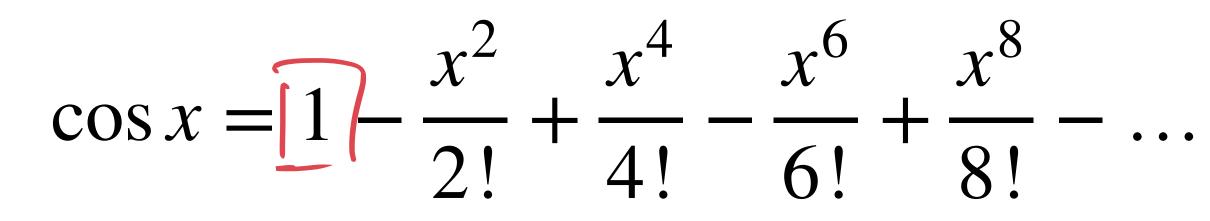


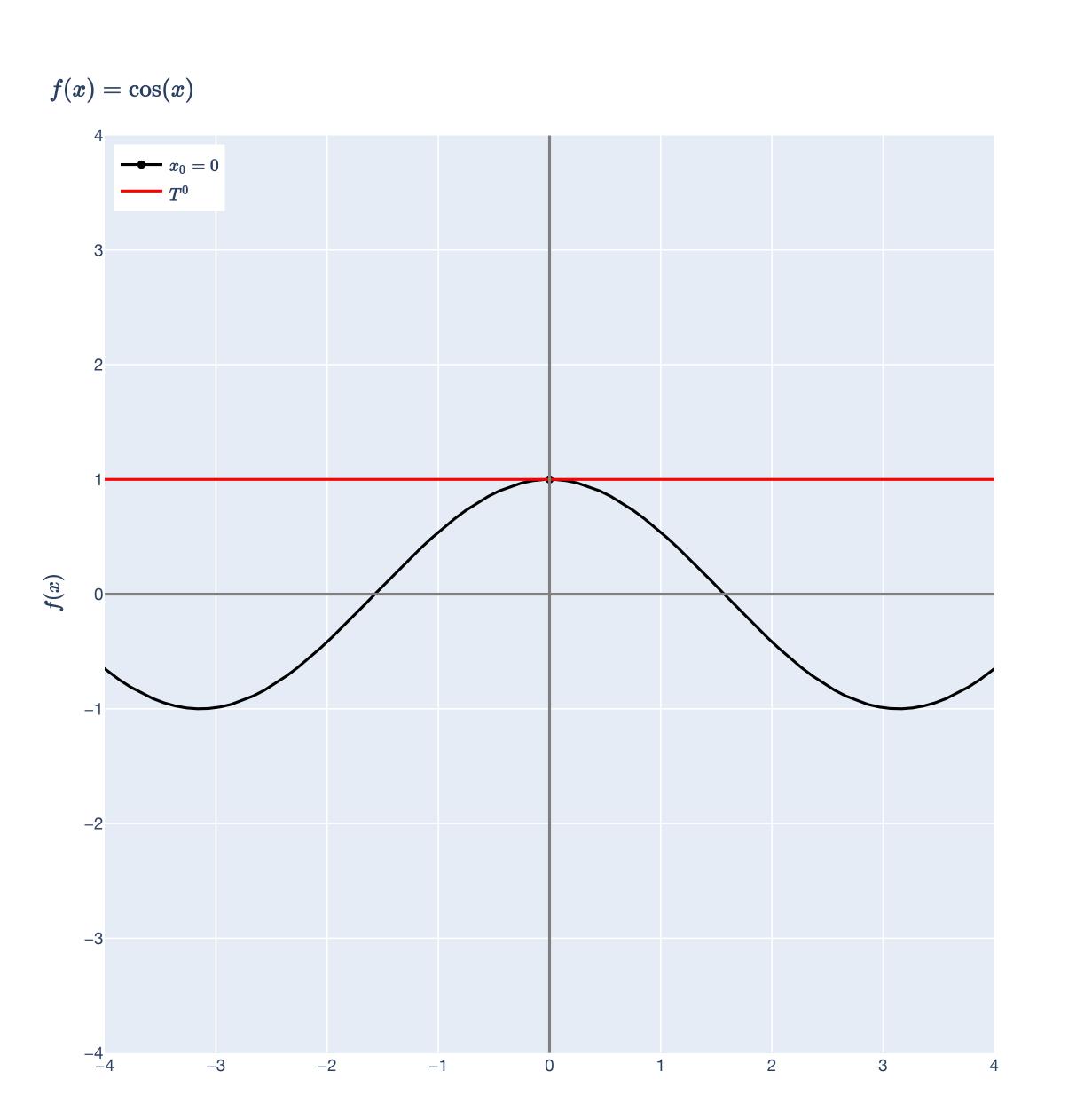


 $f(x) = e^x$

Taylor Series Example: $f(x) = \cos x$

Taylor series at $x_0 = 0$:



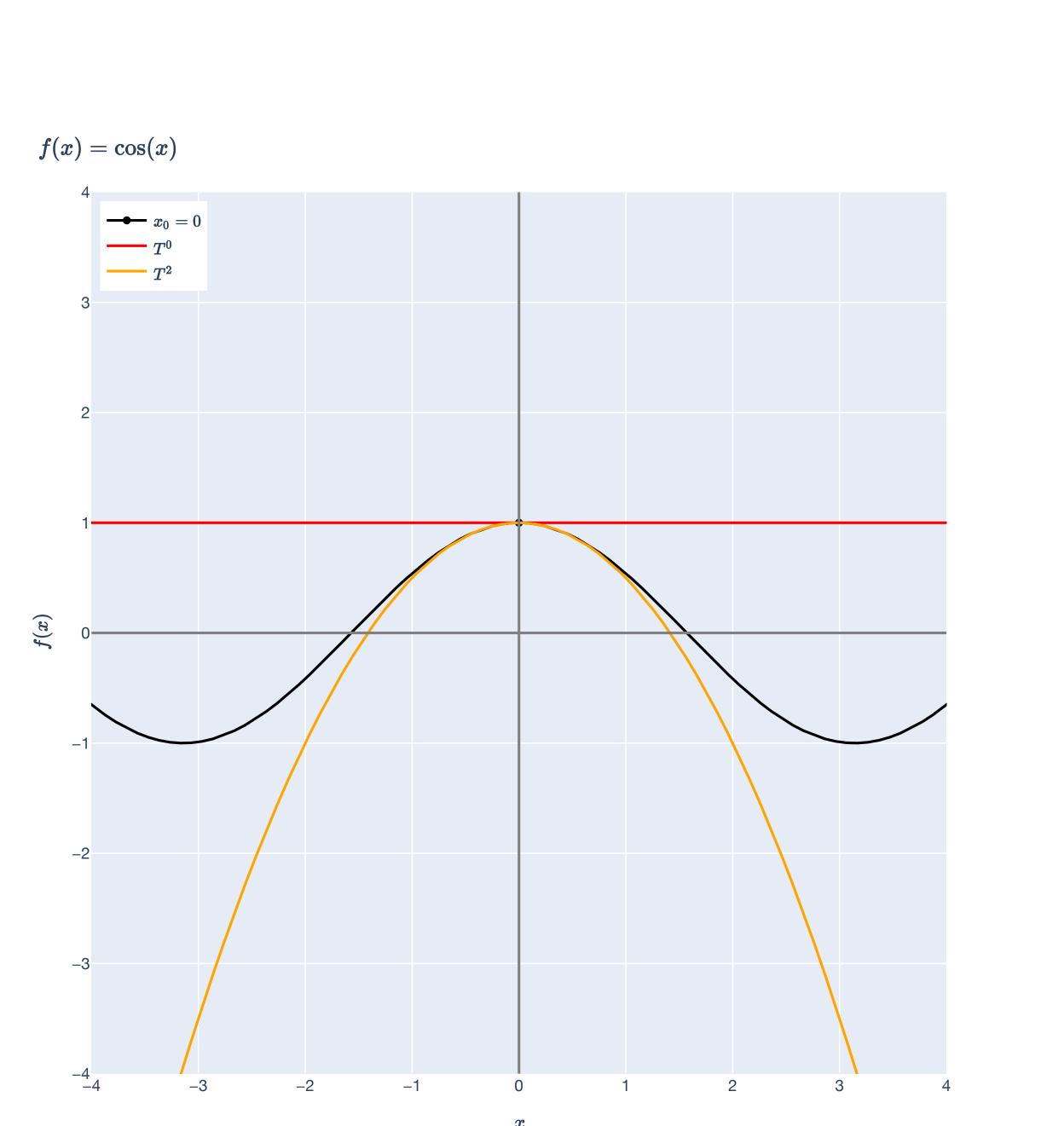


$$\boldsymbol{x}$$

Taylor Series Example: $f(x) = \cos x$

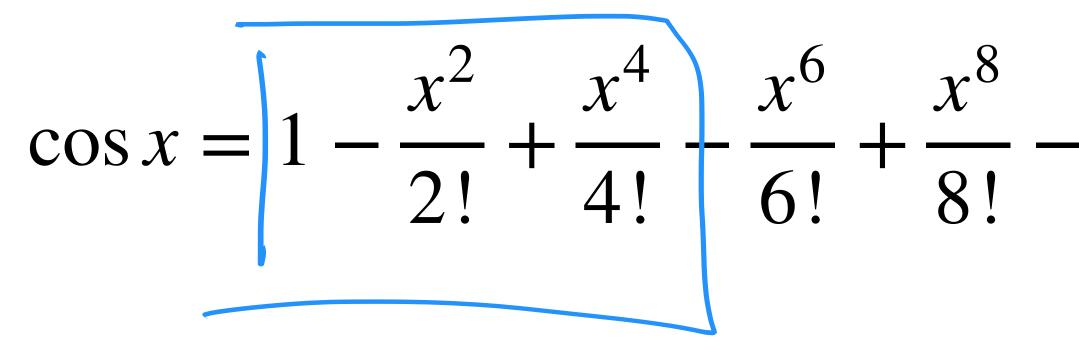
Taylor series at $x_0 = 0$:

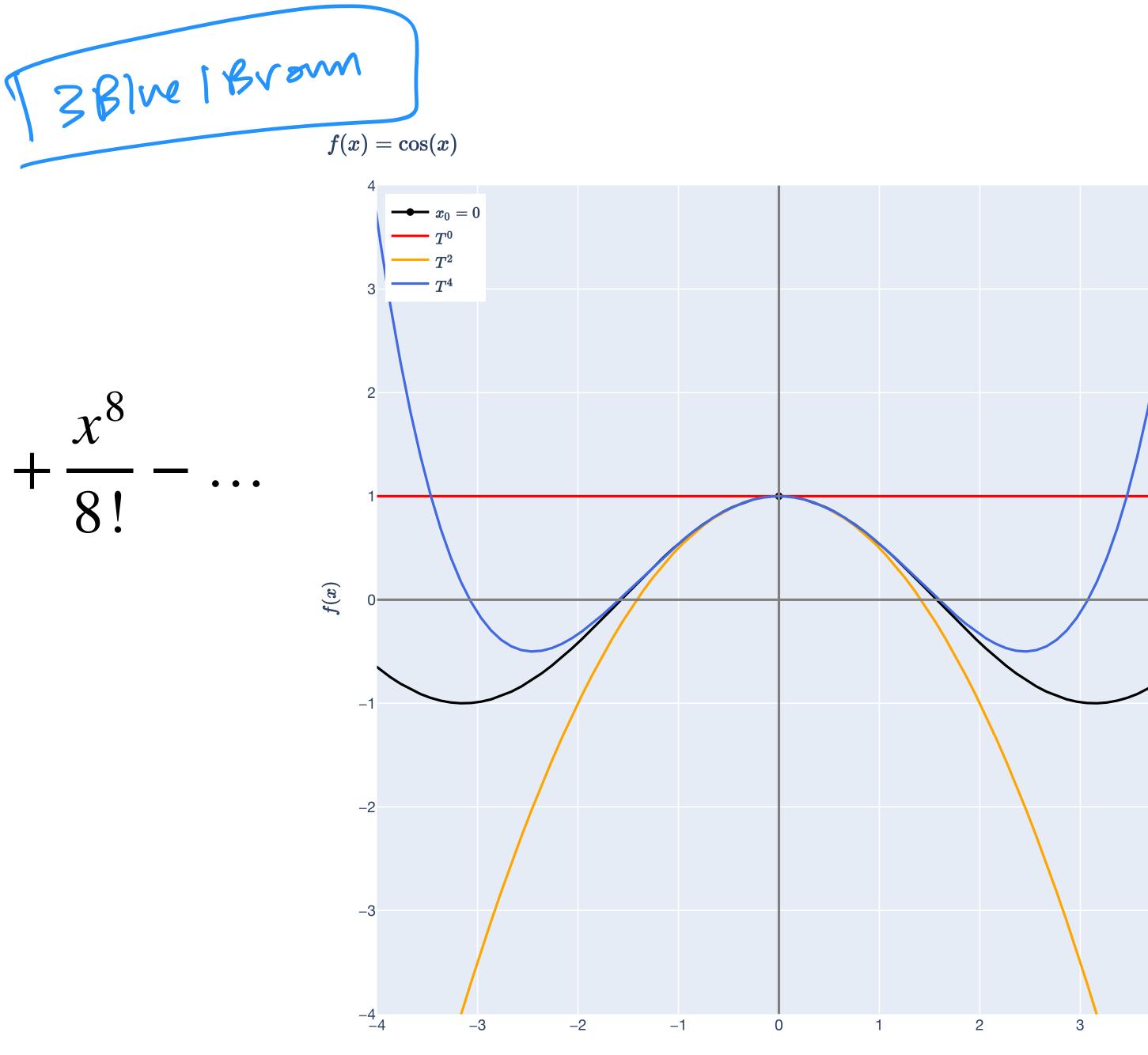
 $\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$ $\cos x =$



Taylor Series Example: $f(x) = \cos x$

Taylor series at $x_0 = 0$:





Taylor Series Single-variable definition

For simplicity, let's first consider $f : \mathbb{R} \to \mathbb{R}$.

 $\frac{f'(x_0)}{z_1} (x - x_0)^2$ $\sum_{k=1}^{n} \frac{f^{(k)(x_0)}}{k!} (x - x_0)^k.$ $f f''(x_0) (x - x_0)^{s}$ $= \frac{31}{31}$

 $T_{x_0}(x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = \frac{f(x_0)}{k!} + \frac{f'(x_0)}{k!} (x - x_0)^k$

$$T_{x_0}^n(x) := \sum_{k=1}^{n}$$

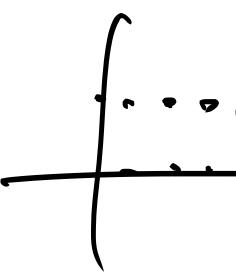
For a smooth function $f \in \mathscr{C}^{\infty}$ (f has derivatives of all orders), the <u>Taylor series of f at x_0 is defined as</u>: The **Taylor polynomial of degree** n of f at x_0 is defined as: **Note:** It only make sense to talk about a Taylor series/polynomial at a point!

$$f^{(\circ)} = f$$

Taylor Series When is the Taylor series the fu

A function that is equal to its Taylor series at x_0 in some neighborhood around x_0 is called analytic., We won't get into the finer points of Taylor series and analytic functions in this course. 1 $f_{S}(x_{o}) = \{x \in \mathbb{R} : |x - x_{o}| < S\}$ For all intents and purposes,

$$\int f(x) \approx T_{x_0}^n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = f(x)$$



$$\frac{f(x)}{k!} = \sum_{k=0}^{\infty} \int_{k} \int_{k} \int_{k} (x_{0}) (x - y_{0})^{k} \qquad f \in AL$$

$$f(x_{0}) (x - y_{0})^{k} \qquad f \in AL$$

$$f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$

usually already pretty good!

for all x that are sufficiently close to x_0 and sufficiently large n (we'll usually study $n \leq 2$).

Taylor Series When is the Taylor series the function?

A function that is equal to its Taylor series at x_0 in some neighborhood around x_0 is called <u>analytic</u>.

For all intents and purposes,

$$f(x) \approx T_{x_0}^n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$

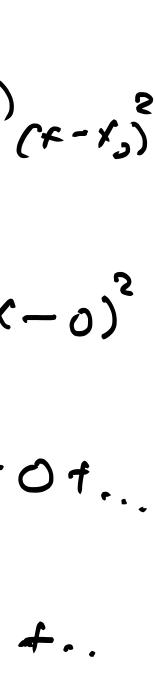
for all x that are sufficiently close to x_0 and sufficiently large n (we'll usually study $n \leq 2$).

Takeaway. For many common functions, a second-order Taylor polynomial is a good approximation of the function close to the point we do the expansion about.

usually already pretty good!

Taylor Series Example

All polynomials are in \mathscr{C}^{∞} and have exact Taylor series representations. Consider the Taylor series of $f(x) = 2x^3 + x^2 - x + 1$. $X_0 = 0$ $f(x_0) + \frac{f'(x_0)}{11}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$ $f(x_0) = 1$ $f'(x) = bx^{2} + 2x - 1 = f'(0) = 1 - 1 = 1 + \frac{(-1)}{1!}(x - 0) + \frac{2}{2}(x - 0)^{2}$ $f''(x) = 12x + 2 = f''(0) = 12 + \frac{12}{1!}(x - 0)^{3} + 0 + 0 + 0 + \frac{12}{1!}(x - 0)^{3} + \frac{12}{1!}(x -$ F (M) (X) Z D $= | - X + 2x^2 + 2x^3 + 0 + ..$ f(1) (X) Z 0 $= [2x^3 + 2x^2 - x +]$



Taylor Series Example

Many of the "nice" functions of calculus are infinitely differentiable.

Consider the Taylor series of $f(x) = \sin x + \cos x$.

Taylor Series Example

Many of the "nice" functions of calculus are infinitely differentiable. Consider the Taylor series of $f(x) = e^x$. Xo= O $f(x) = e^{x}$ $f'(x) = e^{x}$ $f''(x) = e^{x}$ $f(x_0) + \frac{f'(x_0)}{11}(x - 0) + \frac{f''(x_0)}{21}(x - 0)^2$ $\int_{z} \frac{dx}{dx} + \frac{1}{1!} + \frac{1}{1!} + \frac{1}{2!} + \frac{$ 7 . . $f + x + \frac{x^2}{x^2} + \dots$ S (

Taylor Series In multiple variables

Taylor Series Multivariable definition

There's a reason we started with $f: \mathbb{R} \to \mathbb{R}$... Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function with derivatives of all orders (i.e., in \mathscr{C}^{∞}). The **Taylor series of** f at $\mathbf{x}_0 = (x_{01}, \dots, x_{0n}) \in \mathbb{R}^n$ is given by: $T(x_1, \dots, x_n) := \sum_{k_1=0}^{\infty} \dots \sum_{k_n=0}^{\infty} \frac{(x_1 - x_{01})^{k_1}}{k_1!}$

Thankfully — we won't ever need to use this — at most, we'll use the secondorder Taylor approximation of a function in multiple variables.

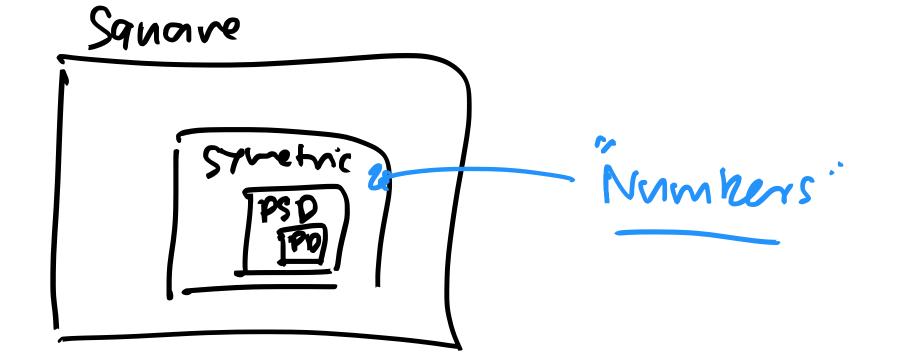
$$\frac{\dots(x_n - x_{0n})^{k_n}}{\dots k_n!} \begin{pmatrix} \partial^{k_1 + \dots + k_n f} \\ \partial x_1^{k_1} \dots \partial x_n^{k_n} \end{pmatrix} (x_{01}, \dots, x_{0n})$$

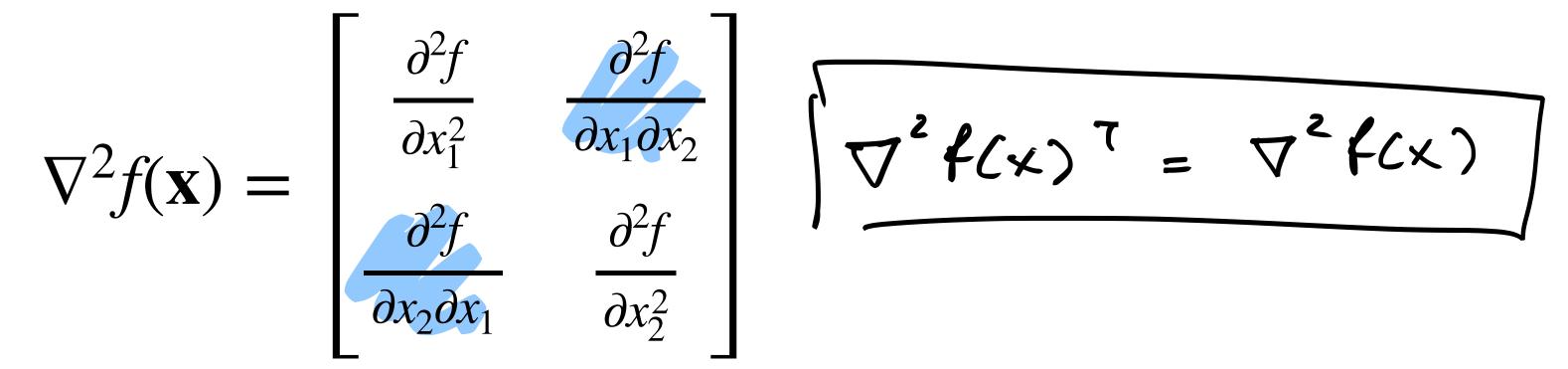
Hessian The multivariable second derivative

The <u>Hessian</u> for $f: \mathbb{R}^2 \to \mathbb{R}$ at some point \mathbf{x}_0 is the 2×2 matrix of all second-order partial derivatives:

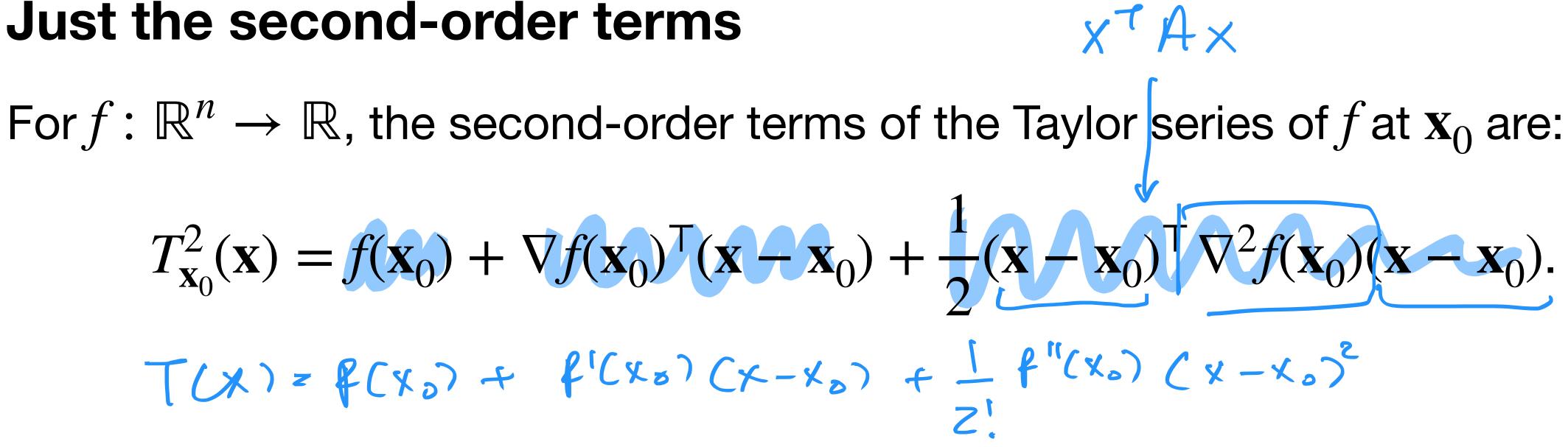
The Hessian for general $f: \mathbb{R}^n \to \mathbb{R}$ is given by the $n \times n$ matrix of all second-order partial derivatives, constructed similarly.

For twice-continuously differentiable $f \in \mathscr{C}^2$, the Hessian is symmetric.





Taylor Series Just the second-order terms



Taylor Series Just the second-order terms

For $f : \mathbb{R}^n \to \mathbb{R}$, the second-order terms of the Taylor series of f at \mathbf{x}_0 are:

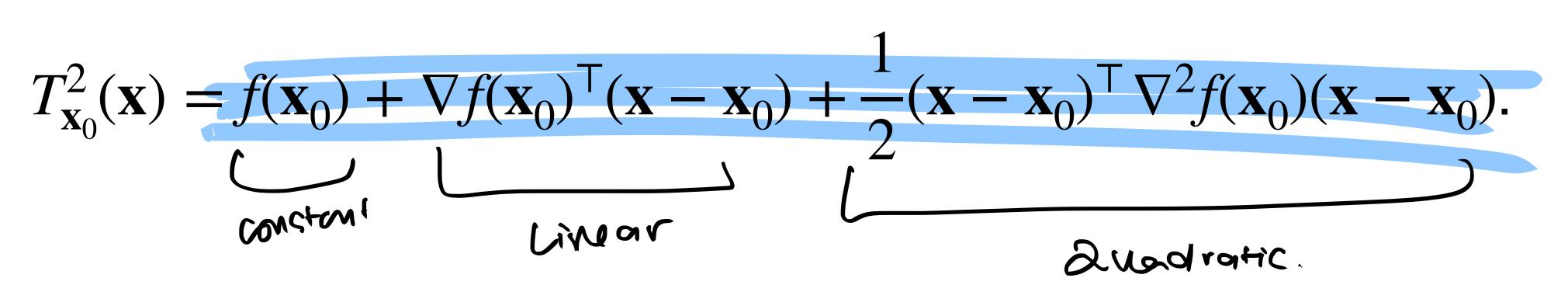
$$T_{\mathbf{x}_0}^2(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0).$$

The part $\nabla f(\mathbf{x}_0)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0)$ is a linear function(al)!

$$T: \mathbb{P}^n \to \mathbb{P}.$$
$$T_{\mathcal{O}}(X) = \mathbb{Q}^T X$$

Taylor Series Just the second-order terms

For $f: \mathbb{R}^n \to \mathbb{R}$, the second-order terms of the Taylor series of f at \mathbf{x}_0 are:



The part $\frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$ is a quadratic form! XTAX

First-order Taylor Approximation Just linearization

For a function $f : \mathbb{R} \to \mathbb{R}$, the Taylor series at x_0 is

$$T_{x_0}(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$

first-order terms

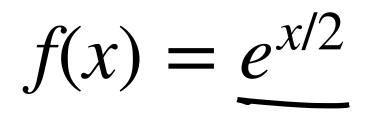
For $f : \mathbb{R}^n \to \mathbb{R}$, the Taylor series at \mathbf{x}_0 is

$$T_{\mathbf{x}_0}(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + \dots$$

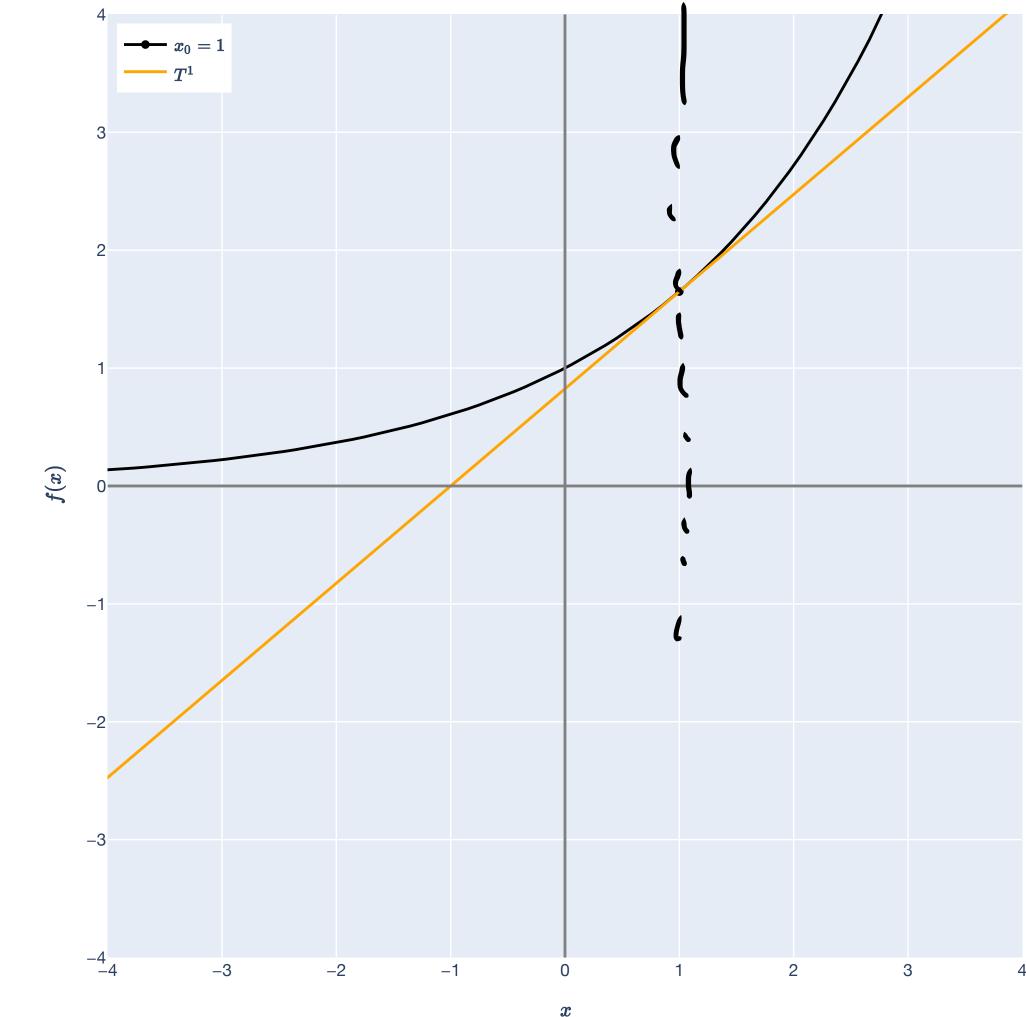
first-order terms

Linearization of f at \mathbf{x}_0 . This is just taking the first-order terms of the Taylor series!

First-order Taylor Approximation Single-variable example $f(x)=e^{x/2}$



First-order Taylor expansion at $x_0 = 1$: $T^{1}(x) = e^{1/2} + \frac{e^{1/2}(x-1)}{2}$



Second-order Taylor Approximation Approximation by a quadratic

For $f : \mathbb{R} \to \mathbb{R}$,

$$T(x) = x_0 + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)^3}{3!}(x - x_0)^3 + \dots$$

second-order terms

For $f: \mathbb{R}^n \to \mathbb{R}$,

 $T_{\mathbf{x}_0}(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0)$

$$(\mathbf{x} - \mathbf{x}_0)^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$

second-order terms

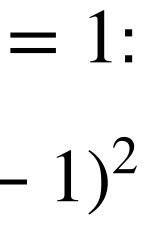
Second-order Taylor Approximation Single-variable example

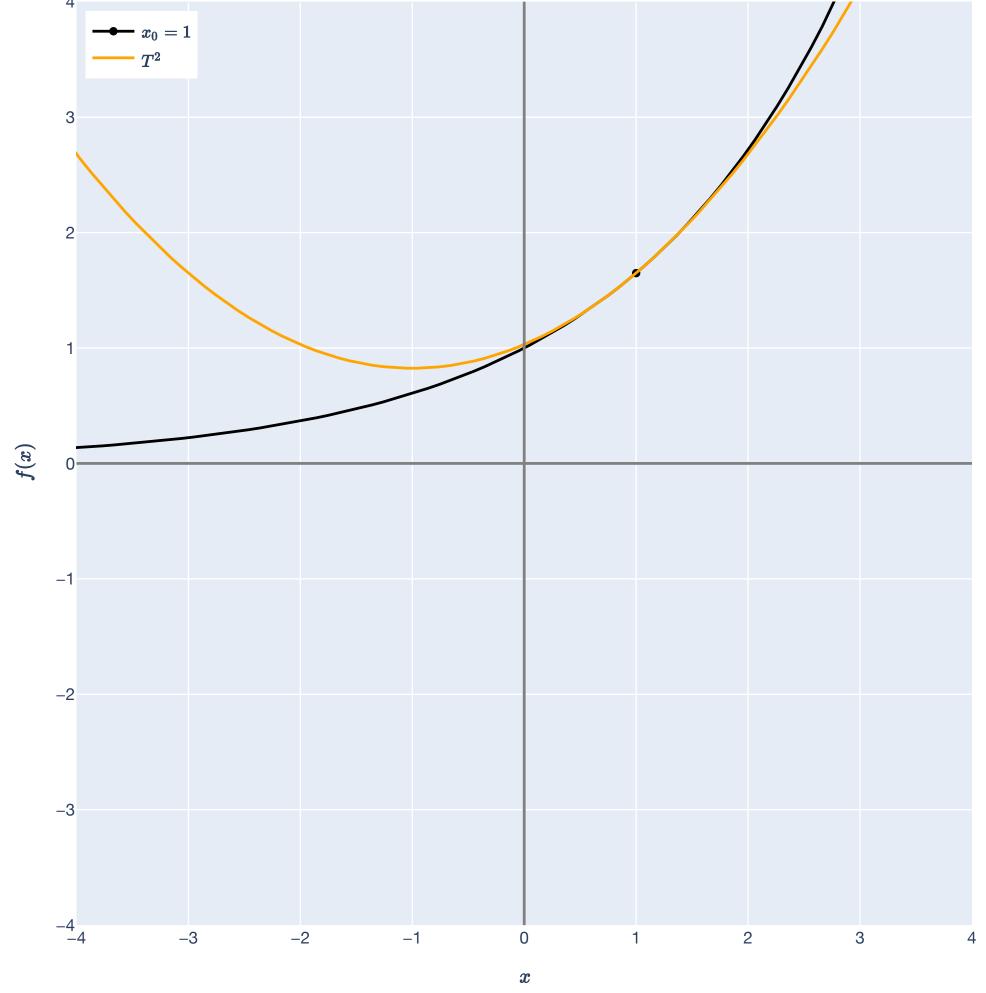
$$f(x) = e^{x/2}$$

Second-order Taylor expansion at $x_0 = 1$:

$$T^{2}(x) = e^{1/2} + \frac{e^{1/2}(x-1)}{2} + \frac{e^{1/2}(x-1)}{8}$$

 $f(x) = e^{x/2}$





Taylor Approximations Summary

- The first-order Taylor approximation (linearization) of a function at \mathbf{X}_0 is: $f(\mathbf{x}) \approx f(\mathbf{x}_0) +$
- The second-order Taylor approximation of a function at \mathbf{X}_0 is:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0).$$

A natural question to ask is: how good are these approximations?

-
$$\nabla f(\mathbf{x}_0)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0)$$
.

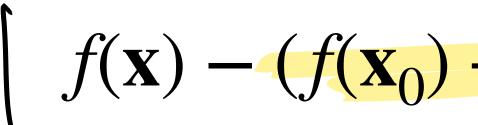
Taylor's Theorem Quantifying the approximation

Taylor's Theorem Intuition

How much do we lose by approximating f with a Taylor approximation? We'll think of this in terms of the "remainder" — how much more Taylor series is left after "chopping it off" at order n.

 $f(\mathbf{x}) \approx f(\mathbf{x}_0)$

The remainder is:



First-order approximation:

+
$$\nabla f(\mathbf{x}_0)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0)$$

+
$$\nabla f(\mathbf{x}_0)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0))$$

Taylor's Theorem Intuition

How much do we lose by approximating f with a Taylor approximation? We'll think of this in terms of the "remainder" — how much more Taylor series is left after "chopping it off" at order n.

Second-order approximation: $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0).$ The remainder is: $f(\mathbf{x}) - \left(f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)\right).$

Remainder of Taylor Polynomial Definition

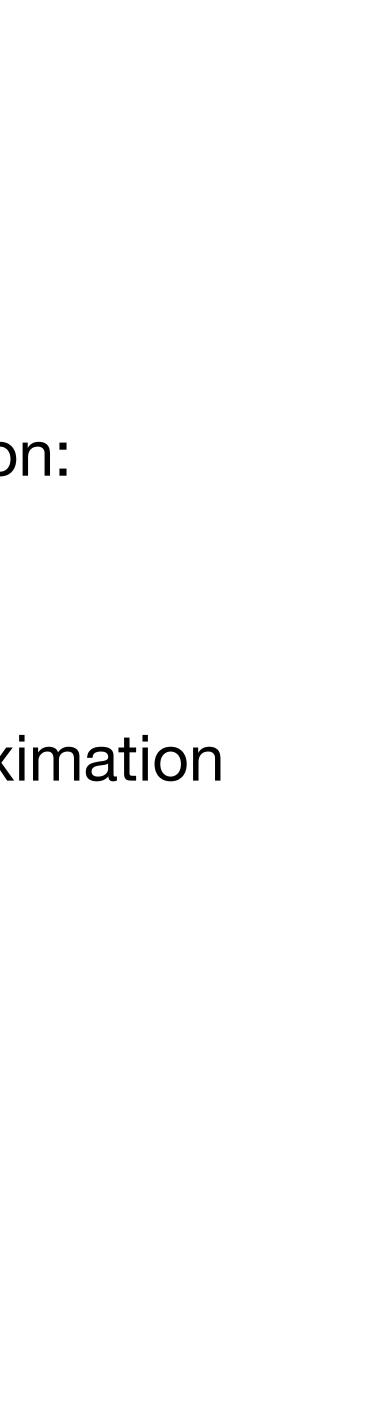
What behavior would we like? Ideally gets better as we approach \mathbf{x}_0).

The <u>remainder</u> of a function and its Taylor polynomial at \mathbf{x}_0 is the function:

$$R^{n}(\mathbf{x}) := f(\mathbf{x}) - T^{n}_{\mathbf{x}_{0}}(\mathbf{x}) \rightarrow 0$$

e? Ideally, $R^{n}(\mathbf{x}) \rightarrow 0$ as $\mathbf{x} \rightarrow \mathbf{x}_{0}$ (the approx

$$\lim_{x \to 0} F_n(\vec{x}) = 0$$

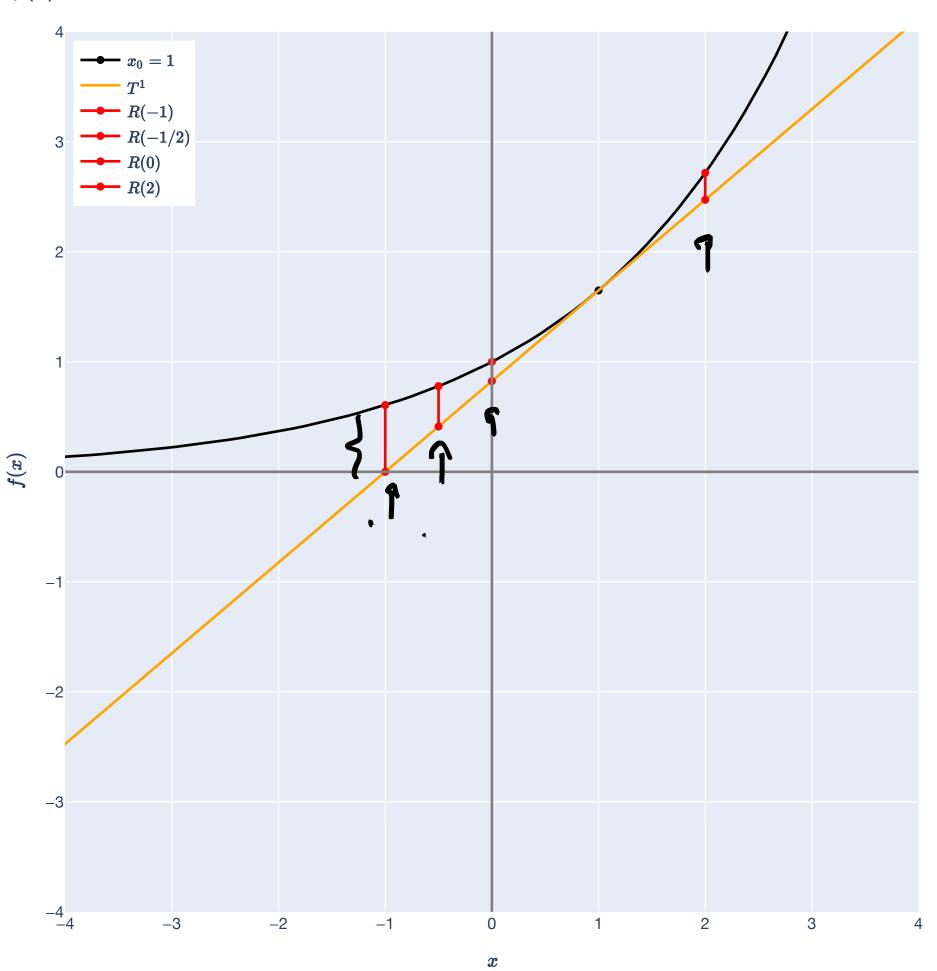


Remainder of Taylor Polynomial Definition $f(x) = e^{x/2}$

The <u>remainder</u> of a function and its Taylor polynomial at \mathbf{x}_0 is the function:

$$R^n(\mathbf{x}) := f(\mathbf{x}) - T^n_{\mathbf{x}_0}(\mathbf{x})$$

What behavior would we like? Ideally, $R^{n}(\mathbf{x}) \rightarrow 0$ as $\mathbf{x} \rightarrow \mathbf{x}_{0}$ (the approximation) gets better as we approach \mathbf{x}_0).

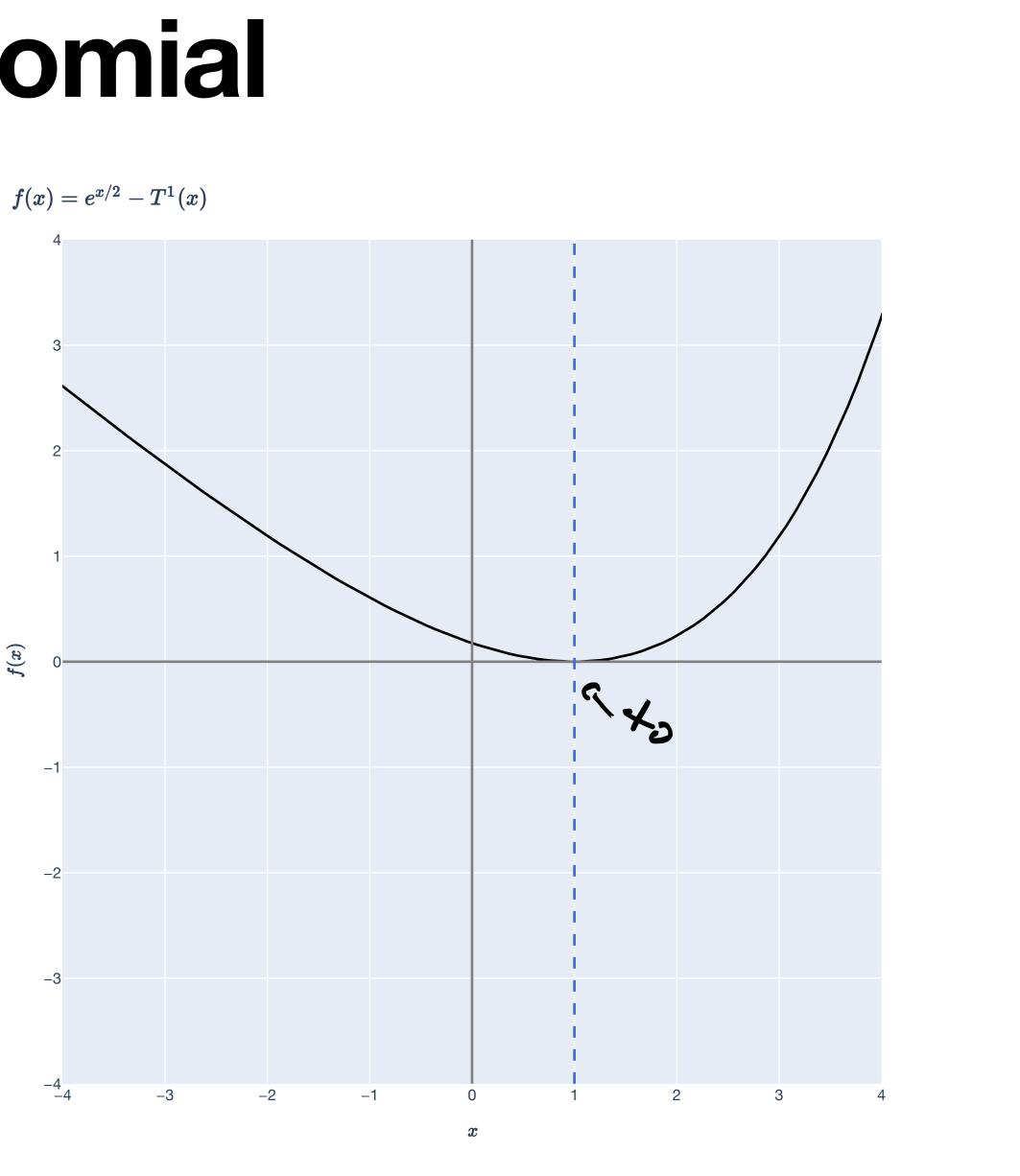


Remainder of Taylor Polynomial Definition $f(x) = e^{x/2} - T^1(x)$

The <u>remainder</u> of a function and its Taylor polynomial at \mathbf{x}_0 is the function:

$$R^n(\mathbf{x}) := f(\mathbf{x}) - T^n_{\mathbf{x}_0}(\mathbf{x})$$

What behavior would we like? Ideally, $R^{n}(\mathbf{x}) \rightarrow 0$ as $\mathbf{x} \rightarrow \mathbf{x}_{0}$ (the approximation) gets better as we approach \mathbf{x}_0).



Taylor's Theorem Idea: Taylor's Theorem (Peano's Form)

Say we want the value of f at \mathbf{x} and we have a Taylor approximation at \mathbf{x}_0 .

Then, the *direction* to go from \mathbf{x} to \mathbf{x}_0

By taking a constant $\alpha > 0$, we can make the direction $\alpha \mathbf{d}$ as small as we want:

is
$$\mathbf{d} = \mathbf{x} - \mathbf{x}_0$$
.

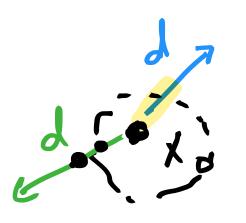
$$\|\alpha \mathbf{d}\| = \alpha \|\mathbf{d}\|.$$

Taylor's Theorem Idea: Taylor's Theorem (Peano's Form)

By taking a constant $\alpha > 0$, we can make the direction αd as small as we want: $\|\alpha \mathbf{d}\| = \alpha \|\mathbf{d}\|.$

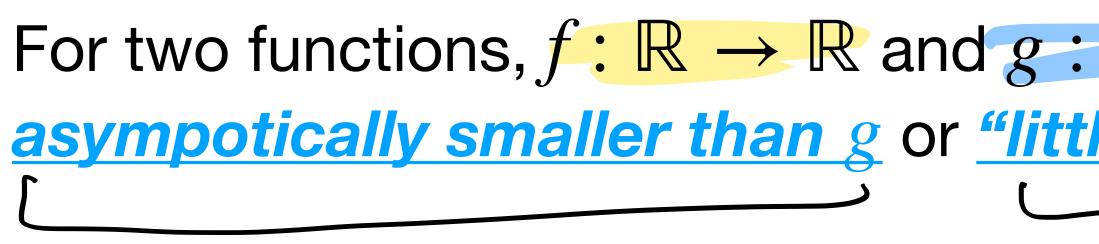
<u>**Peano's Form of Taylor's Theorem</u> says that for any direction d**, as $\alpha \to 0$,</u> $T^n(\mathbf{x}_0 + \alpha \mathbf{d}) \rightarrow$

i.e. the approximation when we "chop off" the Taylor series at n approaches the function's actual value.

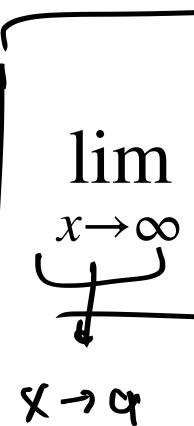


$$f(\mathbf{x}) = f(\mathbf{x}_0 + \alpha \mathbf{d}),$$

Little O Asymptotics Definition



if



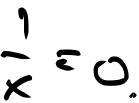
f(x)

$$f(x) = x^{2}$$

$$g(x) = x^{3}$$

$$x^{2} = o(x^{3})$$

$$\lim_{\substack{x \to \infty \\ x \neq s}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^{2}}{x^{5}} = \lim_{\substack{x$$



Taylor's Theorem Remainder Theorem 1: Peano's Form Taylor's Theorem

Theorem (Taylor's Theorem: Peano's Form function at \mathbf{x}_0 . Then, for every direction $\mathbf{d} \in$ $f(\mathbf{x}_0 + \mathbf{d}) = T_{\mathbf{x}_0}^k(\mathbf{x}_0 + \mathbf{d})$ where $o(||\mathbf{d}||^k)$ as $\mathbf{d} \to \mathbf{0}$ means that if $R^k(\mathbf{x})$ $\lim_{\mathbf{d} \to \mathbf{0}} \frac{R^k(\mathbf{d})}{C}$

We'll usually only go up to k = 2 (quadratic approximation), so we'll only need...

n). Let
$$f : \mathbb{R}^{d} \to \mathbb{R}$$
 be a k-times differentiable
 \mathbb{R}^{d} :
d $+ o(||\mathbf{d}||^{k})$, as $\mathbf{d} \to \mathbf{0}$,
 $\mathbf{x}_{0} + \mathbf{d}) := f(\mathbf{x}_{0} + \mathbf{d}) - T_{\mathbf{x}_{0}}^{k}(\mathbf{x}_{0} + \mathbf{d})$,
 $(\mathbf{x}_{0} + \mathbf{d})$
d $= 0$. $\sum_{k} \text{ given s rever}$

f() **Taylor's Theorem Remainder Theorem 1: Peano's Form Taylor's Theorem**^{*II d II*}

function at \mathbf{x}_0 . Then, for every direction $\mathbf{d} \in \mathbb{R}^d$:

$$f(\mathbf{x}_0 + \mathbf{d}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0) \mathbf{d} + o(\|\mathbf{d}\|^2).$$

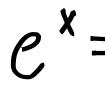
The remainder is

$$R^{2}(\mathbf{x}_{0} + \mathbf{d}) = f(\mathbf{x}_{0} + \mathbf{d}) - \left(f(\mathbf{x}_{0}) + \nabla f(\mathbf{x}_{0})^{\mathsf{T}}\mathbf{d} + \frac{1}{2}\mathbf{d}^{\mathsf{T}}\nabla^{2}f(\mathbf{x}_{0})\mathbf{d} \right),$$

that $R^{2}(\mathbf{x}_{0} + \mathbf{d}) = o(||\mathbf{d}||^{2})$, meaning that $\lim_{\mathbf{d}\to\mathbf{0}} R^{2}(\mathbf{x}_{0} + \mathbf{d})/||\mathbf{d}||^{2} = 0.$
"The amount that we've off gross short than
how for we've or provents:

and the claim is

Theorem (2nd Order Taylor's Theorem: Peano's Form). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable

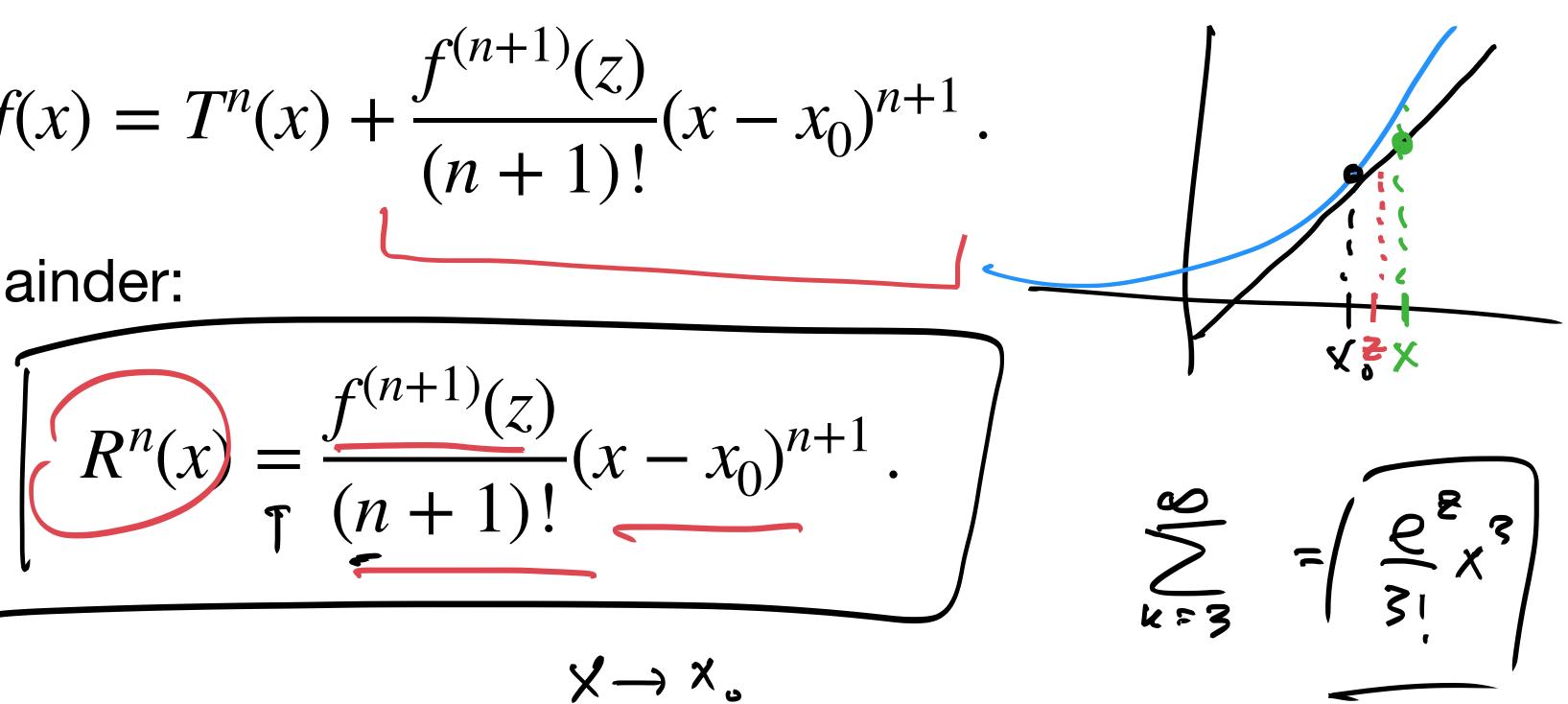


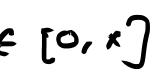
Taylor's Theorem Remainder Theorem 2: Lagrang

Theorem (Taylor's Theorem: Lagrang function on the closed interval betweer $z \in \mathbb{R}$ between x_0 and x such that

$$f(x) = T^n(x) + f(x)$$

So, in terms of the remainder:





Taylor's Theorem Remainder Theorem 2: Lagrange's Form Taylor's Theorem

on the line segment between \mathbf{x}_0 and $\mathbf{x}_0 + \mathbf{d}$

$$f(\mathbf{x}_{0} + \mathbf{d}) = f(\mathbf{x}_{0}) + \nabla f(\mathbf{x}_{0})^{\mathsf{T}}\mathbf{d} + \frac{1}{2}\mathbf{d}^{\mathsf{T}}\nabla^{2}f(\tilde{\mathbf{x}})\mathbf{d}$$

he remainder:
$$\boxed{R^{1}(\mathbf{x}_{0} + \mathbf{d}) = \frac{1}{2}\mathbf{d}^{\mathsf{T}}\nabla^{2}f(\tilde{\mathbf{x}})\mathbf{d}.}$$

Or, in terms of th

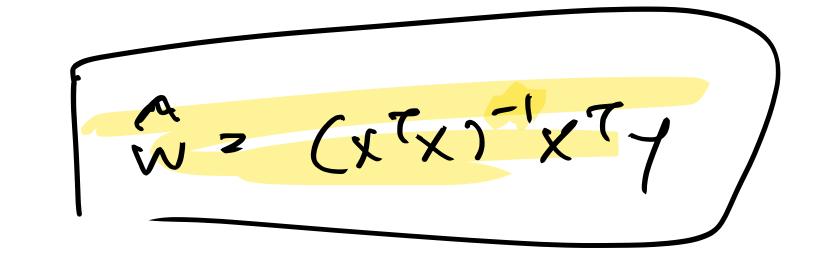
$$\mathbf{d}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\tilde{\mathbf{x}}) \mathbf{d}$$

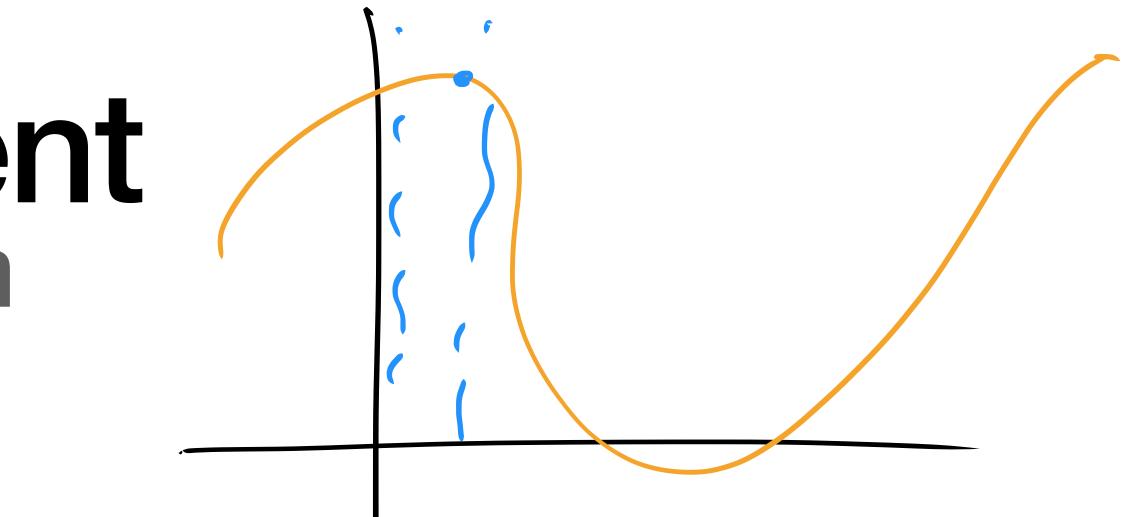
ainder:
$$R^1(\mathbf{x}_0 + \mathbf{d}) = \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\tilde{\mathbf{x}}) \mathbf{d}.$$

xofd 1=1/

Theorem (1st Order Taylor's Theorem - Lagrange Form). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a \mathscr{C}^2 function. For $\mathbf{x}_0, \mathbf{d} \in \mathbb{R}^n$, there exists $\lambda \in (0, 1)$ such that for $\tilde{\mathbf{x}} = \mathbf{x}_0 + \lambda \mathbf{d}$

Gradient Descent Intuition and Algorithm





Motivation **Optimization in calculus**

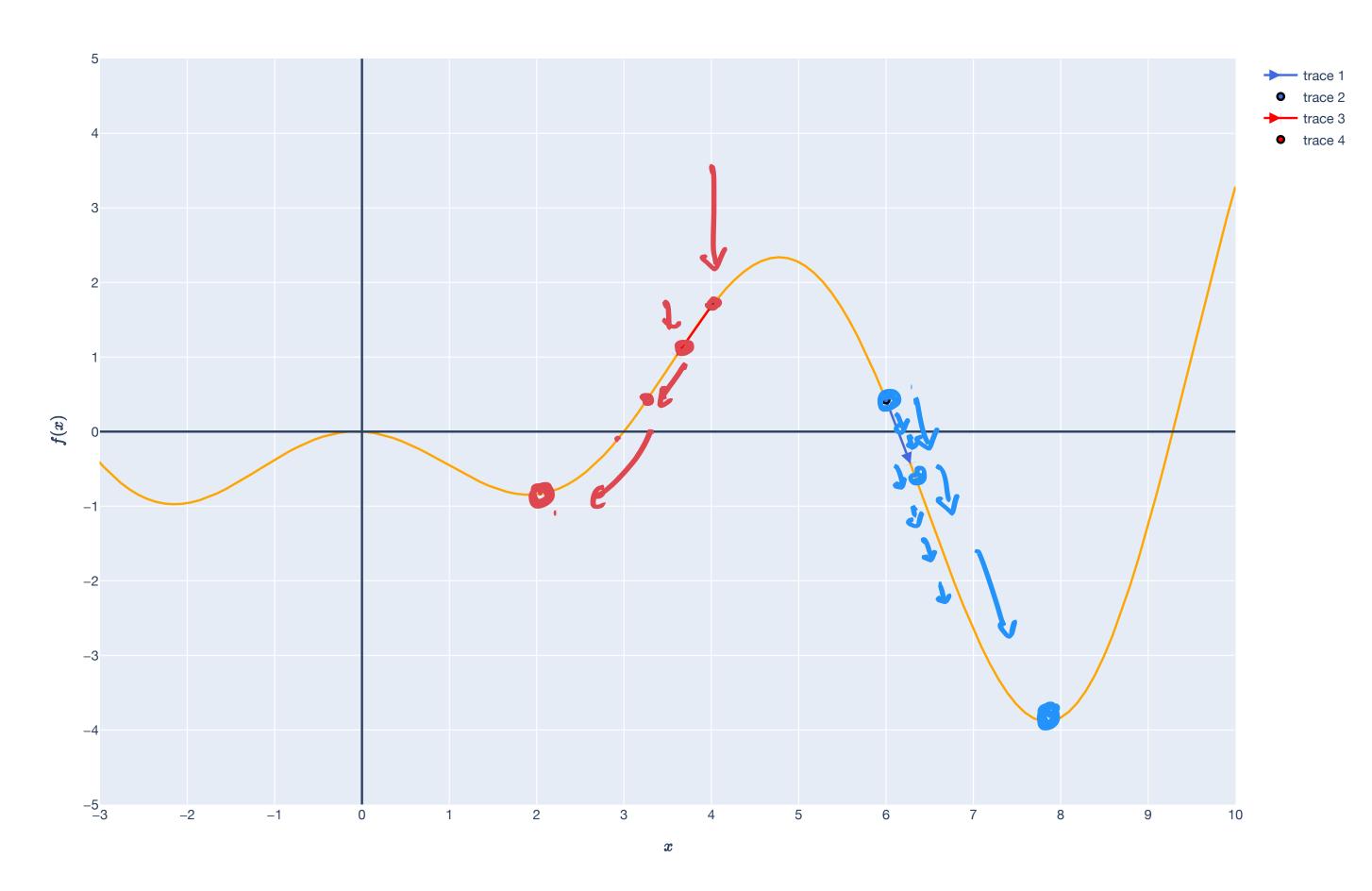
We want to minimize an <u>objective function</u> $f : \mathbb{R}^d \to \mathbb{R}$

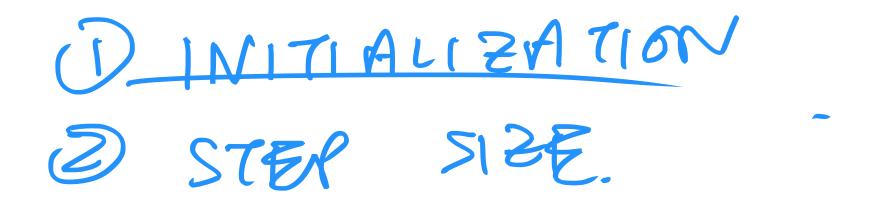
X

minimize $f(\mathbf{x})$

Gradient Descent Idea

How do you get to the minimum?





Gradient Descent Gradient as direction of steepest ascent

gradient $\nabla f(\mathbf{x}_0)$, then:

the direction $\nabla f(\mathbf{x}_0)!$

Gradient is the direction of steepest ascent at the rate $\|\nabla f(\mathbf{x}_0)\|$!

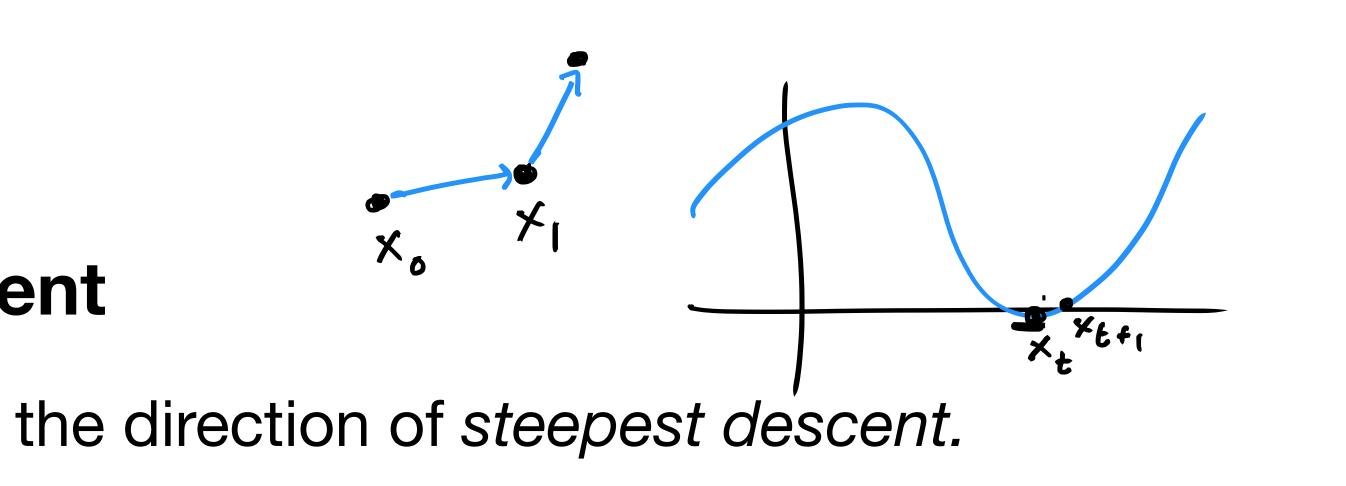
Theorem (Gradient and direction of steepest ascent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \mathbb{R}^d$. If $\mathbf{d} \in \mathbb{R}^d$ is a *unit* vector making angle θ with the

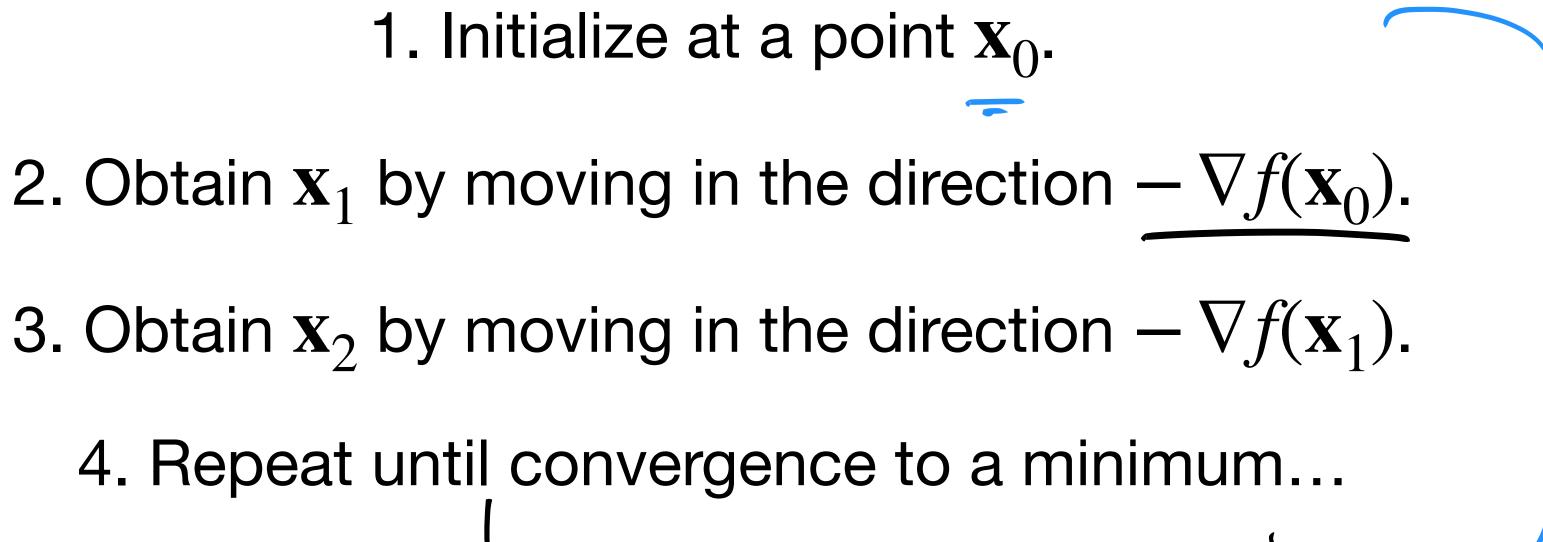
- $\nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} = \|\nabla f(\mathbf{x}_0)\| \cos \theta.$
- Therefore, the directional derivative of f at \mathbf{x}_0 in the direction \mathbf{d} is maximized in

Gradient Descent The direction of steepest descent

Going in the direction $-\nabla f(\mathbf{x}_0)$ gives the direction of steepest descent.

Here's a candidate algorithm:



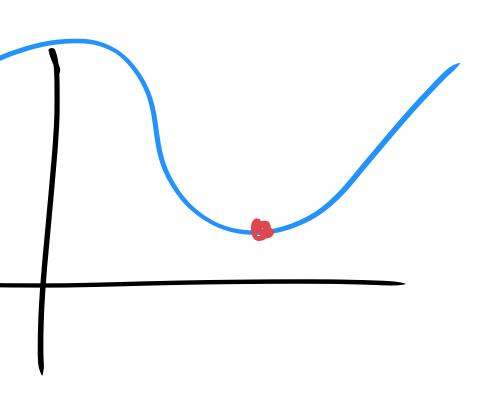


Gradient Descent Algorithm

For t = 1, 2, 3, ...

Compute: $(\mathbf{x}_t) \leftarrow (\mathbf{x}_{t-1}) - \eta \nabla f(\mathbf{x}_{t-1})$. If $\nabla f(\mathbf{x}_t) = 0$ or $\mathbf{x}_t - \mathbf{x}_{t-1}$ is sufficiently small, then return $f(\mathbf{x}_t)$.

Input: Function $f : \mathbb{R}^d \to \mathbb{R}$. Initial point $\mathbf{x}_0 \in \mathbb{R}^d$. Step size $\eta \in \mathbb{R}$.



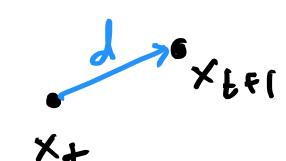
Gradient Descent Taylor's Theorem for Convergence Theorem

Recall the first-order Taylor approximation:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0).$$

As long as \mathbf{x} is close enough to \mathbf{x}_0 , this is a good approximation.

At time $t \ge 0$, we are at the point $\mathbf{x}_t \in \mathbb{R}^d$. We want to move in a direction $\mathbf{d} \in \mathbb{R}^d$ such that $f(\mathbf{x}_t + \mathbf{d}) < f(\mathbf{x}_t)$. Our choice? $\mathbf{d} = -\eta \nabla f(\mathbf{x}_t)$.



Recall the first-order Taylor approximation:

 $f(\mathbf{x}) \approx f(\mathbf{x}_0) +$

As long as x is close enough to x_0 , this is a good approximation.

such that $f(\mathbf{x}_t + \mathbf{d}) < f(\mathbf{x}_t)$. Our choice? $\mathbf{d} = -\eta \nabla f(\mathbf{x}_t)$.

Why? If η is small enough, then $\mathbf{x}_t + \mathbf{d}$ is close to \mathbf{x}_t , and:

$$f(\mathbf{x}_t + \mathbf{d}) \approx$$

$$\nabla f(\mathbf{x}_0)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0) \,.$$

At time $t \ge 0$, we are at the point $\mathbf{x}_t \in \mathbb{R}^d$. We want to move in a direction $\mathbf{d} \in \mathbb{R}^d$

Xtto

 $f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d}.$

- At time $t \ge 0$, we are at the point $\mathbf{x}_t \in \mathbb{R}^d$. We want to move in a direction $\mathbf{d} \in \mathbb{R}^d$ such that $f(\mathbf{x}_t + \mathbf{d}) < f(\mathbf{x}_t)$. Our choice? $\mathbf{d} = -\eta \nabla f(\mathbf{x}_t)$.
- Why? If η is small enough, then $\mathbf{x}_t + \mathbf{d}$ is close to \mathbf{x}_t , and:

$$f(\mathbf{x}_{t+1}) = f(\mathbf{x}_t) - \eta \,\nabla f(\mathbf{x}_t)^\top \,\nabla$$

 $f(\mathbf{x}_t + \mathbf{d}) \approx f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d}.$ $\mathbf{x}_t + \mathbf{d}$ This explains the gradient descent step: $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t)$. $f(\mathbf{x}_t) < f(\mathbf{x}_t)$ as long as η is small.

that $f(\mathbf{x}_t + \mathbf{d}) < f(\mathbf{x}_t)$. Our choice? $\mathbf{d} = -\eta \nabla f(\mathbf{x}_t)$.

Why? If η is small enough, then $\mathbf{x}_t + \mathbf{d}$ is close to \mathbf{x}_t , and:

This explains the gradient descent step: $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t)$.

$$f(\mathbf{x}_{t+1}) = f(\mathbf{x}_t) - \eta \nabla f(\mathbf{x}_t)^\top \nabla f(\mathbf{x}_t)$$

To quantify the \approx , we had Taylor's theorem. We will use the Lagrange form of Taylor's theorem.

- At time $t \ge 0$, we are at the point $\mathbf{x}_t \in \mathbb{R}^d$. We want to move in a direction $\mathbf{d} \in \mathbb{R}^d$ such

 - $f(\mathbf{x}_t + \mathbf{d}) \approx f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d}.$

 - $\nabla f(\mathbf{x}_t) < f(\mathbf{x}_t)$ as long as η is small.

Taylor's Theorem Remainder Theorem 2: Lagrange Form of Taylor's Theorem

on the line segment between \mathbf{x}_0 and $\mathbf{x}_0 + \mathbf{d}$

$$f(\mathbf{x}_0 + \mathbf{d}) = f(\mathbf{x}_0) + \mathbf{d}$$

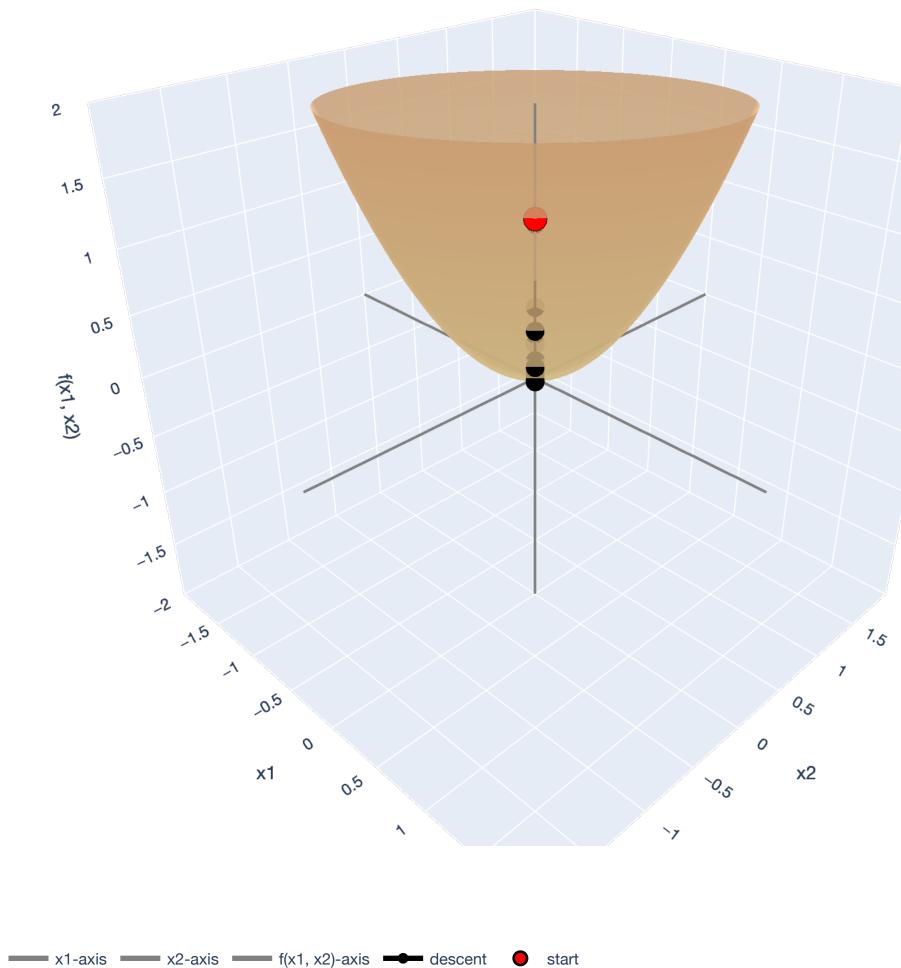
Theorem (1st Order Taylor's Theorem - Lagrange Form). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a \mathscr{C}^2 function. For $\mathbf{x}_0, \mathbf{d} \in \mathbb{R}^n$, there exists $\lambda \in (0,1)$ such that for $\tilde{\mathbf{x}} = \mathbf{x}_0 + \lambda \mathbf{d}$ $\nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\tilde{\mathbf{x}}) \mathbf{d}$

Gradient Descent and η Example

Move in the direction: $\mathbf{d} = -\eta \nabla f(\mathbf{x}_t)$.

If η is small enough, then $\mathbf{x}_t + \mathbf{d}$ is close to \mathbf{x}_t , and:

 $f(\mathbf{x}_t + \mathbf{d}) \approx f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d}.$



Gradient Descent and η Example

Move in the direction: $\mathbf{d} = -\eta \nabla f(\mathbf{x}_t)$.

If η is small enough, then $\mathbf{x}_t + \mathbf{d}$ is close to \mathbf{x}_t , and:

 $f(\mathbf{x}_t + \mathbf{d}) \approx f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d}.$

, nen to

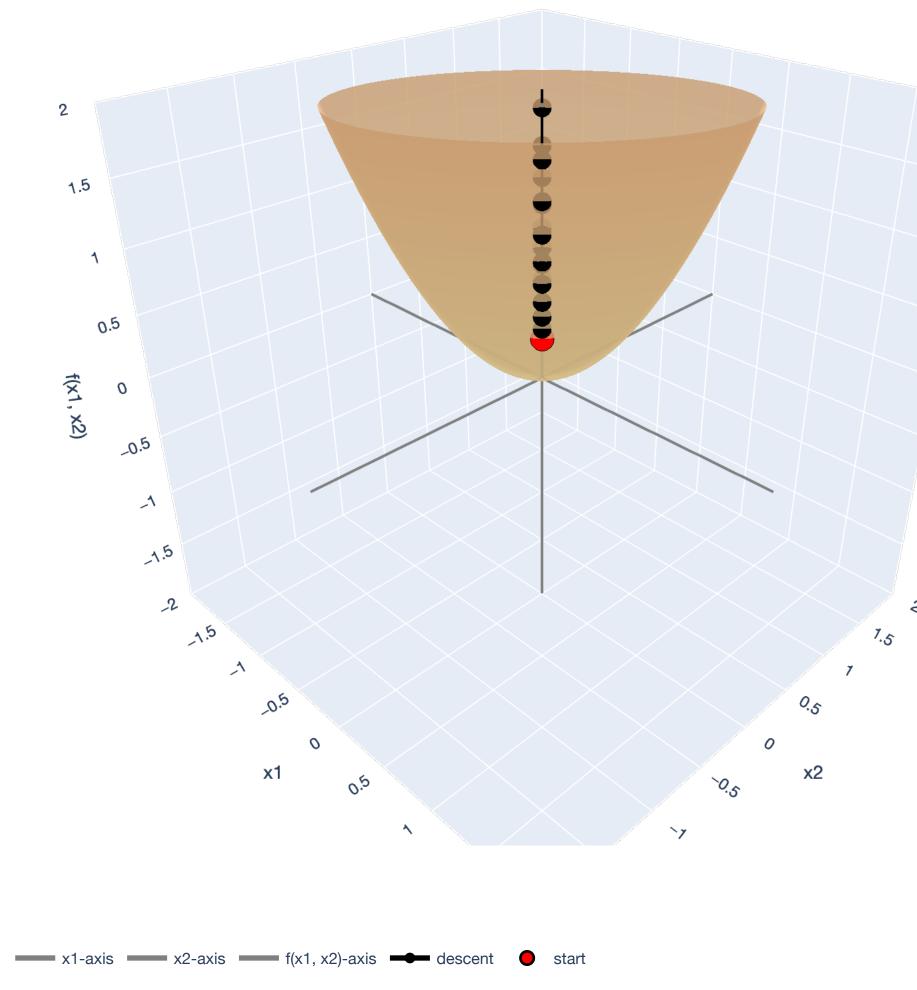


Gradient Descent and η Example

Move in the direction: $\mathbf{d} = -\eta \nabla f(\mathbf{x}_t)$.

If η is small enough, then $\mathbf{x}_t + \mathbf{d}$ is close to \mathbf{X}_t , and:

 $f(\mathbf{x}_t + \mathbf{d}) \approx f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d}.$

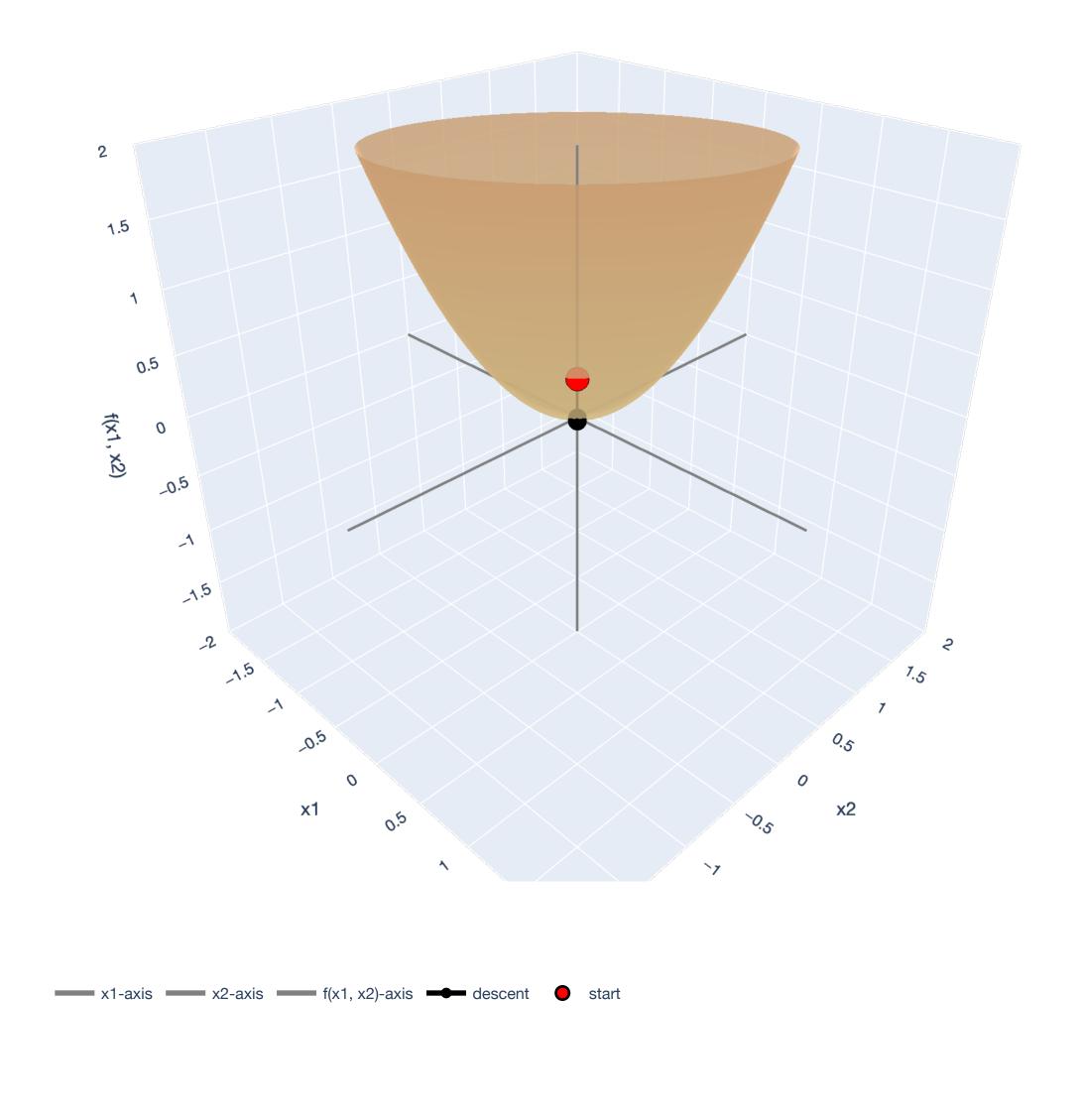


Gradient Descent and η Example

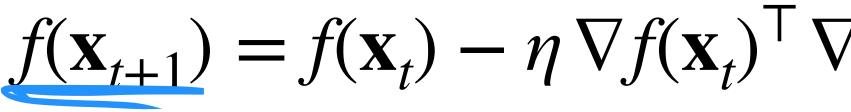
Move in the direction: $\mathbf{d} = -\eta \nabla f(\mathbf{x}_t)$.

If η is small enough, then $\mathbf{x}_t + \mathbf{d}$ is close to \mathbf{X}_t , and:

 $f(\mathbf{x}_t + \mathbf{d}) \approx f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d}.$



Gradient Descent and η **Applying the first-order Taylor Approximation**



We would like the assurance that gradient descent is always decreasing our function:

 $f(\mathbf{x}_t) \leq f(\mathbf{x}_{t-1})$ at each step t.

$f(\mathbf{x}_{t+1}) = f(\mathbf{x}_t) - \eta \nabla f(\mathbf{x}_t)^\top \nabla f(\mathbf{x}_t) < f(\mathbf{x}_t) \text{ as long as } \eta \text{ is small.}$

Gradient Descent and η Applying the first-order Taylor Approximation

$$f(\mathbf{x}_{t+1}) = f(\mathbf{x}_t) - \eta \nabla f(\mathbf{x}_t)^\top \nabla$$

We would like the assurance that gradient descent is always decreasing our function:

 $f(\mathbf{x}_t) \leq f(\mathbf{x}_{t-1})$ at each step *t*.

Strategy: Use Taylor's Theorem to analyze the first-order approximation! This works if the first derivative doesn't change too much.

 $^{7}f(\mathbf{x}_{t}) < f(\mathbf{x}_{t})$ as long as η is small.

Bounding change in gradients β -smoothness Savare. For a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$, the largest eigenvalue of \mathbf{A} is $\lambda_{\max}(\mathbf{A})$. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is a <u>*β-smooth matrix*</u> if its eigenvalues are at most β :

 $\lambda_{\max}(\mathbf{A}) \leq \beta$.

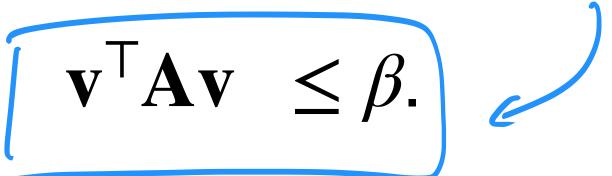
Bounding change in gradients β -smoothness SMOOTH

A twice-differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is a β -smooth function if the eigenvalues of its Hessian at any point $\mathbf{x} \in \mathbb{R}^d$ are at most β . That is:

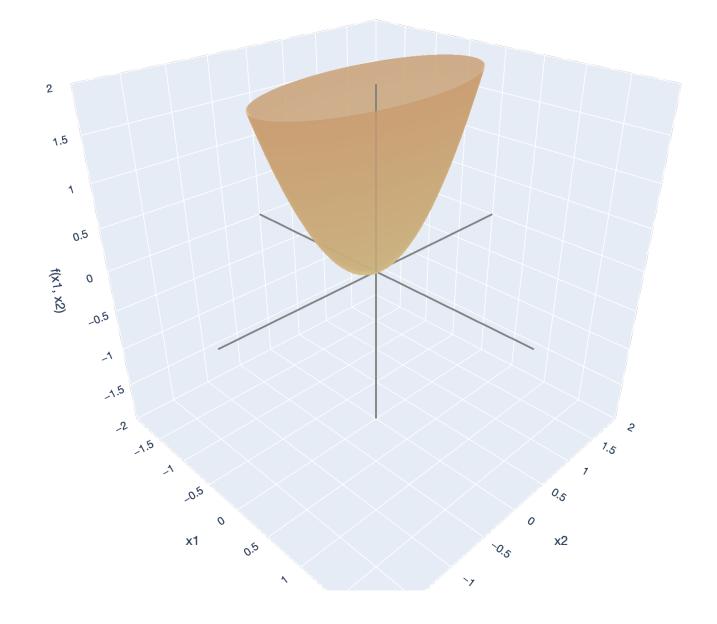
 $\lambda_{\max}(\nabla^2 f(\mathbf{x})) \leq \beta.$

Bounding change in gradients β -smoothness

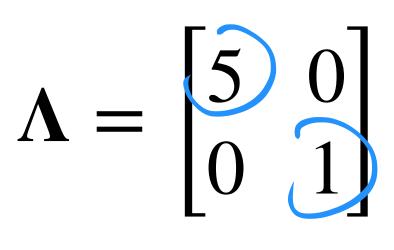
Property (Smoothness bounds quadratic forms). If $\mathbf{A} \in \mathbb{R}^{d \times d}$ is β -smooth, then for any unit vector $\mathbf{v} \in \mathbb{R}^d$,

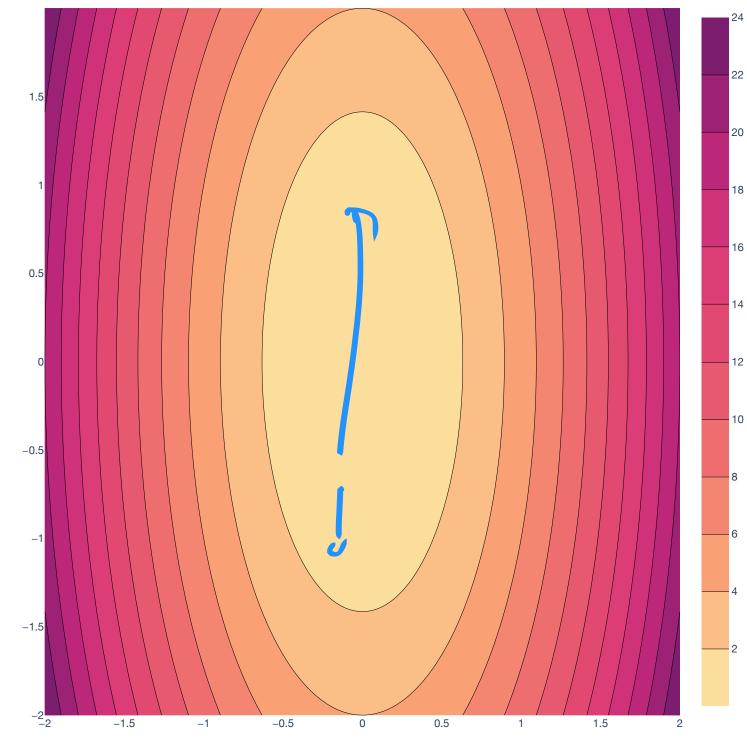


Bounding change in gradients β -smoothness

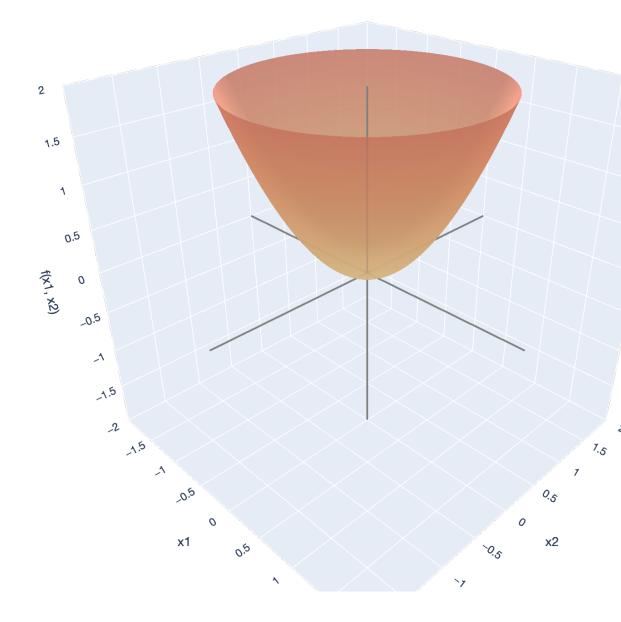


x1-axis x2-axis f(x1, x2)-axis

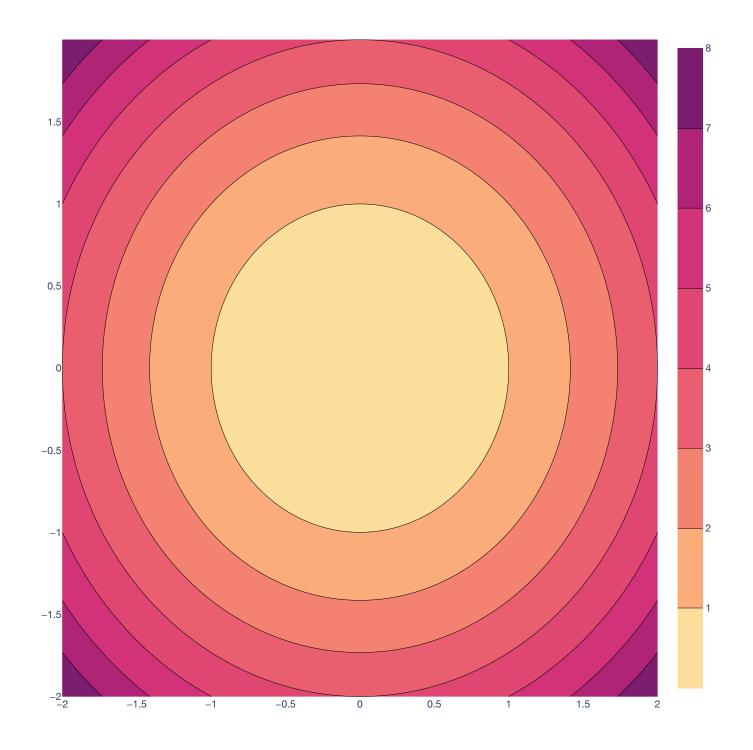




Bounding change in gradients β -smoothness



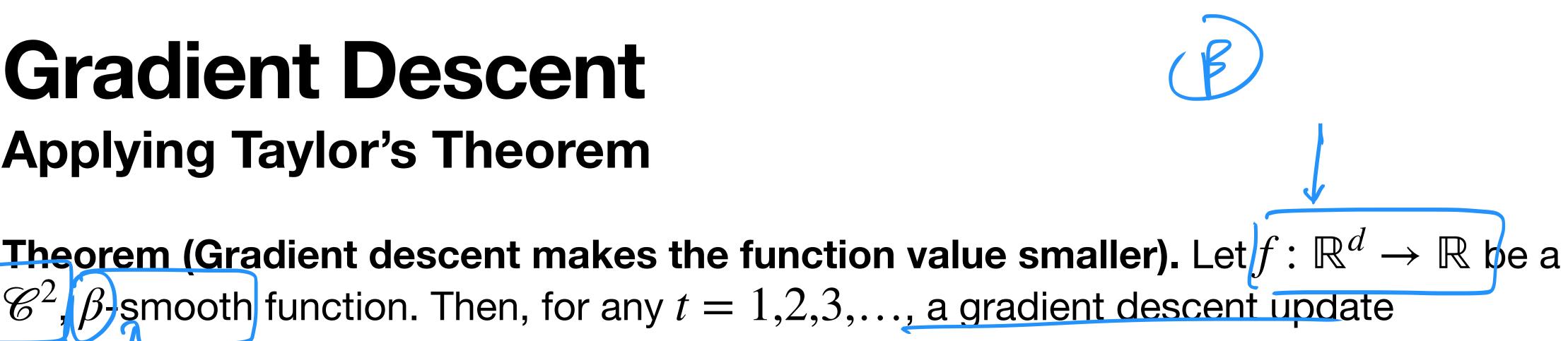
$\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$



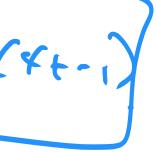
Gradient Descent Applying Taylor's Theorem

 β smooth function. Then, for any t = 1, 2, 3, ..., a gradient descent update Socard lemates avenit $\mathbf{X}_t \leftarrow \mathbf{X}_{t-1}$ with step size $\eta \stackrel{\sim}{=} \frac{1}{\rho}$ has the property: $f(\mathbf{x}_t) \le f(\mathbf{x}_{t-1})$

This theorem says that gradient descent always makes our function value smaller, as long as the function's gradients don't change too much!



$$-1 - \eta \nabla f(\mathbf{x}_{t-1}) \quad \boldsymbol{\leftarrow}$$



Gradient Descent Main tool for proof of GD Theorem

on the line segment between \mathbf{x}_0 and $\mathbf{x}_0 + \mathbf{d}$

$$f(\mathbf{x}_0 + \mathbf{d}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\tilde{\mathbf{x}}) \mathbf{d}$$

Theorem (1st Order Taylor's Theorem - Lagrange Form). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a \mathscr{C}^2 function. For $\mathbf{x}_0, \mathbf{d} \in \mathbb{R}^n$, there exists $\lambda \in (0,1)$ such that for $\tilde{\mathbf{x}} = \mathbf{x}_0 + \lambda \mathbf{d}$

Want to show:
$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_{t+1})\|^2$$
.

Step 1: Use Lagrange's Form of Taylor's Theorem to get an expression for $f(\mathbf{x}_t + \mathbf{d})$.

There exists $\lambda \in (0,1)$ such that for $\tilde{\mathbf{x}} = \mathbf{x}_t + \lambda \mathbf{d}$,

$$f(\mathbf{x}_t + \mathbf{d}) = f(\mathbf{x}_t) + \mathbf{d}$$

 $\vdash \lambda \mathbf{d}, \qquad \mathbf{x}_{\mathbf{a}} \leftarrow \mathbf{x}_{\mathbf{t}} \\ \nabla f(\mathbf{x}_{t})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^{2} f(\tilde{\mathbf{x}}) \mathbf{d}$

Want to show: $f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_{t-1})\|^2$.

Step 2: Use β -smoothness to bound the first-order approximation.

$$f(\mathbf{x}_t + \mathbf{d}) = f(\mathbf{x}_t) + \mathbf{d}$$

Upper bound the quadratic term:

$$\frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\tilde{\mathbf{x}}) \mathbf{d} = \frac{1}{2} \|\mathbf{d}\|^2 (\mathbf{d}/\|\mathbf{d}\|)^{\mathsf{T}} \nabla^2 \mathbf{d}^{\mathsf{T}}$$

$$i \mathbf{d} \mathbf{d}^{\mathsf{T}} = \frac{1}{2} \|\mathbf{d}\|^2 \beta$$

$$\leq \frac{1}{2} \|\mathbf{d}\|^2 \beta$$

+ $\nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\tilde{\mathbf{x}}) \mathbf{d}$ $f(\tilde{\mathbf{x}})(\mathbf{d}/\|\mathbf{d}\|)$

(bound on quadratic forms)

Want to show: $f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_{t-1})\|^2$.

Step 3: Optimize the quadratic upper bound to find the direction and magnitude to take a step.

We need to choose a direction $\mathbf{d} \in$

$$f(\mathbf{x}_{t} + \mathbf{d}) \leq f(\mathbf{x}_{t}) + \nabla f(\mathbf{x}_{t})^{\mathsf{T}}\mathbf{d} + \frac{1}{2} \|\mathbf{d}\|^{2} \beta$$

$$\mathbb{R}^{d} \text{ to take a step in. To do this, optimize the RHS:}$$

$$\nabla_{\mathbf{d}} (f(\mathbf{x}_{t}) + \nabla f(\mathbf{x}_{t})^{\mathsf{T}}\mathbf{d} + \frac{1}{2} \|\mathbf{d}\|^{2} \beta) = \nabla f(\mathbf{x}_{t}) + \beta \mathbf{d}$$

$$\mathcal{H} = \mathcal{H}$$

Set the gradient to **0** and solve:

$$\nabla f(\mathbf{x}_t) + \beta \mathbf{d} = 0 \implies \mathbf{d} = -\frac{1}{\beta} \nabla f(\mathbf{x}_t)$$

$$\beta x^{2} \Rightarrow 2\beta x$$

$$\beta d d = 2\beta c$$

Want to show: $f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_{t-1})\|^2$.

Step 4: Plug optimal value of the quadratic upper bound back in to get our result.

Notice that $\mathbf{d} = -\frac{1}{\beta} \nabla f(\mathbf{x}_t)$ is exactly how we get our gradient step:

Plug this back into the quadratic

$$\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \eta \,\nabla f(\mathbf{x}_t) \text{ with } \eta = 1/\beta.$$

c upper bound: $f(\mathbf{x}_t + \mathbf{d}) \leq f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \|\mathbf{d}\|^2 \beta$
 $f(\mathbf{x}_{t+1}) = f\left(\mathbf{x}_t - \frac{1}{\beta} \,\nabla f(\mathbf{x}_t)\right) \leq f(\mathbf{x}_t) - \frac{1}{\beta} \,\nabla f(\mathbf{x}_t)^{\mathsf{T}} \,\nabla f(\mathbf{x}_t) + \frac{1}{2\beta} \|\nabla f(\mathbf{x}_t)\|^2$
 $\leq f(\mathbf{x}_t) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_t)\|^2$

$$a^{T}a = \|a\|^{2}$$

Gradient Descent Applying Taylor's Theorem

Theorem (Gradient descent makes the function value smaller). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a \mathscr{C}^2 , β -smooth function. Then, for any t = 1, 2, 3, ..., a gradient descent update

with step size
$$\eta = \frac{1}{\beta}$$
 has the property:

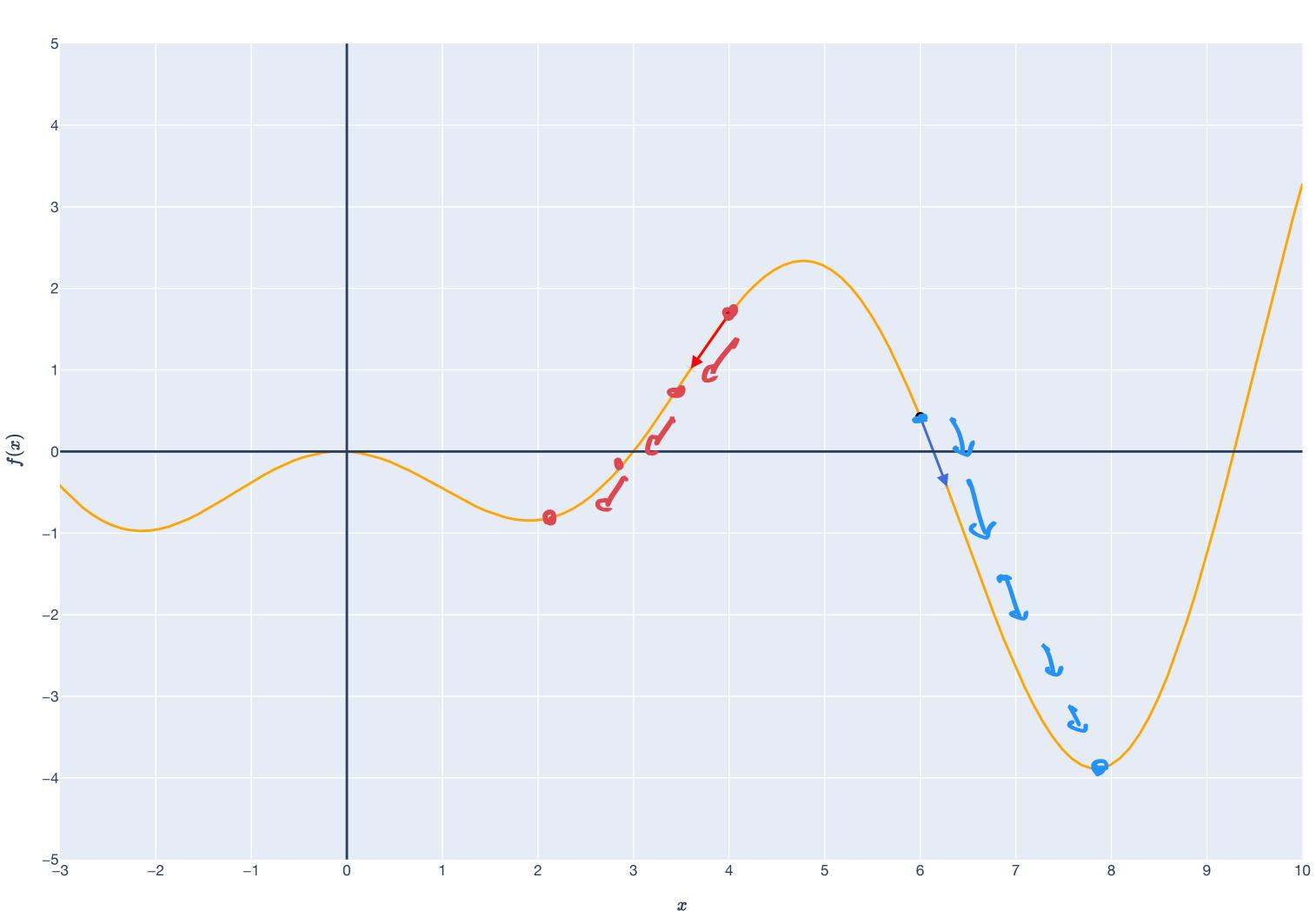
$$f(\mathbf{x}_t) \le f(\mathbf{x}_{t-1}) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_{t-1})\|^2.$$

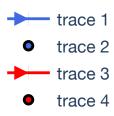
This theorem says that gradient descent always makes our function value smaller, as long as the function's gradients don't change too much!

 $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} - \eta \, \nabla f(\mathbf{x}_{t-1})$

Gradient Descent Preview of convexity

Problem: gradient descent gets us to a *local* minimum, but perhaps not a global minimum.





Gradient Descent Preview of convexity

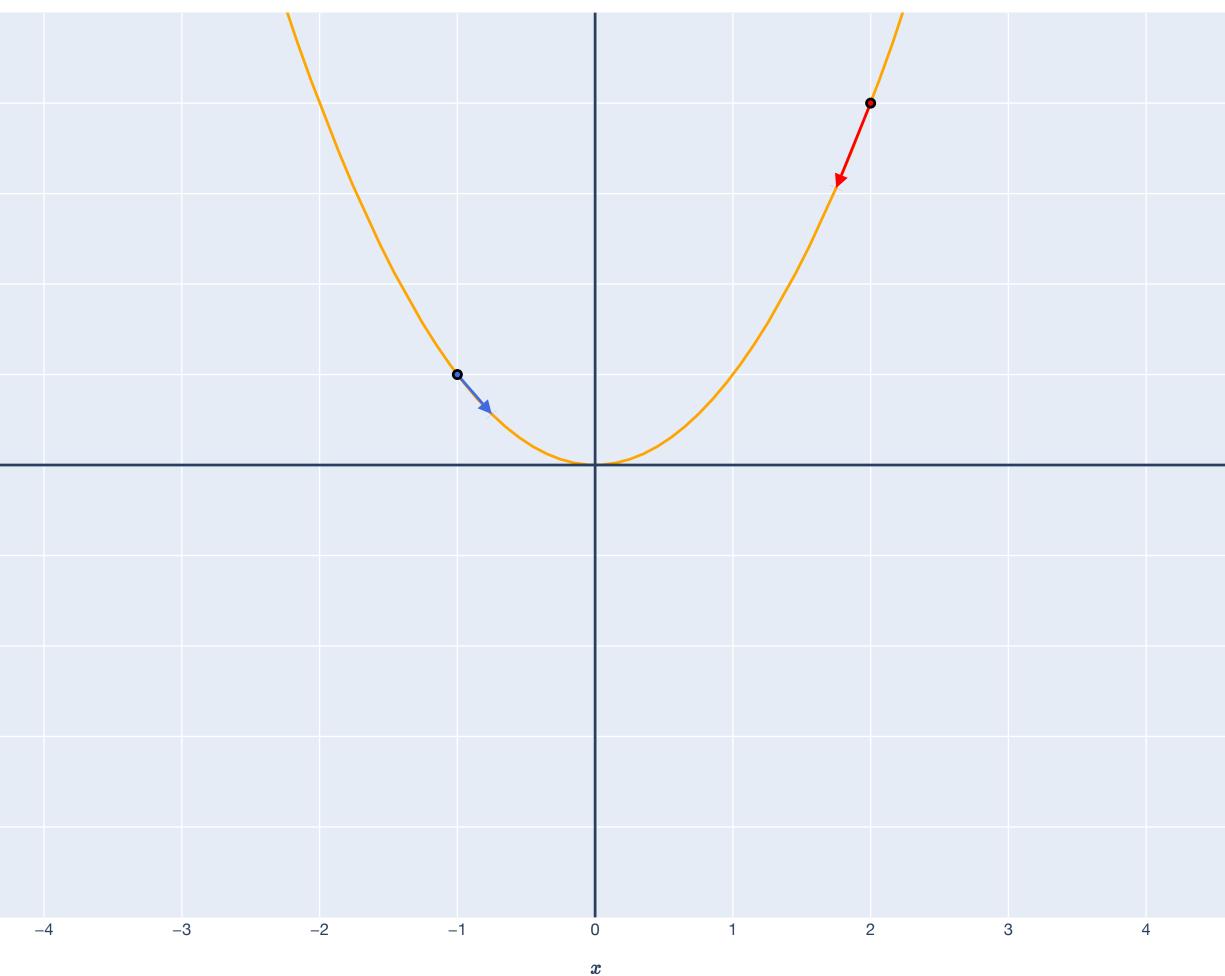
Solution: *Convex functions* are functions that "look like bowls."

These have nice properties, the main one being: *all local minima are global minima.* f(x)

-2

-3

-5 -5



Gradient Descent Preview of convexity

Theorem (Convergence of GD for smooth, convex functions). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a \mathscr{C}^2 , β -smooth, and convex function. Let \mathbf{x}^* be a minimizer of f, i.e. $f(\mathbf{x}^*) \le f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

iterations, we have:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \|\mathbf{x}_T - \mathbf{x}^*\|^2 \right).$$

If we run gradient descent with step size $\eta = \frac{1}{2}$ and initial point $\mathbf{x}_0 \in \mathbb{R}^n$ for T

Recap

Lesson Overview

Linearization for approximation. We explore using the *linearization* of a function to approximate it. This is also called a "first-order approximation."

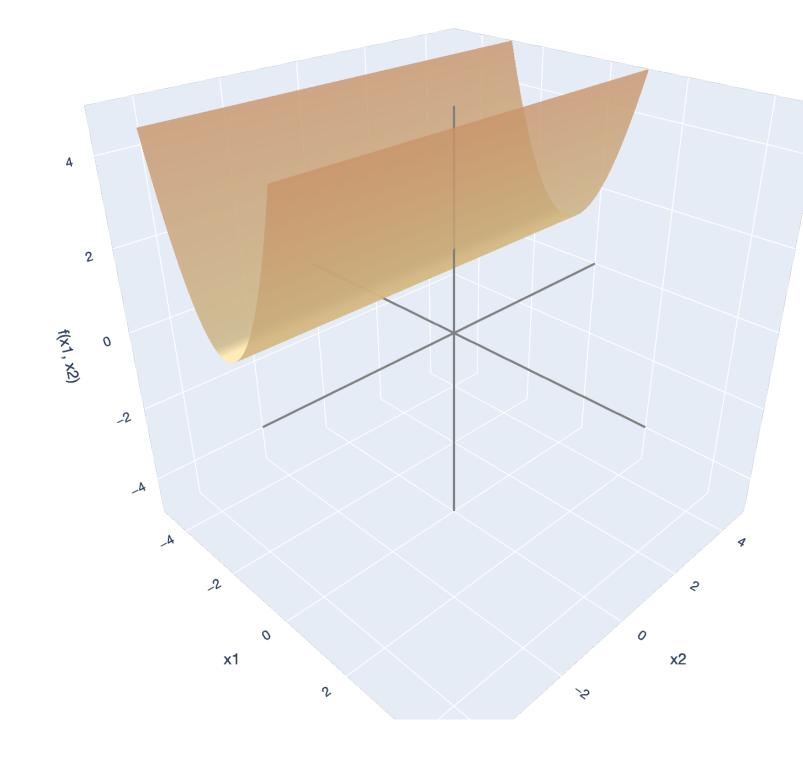
Taylor series. We define the <u>Taylor series</u> of a function, which is an "infinite polynomial" that approximates a function at a point.

First-order and second-order Taylor approximation. The Taylor polynomial allows us to approximate a funciton by "chopping it off" at a certain degree.

Taylor's Theorem. To quantify how bad our approximations are, we can use <u>Taylor's Theorem.</u> We present two forms of Taylor's Theorem (Peano and Lagrange).

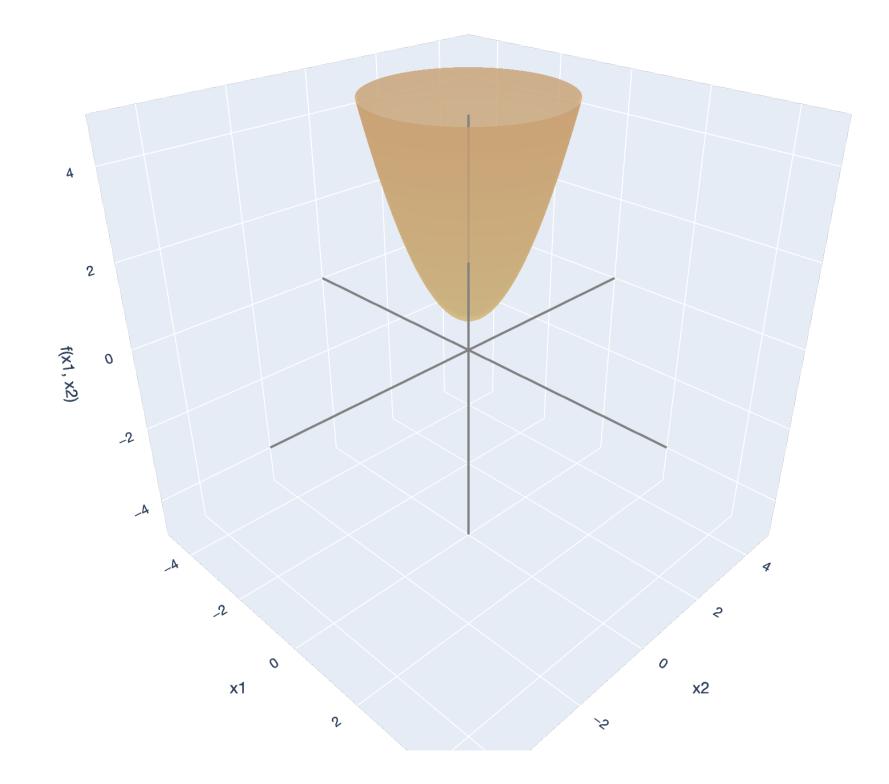
Gradient descent. We write down the full algorithm for <u>gradient descent</u>, the second "story" of our course. Using Taylor's Theorem, we can prove that, for <u> β -smooth functions</u>, GD makes the function value smaller from iteration to iteration, as long as we set the "step size" small enough.

Lesson Overview Big Picture: Least Squares



x1-axis x2-axis f(x1, x2)-axis

 $\lambda_1, \ldots, \lambda_d \ge 0$



x1-axis x2-axis f(x1, x2)-axis

 $\lambda_1, \ldots, \lambda_d > 0$

Lesson Overview **Big Picture: Gradient Descent**

