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Math for Machine Learning
Week 4.1: Optimization and the Lagrangian Method
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Lesson Overview

Optimization. Minimize an objective function  with the possible requirement that the 
minimizer  belongs to a constraint set .


Lagrangian. For optimization problems with  defined by equalities/inequalities, the Lagrangian is a 
function  that “unconstrains” the problem.  

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a 
point  to be optimal, at least to all points close to it. 

Constrained local optima (Lagrangian and KKT). When  is represented by inequalities and equalities, 
we can use the method of Lagrange multipliers and the KKT Theorem to “unconstrain” the problem.


Ridge regression and minimum norm solutions. By constraining the norm of  of least squares 
(i.e. ), we obtain more “stable” solutions.

f : ℝd → ℝ
x* 𝒞 ⊆ ℝd

𝒞
L : ℝd × ℝm × ℝr → ℝ

x*

𝒞

w* ∈ ℝd

∥w*∥
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Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.
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Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etabig.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
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Optimization Problems 
Definition and examples



Motivation
Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization 
problems. 

In an optimization problem, we want to minimize an objective function 
 with respect to a set of constraints :
f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞
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Motivation
Components of an optimization problem




 is the objective function. 


 is the constraint/feasible set.

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f : ℝd → ℝ

𝒞 ⊆ ℝn
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Motivation
Components of an optimization problem




 is the objective function. 


 is the constraint/feasible set. 

 is an optimal solution (global minimum) if


.


The optimal value is . Our goal is to find  and .

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f : ℝd → ℝ

𝒞 ⊆ ℝn

x*

x* ∈ 𝒞 and f(x*) ≤ f(x), for all x ∈ 𝒞

f(x*) x* f(x*)
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Motivation
Components of an optimization problem




 is the objective function. 


 is the constraint/feasible set. 

 is an optimal solution (global minimum) if


.


The optimal value is . Our goal is to find  and .


Note: to maximize , just minimize . So we’ll only focus on minimization problems.

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f : ℝd → ℝ

𝒞 ⊆ ℝn

x*

x* ∈ 𝒞 and f(x*) ≤ f(x), for all x ∈ 𝒞

f(x*) x* f(x*)

f(x) −f(x)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Motivation
Optimization in single-variable calculus

Ultimate goal: Find the 
global minimum of 
functions.


Intermediary goal: Find the 
local minima.
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Motivation
Example: Linear Programming

Let , ,  be fixed. 


Let  be the decision/free variables.





 is element-wise inequality:  for all .


c ∈ ℝd A ∈ ℝn×d b ∈ ℝn

x ∈ ℝd

minimize
x∈ℝd

c⊤x

subject to Ax ⪯ b
⪯ a⊤

i x ≤ bi i ∈ [n]
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Motivation
Example: Linear Programming ( , )d = 3 n = 7

We’re cooking some NYC classics again. Suppose we have:


 bacon,  egg,  cheese, and  (sandwich) rolls.


There are three recipes we know:


Bacon egg and cheese (BEC) requires  bacon,  egg,  cheese, and  roll.


Cost (including labor): $3


Egg and cheese (EC) requires  bacon,  egg,  cheese, and  roll.


Cost (including labor): $2


Bacon egg omelette (BEO) requires  bacon,  egg,  cheese, and  roll.


Cost (including labor): $1

100 120 150 300

1 1 1 1

0 2 1 1

1 3 1/2 0
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Motivation
Example: Linear Programming ( , )d = 3 n = 7

We’re cooking some NYC classics again. Suppose we have:


 bacon,  egg,  cheese, and  (sandwich) rolls.


There are three recipes we know:


1. Bacon egg and cheese (BEC) requires  bacon,  egg,  
cheese, and  roll.


Cost (including labor): $3


2. Egg and cheese (EC) requires  bacon,  egg,  cheese, and 
 roll.


Cost (including labor): $2


3. Bacon egg omelette (BEO) requires  bacon,  egg,  
cheese, and  roll.


Cost (including labor): $1

100 120 150 300

1 1 1
1

0 2 1
1

1 3 1/2
0

Decision variables? 

 

number of BEC, 


number of EC, 


 = number of BEO


Constraints? 

Bacon: , 


Egg: , 


Cheese: , 


Roll: , 


Objective? 

x = (x1, x2, x3) ∈ ℝ3

x1 =

x2 =

x3

a1 = (1,0,1) b1 = 100

a2 = (1,2,3) b2 = 120

a3 = (1,1,1/2) b3 = 150

a4 = (1,1,0) b4 = 300

c⊤x = 3x1 + 2x2 + x3

⟹
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Motivation
Example: Linear Programming ( , )d = 3 n = 7

Decision variables? 

 

number of BEC, 


number of EC, 


 = number of BEO


Constraints? 

Bacon: , 


Egg: , 


Cheese: , 


Roll: , 


Objective? 

x = (x1, x2, x3) ∈ ℝ3

x1 =

x2 =

x3

a1 = (1,0,1) b1 = 100

a2 = (1,2,3) b2 = 120

a3 = (1,1,1/2) b3 = 150

a4 = (1,1,0) b4 = 300

c⊤x = 3x1 + 2x2 + x3

Linear program: 

minimize 3x1 + 2x2 + x3

subject to x1 + x3 ≤ 100
x1 + 2x2 + 3x3 ≤ 120
x1 + x2 + 0.5x3 ≤ 150
x1 + x2 ≤ 300
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

⟹

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Motivation
Example: Linear Programming ( , )d = 3 n = 7

Linear program: 

minimize 3x1 + 2x2 + x3

subject to x1 + x3 ≤ 100
x1 + 2x2 + 3x3 ≤ 120
x1 + x2 + 0.5x3 ≤ 150
x1 + x2 ≤ 300
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

LP in matrix form: 



minimize 3x1 + 2x2 + x3

subject to Ax ⪯ b

A =

1 0 1
1 2 3
1 1 1

2

1 1 0
−1 0 0
0 −1 0
0 0 −1

b =

100
120
150
300
0
0
0

⟹
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Regression
Setup

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝd

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .
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Regression
Setup

Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  
for , or:





To find , we follow the principle of least squares. 


i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2
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Least Squares
Optimization Problem

Let ,  be fixed. Let 
 be the decision variables.


X ∈ ℝn×d y ∈ ℝn

w ∈ ℝd

minimize
w∈ℝd

∥Xw − y∥2

subject to w ∈ ℝd

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares
Optimization Problem

Let ,  be fixed. Let 
 be the decision variables.





How to find the minimizer?

X ∈ ℝn×d y ∈ ℝn

w ∈ ℝd

minimize
w∈ℝd

∥Xw − y∥2

subject to w ∈ ℝd

x1-axis x2-axis f(x1, x2)-axis
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Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  
and . Let  be the least squares 
minimizer:





If  and , then:


 .


To get predictions :


.


X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares
OLS Theorem

Proof (OLS).


  



“First derivative test.” Take the gradient.


.


Set it equal to .





    is 
invertible:


.

f(w) = ∥Xw − y∥2 ⟺
f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares
OLS Theorem
Proof (OLS).


  


“First derivative test.” Take the gradient.


.


Set it equal to .





    is invertible:


.


“Second derivative test.” Take the Hessian of .


.





 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis
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Least Squares
OLS Theorem
Proof (OLS).


  


“First derivative test.” Take the gradient.


.


Set it equal to .





    is invertible:


.


“Second derivative test.” Take the Hessian of .


.





 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis
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Local and global minima 
Definition of “locality” and different minima



Motivation
Optimization in single-variable calculus

Ultimate goal: Find the 
global minimum of 
functions.


Intermediary goal: Find the 
local minima.
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“Local” to a Point
Definition of an open ball/neighborhood
Let  be a point. For some real value , the open ball or 
neighborhood of radius  around  is the set of all points:





x ∈ ℝd δ > 0
δ x

Bδ(x) := {a ∈ ℝd : ∥x − a∥ < δ} .
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“Local” to a Point
Definition of an open ball/neighborhood
Example. Consider . What is the open ball of radius  
around ?


x = (1,1) ∈ ℝ2 δ = 1
x
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“Local” to a Point
Definition of an open ball/neighborhood
Example. Consider . What is the open ball of radius  
around ?


An open ball lets us approach  from all directions.

x = (1,1) ∈ ℝ2 δ = 1
x

x



“Local” to a Point
Definition of the interior of a set

 

Let  be a set. A point  is an interior point if there exists a 
neighborhood  around  such that  (where  is proper subset).


The interior of the set  is the set of all interior points of , i.e.


Bδ(x) := {a ∈ ℝd : ∥x − a∥ < δ}

S ⊆ ℝd x ∈ S
Bδ(x) x Bδ(x) ⊂ S ⊂

int(S) S

int(S) := {x ∈ S : Nδ(x) ⊂ S} .
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Types of Minima
Local and global minima
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Types of Minima
Local and global minima




A point  is a local minimum if there exists a 
neighborhood  around  such that 


 for all .


We will also call this a constrained local minimum.


A point  is a global minimum if 


 for all .

minimize f(x)
subject to x ∈ 𝒞

x̂ ∈ 𝒞
Bδ(x) x̂

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)

x* ∈ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞
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Types of Minima
Local and global minima




A point  is an unconstrained local 
minimum if there exists a neighborhood 

 around  such that 


 for all .

minimize f(x)
subject to x ∈ 𝒞

x̂ ∈ 𝒞

Bδ(x̂) ⊂ 𝒞 x̂

f(x̂) ≤ f(x) x ∈ Bδ(x̂)
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Types of Minima
Local and global minima




A point  is an unconstrained local 
minimum if there exists a neighborhood 

 around  such that 


 for all .


Unconstrained local minima are in the interior 
 of the constraint set. 

On the other hand, constrained local minima can 
be on the “edge” of the constraint set.

minimize f(x)
subject to x ∈ 𝒞

x̂ ∈ 𝒞

Bδ(x̂) ⊂ 𝒞 x̂

f(x̂) ≤ f(x) x ∈ Bδ(x̂)

int(𝒞)
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Types of Minima
Which type of minima are each of these points?
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constrained local: 

 for all  

unconstrained local: 

 for all  and 
. 

global: 

 for all .

minimize f(x)
subject to x ∈ 𝒞

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)

f(x̂) ≤ f(x) x ∈ Bδ(x̂)
Bδ(x̂) ⊂ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞
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Types of Minima
Big picture
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At the end of the day, we want 
to find global minima.


Global minima could be either 
unconstrained local minima or 
constrained local minima. 


Without , global minima 
are just one of the 
unconstrained local minima.


With , global minima may 
lie on the boundary of the 
constraint set.

𝒞

𝒞

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Types of Minima
Big picture
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At the end of the day, we want to find 
global minima.


Global minima could be either 
unconstrained local minima or 
constrained local minima. 


Without , global minima are just 
one of the unconstrained local 
minima.


With , global minima may lie on 
the boundary of the constraint set.


Strategy: Find all unconstrained and 
constrained local minima, then test for 
global minima.

𝒞

𝒞
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Finding local minima 
Big Picture
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Necessary and sufficient conditions
Review




 is necessary for .  is sufficient for .


sufficiency: If you assume this, you get your property.


necessity: Your property cannot hold unless you assume this.


Example:  

A sufficient (but not necessary) condition to get an A in this class is to get  on every 
assignment.


A necessary (but not sufficient) condition to get an A in this class is to turn in every assignment.

P ⟹ Q

Q P P Q

100
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Unconstrained Minima
How do we find unconstrained minima?

A point  is an unconstrained local minimum if there exists a 
neighborhood  around  such that 


 for all .


From single-variable calculus:


 and .

x̂ ∈ 𝒞
Bδ(x̂) ⊂ 𝒞 x̂

f(x̂) ≤ f(x) x ∈ Bδ(x̂)

f′￼(x) = 0 f′￼′￼(x) ≥ 0
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Unconstrained Minima
Intuition from Taylor series

Let  be a scalar increment. 


At , the second-order Taylor approximation tells us all we need to know: 

.

δ ∈ ℝ

x0 ∈ ℝ

f(x0 + δ) ≈ f(x0) + f′￼(x0)δ +
1
2

f′￼′￼(x0)δ2
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Second-order Taylor Approximation
Single-variable example




Second-order Taylor expansion at :


f(x) = ex/2

x0 = 1

T2(x) = e1/2 +
e1/2(x − 1)

2
+

e1/2(x − 1)2

8
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Unconstrained Minima
Intuition from Taylor series

Let  be a scalar increment. 


At , the second-order Taylor approximation tells us all we need to know: 

. 

Pretend that this function approximation is exact. Then… 

What are the necessary conditions for  to be a minimum?


What are the sufficient conditions for  to be a minimum?

δ ∈ ℝ

x0 ∈ ℝ

f(x0 + δ) ≈ f(x0) + f′￼(x0)δ +
1
2

f′￼′￼(x0)δ2

x

x
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Unconstrained Minima
Intuition from Taylor series

Let  be a scalar increment. 


At , the second-order Taylor approximation tells us all we need to know: 

. 

Pretend that this function approximation is exact. Then… 

What are the necessary conditions for  to be a minimum? , .


What are the sufficient conditions for  to be a minimum? , .

δ ∈ ℝ

x0 ∈ ℝ

f(x0 + δ) ≈ f(x0) + f′￼(x0)δ +
1
2

f′￼′￼(x0)δ2

x f′￼(x) = 0 f′￼′￼(x) ≥ 0

x f′￼(x) = 0 f′￼′￼(x) > 0



Unconstrained Minima
Sufficient conditions met




Necessary conditions: , .


Sufficient conditions: , .


f(x0 + δ) ≈ f(x0) + f′￼(x0)δ +
1
2

f′￼′￼(x0)δ2

f′￼(x0) = 0 f′￼′￼(x0) ≥ 0

f′￼(x0) = 0 f′￼′￼(x0) > 0
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Unconstrained Minima
Necessary, not sufficient

−3 −2 −1 0 1 2 3 4 5−3

−2

−1

0

1

2

3

4

5

linearization at 2

linearization at 1




Necessary conditions: , .


Sufficient conditions: , .


f(x0 + δ) ≈ f(x0) + f′￼(x0)δ +
1
2

f′￼′￼(x0)δ2

f′￼(x0) = 0 f′￼′￼(x0) ≥ 0

f′￼(x0) = 0 f′￼′￼(x0) > 0
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Remainder of Taylor Polynomial
Definition

The remainder of a function and its Taylor 
polynomial at  is the function:





What behavior would we like? Ideally, 
 as  (the approximation 

gets better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0
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Taylor’s Theorem
Remainder Theorem 1: Peano’s Form Taylor’s Theorem

Theorem (2nd Order Taylor’s Theorem: Peano’s Form). Let  be a twice differentiable 
function at . Then, for every direction :





The remainder is





and the claim is that , meaning that  


f : ℝd → ℝ
x0 d ∈ ℝd

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d + o(∥d∥2) .

R2(x0 + d) = f(x0 + d) − (f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d),

R2(x0 + d) = o(∥d∥2) lim
d→0

R2(x0 + d)/∥d∥2 = 0.
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Taylor’s Theorem
Remainder Theorem 1: Peano’s Form Taylor’s Theorem

What does  mean?


For every , there exists a neighborhood  such that


 


We can make the remainder term as small as we like as long as  is 
sufficiently small (  does the trick).


R2(x0 + d) = o(∥d∥2)

C > 0 Bδ(0)

|R2(x0 + d) | ≤ C∥d∥2, ∀d ∈ Bδ(0) .

∥d∥
∥d∥ < δ
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Taylor’s Theorem
Remainder Theorem 1: Peano’s Form Taylor’s Theorem

What does  mean?


Let  be a unit vector with  and  be a scalar, so:


.


Then,  means:


  


(the remainder goes to  faster than a quadratic).

R2(x0 + d) = o(∥d∥2)

d ∈ ℝd ∥d∥ = 1 α > 0

o(∥αd∥2) = o(α2)

R2(x0 + αd) = o(α2)

lim
α→0

R2(x0 + αd)
α2

= 0

0
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Taylor’s Theorem
Remainder Theorem 1: Peano’s Form Taylor’s Theorem

Theorem (2nd Order Taylor’s Theorem: Peano’s Form). Let  be a 
twice differentiable function at . Let  be any direction. For every 

, there exists a neighborhood  such that


 


for all .


f : ℝd → ℝ
x0 d ∈ ℝd

C > 0 Bδ(0)

f(x0 + d) − (f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d) ≤ C∥d∥2

d ∈ Bδ(0)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Unconstrained local minima 
Necessary conditions



Least Squares
OLS Theorem

Proof (OLS).


“First derivative test.” Take the gradient.


.


Set it equal to .


∇w f(w) = 2(X⊤X)w − 2X⊤y

0

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
Deng, Samuel



Least Squares
OLS Theorem

Proof (OLS).


“First derivative test.” Take the gradient.


.


Set it equal to .


Why is this the right thing to do?

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
Deng, Samuel



Taylor’s Theorem
Remainder Theorem 1: Peano’s Form Taylor’s Theorem

For all intents and purposes,


 when  is small enough.


is analogous to:


 when  is small enough.

f(x0 + δ) ≈ f(x0) + f′￼(x0)δ +
1
2

f′￼′￼(x0)δ2 δ

f(x0 + d) ≈ f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d ∥d∥
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Unconstrained Minima
Necessary conditions

 

when  is small enough.


Necessary conditions: 


, .

f(x0 + δ) ≈ f(x0) + f′￼(x0)δ +
1
2

f′￼′￼(x0)δ2

δ

f′￼(x0) = 0 f′￼′￼(x0) ≥ 0

 
when  is small enough.


Necessary conditions: 


,  is PSD.

f(x0 + d) ≈ f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d

∥d∥

∇f(x0) = 0 ∇2f(x0)
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Let  be a function and let  be a point. If there exists a 
gradient vector  such that





then  is differentiable at  and has the (total) derivative . 

f : ℝd → ℝ x0 ∈ ℝd

∇f(x0) ∈ ℝd

lim
d→0

f(x0 + d) − f(x0) − ∇f(x0)⊤d
∥d∥

= 0,

f x0 ∇f(x0)

Review of definition
Total Derivative
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Unconstrained Minima
Necessary conditions
Theorem (Necessary Conditions for Unconstrained Local Minimum). Consider 
the optimization problem





Suppose  is an unconstrained local minimum. Then,


First-order condition. If  is differentiable at , then .


Second-order condition. If  is twice-differentiable at , then  is 
positive semidefinite, i.e.  for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd
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Proof of necessary conditions
First order condition
First-order condition. If  is differentiable at , then .


Step 1: Use definition of the gradient for .


Choose an arbitrary direction , where  is a unit vector and  is a scalar. 


 is differentiable, so…





which is the same as stating:


.

f x* ∇f(x*) = 0

αd

αd ∈ ℝd ∥d∥ = 1 α > 0

f

lim
α→0

f(x* + αd) − f(x*) − α∇f(x*)⊤d
α∥d∥

= 0

lim
α→0

f(x* + αd) − f(x*)
α

= ∇f(x*)⊤d
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Proof of necessary conditions
First order condition
First-order condition. If  is differentiable at , then .


Step 2: Use local optimality on difference .


From Step 1,


.


 is an unconstrained local minimum, so there exists a neighborhood  such that 
 for all . So if  (sufficiently small),


  .

f x* ∇f(x*) = 0

f(x* + αd) − f(x*)

lim
α→0

f(x* + αd) − f(x*)
α

= ∇f(x*)⊤d

x* Bδ(x*)
f(x) ≥ f(x*) x ∈ Bδ(x*) α < δ

f(x* + αd) ≥ f(x*) ⟹ ∇f(x*)⊤d ≥ 0
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Proof of necessary conditions
First order condition
First-order condition. If  is differentiable at , then .


Step 3: Conclude by recalling that  was an arbitrary direction.


From Step 2, if  (sufficiently small), .


But  was an arbitrary direction with . 


 and 


 and 





 and 


Therefore, .

f x* ∇f(x*) = 0

d ∈ ℝn

α < δ ∇f(x*)⊤d ≥ 0

d ∈ ℝd ∥d∥ = 1

d = e1 ⟹ ∇f(x*)1 ≥ 0 d = − e1 ⟹ ∇f(x*)1 < 0

d = e2 ⟹ ∇f(x*)2 ≥ 0 d = − e2 ⟹ ∇f(x*)2 < 0

⋮

d = ed ⟹ ∇f(x*)d ≥ 0 d = − ed ⟹ ∇f(x*)d < 0

∇f(x*) = 0
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Proof of necessary conditions
Second order condition
Second-order condition. If  is twice-differentiable at , then  is PSD.


Step 1: Use second-order Taylor’s theorem with  with . 


Choose an arbitrary direction , where  is a unit vector and  
is a scalar. By Taylor’s Theorem (Peano’s form):


f x* ∇2f(x*)

αd ∈ ℝd ∥d∥ = 1

αd ∈ ℝd ∥d∥ = 1 α > 0

f(x* + αd) − f(x*) = ∇f(x*)⊤(αd) +
1
2

(αd)⊤ ∇2f(x*)(αd) + o(∥αd∥2)

= α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d + o(α2)
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Proof of necessary conditions
Second order condition
Second-order condition. If  is twice-differentiable at , then  is PSD.


Step 2: Use first-order condition on difference .


From Step 1,





 is an unconstrained local minimum, so by first-order condition (just proved):


f x* ∇2f(x*)

f(x* + αd) − f(x*)

f(x* + αd) − f(x*) = α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d + o(α2)

x*

f(x* + αd) − f(x*) =
α2

2
d⊤ ∇2f(x*)d + o(α2)
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Proof of necessary conditions
Second order condition
Second-order condition. If  is twice-differentiable at , then  is PSD.


Step 3: Take  to get rid of the little-oh terms.


From Step 3, 


.


Recall that if , then .


  


By local optimality of , 


, so . By definition,  is PSD.

f x* ∇2f(x*)

α → 0

f(x* + αd) − f(x*) =
α2

2
d⊤ ∇2f(x*)d + o(α2)

g = o(h) lim
α→0

g(α)
h(α)

= 0

f(x* + αd) − f(x*) −
α2

2
d⊤ ∇2f(x*)d = o(α2) ⟹ lim

α→0

f(x* + αd) − f(x*)
α2

−
1
2

d⊤ ∇2f(x*)d = 0

x*

0 ≤
f(x* + αd) − f(x*)

α2
0 ≤

1
2

d⊤ ∇2f(x*)d ∇2f(x*)
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Least Squares
OLS Theorem
Proof (OLS).


  


“First derivative test.” Take the gradient.


.


Set it equal to .





    is invertible:


.


“Second derivative test.” Take the Hessian of .


.





 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Unconstrained local minima 
Sufficient conditions
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Least Squares
OLS Theorem

Proof (OLS).


“Second derivative test.” Take the Hessian 
of .


.





 is positive definite!


f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html
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Least Squares
OLS Theorem

Proof (OLS).


“Second derivative test.” Take the Hessian 
of .


.





 is positive definite!


Why is this the right thing to do?

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Unconstrained Minima
Sufficient conditions

 

when  is small enough.


Sufficient conditions: 


, .

f(x0 + δ) ≈ f(x0) + f′￼(x0)δ +
1
2

f′￼′￼(x0)δ2

δ

f′￼(x0) = 0 f′￼′￼(x0) > 0

 
when  is small enough.


Sufficient conditions: 


,  is PD.

f(x0 + d) ≈ f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d

∥d∥

∇f(x0) = 0 ∇2f(x0)
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Unconstrained Minima
Sufficient conditions
Theorem (Sufficient Conditions for Unconstrained Local Minimum). 
Consider the optimization problem





Let . If  within a neighborhood  of  and


 is positive definite,


then  is a strict unconstrained local minimum.

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞) f ∈ 𝒞2 Nδ(x*) x*

∇f(x*) = 0 and ∇2f(x*)

x*
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Proof of sufficient conditions
Second order condition
Second-order condition. If  is PD, then  is an unconstrained local minimum.


Step 1: Use second-order Taylor’s theorem with  with . 


Choose an arbitrary direction , where  is a unit vector and  is 
a scalar. By Taylor’s Theorem (Peano’s form):


∇2f(x*) x*

αd ∈ ℝd ∥d∥ = 1

αd ∈ ℝd ∥d∥ = 1 α > 0

f(x* + αd) − f(x*) = ∇f(x*)⊤(αd) +
1
2

(αd)⊤ ∇2f(x*)(αd) + o(∥αd∥2)

= α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d + o(α2)
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Proof of sufficient conditions
Second order condition
Second-order condition. If  is PD, then  is an unconstrained local minimum.


Step 2:  is positive definite, so its eigenvalues are all positive.


From Step 1, for any  with  and ,


.


Let the eigenvalues of  be , and consider the smallest eigenvalue,  
with unit eigenvector  with .


.

∇2f(x*) x*

∇2f(x*)

d ∈ ℝd ∥d∥ = 1 α > 0

f(x* + αd) − f(x*) = α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d + o(α2)

∇2f(x*) λ1 ≥ … ≥ λd > 0 λd > 0
vd ∥vd∥ = 1

⟹
α2

2
d⊤ ∇2f(x*)d ≥

α2

2
v⊤

d ∇f(x*)vd =
λdα2

2
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Proof of sufficient conditions
Second order condition
Second-order condition. If  is PD, then  is an unconstrained local minimum.


Step 3: We chose  arbitrarily, so the first-order term can be non-negative.





Because  is an arbitrary direction (could be negative or positive), , and


.

∇2f(x*) x*

d

f(x* + αd) − f(x*) = α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d

≥ λdα2

2

+ o(α2)

d α∇f(x*)⊤d ≥ 0

f(x* + αd) − f(x*) ≥
λdα2

2
+ o (α2) = ( λd

2
+

o(α2)
α2 ) α2
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Proof of sufficient conditions
Second order condition
Second-order condition. If  is PD, then  is an unconstrained local minimum.


Step 4: If  is small enough, then  can be as small as we like.


From Step 3, 





For any , we can choose  small enough so .


Let’s make  smaller than . Then, for any  sufficiently small,


.

∇2f(x*) x*

α o(α2)/α2

f(x* + αd) − f(x*) ≥ ( λd

2
+

o(α2)
α2 ) α2

C > 0 α
o(α2)

α2
≤ C

o(α2)
α2

C =
λ
4

α > 0

f(x* + αd) ≥ f(x*) +
λ
4

α2 > f(x*)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Least Squares
OLS Theorem
Proof (OLS).


  


“First derivative test.” Take the gradient.


.


Set it equal to .





    is invertible:


.


“Second derivative test.” Take the Hessian of .


.





 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Finding global minima 
Introducing constraint sets



Types of Minima
Big picture
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5
local min
global min

At the end of the day, we want to find 
global minima.


Global minima could be either 
unconstrained local minima or 
constrained local minima. 


Without , global minima are just 
one of the unconstrained local 
minima.


With , global minima may lie on 
the boundary of the constraint set.


Strategy: Find all unconstrained and 
constrained local minima, then test for 
global minima.

𝒞

𝒞
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Unconstrained Minima
Necessary conditions
Theorem (Necessary Conditions for Unconstrained Local Minimum). Consider the 
optimization problem





Suppose  is an unconstrained local minimum. Then,


First-order condition. If  is differentiable at , then .


Second-order condition. If  is twice-differentiable at , then  is positive 
semidefinite, i.e.  for all .


Note: These necessary conditions only apply to !

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd

x* ∈ int(𝒞)
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Finding global minima
Using necessary conditions with constraints
Necessary conditions for unconstrained local minima:


.


How do we find the global minimum from this?


1. Find the set of possible unconstrained local minima from the first-order condition 
.


2. Find the set of “boundary” points . 


3. The global minimum must be in the set , so evaluate  on all  and 
see which one is smallest.

∇f(x*) = 0 and ∇2f(x*) ≥ 0

M := {x* ∈ int(𝒞) : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)}

M ∪ B f x ∈ M ∪ B
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Finding global minima
Using necessary conditions with constraints
Necessary conditions for unconstrained local minima:


.


How do we find the global minimum from this?


1. Find the set of possible unconstrained local minima 
from the first-order condition 

.


2. Find the set of “boundary” points 
. 


3. The global minimum must be in the set , so 
evaluate  on all  and see which one is 
smallest.

∇f(x*) = 0 and ∇2f(x*) ≥ 0

M := {x* ∈ int(𝒞) : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)}

M ∪ B
f x ∈ M ∪ B
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Finding global minima
Using necessary conditions without constraints
Necessary conditions for unconstrained local minima:


.


How do we find the global minimum from this when ?


1. Find the set of possible unconstrained local minima from the first-order condition 
 = .


2. There are no boundary points! 


3. The global minimum must be in the set , so evaluate  on all  and see 
which one is smallest.

∇f(x*) = 0 and ∇2f(x*) ≥ 0

𝒞 = ℝd

M := {x* ∈ int(𝒞) : ∇f(x*) = 0} {x* ∈ ℝd : ∇f(x*) = 0}

M f x ∈ M
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Finding global minima
Using necessary conditions without constraints
Necessary conditions for unconstrained local minima:


.


How do we find the global minimum from this when 
?


1. Find the set of possible unconstrained local minima 
from the first-order condition 

 = 
.


2. There are no boundary points! 


3. The global minimum must be in the set , so 
evaluate  on all  and see which one is 
smallest.

∇f(x*) = 0 and ∇2f(x*) ≥ 0

𝒞 = ℝd

M := {x* ∈ int(𝒞) : ∇f(x*) = 0}
{x* ∈ ℝd : ∇f(x*) = 0}

M
f x ∈ M −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4
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local min
global min
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Unconstrained Minima
Example
Consider the one-dimensional optimization problem





In general, this works for any one-dimensional problem where  is  
continuous on  and differentiable on .


minimize x2

subject to x ∈ [1,3]

f : ℝ → ℝ
𝒞 = [a, b] int(𝒞) := (a, b)
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Unconstrained Minima
Example
Consider the one-dimensional optimization 
problem





In general, this works for any one-
dimensional problem where  is  
continuous on  and differentiable 
on .


minimize x2

subject to x ∈ [1,3]

f : ℝ → ℝ
𝒞 = [a, b]

int(𝒞) := (a, b)
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Unconstrained Minima
Example: Why haven’t we solved optimization?
Consider the two-dimensional optimization problem





We might have to evaluate  on the infinite number of points on the boundary of 
the circle, !


This isn’t feasible, so the question is:


How do we deal with the possible constrained local minima induced by ?

minimize f(x1, x2)
subject to x2

1 + x2
2 ≤ 1

f
𝒞∖int(𝒞) := {x ∈ ℝ2 : x2

1 + x2
2 = 1}

𝒞
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Unconstrained Minima
Example: Why haven’t we solved optimization?
Consider the two-dimensional optimization problem





We might have to evaluate  on the infinite number 
of points on the boundary of the circle, 

!


This isn’t feasible, so the question is:


How do we deal with the possible constrained local 
minima induced by ?

minimize f(x1, x2)
subject to x2

1 + x2
2 ≤ 1

f

𝒞∖int(𝒞) := {x ∈ ℝ2 : x2
1 + x2

2 = 1}

𝒞

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su24/story_ls/ls4_1.html


Constrained Minima 
Equality Constraints and the Lagrangian



Constrained Minima
What can go wrong?
Recall the definitions of (unconstrained) local minima and constrained local minima. 

A point  is an unconstrained local minimum if there exists a neighborhood 
 around  such that 


 for all .


A point  is a local minimum if there exists a neighborhood  around  such 
that 


 for all .


We also call this a constrained local minimum.

x̂ ∈ 𝒞
Bδ(x̂) ⊂ 𝒞 x̂

f(x̂) ≤ f(x) x ∈ Bδ(x̂)

x̂ ∈ 𝒞 Bδ(x) x̂

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)
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Constrained Local Minima
Minimum values on the “edge of the constraint set”

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.
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Constrained Minima
Equality constrained optimization

An equality constrained minimization problem is an optimization problem 
defined by an objective function , decision variables , and 
constraints  from a  vector-valued function , 
written as follows:





where .

f : ℝd → ℝ x ∈ ℝd

h1(x), …, hm(x) 𝒞1 h : ℝd → ℝm

minimize f(x)
subject to h1(x) = 0

⋮
hm(x) = 0

h(x) = (h1(x), …, hm(x))
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Constrained Minima
Equality constrained optimization




The  constraint is WLOG: 


If  then we can always consider  instead. 

minimize f(x)
subject to h1(x) = 0

⋮
hm(x) = 0

= 0

hj(x) = c h′￼j(x) = hj(x) − c = 0
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Constrained Minima: Equality Constraints
Example: Maximum Volume Box

Consider the following optimization problem





Here, , the objective is , and  is just scalar-
valued (one constraint) with .

minimize x1x2x3

subject to x1x2 + x2x3 + x1x3 − c/2 = 0

x ∈ ℝ3 f(x) = x1x2x3 h : ℝ3 → ℝ
h(x) = x1x2 + x2x3 + x1x3 − c/2
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Constrained Minima: Equality Constraints
Idea
We will convert the constrained optimization problem into an unconstrained 
optimization problem and then use our tools for unconstrained optimization 
problems:


.


The unconstrained optimization problem will have  more variables (for each 
constraint  for ), represented by a vector  (the Lagrange 
multipliers).

∇f(x) = 0 and ∇2f(x) ≥ 0

m
hj j ∈ [m] λ ∈ ℝm
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Constrained Minima: Equality Constraints
Definition of the Lagrangian
For an optimization problem with equality constraints





the Lagrangian function  is the function


.


Notice that the function  is an unconstrained function. 

minimize f(x)
subject to h1(x) = 0

⋮
hn(x) = 0

L : ℝd × ℝm → ℝ

L(x, λ) := f(x) +
m

∑
i=1

λihi(x) = f(x) + λ⊤h(x)

L(x, λ)
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Constrained Minima: Equality Constraints
Regularity Conditions
For an optimization problem with equality constraints,





a point  is a regular point if it is feasible and the gradients 
 are linearly independent.


This will be the (usually) easily checkable condition we need for a minimum in the 
Lagrangian. Another condition is that  are linear functions.

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

x ∈ ℝn

∇h1(x), …, ∇hm(x)

h1, …, hm
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Constrained Minima: Equality Constraints
Lagrange Multiplier Theorem
Theorem (Lagrange Multiplier Theorem). Let  be a local minimum that is a regular 
point. Then, there exists a unique vector  called a Lagrange multiplier such that





 If, in addition,  and  are twice continuously differentiable,





for all  such that , where  is the Jacobian of  at .

x* ∈ ℝd

λ ∈ ℝm

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) = 0

f h1, …, hm

d⊤ (∇2f(x*) +
m

∑
i=1

λi ∇2hi(x*)) d ≥ 0

d ∈ ℝn ∇h(x*)⊤d = 0 ∇h(x*) ∈ ℝd×m h x*
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Constrained Minima: Equality Constraints
How to remember the Lagrange multiplier theorem
The Lagrangian function is:





Remember the necessary conditions for local minima:


.


Applying the first-order necessary conditions for the Lagrangian, a local minimum  must satisfy


 and .


Notice that  is the same as requiring feasibility: .

L(x, λ) = ∇f(x) +
m

∑
i=1

λi ∇hi(x) = 0

∇f(x) = 0 and ∇2f(x) ≥ 0

(x*, λ*)

∇xL(x*, λ*) = 0 ∇λL(x*, λ*) = 0

∇λL(x*, λ*) = 0 h(x*) = 0
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Constrained Minima: Equality Constraints
Lagrange Multiplier Theorem: Sufficient Conditions

Theorem (Lagrange Multiplier Theorem - Sufficient Conditions). Let  and  
be  functions, such that  and  satisfy


 and 


 such that .


Then,  is a local minimum.

f h
𝒞2 x* ∈ ℝd λ ∈ ℝm

∇xL(x*, λ*) = 0 ∇λL(x*, λ*) = 0

d⊤ ∇2
x,xL(x*, λ*)d > 0, ∀d ∇h(x*)⊤d = 0

x*
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Constrained Minima: Equality Constraints
How do we use the Lagrangian?
Assuming that a global minimum exists and  and  are , let the Lagrangian be:





To find a global minimum…


1. Find the set  satisfying the necessary conditions:  and 
. This is just our usual first-order condition applied to !


2. Find the set of all non-regular points.


3. The global minima must be among the points in (1) or (2).

f h 𝒞1

L(x, λ) = f(x) +
m

∑
i=1

λihi(x) .

(x*, λ*) ∇xL(x*, λ*) = 0
∇λL(x*, λ*) = 0 L( ⋅ , ⋅ )
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Constrained Minima: Equality Constraints
Example: Maximum Volume Box

Consider the following optimization problem




minimize x1x2x3

subject to x1x2 + x2x3 + x1x3 − c/2 = 0
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Constrained Minima 
Inequality Constraints and the KKT Theorem



Constrained Minima
Inequality constrained optimization

An inequality constrained minimization problem with objective :





where  are  and  are .

f : ℝd → ℝ
minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0

h1(x), …, hm(x) 𝒞1 g1(x), …, gr(x) 𝒞1

Deng, Samuel

Deng, Samuel

Deng, Samuel



Constrained Minima
Inequality constrained optimization




Main idea: Reduce to equality constrained optimization.  

The only difference is that each inequality constraint can either be active or not.


A constraint  is active if .

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0

j ∈ [r] gj(x) = 0
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Constrained Minima: Inequality Constraints
Definition of active constraints
For feasible  the set of active inequality constraints is





This means we get a new definition for a regular point…


A point  is a regular point if it is feasible and the gradients
 


are linearly independent.

x ∈ ℝd

𝒜(x) := {j : gj(x) = 0} ⊆ [r] .

x ∈ ℝd

{∇h1(x), …, ∇hm(x)} ∪ {∇gj(x) : j ∈ 𝒜(x)}
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Constrained Minima: Inequality Constraints
Lagrangian in Inequality Constrained Optimization
For an optimization problem with equality and inequality constraints





the Lagrangian function  is the function


.


Notice that the function  is an unconstrained function. 

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0
L : ℝd × ℝm × ℝr → ℝ

L(x, λ, μ) := f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x) = f(x) + λ⊤h(x) + μ⊤g(x)

L(x, λ, μ)
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Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem
Theorem (KKT Theorem). Let  be a local minimum that is a regular point. Then, there exists unique 
vectors  and  called Lagrange multipliers such that


,


where  for all  and  for all non-active constraints  (complementary slackness).


 If, in addition,  and  are twice continuously differentiable,





for all  such that , where  is the Jacobian of  at .

x* ∈ ℝd

λ ∈ ℝm μ ∈ ℝr

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) +
r

∑
j=1

μ*j ∇gj(x*) = 0

μ*j ≥ 0 j ∈ [r] μ*j = 0 j ∉ 𝒜(x*)

f( ⋅ ) h( ⋅ )

d⊤ (∇2f(x*) +
m

∑
i=1

λi ∇2hi(x*)) d ≥ 0

d ∈ ℝd ∇h(x*)⊤d = 0 ∇h(x*) ∈ ℝd×m h x*
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Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem
For the Lagrangian,





we can write the previous necessary conditions at the local optimum  as:





where we also require the complementary slackness conditions:


.


L(x, λ, μ) := f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x),

(x*, λ*, μ*)

∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0

μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]
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Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem: Sufficient Conditions
Theorem (KKT Theorem - Sufficient Conditions). Let , , and  be  functions, such 
that , ,  satisfy








 


for all  such that  and 


Then,  is a local minimum.

f h g 𝒞2

x* ∈ ℝd λ ∈ ℝm μ* ∈ ℝr

∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0

μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]

d⊤ ∇2
x,xL(x*, λ*, μ*)d > 0,

d ∇h(x*)⊤d = 0 ∇gj(x*)⊤d = 0, ∀j ∈ 𝒜(x*)

x*
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Constrained Minima: Inequality Constraints
How do we use the Lagrangian?
Assuming that a global minimum exists and , , and  are , let the Lagrangian be:





To find a global minimum…


1. Find the set  satisfying the necessary conditions: 
 (first-order conditions) 

 (complementary slackness)


2. Find the set of all non-regular points.


3. The global minima must be among the points in (1) or (2).

f h g 𝒞1

L(x, λ, μ) = f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x)

(x*, λ*, μ*)
∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0
μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]
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Constrained Minima: Inequality Constraints
Example: Smallest point in a halfspace
Consider the following optimization problem over :
x ∈ ℝ3

minimize
1
2

∥x∥2
2

subject to x1 + x2 + x3 ≤ − 3
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Least Squares Regression 
Regularization and Ridge Regression



Regression
Setup

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝd

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup

Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  
for , or:





To find , we follow the principle of least squares. 


i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2



Regression
“Regularization” and keeping  small∥w∥

One reasonable 
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Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.
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Least Squares
Least norm exact solution
For  with ,


  


X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y
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Least Squares
Least norm exact solution
For  with ,


  


We already know how to solve this — use the pseudoinverse!

X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y
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Least Squares
Least norm exact solution
For  with ,


  


Theorem (Minimum norm least squares solution). Let , let , 
and let . Then,  is the exact solution 

 with smallest Euclidean norm:


 for all .

X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y

X ∈ ℝn×d d ≥ n
rank(X) = n ŵ = X+y = VΣ+U⊤y

Xŵ = y

∥w∥2
2 ≥ ∥ŵ∥2

2 w ∈ ℝd
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Least Squares
Least norm exact solution
For  with ,


  


Alternate proof (through Lagrangian): For Lagrange multipliers ,





X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y

λ ∈ ℝn

L(w, λ) = ∥w∥ + λ⊤(Xw − y)
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Least Squares
Least norm exact solution
For  with ,


  


Alternate proof (through Lagrangian): For Lagrange multipliers ,





First-order conditions:  and .


Setting equal to zero:  and 

X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y

λ ∈ ℝn

L(w, λ) = ∥w∥ + λ⊤(Xw − y)

∇wL(w, λ) = 2w + X⊤λ ∇λL(w, λ) = Xw − y

2w + X⊤λ = 0 Xw − y = 0
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Least Squares
Least norm exact solution




Alternate proof (through Lagrangian): For Lagrange multipliers ,





First-order conditions:  and .


Setting equal to zero:  and 


  and 

minimize
w∈ℝd

∥w∥

subject to Xw = y

λ ∈ ℝn

L(w, λ) = ∥w∥ + λ⊤(Xw − y)

∇wL(w, λ) = 2w + X⊤λ ∇λL(w, λ) = Xw − y

2w + X⊤λ = 0 Xw − y = 0

⟹ w = −
1
2

X⊤λ Xw = y

Deng, Samuel



Least Squares
Least norm exact solution
For  with ,


  


Alternate proof (through Lagrangian): For Lagrange multipliers ,





First-order conditions:  and .


Setting equal to zero:  and    and 


Solve for : .

X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y

λ ∈ ℝn

L(w, λ) = ∥w∥ + λ⊤(Xw − y)

∇wL(w, λ) = 2w + X⊤λ ∇λL(w, λ) = Xw − y

2w + X⊤λ = 0 Xw − y = 0 ⟹ w = −
1
2

X⊤λ Xw = y

λ Xw = −
1
2

XX⊤λ ⟹ −
1
2

(XX⊤)λ = y ⟹ λ = − 2(XX⊤)−1y
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Least Squares
Least norm exact solution
For  with ,


  


Alternate proof (through Lagrangian): For Lagrange multipliers ,





First-order conditions:  and .


Setting equal to zero:  and    and 


Solve for : . 

Plug  back in to solve for : . The pseudoinverse!

X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y

λ ∈ ℝn

L(w, λ) = ∥w∥ + λ⊤(Xw − y)

∇wL(w, λ) = 2w + X⊤λ ∇λL(w, λ) = Xw − y

2w + X⊤λ = 0 Xw − y = 0 ⟹ w = −
1
2

X⊤λ Xw = y

λ Xw = −
1
2

XX⊤λ ⟹ −
1
2

(XX⊤)λ = y ⟹ λ = − 2(XX⊤)−1y

λ w w = −
1
2

X⊤λ = −
1
2

X⊤ (−2(XX⊤)−1y) ⟹ w = X⊤(XX⊤)−1y = X+y

Deng, Samuel
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Least Squares
Least norm exact solution
For  with ,


  


Alternate proof (through Lagrangian): For Lagrange multipliers ,





First-order conditions:  and .


Setting equal to zero:  and    and 


Solve for : . 

Plug  back in to solve for : . The pseudoinverse!

X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y

λ ∈ ℝn

L(w, λ) = ∥w∥ + λ⊤(Xw − y)

∇wL(w, λ) = 2w + X⊤λ ∇λL(w, λ) = Xw − y

2w + X⊤λ = 0 Xw − y = 0 ⟹ w = −
1
2

X⊤λ Xw = y

λ Xw = −
1
2

XX⊤λ ⟹ −
1
2

(XX⊤)λ = y ⟹ λ = − 2(XX⊤)−1y

λ w w = −
1
2

X⊤λ = −
1
2

X⊤ (−2(XX⊤)−1y) ⟹ w = X⊤(XX⊤)−1y = X+y



Least Squares
Least norm exact solution
For  with ,


  


Theorem (Minimum norm least squares solution). Let , let , and let 
. Then,  is the exact solution  with smallest 

Euclidean norm:


 for all .


How about for the approximate solution to ?

X ∈ ℝn×d rank(X) = n
minimize

w∈ℝd
∥w∥

subject to Xw = y

X ∈ ℝn×d d ≥ n
rank(X) = n ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2
2 ≥ ∥ŵ∥2

2 w ∈ ℝd

∥Xw − y∥2
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Least Squares
Ridge Regression
Our goal will now be to minimize two objectives:


 and .


Writing this as an optimization problem:





where  is a fixed tuning parameter. This optimization problem is known as 
ridge/Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0
ℓ2
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Least Squares
Ridge Regression
Our goal will now be to minimize two 
objectives:


 and .


Writing this as an optimization problem:





where  is a fixed tuning 
parameter. This optimization problem is 
known as ridge/Tikhonov/
-regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.
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Least Squares
Ridge Regression
Our goal will now be to minimize two 
objectives:


 and .


Writing this as an optimization problem:





where  is a fixed tuning 
parameter. This optimization problem is 
known as ridge/Tikhonov/
-regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.
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Least Squares
Solving ridge regression




How do we solve this using the first and second order conditions? 

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

Deng, Samuel

Deng, Samuel

Deng, Samuel



Least Squares
Solving ridge regression




How do we solve this using the first and second order conditions? 

Property (Perturbing PSD matrices). Let  be a positive semidefinite 
matrix. Then, for any , the matrix  is positive definite.

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

A ∈ ℝd×d

γ > 0 A + γI
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Least Squares
Solving ridge regression




How do we solve this using the first and second order conditions? 

Property (Perturbing PSD matrices). Let  be a positive semidefinite matrix. Then, for 
any , the matrix  is positive definite.


Proof. Let  be any vector.





minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

A ∈ ℝd×d

γ > 0 A + γI

v ∈ ℝd

v⊤(A + γI)v = v⊤(Av + γv) = v⊤Av + γv⊤v

= v⊤Av
⏟

≥0

+ γ∥v∥2

>0 unless v=0.
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Least Squares
Solving ridge regression




Take the gradient and set to :








minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

0

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2λw

2X⊤Xw − 2X⊤y + 2γw = 0 ⟹ (X⊤X + γI)w = X⊤y
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Least Squares
Solving ridge regression




Take the gradient and set to :








By property (perturbing PSD matrices),  is PD, so:


.

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

0

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2λw

2X⊤Xw − 2X⊤y + 2γw = 0 ⟹ (X⊤X + γI)w = X⊤y

X⊤X + γI

w* = (X⊤X + γI)−1X⊤y
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Least Squares
Solving ridge regression




Take the gradient and set to :








By property (perturbing PSD matrices),  is PD, so:


.


Taking the Hessian,


, which is positive definite. 


Sufficient condition for optimality applies!

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

0

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2λw

2X⊤Xw − 2X⊤y + 2γw = 0 ⟹ (X⊤X + γI)w = X⊤y

X⊤X + γI

w* = (X⊤X + γI)−1X⊤y

∇2f(w) = X⊤X + γI
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Least Squares
Solving ridge regression
Theorem (Ridge Regression). Let , , and . Then,





has the form:


 .


To get predictions :


. 

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y
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Least Squares
Solving ridge regression
Theorem (Ridge Regression). Let 

, , and . Then, 
the ridge regression minimizer





has the form:


 .


To get predictions :


. 

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

Theorem (OLS). Let  and 
. Let  be the least 

squares minimizer:





If  and , then:


 .


To get predictions :


.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
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Error in (OLS) Regression
Error using least squares model

Choose a weight vector that “fits the training data”:  such that  for 
, or:





But  might not be a perfect fit to ! 


Model this using a true weight vector  and an error term . 





ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŷ y

w* ∈ ℝd ϵ = (ϵ1, …, ϵn) ∈ ℝn

yi = x⊤
i w* + ϵi for all i ∈ [n]

y = Xw* + ϵ
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Error in (OLS) Regression
Error using least squares model

True labels: .


What happens when we use the OLS weights ?


y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ
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Error in (OLS) Regression
Error using least squares model

True labels: .


What happens when we use the OLS weights ?





When  (  is linearly related to ), this is perfect: !

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ = 0 y X ŵ = w*
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Error in (OLS) Regression
Error using least squares model

True labels: .


What happens when we use the OLS weights ?





When , we have an error of .

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ ≠ 0 ŵ − w* = (X⊤X)−1X⊤ϵ
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Error in (OLS) Regression
Eigendecomposition perspective

Weight vector’s error: .


We know that  (the covariance matrix) is PSD, so it is diagonalizable:





The inverse of the diagonal matrix :


, so if  is small, the entries of  blow up!


ŵ − w* = (X⊤X)−1X⊤ϵ

X⊤X

X⊤X = VΛV⊤ ⟹ (X⊤X)−1 = V⊤Λ−1V .

Λ−1

Λ−1 =
1/λ1 … 0

⋮ ⋱ ⋮
0 … 1/λd

λi ŵ
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Error in Regression
Error using ridge regression

True labels: .


What happens when we use the ridge weights ?





y = Xw* + ϵ

ŵ = (X⊤X + γI)−1X⊤y

ŵ = (X⊤X + γI)−1X⊤y
= (X⊤X + γI)−1X⊤(Xw* + ϵ)
= (X⊤X + γI)−1X⊤Xw* + (X⊤X + γI)−1X⊤ϵ
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Error in Regression
Error using ridge regression

True labels: .


What happens when we use the ridge weights ?





When  (  is linearly related to ), this is no longer perfect: 


, but…

y = Xw* + ϵ

ŵ = (X⊤X + γI)−1X⊤y

ŵ = (X⊤X + γI)−1X⊤y
= (X⊤X + γI)−1X⊤(Xw* + ϵ)
= (X⊤X + γI)−1X⊤Xw* + (X⊤X + γI)−1X⊤ϵ

ϵ = 0 y X

ŵ = (X⊤X + γI)−1X⊤Xw*
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Error in Regression
Error using ridge regression

True labels: .


What happens when we use the ridge weights ?





When , we have more stable errors!

y = Xw* + ϵ

ŵ = (X⊤X + γI)−1X⊤y

ŵ = (X⊤X + γI)−1X⊤y
= (X⊤X + γI)−1X⊤(Xw* + ϵ)
= (X⊤X + γI)−1X⊤Xw* + (X⊤X + γI)−1X⊤ϵ

ϵ ≠ 0



Error in Ridge Regression
Eigendecomposition perspective

Ridge weights: .


We know that  is positive semidefinite, so it is diagonalizable:





The inverse of the diagonal matrix :


, so  entries are never bigger than !


ŵ = (X⊤X + γI)−1X⊤y

X⊤X

X⊤X + γI = VΛV⊤ + V(γI)V⊤ ⟹ (X⊤X + γI)−1 = V⊤(Λ + γI)−1V .

(Λ + γI)−1

(Λ + γI)−1 =

1
λ1 + γ … 0

⋮ ⋱ ⋮
0 … 1

λd + γ

1
λi + γ

1
γ
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Least Squares
Ridge Regression
Theorem (Ridge Regression). Let 

, , and . Then, 
the ridge regression minimizer





has the form:


 .


To get predictions :


. 

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.
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Recap 



Lesson Overview

Optimization. Minimize an objective function  with the possible requirement that the 
minimizer  belongs to a constraint set .


Lagrangian. For optimization problems with  defined by equalities/inequalities, the Lagrangian is a 
function  that “unconstrains” the problem.  

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a 
point  to be optimal, at least to all points close to it. 

Constrained local optima (Lagrangian and KKT). When  is represented by inequalities and equalities, 
we can use the method of Lagrange multipliers and the KKT Theorem to “unconstrain” the problem.


Ridge regression and minimum norm solutions. By constraining the norm of  of least squares 
(i.e. ), we obtain more “stable” solutions.

f : ℝd → ℝ
x* 𝒞 ⊆ ℝd

𝒞
L : ℝd × ℝm × ℝr → ℝ

x*

𝒞

w* ∈ ℝd

∥w*∥

Deng, Samuel



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.
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Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etabig.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
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