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Math for ML
Week 4.2: Basics of Convex Optimization



Logistics & Announcements



Lesson Overview
Convexity. A property of sets and functions that affords us a lot of nice “linearity-like” properties.


Convex set. A convex set  is a set that has no holes. In other words, for any two points, 
the line segment between the points is fully contained in .


Convex function. A convex function  is a function that is bowl-shaped. In other 
words, for any two points, the line segment between the points lies above the function.


Convex optimization. When we have an optimization problem where the objective  is 
a convex function and the constraint set  is a convex set, we have a convex optimization 
problem. In this case, all local minima are global minima.


Gradient descent for convex problems. Last lecture, we proved that for smooth functions, 
gradient descent decreases the function value from step to step. This lecture, we prove that, for 
convex functions, we are also eventually guaranteed to reach a global minimum. 

Gradient descent for OLS. We unite the two stories of this class and analyze GD applied to OLS!

C ⊆ ℝd

C

f : ℝd → ℝ

f : ℝd → ℝ
𝒞 ⊆ ℝd



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis (1, 1)
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def2.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def1.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html


Convex Optimization 
Motivation



Motivation
Components of an optimization problem




 is the objective function. 


 is the constraint/feasible set. 

 is an optimal solution (global minimum) if


.


The optimal value is . Our goal is to find  and .


Note: to maximize , just minimize . So we’ll only focus on minimization problems.

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f : ℝd → ℝ

𝒞 ⊆ ℝn

x*

x* ∈ 𝒞 and f(x*) ≤ f(x), for all x ∈ 𝒞

f(x*) x* f(x*)

f(x) −f(x)



Global Minima
Local vs. global minima
Last lesson, we only developed methods for finding local optima.
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Types of Minima
Big picture
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At the end of the day, we want to find 
global minima.


Global minima could be either 
unconstrained local minima or 
constrained local minima. 


Without , global minima are just 
one of the unconstrained local 
minima.


With , global minima may lie on 
the boundary of the constraint set.


Strategy: Find all unconstrained and 
constrained local minima, then test for 
global minima.

𝒞

𝒞



Convexity
Non-example ( )d = 1

Functions that have many 
“hills/valleys” are deceptive.


Local minima look like global 
minima when we’re sufficiently 
close.
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Convexity
Non-example ( )d = 2

Functions that have many “hills/
valleys” are deceptive. 


Local minima look like global 
minima when we’re sufficiently 
close.

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/localglobal3d.html


Convexity
Example ( )d = 1

A convex function is a function that 
is “bowl-shaped.” 


Their local minima are global 
minima.
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Convexity
Example ( )d = 2

A convex function is a function that is 
“bowl-shaped.” 


Their local minima are global minima.

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Convexity
Example ( )d = 2

A convex function is a function that is 
“bowl-shaped.” 


Their local minima are global minima.


Goal: We will use gradient descent to 
solve convex optimization problems!

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html


Convex Optimization Problem
Definition

A convex optimization problem (also known as convex program) is an 
optimization problem: 




where  is a convex function and  is a convex set.


minimize f(x)
subject to x ∈ 𝒞

f(x) 𝒞



Convex Optimization Problem
Definition

A convex optimization problem (also known as convex program) is an 
optimization problem: 




where  is a convex function and  is a convex set.


 is “bowl-shaped” and  has “no holes” or “gaps”

minimize f(x)
subject to x ∈ 𝒞

f(x) 𝒞

f(x) 𝒞



Convexity
Line segments

Line segments are very important to the study of convexity.


For any two points , the line segment between  and  is the set of 
points:





Sometimes, we’ll denote the line segment as . 

x, y ∈ ℝd x y

[x, y] := {(1 − α)x + αy : α ∈ [0,1]}

[x, y]



Convexity
Line segments

Example. Line segment between  and . x = 1 y = 3



Convexity
Line segments

Example. Line segment between  and . x = (1,1) y = (2,3)



Convex Sets 
Intuition, Definition, and “Algebra”



Convex Sets
Idea

A convex set is a “set with no holes or gaps.”


We can draw a line between any two points and stay inside the set.



Convex Sets
Definition

A set  is a convex set if, for any , the point  
for . 


That is, the line segment between any two points is completely in .

S ⊆ ℝd x, y ∈ S (1 − α)x + αy ∈ S
α ∈ [0,1]

S



Examples of Convex Sets
ℝd

Why is  a convex set?ℝd



Examples of Convex Sets
Line

Perhaps the most basic nontrivial example of a convex set is a line. 


For any two points , the line passing through  and  is the set of all 
points


,


for any .

x, y ∈ ℝd x y

(1 − α)x + αy

α ∈ ℝ



Examples of Convex Sets
Hyperplane

A hyperplane is the set of points


,


where  and  are fixed, and .


Why is this convex?

{x ∈ ℝd : w⊤x = b}

w ∈ ℝd b ∈ ℝ w ≠ 0



Examples of Convex Sets
Halfspace

A halfspace is the set of points


,


where  and  are fixed, and .


Why is this convex?

{x ∈ ℝd : w⊤x ≤ b}

w ∈ ℝd b ∈ ℝ w ≠ 0



Examples of Convex Sets
Neighborhoods

The neighborhood centered at  with radius  is the set:





Why is this convex?

c ∈ ℝd δ > 0

Bδ(c) := {x ∈ ℝd : ∥x − c∥ ≤ δ} .



Closure of Convex Sets
The “Algebra” of Convex Sets

We can combine convex sets by using operations that preserve convexity:


Intersection. The intersection of (possibly infinite) convex sets is convex.


See Boyd and Vandenberghe Section 2.3 for reference and more rules.



Closure of Convex Sets
The “Algebra” of Convex Sets

We can combine convex sets by using operations that preserve convexity:


Intersection. The intersection of (possibly infinite) convex sets is convex.


Scalar multiplication. If  is a convex set, then so is 


 for .


See Boyd and Vandenberghe Section 2.3 for reference and more rules.

C ⊆ ℝd

αC := {αx : x ∈ C} α ∈ ℝ



Closure of Convex Sets
The “Algebra” of Convex Sets

We can combine convex sets by using operations that preserve convexity:


Intersection. The intersection of (possibly infinite) convex sets is convex.


Scalar multiplication. If  is a convex set, then so is 


 for .


Translation. If  is a convex set, then so is


 for any .


See Boyd and Vandenberghe Section 2.3 for reference and more rules.

C ⊆ ℝd

αC := {αx : x ∈ C} α ∈ ℝ

C ⊆ ℝd

C + a := {x + a ∈ ℝd : x ∈ C} a ∈ ℝd



Convex Functions 
Intuition, Definition, and “Algebra”



Convex Function
Idea
A convex function is a function that is “bowl-shaped.”


All line segments through any two points lie above the function.


If differentiable, all tangents are below the function.



Convex Function
Definition
A function  is a convex function if, for any , and for any 
scalar  with , 





That is, the (secant) line segment between any two points lies above the function.


Concave functions are negative convex functions.

f : ℝd → ℝ x, y ∈ ℝd

α ∈ ℝ 0 ≤ α ≤ 1

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .



Convex Function
Definition
A function  is a convex function if, 
for any , and for any scalar  with 

, 





That is, the (secant) line segment between any 
two points lies above the function.


Concave functions are negative convex functions.

f : ℝd → ℝ
x, y ∈ ℝd α ∈ ℝ

0 ≤ α ≤ 1

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .
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Convex Function
Definition
A function  is a convex function if, 
for any , and for any scalar  with 

, 





That is, the (secant) line segment between any 
two points lies above the function.


Concave functions are negative convex functions.

f : ℝd → ℝ
x, y ∈ ℝd α ∈ ℝ

0 ≤ α ≤ 1

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def1.html


Convex Functions
Definition for Differentiable Functions
If  is differentiable at all , then  is a convex function if and only if for any 

,





This is also known as the first order condition for convex functions.


That is, the linearization/tangent to the function lies below the function.

f : ℝd → ℝ x ∈ ℝd f
x, y ∈ ℝd

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .



Convex Functions
Definition for Differentiable Functions
If  is differentiable at all , then  is a convex 
function if and only if for any ,





This is also known as the first order condition for convex 
functions.


That is, the linearization/tangent to the function lies below the 
function.

f : ℝd → ℝ x ∈ ℝd f
x, y ∈ ℝd

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .
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Convex Functions
Definition for Differentiable Functions
If  is differentiable at all , then  is a convex 
function if and only if for any ,





This is also known as the first order condition for convex 
functions.


That is, the linearization/tangent to the function lies below the 
function.

f : ℝd → ℝ x ∈ ℝd f
x, y ∈ ℝd

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .

x1-axis x2-axis f(x1, x2)-axis (1, 1)

https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def2.html


Convex Functions
Definition for twice differentiable functions
If  is twice differentiable at all , then  is a convex function if and only 
if for any , the Hessian  is positive semidefinite:


 for all .


This is also known as the second order condition for convex functions.


That is, the function has a nonnegative “second derivative.”

f : ℝd → ℝ x ∈ ℝd f
x ∈ ℝd ∇2

x f(x)

d⊤ ∇2
x f(x)d ≥ 0 d ∈ ℝd



Convex Functions
Three characterizations

 

 

If differentiable: 






If twice-differentiable: 
 for all .

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .

d⊤ ∇2
x f(x)d ≥ 0 d ∈ ℝd
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Examples of Convex Functions
Quadratic Functions
Always keep this canonical “bowl-shaped” example  in mind:
f : ℝ → ℝ

f(x) = x2



Examples of Convex Functions
Quadratic Forms
More generally, always keep quadratic forms  in mind:


 for symmetric  matrix .

f : ℝd → ℝ

f(x) = x⊤Ax d × d A



Examples of Convex Functions
Affine Functions

Let  be some vector and let  be some scalar. 


Consider the function  given by:


.

w ∈ ℝd b ∈ ℝ

f : ℝd → ℝ

f(x) := w⊤x + b



Examples of Convex Functions
Other examples of convex functions on ℝ

Exponential.  is convex for any .


Powers.  is convex on  for any  or , and concave for 



Powers of absolute values.  is convex on , for any 


Logarithm.  is concave on .


Negative entropy.  is convex on , or convex on  if we define 
.

eax a ∈ ℝ

xa (0,∞) a ≥ 1 a ≤ 0
0 ≤ a ≤ 1.

|x |p ℝ p ≥ 1.

log x (0,∞)

x log x (0,∞) [0,∞)
0 log 0 := 0



Examples of Convex Functions
Other examples of convex functions on ℝd

Norms. Any norm  on  is convex. This includes the Euclidean/  norm: 

 

Max function. The function  is convex. 

Log-sum-exp. The function  is convex.

∥ ⋅ ∥ ℝd ℓ2

∥x∥2 :=
n

∑
i=1

x2
i

f(x) := max{x1, …, xn}

f(x) := log (ex1 + … + exn)



Closure of Convex Functions
The “Algebra” of Convex Functions
We can also combine convex functions with operations that preserve convexity:


Nonnegative weighted sum. Let  be convex functions. Then 
 is convex. 


Extends to infinite sums and integrals. 

See Boyd and Vandenberghe Section 3.2 for comprehensive reference.

f1, …, fn
g(x) := α1 f1(x) + … + αn fn(x)



Closure of Convex Functions
The “Algebra” of Convex Functions
We can also combine convex functions with operations that preserve convexity:


Nonnegative weighted sum. Let  be convex functions. Then 
 is convex. 


Extends to infinite sums and integrals. 

Pre-composition with affine function. If  is convex, so is .


See Boyd and Vandenberghe Section 3.2 for comprehensive reference.

f1, …, fn
g(x) := α1 f1(x) + … + αn fn(x)

f f(Ax + b)



Closure of Convex Functions
The “Algebra” of Convex Functions
We can also combine convex functions with operations that preserve convexity:


Nonnegative weighted sum. Let  be convex functions. Then 
 is convex. 


Extends to infinite sums and integrals. 

Pre-composition with affine function. If  is convex, so is .


Maximum. If  are convex, then  is convex.


Extends to pointwise supremum. 

See Boyd and Vandenberghe Section 3.2 for comprehensive reference.

f1, …, fn
g(x) := λ1 f1(x) + … + λn fn(x)

f f(Ax + b)

f1, …, fn g(x) := max{f1(x), …, fn(x)}



Verifying Convexity
In order of preference…

To verify that  is convex:


1. Construct function from known convex functions (e.g. exponential, affine, etc.) and 
closure properties.


2. If differentiable/twice-differentiable: Use first-order or second-order equivalent 
definitions of convexity.


3. Restrict to a line:  is convex if and only if, for every , if the 
function  is convex for .


4. Directly verify using the definition of convexity: 
.

f : ℝd → ℝ

f : C → ℝ x, y ∈ C
g(α) := f(αx + (1 − α)y) α ∈ [0,1]

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)



Convex Optimization 
Local minima are global minima



Convex Optimization
Optimality condition




where  is a convex function and  is a convex set. 


The most important property of these optimization problems is:


All local minima are global minima!

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f 𝒞



Convex Optimization
Optimality condition




where  is a convex function and  is a 
convex set. 


The most important property of these 
optimization problems is:


All local minima are global minima!

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f 𝒞
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Convex Optimization
Optimality condition




where  is a convex function and  is a 
convex set. 


The most important property of these 
optimization problems is:


All local minima are global minima!

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f 𝒞

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def1.html


Convex Optimization
Main Optimality Theorem
Theorem (Optimality for convex optimization). For a convex function 

 and a convex set , consider the optimization problem:





Then, if  is a local minimum, it must also be a global minimum:


 for all .

f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

x* ∈ C

f(x*) ≤ f(x) x ∈ 𝒞



Convex Optimization
Proof of Main Optimality Theorem
We want to show that if  is a local minimum, it must also be a global 
minimum:


 for all .

x* ∈ C

f(x*) ≤ f(x) x ∈ 𝒞



Convex Optimization
Proof of Main Optimality Theorem
Need to show:  for all .


Step 1: Use definition that  is a local minimum.


Because  is a local minimum, there is a neighborhood  around  such 
that 


 for all .


This allows us to go in all (feasible) directions from . 

f(x*) ≤ f(x) x ∈ 𝒞

x* ∈ 𝒞

x* Bδ(x*) x*

f(x*) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x*)

x*



Convex Optimization
Proof of Main Optimality Theorem
Need to show:  for all .


Step 2: Choose any other  and consider the line segment.


From Step 1,  for all .


Now, choose any , not necessarily in , and consider the line 
segment  defined by:


.


f(x*) ≤ f(x) x ∈ 𝒞

y ∈ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x*)

y ∈ 𝒞 Bδ(x*)
[x*, y]

[x*, y] := {(1 − α)x* + αy : α ∈ [0,1]}



Convex Optimization
Proof of Main Optimality Theorem
Need to show:  for all .


Step 3: Take a small step within the neighborhood .


From Step 1, we got a neighborhood,  for all . From 
Step 2, we got the line segment:


.


For  (sufficiently small), we’re still in the neighborhood, so:


.

f(x*) ≤ f(x) x ∈ 𝒞

Bδ(x*)

f(x*) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x*)

[x*, y] := {(1 − α)x* + αy : α ∈ [0,1]}

α < δ

f(x*) ≤ f((1 − α)x* + αy)



Convex Optimization
Proof of Main Optimality Theorem
Need to show:  for all .


Step 4: Use convexity to extrapolate outside of the neighborhood.


For  (sufficiently small), we’re still in the neighborhood, so:


.


Using the definition of convexity,





Rearranging, we get:


, where we chose  arbitrarily.

f(x*) ≤ f(x) x ∈ 𝒞

α < δ

f(x*) ≤ f((1 − α)x* + αy)

f(x*) ≤ f((1 − α)x* + αy)
≤ (1 − α)f(x*) + αf(y)

f(x*) ≤ f(y) y ∈ 𝒞



Convex Optimization
Main Optimality Theorem
Theorem (Optimality for convex optimization). For a convex function 

 and a convex set , consider the optimization problem:





Then, if  is a local minimum, it must also be a global minimum:


 for all .

f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

x* ∈ C

f(x*) ≤ f(x) x ∈ 𝒞



Convex Optimization
Optimality Theorem for Differentiable Functions
Theorem (Optimality for convex optimization for differentiable functions). 
For a convex, differentiable function  and a convex set , 
consider the optimization problem:





Then,  is a global minimum if and only if:


 for all .

f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

x* ∈ 𝒞

∇f(x*)⊤(x − x*) ≥ 0 x ∈ 𝒞



Convex Optimization
Optimality Theorem for Differentiable Functions
Theorem (Optimality for convex optimization for differentiable 
functions). For a convex, differentiable function  and 
a convex set , consider the optimization problem:





Then,  is a global minimum if and only if:


 for all .


Intuition: global minima are found at supporting hyperplanes to .

f : ℝd → ℝ
𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

x* ∈ 𝒞

∇f(x*)⊤(x − x*) ≥ 0 x ∈ 𝒞

𝒞

x1-axis x2-axis f(x1, x2)-axis (1, 1)

https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def2.html


Gradient Descent and Convexity 
Theorem Statement and Proof



Types of Minima
Big picture
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At the end of the day, we want to 
find global minima.


Global minima could be either 
unconstrained local minima or 
constrained local minima. 


Strategy: Find all unconstrained 
and constrained local minima, 
then test for global minima.


But this is often hard to do in one 
shot analytically!



Gradient Descent
Algorithm

Input: Function . Initial point . Step size .


For 


Compute: .


If  or  is sufficiently small, then return .

f : ℝd → ℝ x0 ∈ ℝd η ∈ ℝ

t = 1,2,3,…

xt ← xt−1 − η∇f(xt−1)

∇f(xt) = 0 xt − xt−1 f(xt)



Gradient Descent
Behavior for  “Bowl-shaped” Functionsd = 1
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Gradient Descent
Behavior for  “Bowl-shaped” Functionsd = 2

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html


Gradient Descent
Our Main Theorem (so far)

Theorem (Gradient descent makes the function value smaller). Let  be a 
, -smooth function. Then, for any , a gradient descent update





with step size   has the property:


.


This theorem says that gradient descent always makes our function value smaller, as long 
as the function’s gradients don’t change too much! 

f : ℝd → ℝ
𝒞2 β t = 1,2,3,…

xt ← xt−1 − η∇f(xt−1)

η =
1
β

f(xt) ≤ f(xt−1) −
1

2β
∥∇f(xt−1)∥2



Gradient Descent
Our Main Theorem (so far)

Theorem (Gradient descent makes the function value smaller). Let  
be a , -smooth function. Then, for any , a gradient descent update





with step size   has the property:


.


This theorem does NOT guarantee that we’ll reach a global minimum!

f : ℝd → ℝ
𝒞2 β t = 1,2,3,…

xt ← xt−1 − η∇f(xt−1)

η =
1
β

f(xt) ≤ f(xt−1) −
1

2β
∥∇f(xt−1)∥2



Gradient Descent
Theorem for Convex, -smooth functionsβ

Theorem (Convergence of GD for smooth, convex functions). Let 
 be a , -smooth, and convex function. Let  be a (global) 

minimizer of , satisfying  for all . 


If we run gradient descent with step size  and initial point ,


,


after  iterations of our algorithm.

f : ℝd → ℝ 𝒞2 β x*
f f(x*) ≤ f(x) x ∈ ℝd

η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)
T



Gradient Descent
Intuition with β
Theorem (Convergence of GD for smooth, convex 
functions). Let  be a , -smooth, and 
convex function. Let  be a (global) minimizer of , 
satisfying  for all . 


If we run gradient descent with step size  and 

initial point ,


,


after  iterations of our algorithm.

f : ℝd → ℝ 𝒞2 β
x* f

f(x*) ≤ f(x) x ∈ ℝd

η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)
T



Gradient Descent
Intuition with x0

Theorem (Convergence of GD for smooth, convex 
functions). Let  be a , -smooth, and 
convex function. Let  be a (global) minimizer of , 
satisfying  for all . 


If we run gradient descent with step size  and 

initial point ,


,


after  iterations of our algorithm.

f : ℝd → ℝ 𝒞2 β
x* f

f(x*) ≤ f(x) x ∈ ℝd

η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)
T

x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html


Gradient Descent
Theorem for Convex, -smooth functionsβ

Theorem (Convergence of GD for smooth, convex functions). Let 
 be a , -smooth, and convex function. Let  be a (global) 

minimizer of , satisfying  for all . 


If we run gradient descent with step size  and initial point ,


,


after  iterations of our algorithm.

f : ℝd → ℝ 𝒞2 β x*
f f(x*) ≤ f(x) x ∈ ℝd

η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)
T



Gradient Descent
Proof of GD Theorem for Convex, -smooth functionsβ
We want to show:


, after  iterations of GD.


We will use two main facts:


GD Theorem for -smooth functions. For any iteration ,


.


First-order definition of convexity. For any , 


.

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

β t = 1,2,…, T

f(xt−1) ≤ f(xt) −
1

2β
∥∇f(xt)∥2

x, y ∈ ℝd

∇f(x)⊤(y − x) + f(x) ≤ f(y)



Gradient Descent
Proof of GD Theorem for Convex, -smooth functionsβ

Want: , after  iterations of GD.


Step 1: State the “potential function,”  to track our progress to .


Fix the optimal . Consider the “potential” function :


.


This tracks our distance from the minimizer, . We will consider the potential applied to iteration 
, so consider:


, where we chose .

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

Φ : ℝd → ℝ x*

x* ∈ ℝd Φ : ℝd → ℝ

Φ(x) =
1
2η

∥x − x*∥2

x*
xt−1

Φ(xt−1) =
β
2

∥xt−1 − x*∥2 η = 1/β



Gradient Descent
Proof of GD Theorem for Convex, -smooth functionsβ
Want: , after  iterations of GD.


Step 2: Analyze the drop in potential from  to .


We want to make sure that the the potential “drops” by a positive amount in each step. 


Drop in potential: 


Analyze this quantity, plugging in the GD step: .


f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

Φ(xt−1) Φ(xt)

Φ(xt−1) − Φ(xt)

xt = xt−1 −
1
β

∇f(xt−1)

Φ(xt−1) − Φ(xt) =
β
2

∥xt−1 − x*∥2 −
β
2

∥xt−1 −
1
β

∇f(xt−1) − x*∥2

=
β
2

∥xt−1 − x*∥2 −
β
2 (∥xt−1 − x*∥2 −

2
β

(xt−1 − x*)⊤ ∇f(xt−1) +
1
β2

∥∇f(xt−1)∥2)
= (xt−1 − x*)⊤ ∇f(xt−1) −

1
2β

∥∇f(xt−1)∥2.



Gradient Descent
Proof of GD Theorem for Convex, -smooth functionsβ

Want: , after  iterations of GD.


Step 3: Bound  with first-order definition of convexity.


For any  and , 


.


Rearranging, we get a lower bound:


f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

(xt−1 − x*)⊤ ∇f(xt−1)

xt−1 ∈ ℝd x* ∈ ℝd

∇f(xt−1)⊤(x* − xt−1) + f(xt−1) ≤ f(x*)

f(xt−1) − f(x*) ≤ ∇f(xt−1)⊤(xt−1 − x*)



Gradient Descent
Proof of GD Theorem for Convex, -smooth functionsβ

Want: , after  iterations of GD.


Step 4: Bound  with the GD Theorem we already have.


For -smooth functions, we know that applying GD gives:


.

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

−
1

2β
∥∇f(xt)∥2

β

f(xt) − f(xt−1) ≤ −
1

2β
∥∇f(xt)∥2



Gradient Descent
Proof of GD Theorem for Convex, -smooth functionsβ
Want: , after  iterations of GD.


Step 5: Our drop in potential must be at least . 

From Step 2, the drop in potential was:





From Steps 3 and 4, we found lower bounds:


 and .


Therefore, we have a lower bound on our drop in potential:


.

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

f(wt) − f(w*)

Φ(xt−1) − Φ(xt) = (xt−1 − x*)⊤ ∇f(xt−1) −
1

2β
∥∇f(xt−1)∥2.

∇f(xt−1)⊤(xt−1 − x*) ≥ f(xt−1) − f(x*) −
1

2β
∥∇f(xt)∥2 ≥ f(xt) − f(xt−1)

Φ(xt−1) − Φ(xt) ≥ f(xt) − f(x*)



Gradient Descent
Proof of GD Theorem for Convex, -smooth functionsβ
Want: , after  iterations of GD.


Step 6: Sum up from  and telescope terms to get the result.





Simplifying the left-hand side as a telescoping sum:





Bounding , we simplify the right-hand side:





By the definition of potential , we proved our claim: .

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

t = 1,…, T
T

∑
t=1

Φ(xt−1) − Φ(xt) ≥
T

∑
t=1

f(xt) − f(x*)

Φ(x0) − Φ(xT) ≥
T

∑
t=1

f(xt) − f(x*)

f(xt) ≥ f(xT)

Φ(x0) − Φ(xT) ≥
T

∑
t=1

f(xt) − f(x*) ≥ T( f(xT) − f(x*))

Φ(x) =
β
2

∥x − x*∥2 β
2T (∥x0 − x*∥ − ∥xT − x*∥2) ≥ f(xT) − f(x*)



Gradient Descent
Theorem for Convex, -smooth functionsβ

Theorem (Convergence of GD for smooth, convex functions). Let 
 be a , -smooth, and convex function. Let  be a (global) 

minimizer of , satisfying  for all . 


If we run gradient descent with step size  and initial point ,


,


after  iterations of our algorithm.

f : ℝd → ℝ 𝒞2 β x*
f f(x*) ≤ f(x) x ∈ ℝd

η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)
T



Gradient Descent and OLS 
“Uniting” our two main stories



Gradient Descent and OLS
Verifying OLS fits our theorem
We just need to  to be , -smooth, and convex.


1. . Hessian is .


2. -smooth. Recall the definition: Satisfied as long as:


.


3. Convex. Can use definition, first-order definition, or second-order 
definitions.

f(w) = ∥Xw − y∥2 𝒞2 β

𝒞2 ∇2f(w) = 2X⊤X

β λmax(∇2f(x)) ≤ β .

λmax(X⊤X) ≤ β/2



Gradient Descent and OLS
Uniting our two stories
Theorem (GD applied to OLS). Let  and  be fixed. Let the 
maximum eigenvalue  of  satisfy  Let  be a (global) 
minimizer of , satisfying: 


 for all . 


If we run gradient descent with step size  and initial point  for 
 iterations, we have:


X ∈ ℝn×d y ∈ ℝn

λmax X⊤X λmax ≤ β/2. w*
f(w) = ∥Xw − y∥2

∥Xw* − y∥2 ≤ ∥Xw − y∥2 w ∈ ℝd

η = 1/β w0 ∈ ℝd

T

∥XwT − y∥2 − ∥Xw* − y∥2 ≤
β

2T (∥w0 − w*∥2 − ∥wT − w*∥2) .



Gradient Descent
Algorithm for OLS
What does gradient descent look like for OLS? Recall the objective function and 
its gradient:



f(w) = ∥Xw − y∥2 = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇f(w) = 2X⊤Xw − 2X⊤y



Gradient Descent
Algorithm for OLS

, so the gradient descent algorithm for OLS is:


Make an initial guess .


For 


• Compute: .


• Stopping condition: If , then return .

∇f(w) = 2X⊤Xw − 2X⊤y

w0

t = 1,2,3,…

wt ← wt−1 − 2ηX⊤ (Xw − y)
∥wt − wt−1∥ ≤ ϵ f(wt)



Gradient Descent
Algorithm for OLS

Make an initial guess .


For 


• Compute: 
.


• Stopping condition: If 
, then return 

.

w0

t = 1,2,3,…

wt ← wt−1 − 2ηX⊤ (Xw − y)

∥wt − wt−1∥ ≤ ϵ
f(wt)

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html


Solving OLS iteratively vs. analytically
Why use GD instead of the normal equations?

Solving the normal equations directly ( ) takes





operations.


Running gradient descent ( ) for  steps takes





operations.


ŵ = (X⊤X)−1X⊤y

O(d2n + d3)

wt ← wt−1 − 2ηX⊤ (Xw − y) T

O(Tdn)



Recap 



Lesson Overview
Convexity. A property of sets and functions that affords us a lot of nice “linearity-like” properties.


Convex set. A convex set  is a set that has no holes. In other words, for any two points, 
the line segment between the points is fully contained in .


Convex function. A convex function  is a function that is bowl-shaped. In other 
words, for any two points, the line segment between the points lies above the function.


Convex optimization. When we have an optimization problem where the objective  is 
a convex function and the constraint set  is a convex set, we have a convex optimization 
problem. In this case, all local minima are global minima.


Gradient descent for convex problems. Last lecture, we proved that for smooth functions, 
gradient descent decreases the function value from step to step. This lecture, we prove that, for 
convex functions, we are also eventually guaranteed to reach a global minimum. 

Gradient descent for OLS. We unite the two stories of this class and analyze GD applied to OLS!

C ⊆ ℝd

C

f : ℝd → ℝ

f : ℝd → ℝ
𝒞 ⊆ ℝd



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis (1, 1)
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def2.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def1.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html
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