Math for ML Week 5.1: Basic Probability Theory, Models, and Data

By: Samuel Deng

Logistics & Announcements

o HW #3 WE TONGART 11.59 PM. > Lake deadire Thurs. • PS #4 ant on the melosite. (last Thirs) - ver thes » I have off. to day SPM-SPM. (ast), pss this Thurs ~2 Phoblems (shorter)

Lesson Overview

Probability Spaces. We'll review the basic axioms and components of probability: sample space, events, and probability measures. This allows us to ditch these notions and introduce *random variables*.

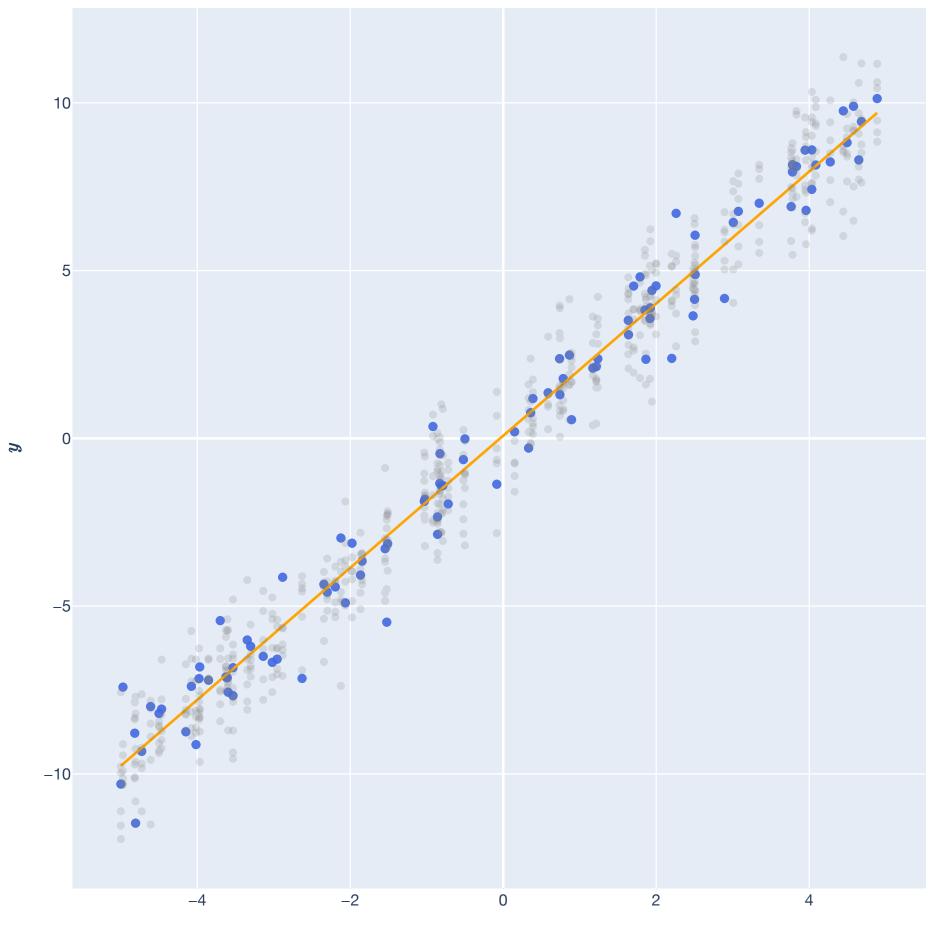
Random variables. Review of the definition of a random variable, its *distribution/law*, its PDF/PMF/CDF, and joint distributions of several RVs.

Expectation, variance, and covariance. Review of these basic summary statistics of random variables and common properties.

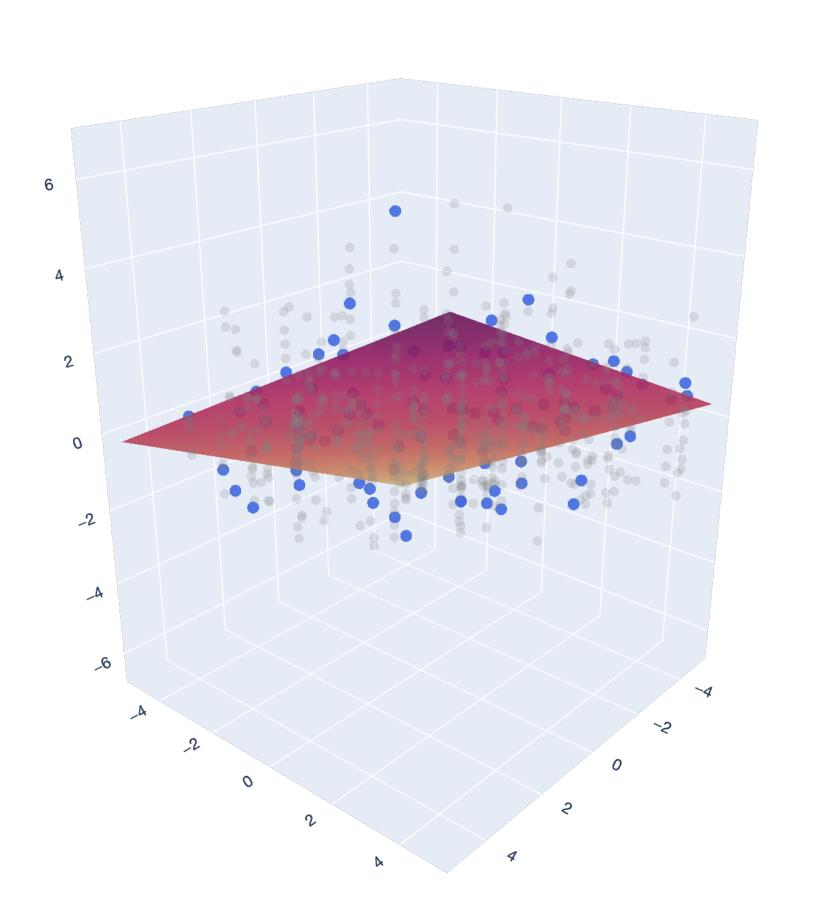
Random vectors. Introduce the idea of a *random vector*, which is just a list of multiple random variables. Discuss generalizations of expectation and variance to random vectors.

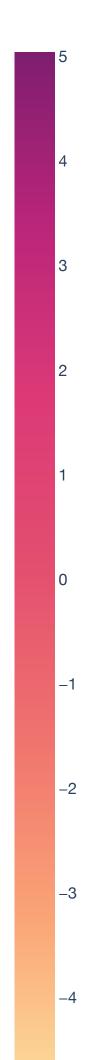
Data as random, statistical model of ML. Introduce the statistical model of ML and the random error model. Introduce *modeling assumptions.* State and prove basic statistical properties of the OLS estimator.

Lesson Overview Big Picture: Least Squares

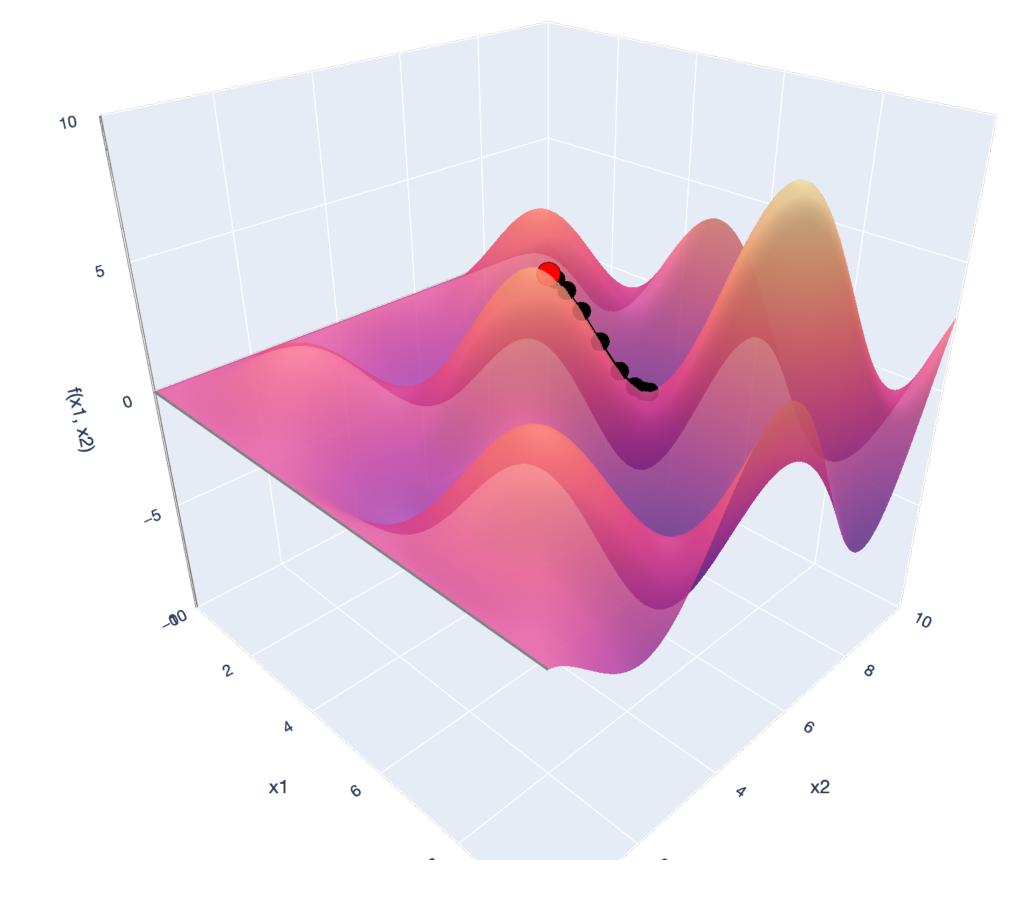


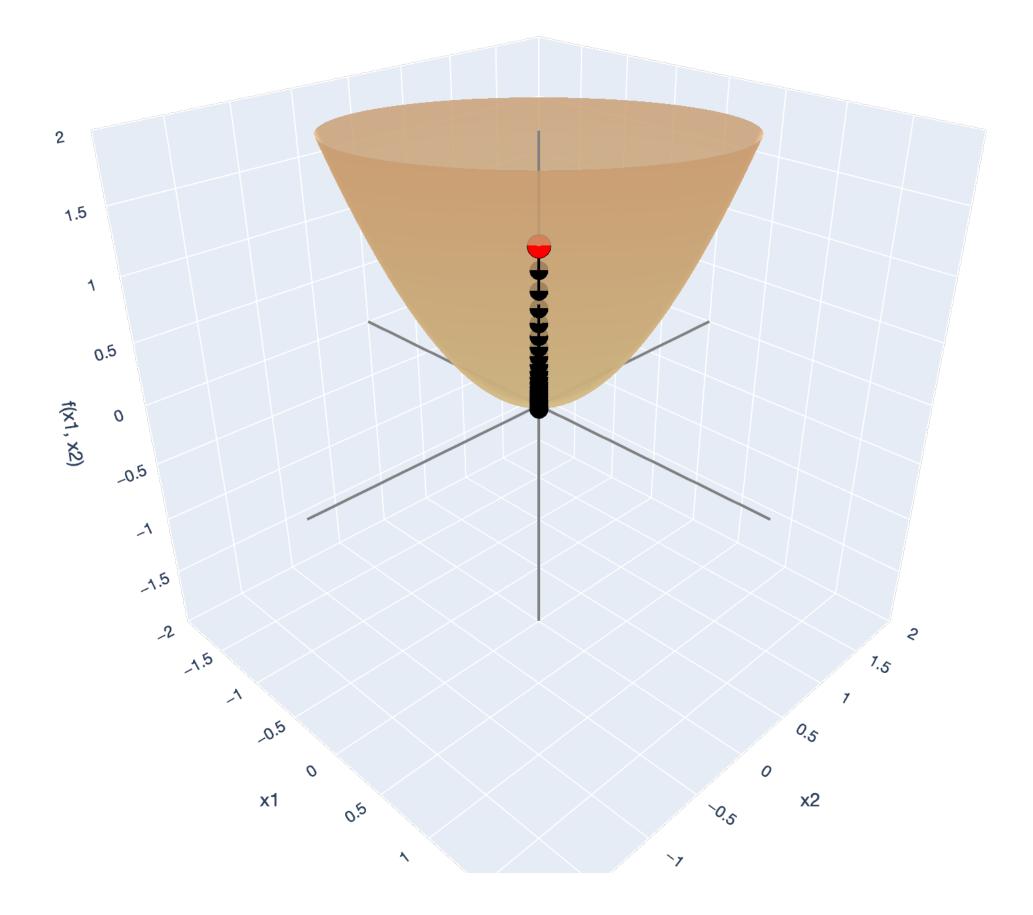
 x_1



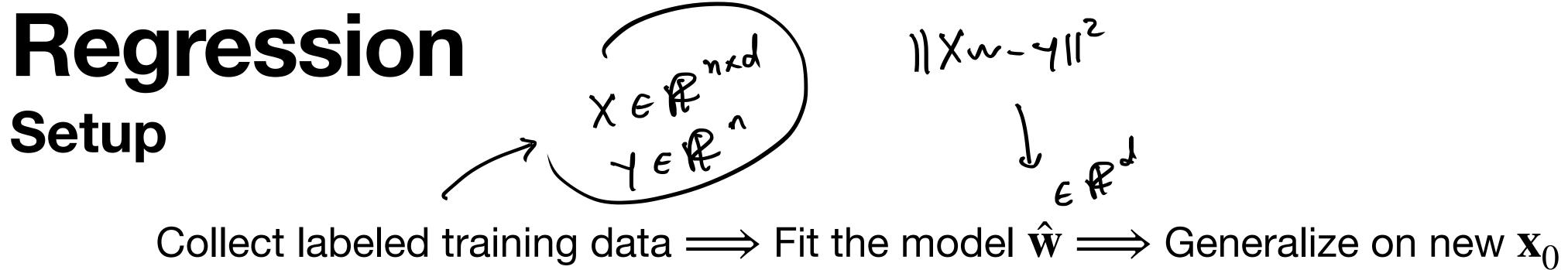


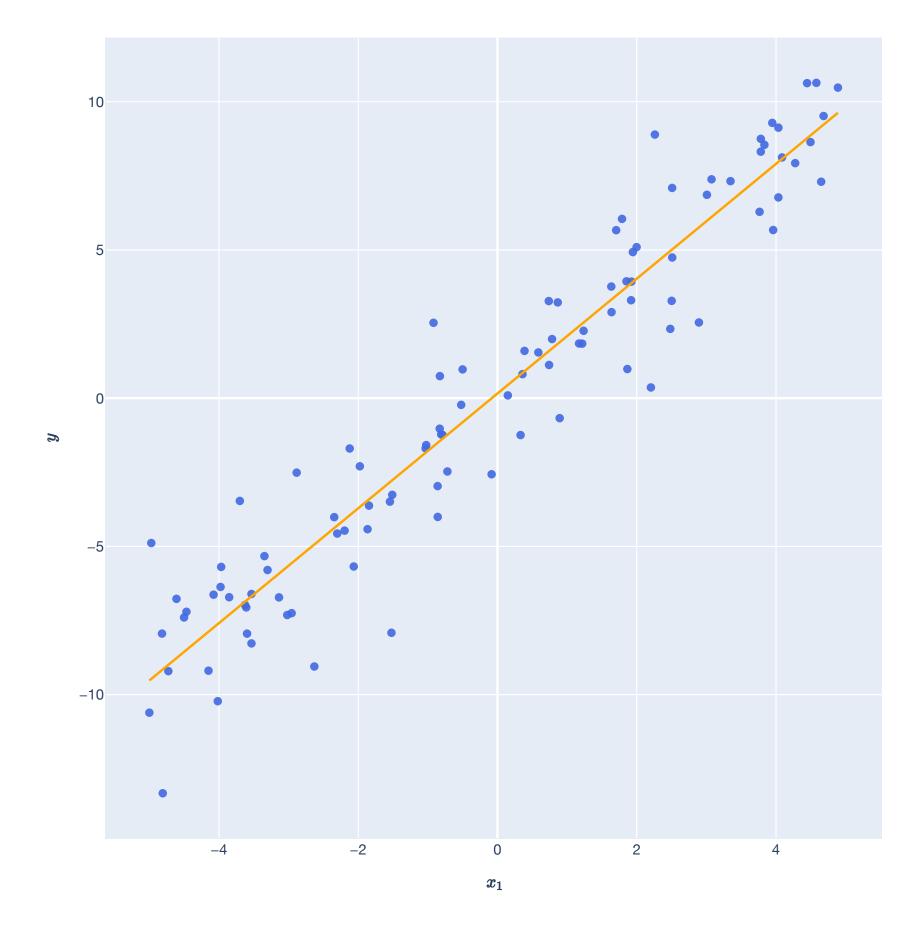
Lesson Overview Big Picture: Gradient Descent

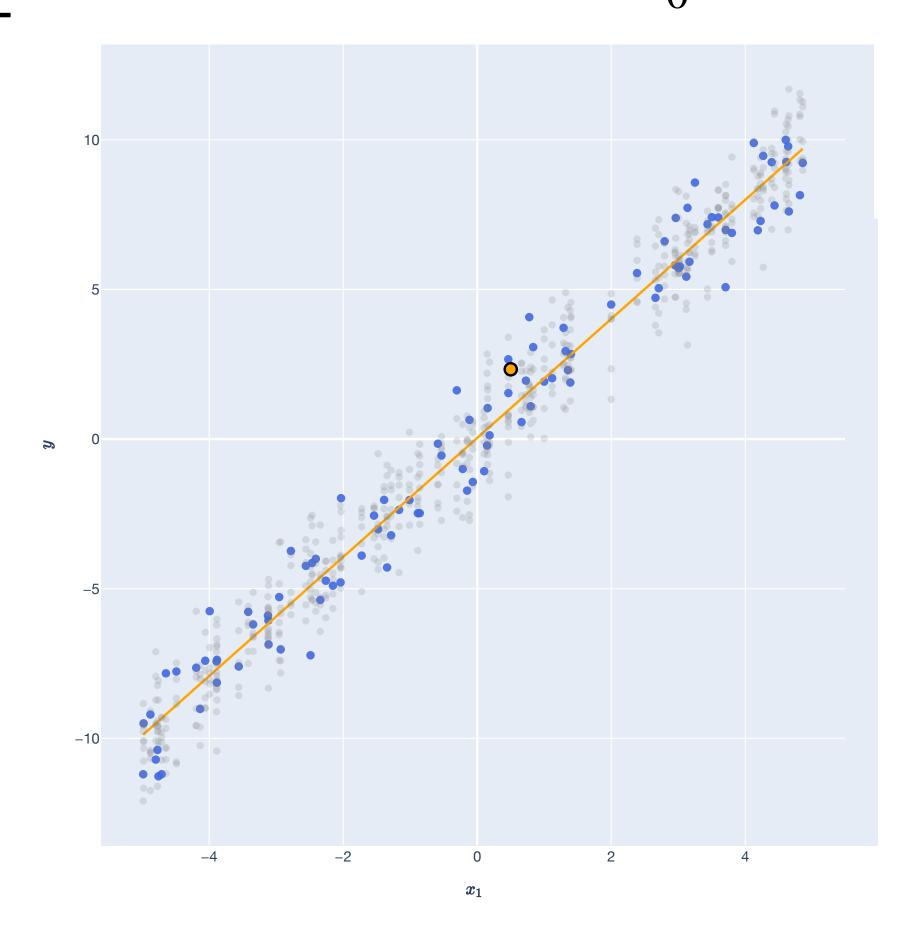




Motivation Data as randomly distributed







<u>**Observed:**</u> Matrix of *training* samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of *training* labels $\mathbf{y} \in \mathbb{R}^{n}$. $\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{X}_1 & \dots & \mathbf{X}_d \\ \downarrow & & \downarrow \end{bmatrix} =$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

<u>Goal</u>: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

$$\uparrow \\ \mathbf{x}_{d} \\ \mathbf{x}_{d} \end{bmatrix} = \begin{bmatrix} \leftarrow \mathbf{x}_{1}^{\mathsf{T}} \rightarrow \\ \vdots \\ \leftarrow \mathbf{x}_{n}^{\mathsf{T}} \rightarrow \end{bmatrix}$$

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

 $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

for $i \in [n]$, or:

To find $\hat{\mathbf{W}}$, we follow the *principle of least squares*.

 $\mathbf{w} \in \mathbb{R}^d$

- **<u>Goal</u>:** For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$. Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$
 - $\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y}$.
 - $\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} \mathbf{y}\|^2$

To find $\hat{\mathbf{W}}$, we follow the principle of least squares.

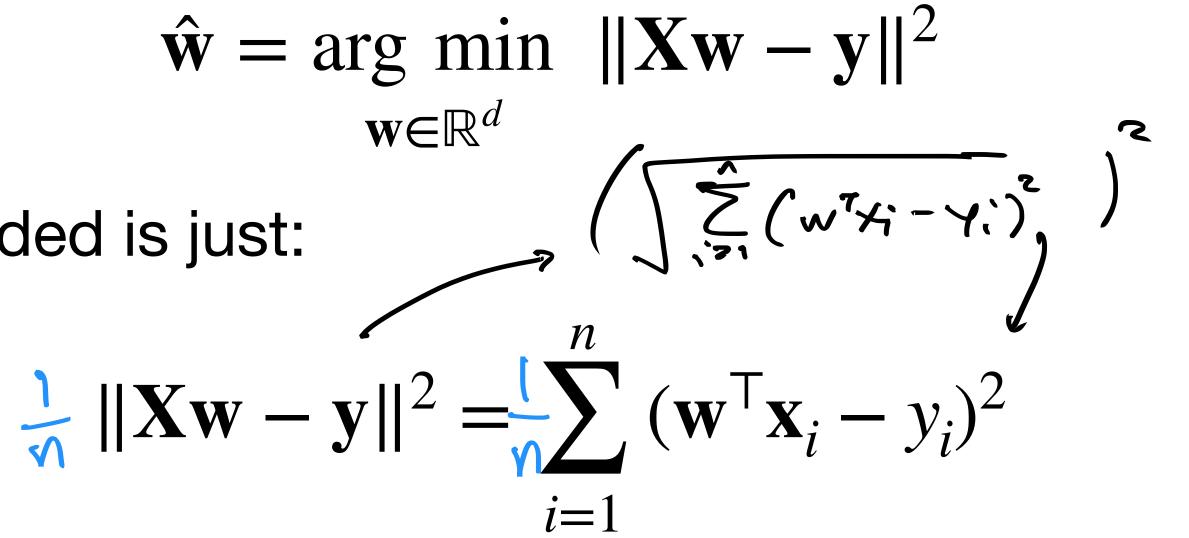
 $\mathbf{w} \in \mathbb{R}^d$

- **<u>Original Goal</u>**: Given a new, unseen $(\mathbf{x}_0, y_0) \in \mathbb{R}^d \times \mathbb{R}$, we wanted to generalize: $\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_{0} \approx y_{0}.$
- To do this, we fit the "training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or: $\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y}$.

 $\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$

To find $\hat{\mathbf{W}}$, we follow the *principle of least squares*. $\mathbf{w} \in \mathbb{R}^d$ Least squares expanded is just:

Put a 1/n there, and it looks like we're minimizing an average...



Regression with randomness Setup

Each row $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ for $i \in [n]$ is a <u>random vector</u>. Each $y_i \in \mathbb{R}$ is a <u>random variable</u>. There exists a joint distribution $\mathbb{P}_{\mathbf{x},y}$ over $\mathbb{R}^d \times \mathbb{R}$, where we draw: $(\mathbf{x}_i, y_i) \sim \mathbb{P}_{\mathbf{x}, \mathbf{y}}$ We want to find a <u>model</u> of the data, a function $f : \mathbb{R}^d \to \mathbb{R}$ that generalizes well to a newly drawn $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$.

Our notion of error is the <u>squared loss</u>:

 $\ell(f(\mathbf{X}),$ To choose the model *f*, make the assumption that it is *linear*: $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x}$, for some **w**. To choose the model *f*, we attempt to minimize the expected squared loss, or the *risk*:

$$\mathbb{E}_{\mathbf{x},y}[(y - f(\mathbf{x}))^2] = \int (y - f(\mathbf{x}))^2 d\mathbb{P}(\mathbf{x}, y)$$

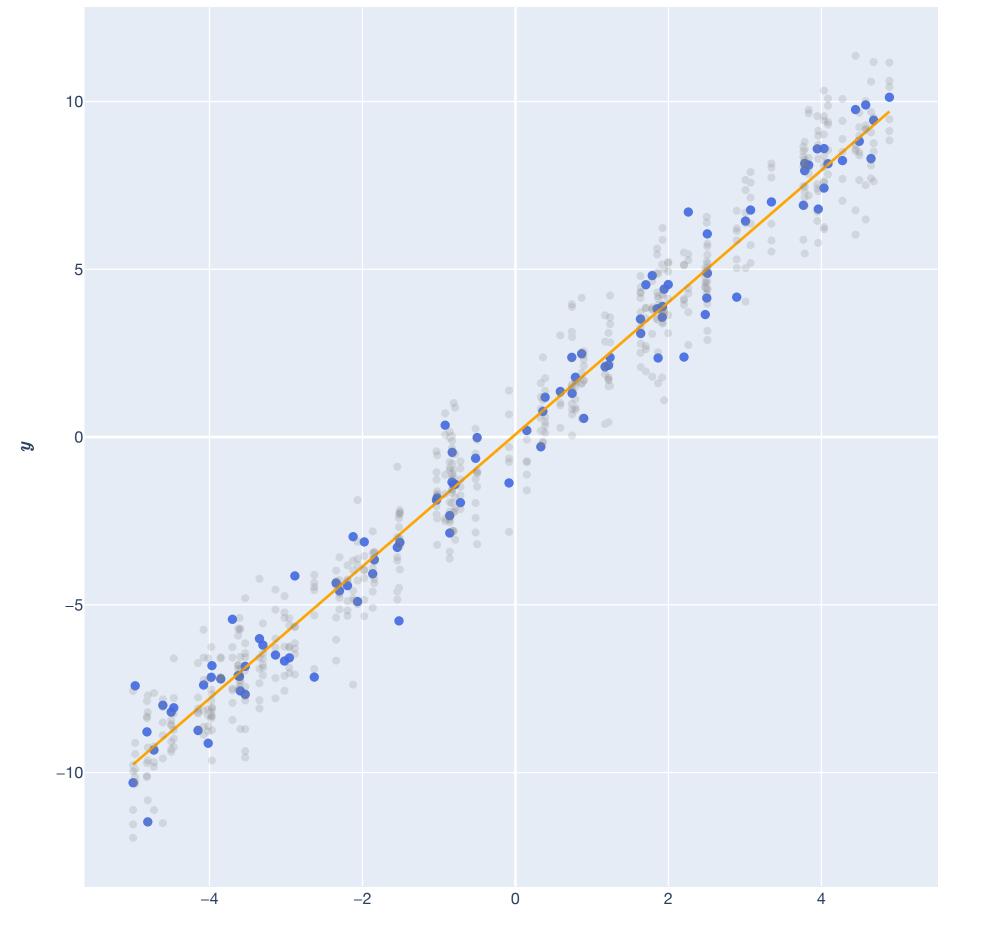
As a substitute, we can minimize the **empirical risk**:

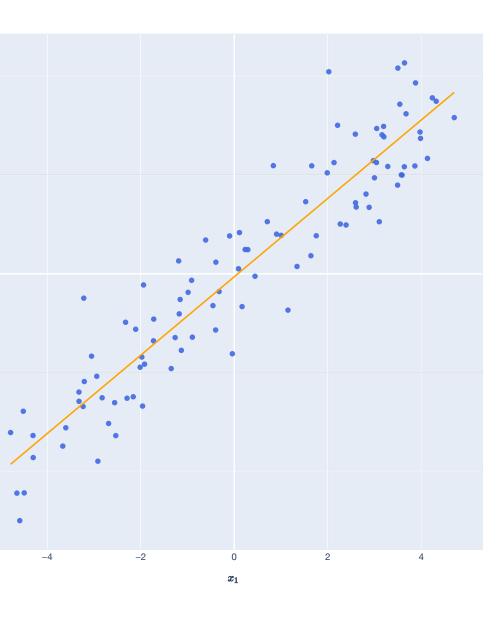
$$\hat{R}(f) :=$$

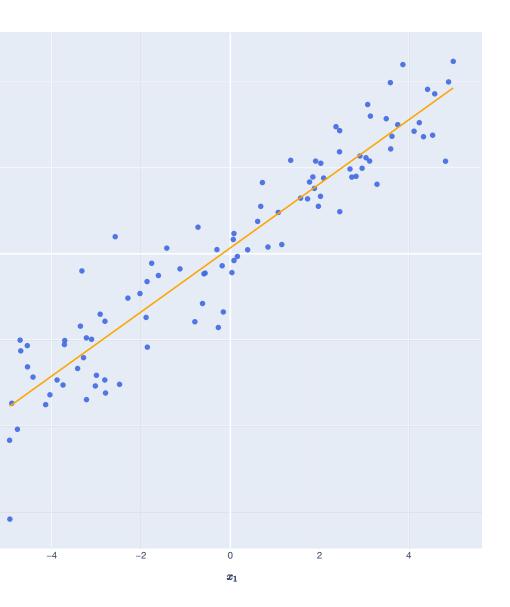
$$y) := (y - f(\mathbf{x}))^2.$$

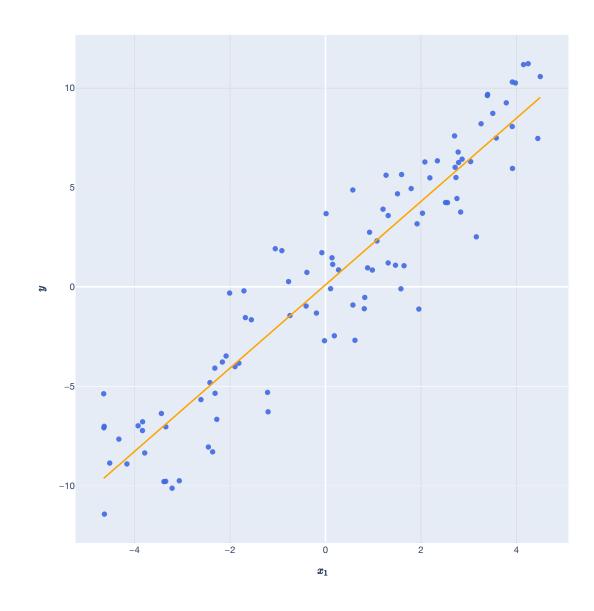
$$\frac{1}{n}\sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2.$$

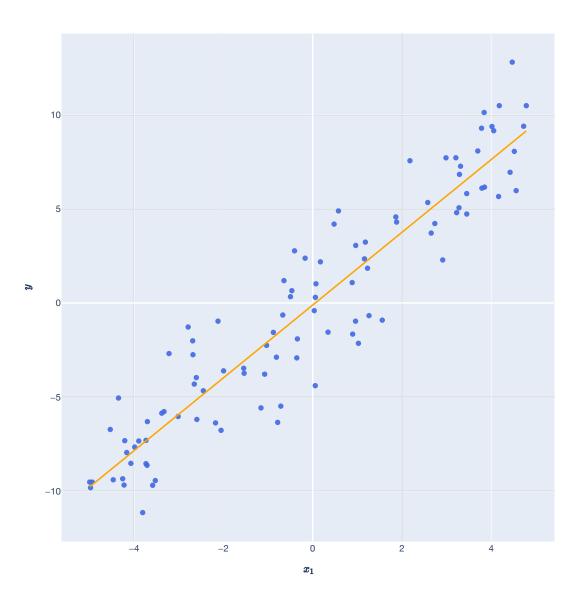
RegressionModeling randomness











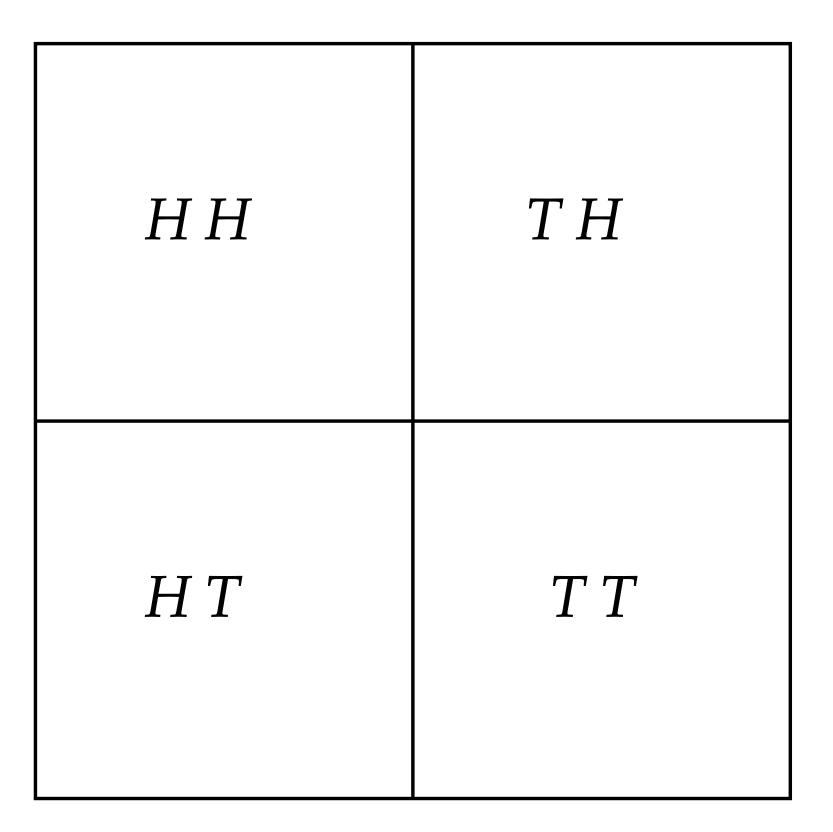
Probability Spaces Sample Spaces, Events, and Random Variables

Sample Space Example: Flipping 2 fair coins

Consider the following *experiment*:

Alice and Bob both have a fair coin. They each flip their coins simultaneously, and the result can be either H or T.

What are the possible outcomes of this experiment?



Ω

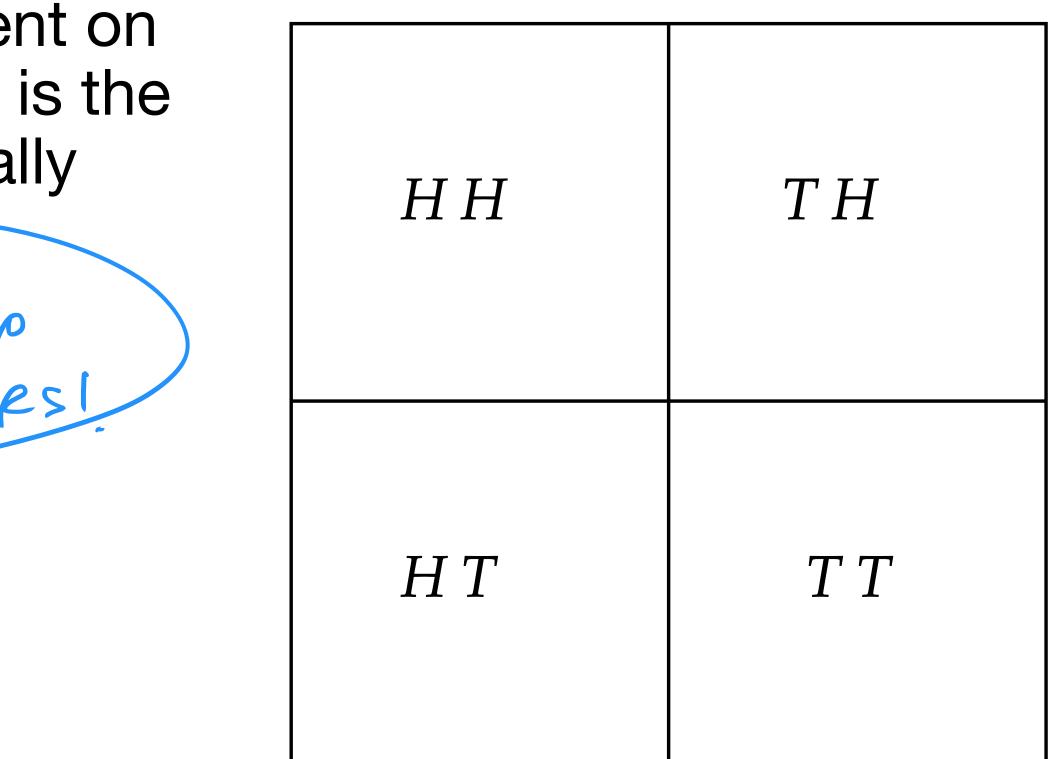
Sample Space Intuition and definition

The <u>sample space</u> of some experiment on which we want to model probabilities is the set of all possible outcomes. We usually denote this Ω .

Do NOT HAVE TO BE NMBERSI-

Example:

 $\Omega = \{HH, HT, TH, TT\}.$



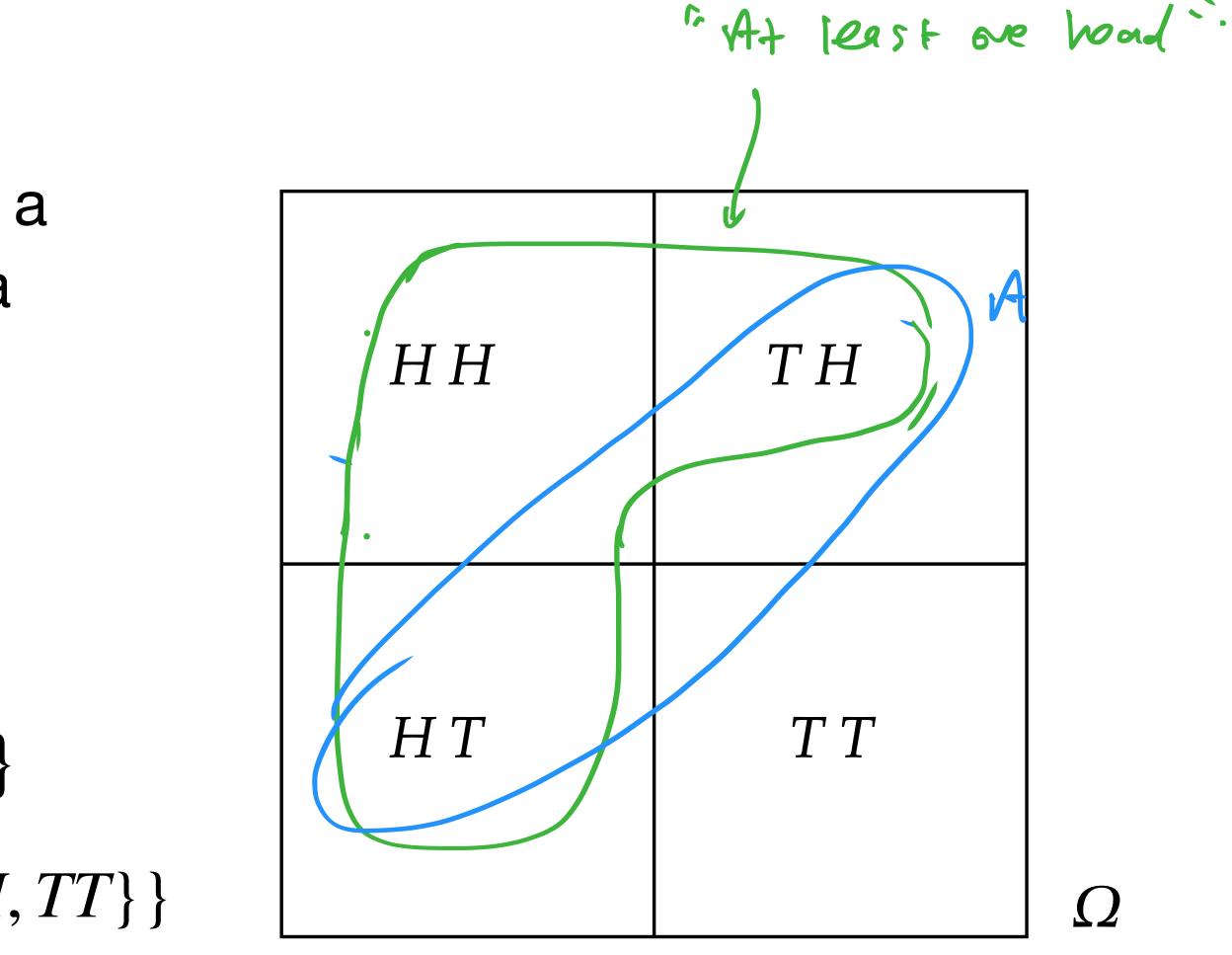
Ω

Events Intuition and definition

Given a sample space Ω , an <u>event</u> is a subset $A \subseteq \Omega$ of outcomes. Denote a collection of events \mathscr{A} .

Example:

 $A = \{HT, TH\} = \{"exactly 1 head"\}$ $\mathscr{A} = \{ \emptyset, \{HH\}, \{HT\}, ..., \{HH, HT, TH, TT\} \}$ $z^{4} = (16)^{-7}$



Events Intuition and definition

Events are subsets, so they obey the usual rules and definitions of set logic.

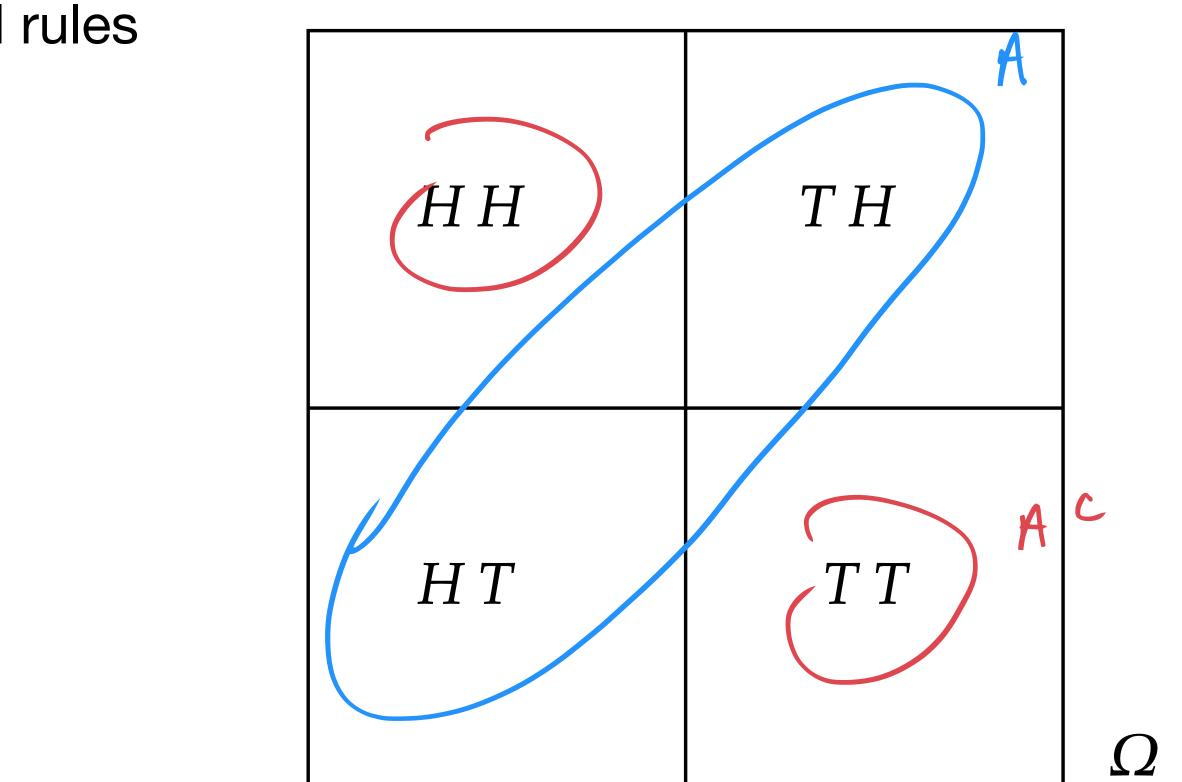
 $A \cup B$ (union)

 $A \cap B$ (intersection)

A^C (complement)

Example:

 $A = \{HT, TH\} = \{\text{"exactly 1 head"}\}$ $A^{C} = \{HH, TT\}$



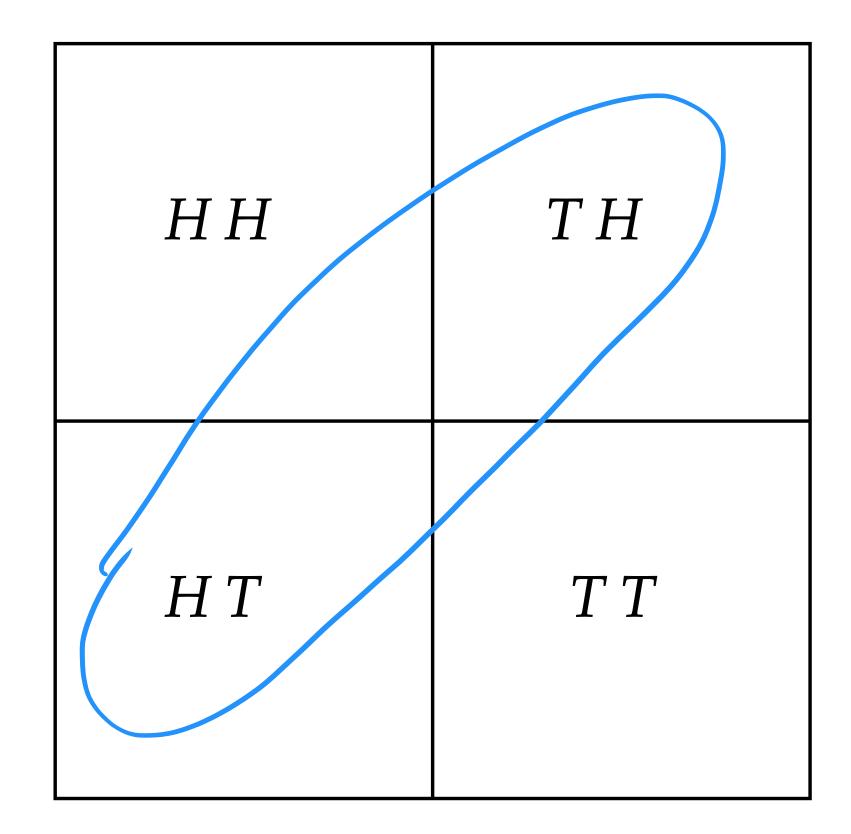
Probability Measure Intuition and definition

A probability measure is a set function $\mathbb{P}: \mathscr{A} \to [0,1]$ mapping from sets to a number in [0,1].

For an event $A \in \mathcal{A}$, we call $\mathbb{P}(A)$ the **probability** that event A occurs.

Can be interpreted as "degree of belief" or "long-run frequency."

Or just the "mass" of a particular subset!



Probability Measure Axiomatic Properties

Any valid probability measure \mathbb{P} satisfies two properties:

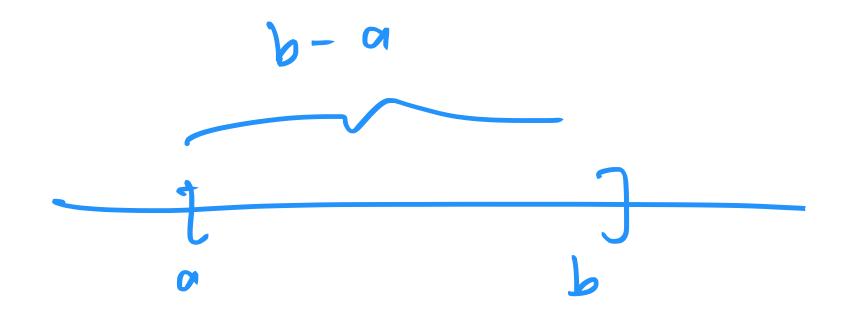
1. The measure of the entire sample space:

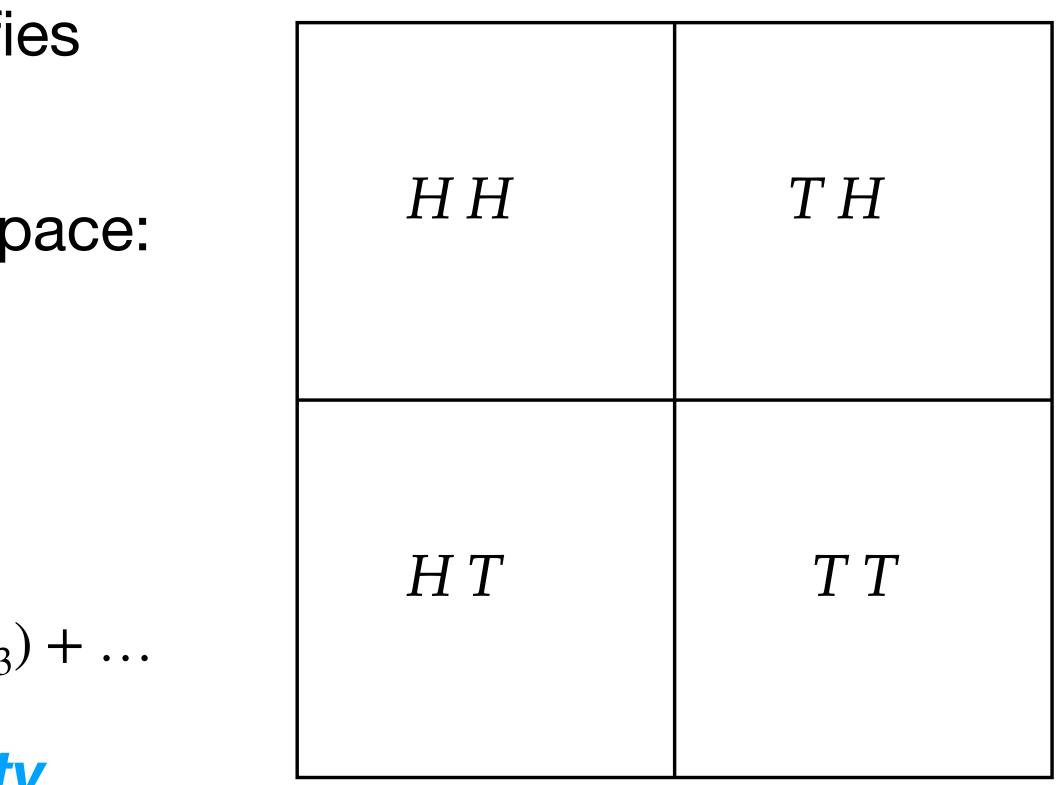
$$\mathbb{P}(\Omega) = 1.$$

2. For disjoint events A_1, A_2, A_3, \ldots

 $\mathbb{P}\left(A_1 \cup A_2 \cup A_3 \cup \dots\right) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) + \dots$

also known as <u>countable additivity.</u>





Ω

Probability Measure Properties of probability measures

1. **Complements.** For any event $A \in \mathscr{A}$, the probability of the complement is: $\mathbb{P}(A^{C})$ 2. Subsets of events. For two events $A, B \in \mathscr{A}$, if \mathscr{A}

- 3. Unions of events. For any two events $A, B \in \mathscr{A}$, $\mathbb{P}(A \cup B) = \mathbb{P}(A \cup B)$
- 4. Union bound. For any finite collection of events A_1

 $\mathbb{P}\left(A_1 \cup \ldots\right)$

$$P = 1 - \mathbb{P}(A).$$

 $\subseteq \mathcal{P}$, then:

 $\mathbb{P}(B) \leq \mathbb{P}(A).$

$$A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

$$\dots, A_n,$$

$$\bigcup A_n \Big) \le \sum_{i=1}^n \mathbb{P}(A_i).$$

Probability Measure Example Measures

For discrete outcome spaces, a common way to measure probabilities is to make outcomes equally probable:

$$\mathbb{P}(\{\omega\}) = 1/|\Omega| \text{ for } \omega \in \Omega.$$

This isn't the only valid measure, e.g.

$$\mathbb{P}(\{HH\}) = 1$$

ΗH	ΤH
ΗT	ΤТ

Conditional Probabilities Intuition and definition

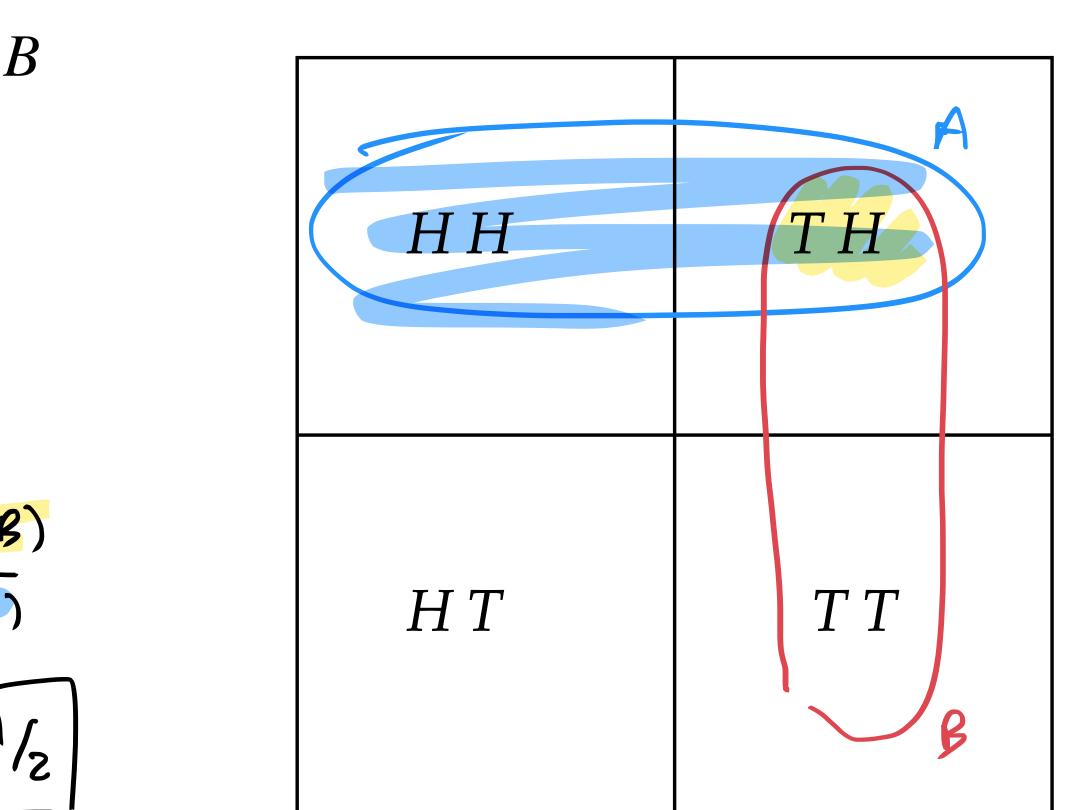
For events A, B, the <u>conditional probability</u> of Bgiven A is:

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

Example: $A = \{ \mathsf{Bob's \ coin \ is } H \}$ $B = \{ Alice's coin is T \}$ $C = \{ Alice's coin is H \}$

$$P(B|A) = \frac{P(AnB)}{P(A)}$$
$$= \frac{1}{2} \frac{1}{2}$$

-



 Ω

Conditional Probabilities Chain Rule and Bayes' Rule

- The <u>chain rule</u> of conditional probability is: $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B)\mathbb{P}(B) = \mathbb{P}(B \mid A)\mathbb{P}(A).$
- This easily gives us **Bayes' rule**:

Bayes' rule can be thought of as how we "update our beliefs."

 $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}.$

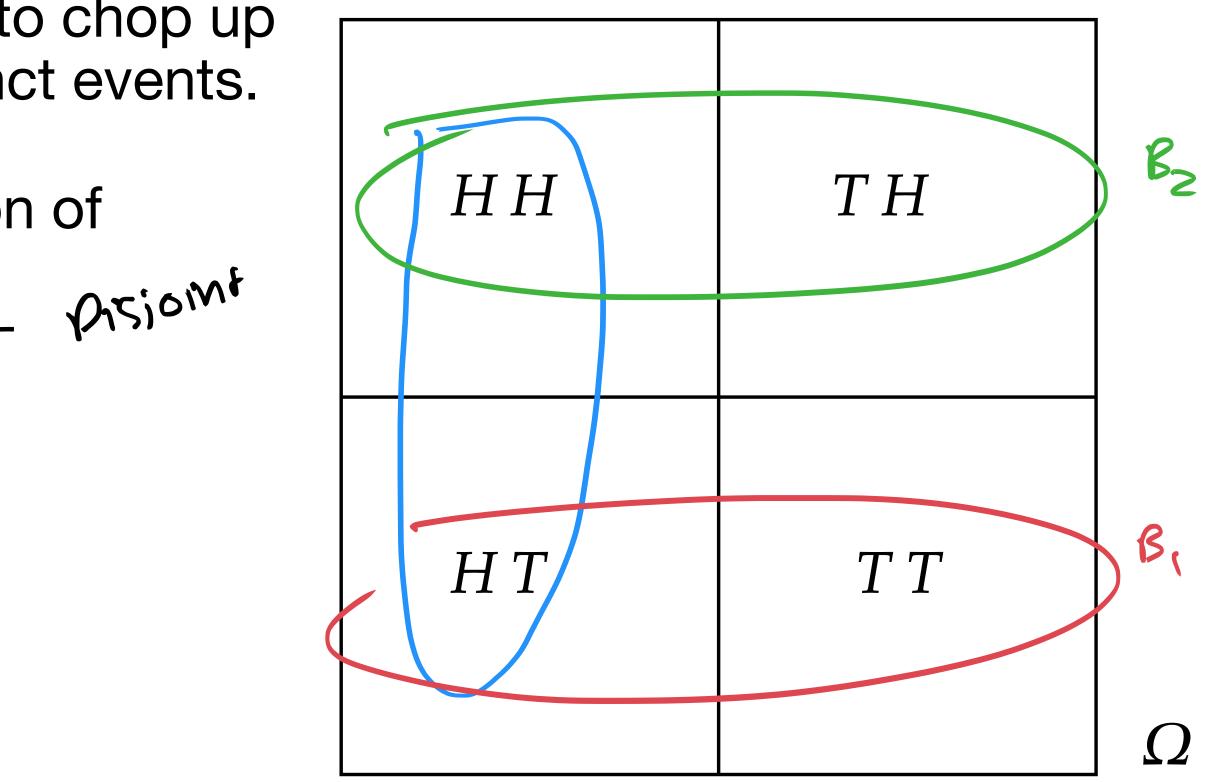
Conditional Probabilities Law of Total Probability

The *law of total probability* allows us to chop up probabilities into an exact sum of distinct events.

If B_1, B_2, B_3, \dots is a *countable* collection of events, then, for any event A:

$$\mathbb{P}(A) = \sum_{i} \mathbb{P}(A \cap B_{i})$$
$$\mathbb{P}(A) = \sum_{i} \mathbb{P}(A \mid B_{i})\mathbb{P}(B_{i})$$

Frips Heads. Alice A= By= Bob Flip, Torils Bz= Bob Plips Hoads Bz= Bob Plips Hoads

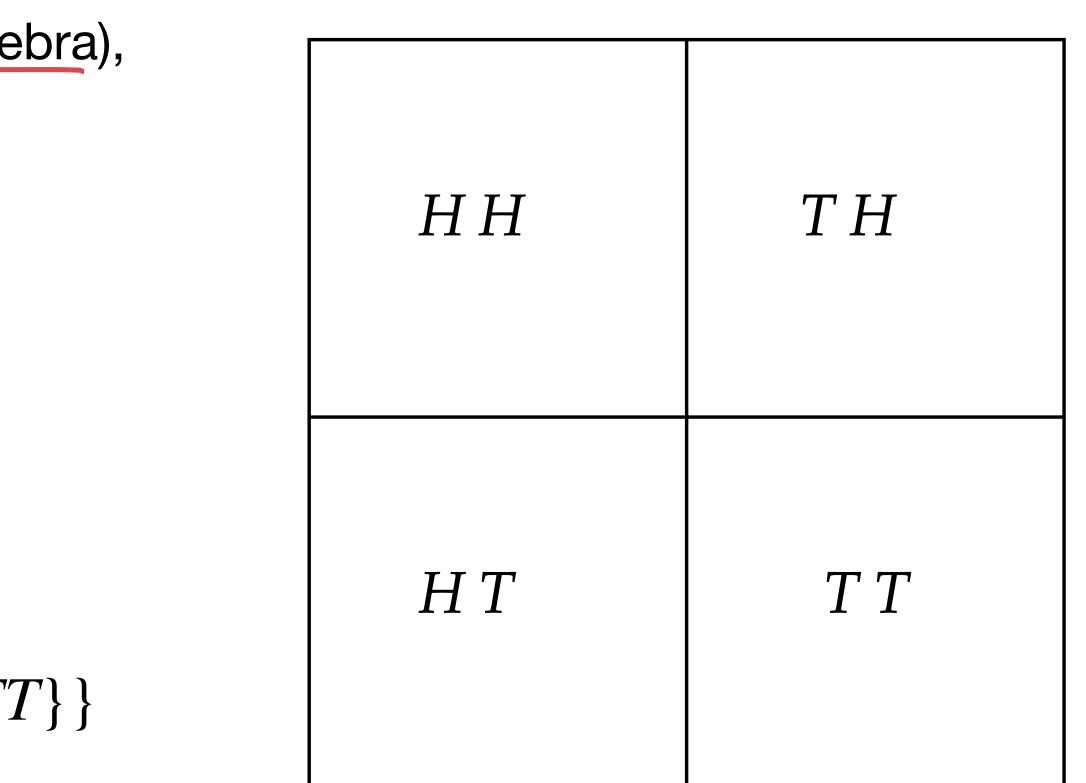


Probability Space Intuition and definition

A tuple of a sample space, event space (σ -algebra), and probability measure($\Omega, \mathscr{A}, \mathbb{P}$) is called a probability space.

Example:

$$\begin{split} \Omega &= \{HH, HT, TH, TT\} \\ \mathscr{A} &= \{\emptyset, \{HH\}, \{HT\}, \dots, \{HH, HT, TH, TT\}\} \\ \mathbb{P}(\{\omega\}) &= 1/4 \text{ for all } \omega \in \Omega. \end{split}$$

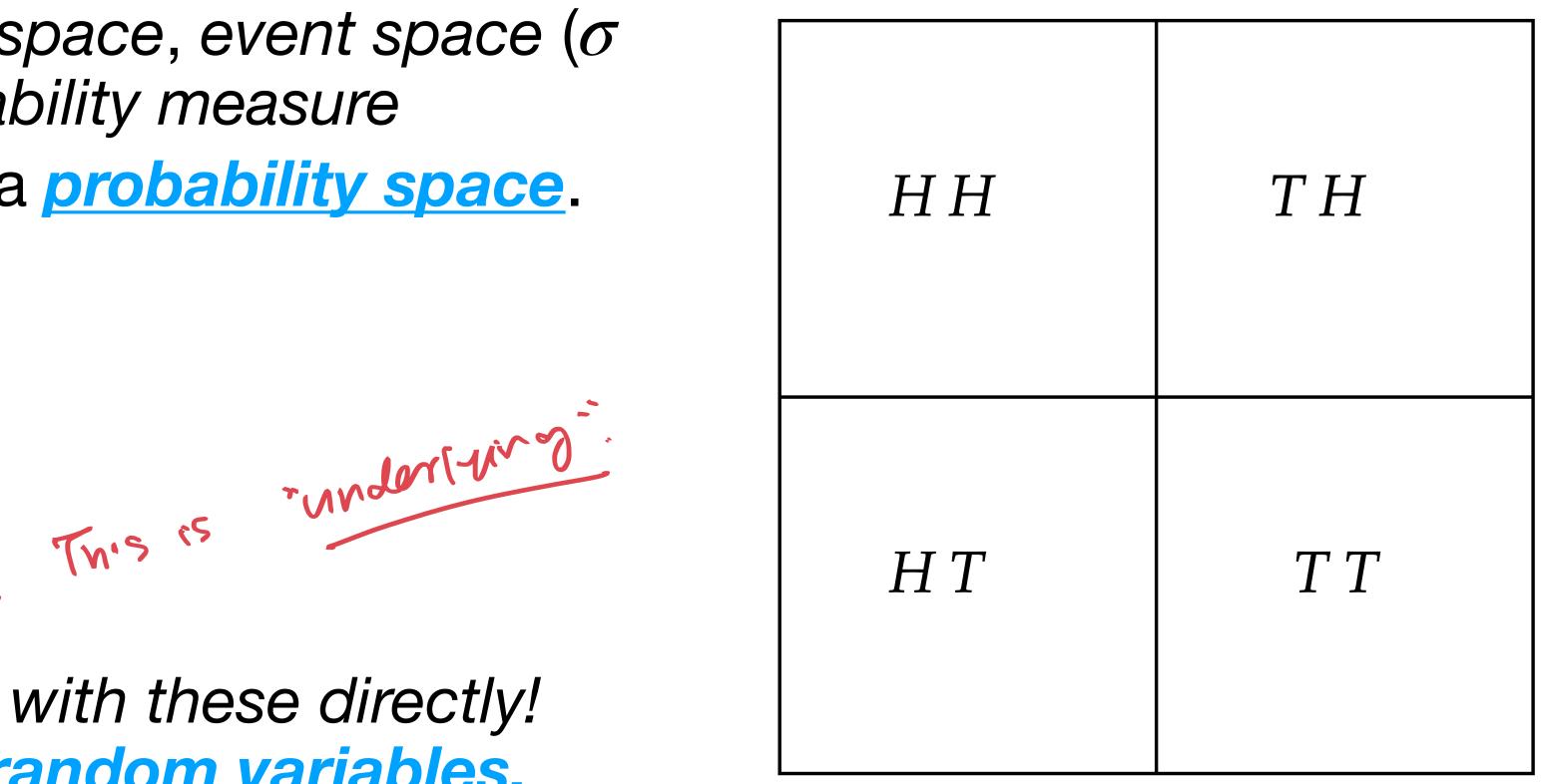


 Ω

Probability Space Intuition and definition

A tuple of a sample space, event space (σ -algebra), and probability measure $(\Omega, \mathcal{F}, \mathbb{P})$ is called a <u>probability space</u>.

We avoid dealing with these directly! Instead, we use random variables.



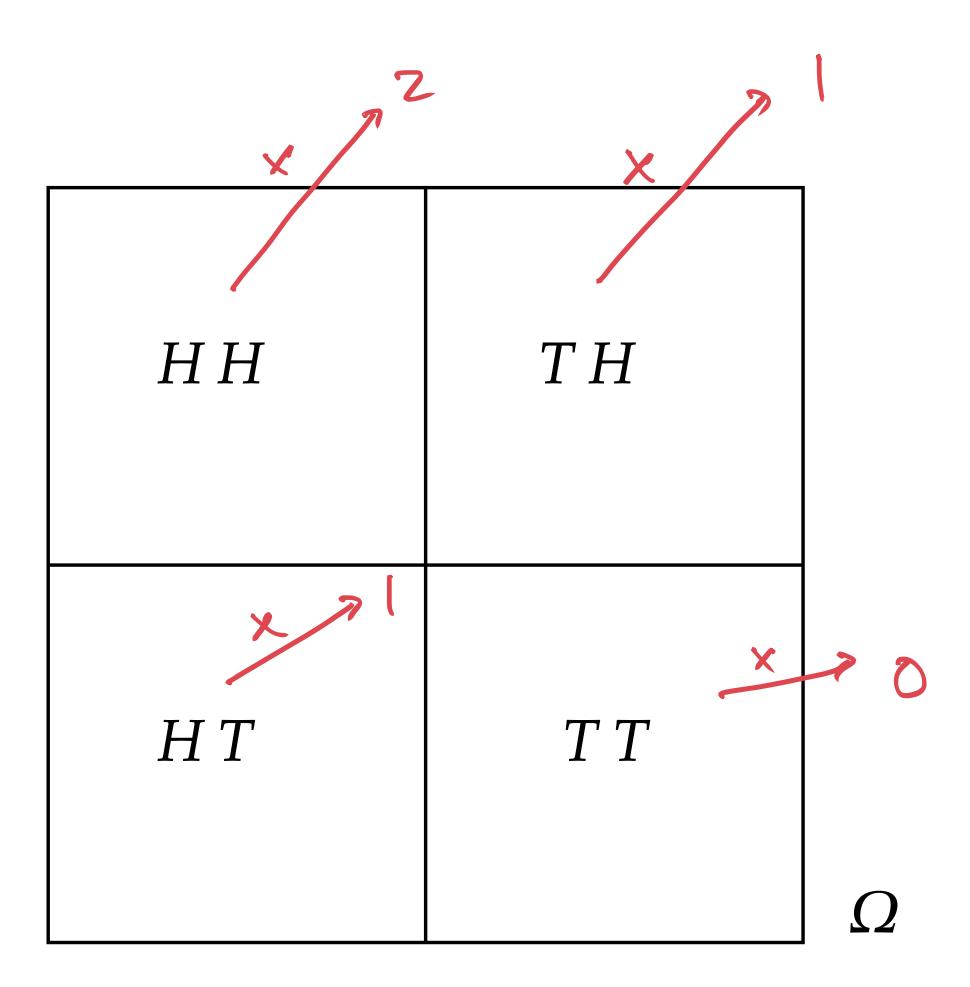
Random Variables Example: Flipping 2 fair coins

Consider the following function:

$X: \Omega \to \mathbb{R}$

where $X(\omega) =$ number of heads, H.

Random variables are *functions* that assign a numerical quantity to every outcome in the sample space.



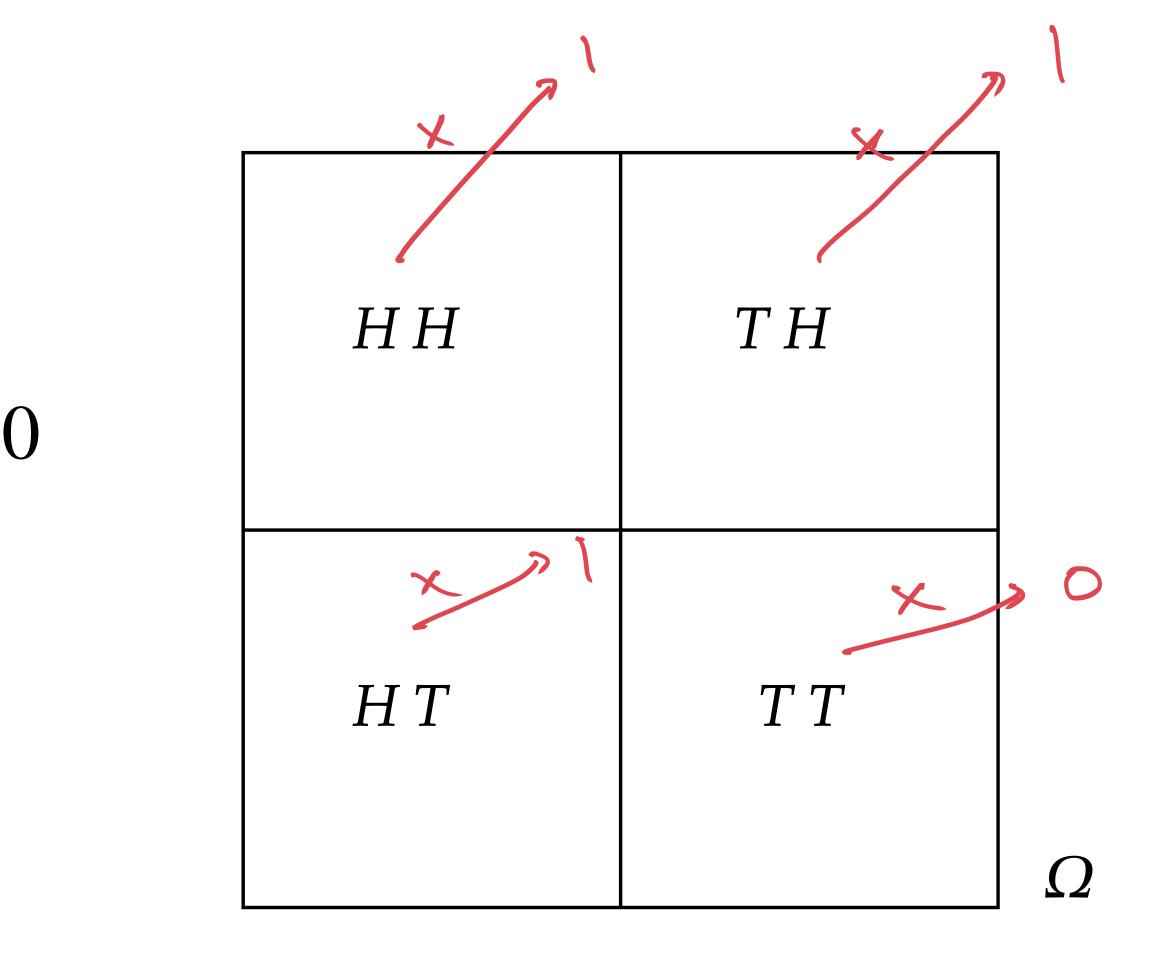
Random Variables Example: Flipping 2 fair coins

Consider the following function:

$X: \Omega \to \mathbb{R}$

where $X(\omega) = 1$ if at least one H, and 0 otherwise.

Random variables are *functions* that assign a numerical quantity to every outcome in the sample space.



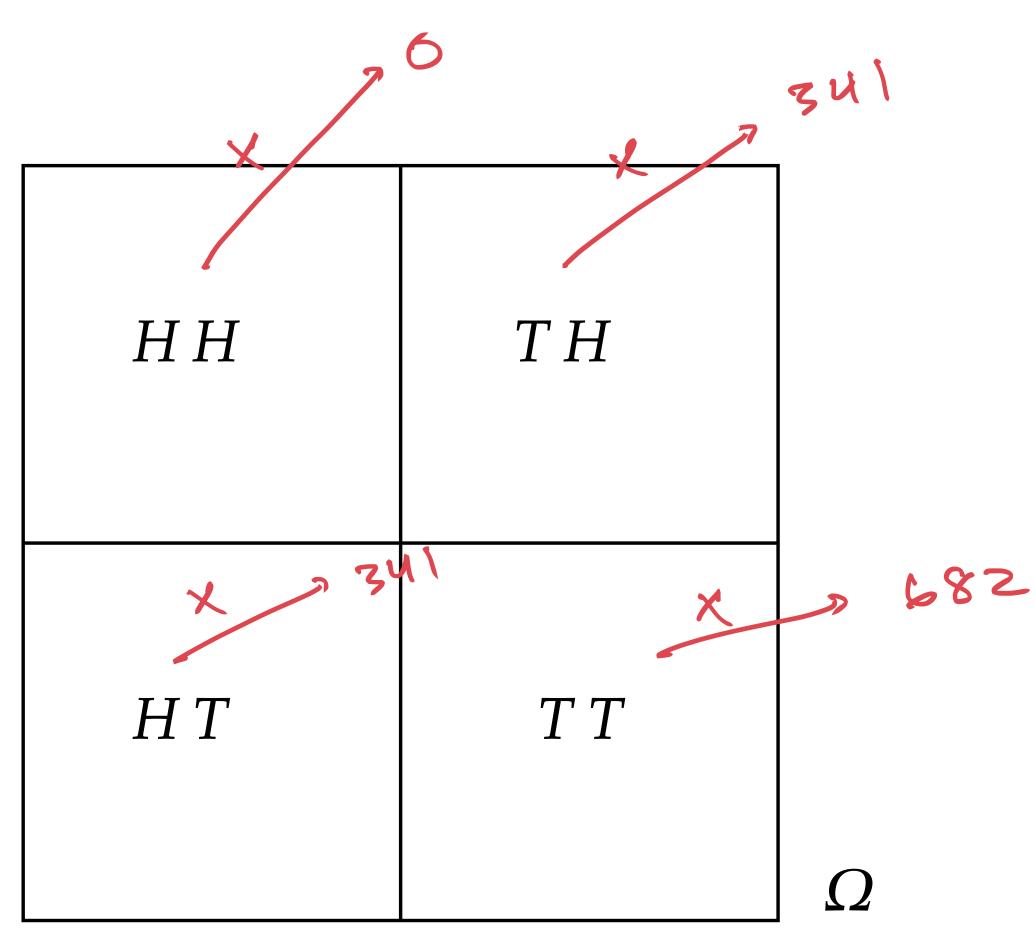
Random Variables Example: Flipping 2 fair coins

Consider the following function:

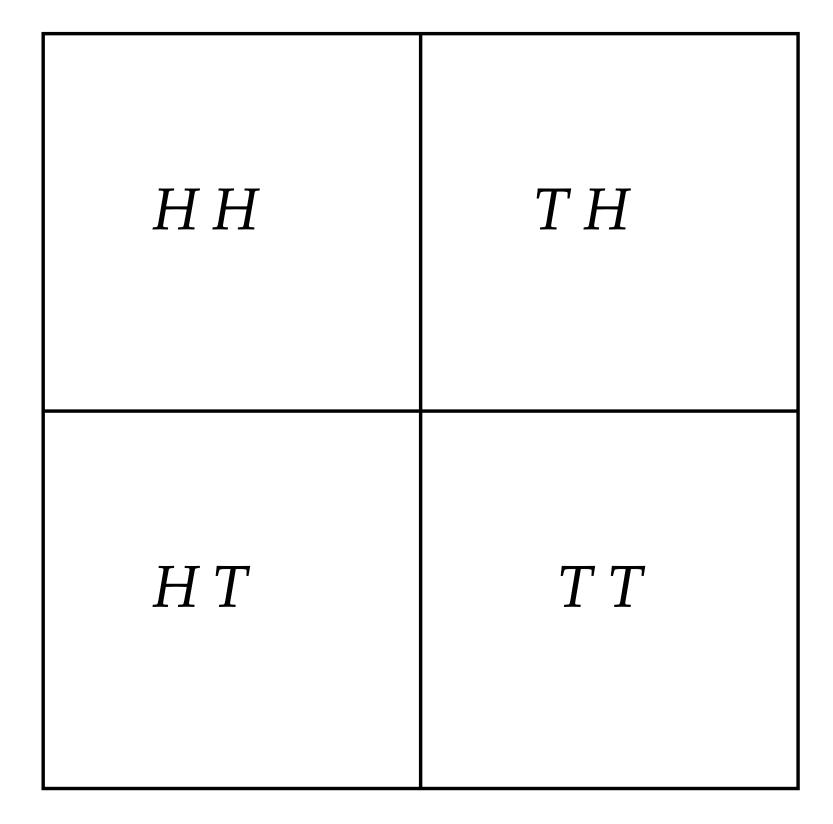
$X: \Omega \to \mathbb{R}$

where $X(\omega) = 341x$ where x is the number of T.

Random variables are functions that assign a numerical quantity to every outcome in the sample space.



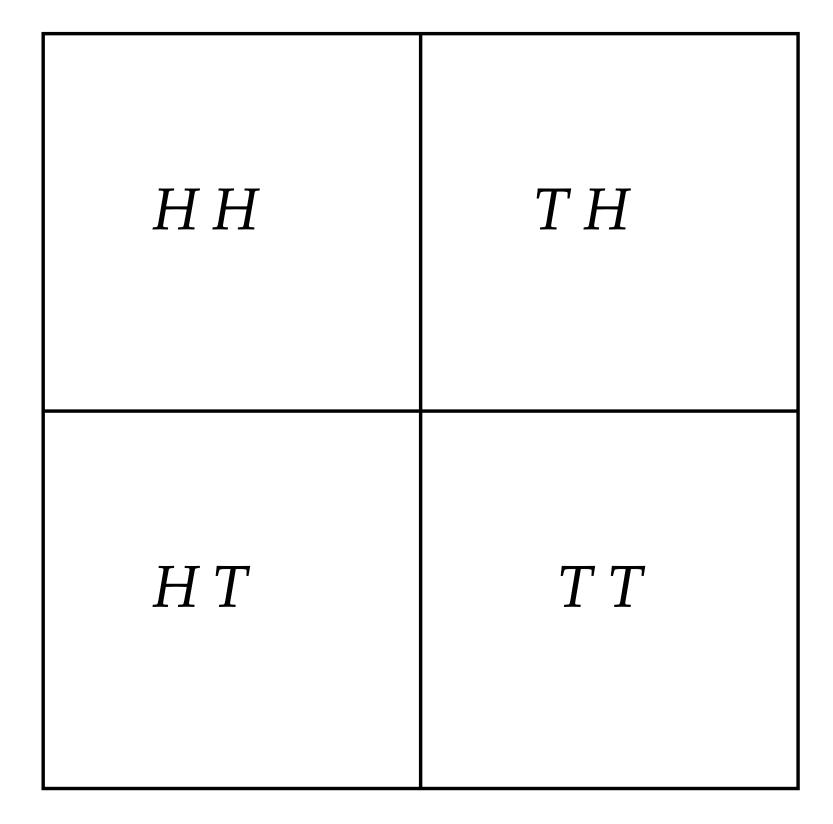
A <u>random variable</u> is a function $X: \Omega \to \mathbb{R}$ that takes outcomes $\omega \in \Omega$ of the sample space and maps them to real values.



Ω

A <u>random variable</u> is a function $X: \Omega \to \mathbb{R}$ that takes outcomes $\omega \in \Omega$ of the sample space and maps them to real values.

We typically use random variables to talk about events without referencing the underlying sample space.



Ω

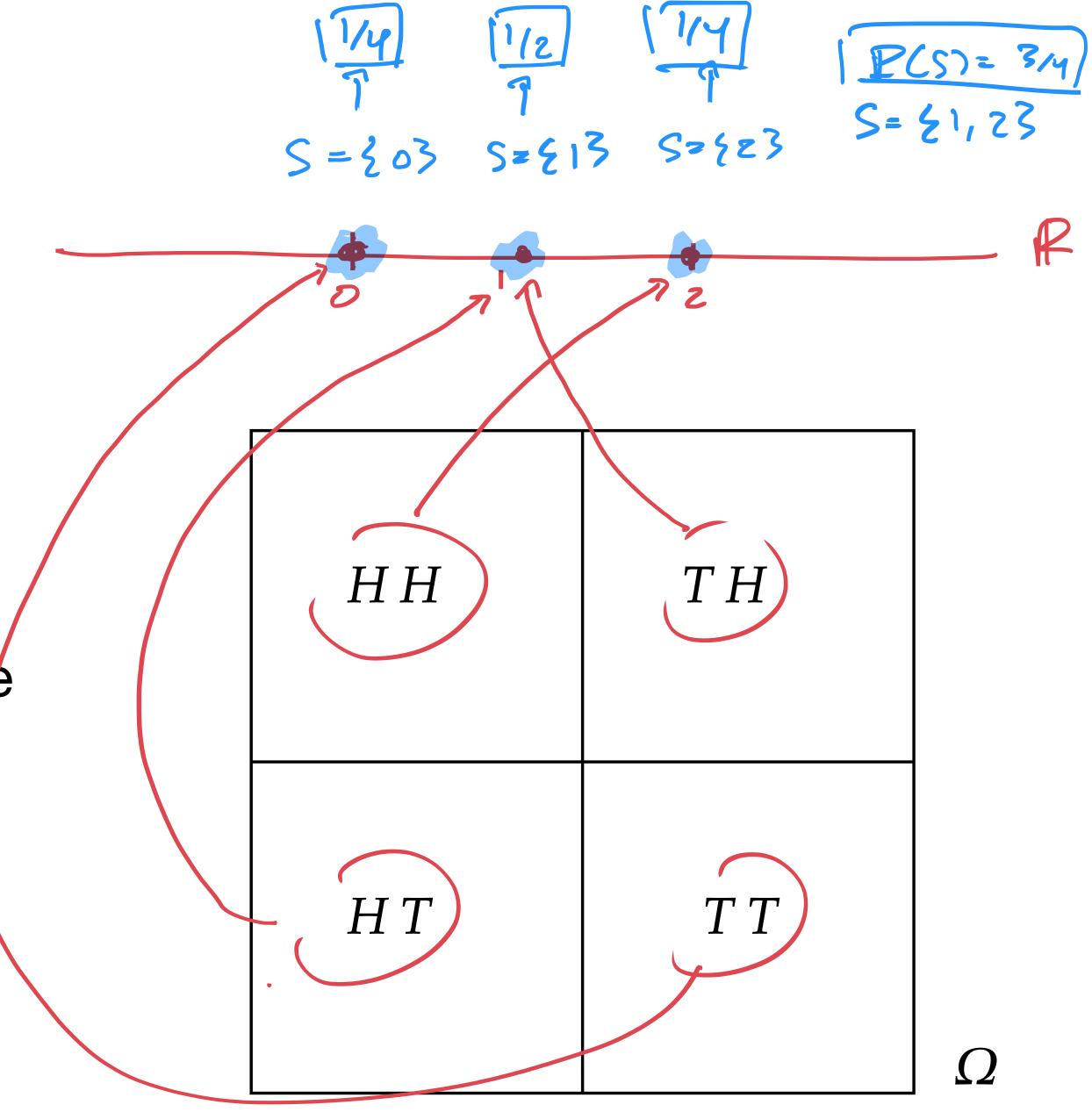
Let
$$X : \Omega \to \mathbb{R}$$
 be defined as
 $= X(\omega) = \#$ of heads, H .

Let the underlying probability measure assign outcomes to be equally likely:

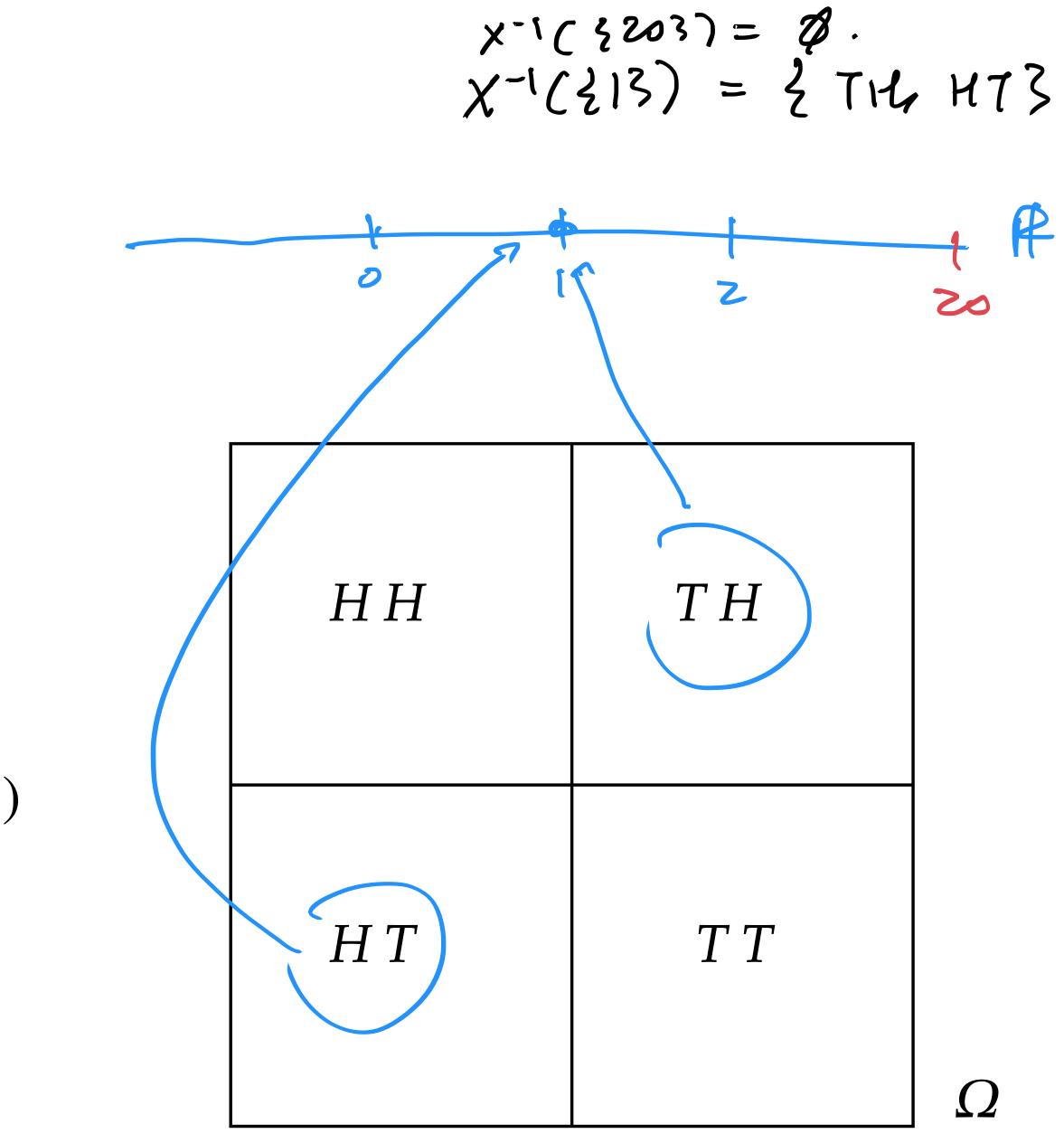
$$\mathbb{P}(\{\omega\}) = 1/4$$

Then, for any $S \subseteq \mathbb{R}$,

$$\mathbb{P}_X(S) = \mathbb{P}(X \in S).$$

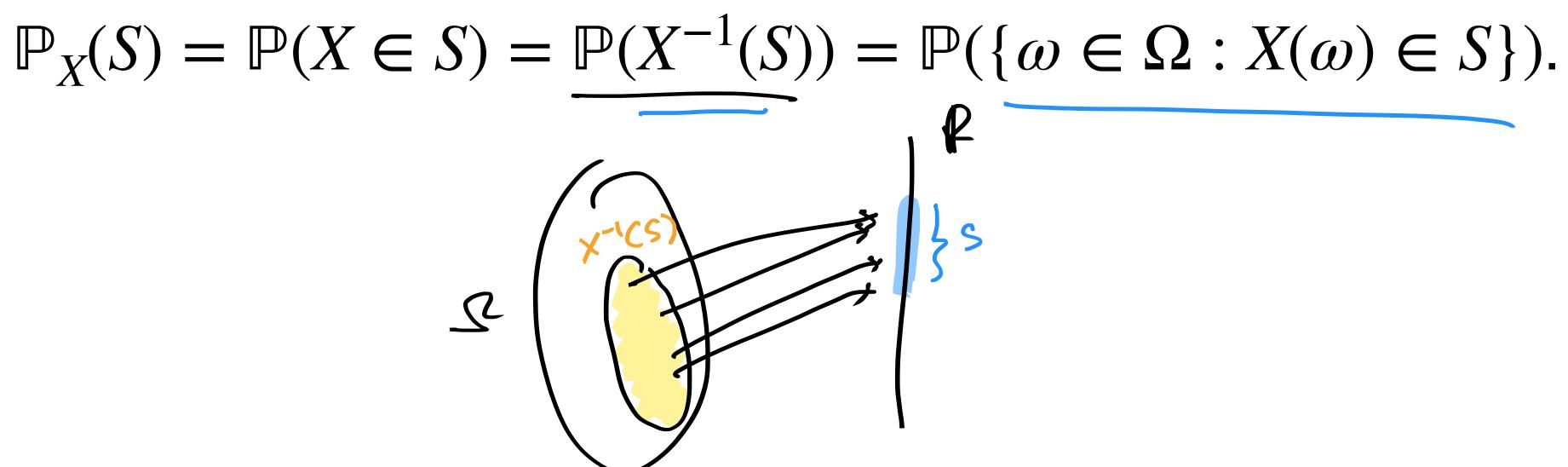


Let $X : \Omega \to \mathbb{R}$ be defined as $X(\omega) = \# \text{ of heads, } H.$ For any $S \subseteq \mathbb{R}$, $\mathbb{P}_{X}(S) = \mathbb{P}(X \in S) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in S\})$ **Example.** What's $\mathbb{P}_X(1)$? What's $\mathbb{P}_X(20)$? = 0



Random Variable The distribution of a random variable

Let $(\Omega, \mathscr{A}, \mathbb{P})$ be some underlying probability space. Random variables $X: \Omega \to \mathbb{R}$ come with a <u>distribution/law</u>, \mathbb{P}_X . This implicitly defines a probability measure on \mathbb{R} . For $S \subseteq \mathbb{R}$,



Random Variable The distribution of a random variable

Let $(\Omega, \mathscr{A}, \mathbb{P})$ be some underlying probability space. Random variables $X: \Omega \to \mathbb{R}$ come with a <u>distribution/law</u>, \mathbb{P}_X . This implicitly defines a probability measure on \mathbb{R} . For $S \subseteq \mathbb{R}$,

This allows us to just talk about the numbers in $\mathbb{R}!$

- $\mathbb{P}_{Y}(S) = \mathbb{P}(X \in S) = \mathbb{P}(X^{-1}(S)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in S\}).$

Probability Spaces Putting everything together

The sample space is the set of all possible outcomes:

 $\Omega = \{HH, TH, HT, TT\}.$

The <u>event space</u> (σ -algebra) is some collection of events:

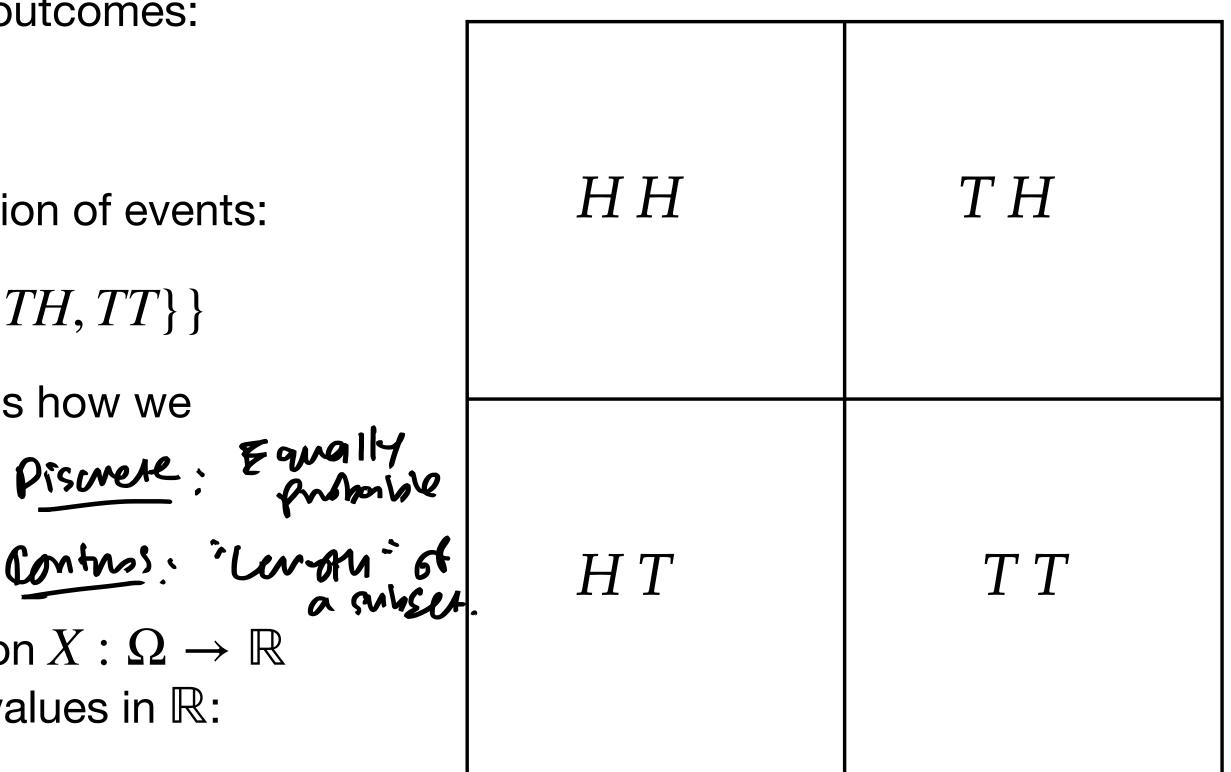
 $\mathcal{A} = \{ \emptyset, \{HH\}, \{TT\}, \dots, \{HH, HT, TH, TT\} \}$

The (underlying/base) probability measure is how we measure the "mass" of events:

 $\mathbb{P}(\omega) = 1/4 \text{ for } \omega \in \Omega.$

A <u>random variable</u> on $(\Omega, \mathscr{A}, \mathbb{P})$ is a function $X : \Omega \to \mathbb{R}$ associating outcomes $\omega \in \Omega$ to numerical values in \mathbb{R} :

 $X(\omega) =$ # of heads in ω

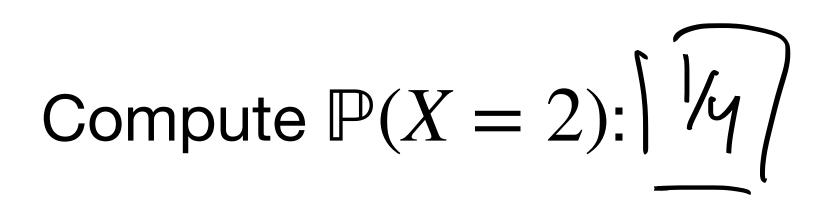


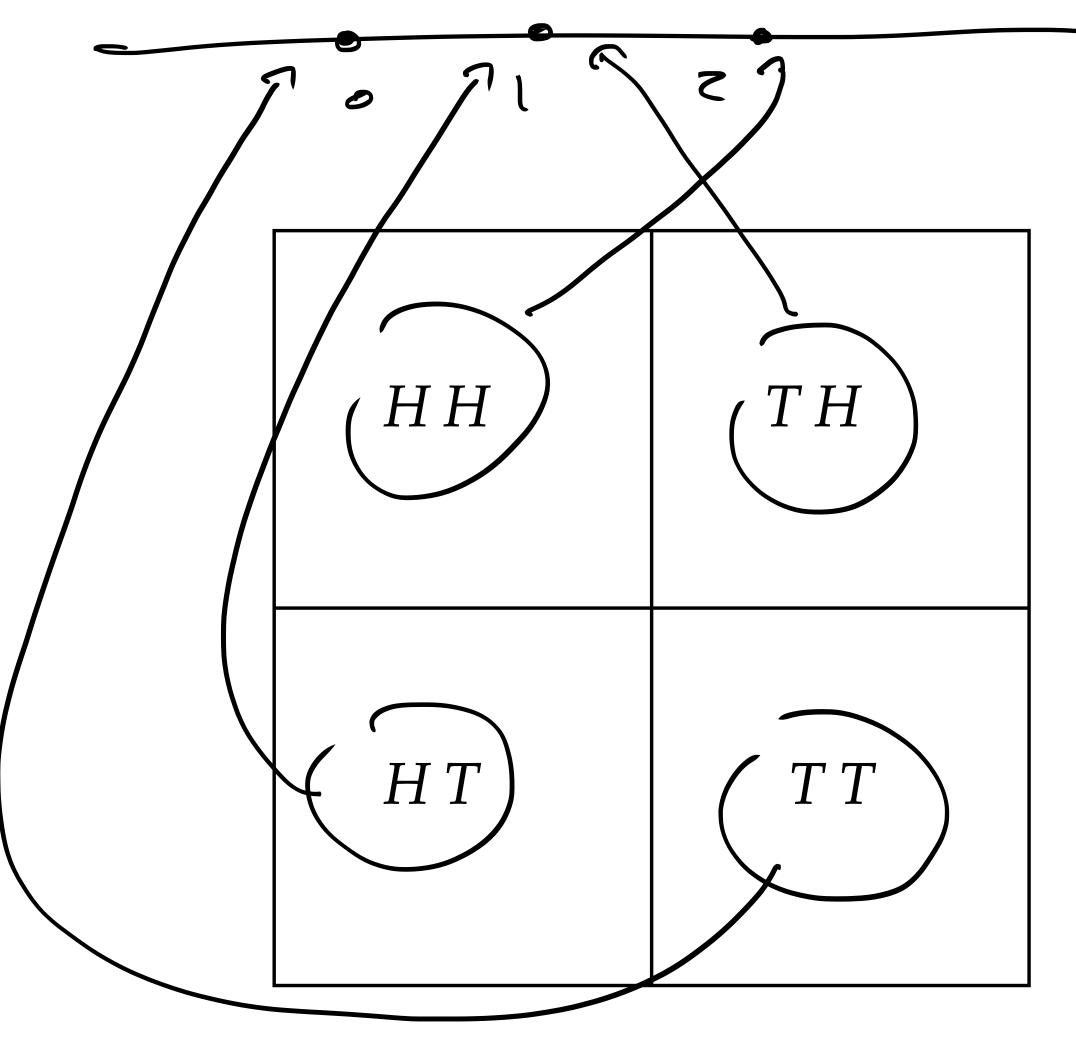
Ω

Probability Spaces Putting everything together

Example:

Compute $\mathbb{P}(X = 0): \sqrt{1/4}$ $\mathbb{P}(x \in z_{0,13}) = \sqrt{3/4}$ Compute $\mathbb{P}(X = 1): \sqrt{1/2}$





Ω

Random Variables Distributions of random variables

Cumulative Distribution Function Intuition and definition

Let $X : \Omega \to \mathbb{R}$ be some random vari $(\Omega, \mathscr{A}, \mathbb{P})$).

The <u>cumulative distribution function (CDF)</u> of *X* is the function $F_X : \mathbb{R} \to [0,1]$ defined as:

 $F_X(x) =$

This function allows us to get probabilities in an interval:

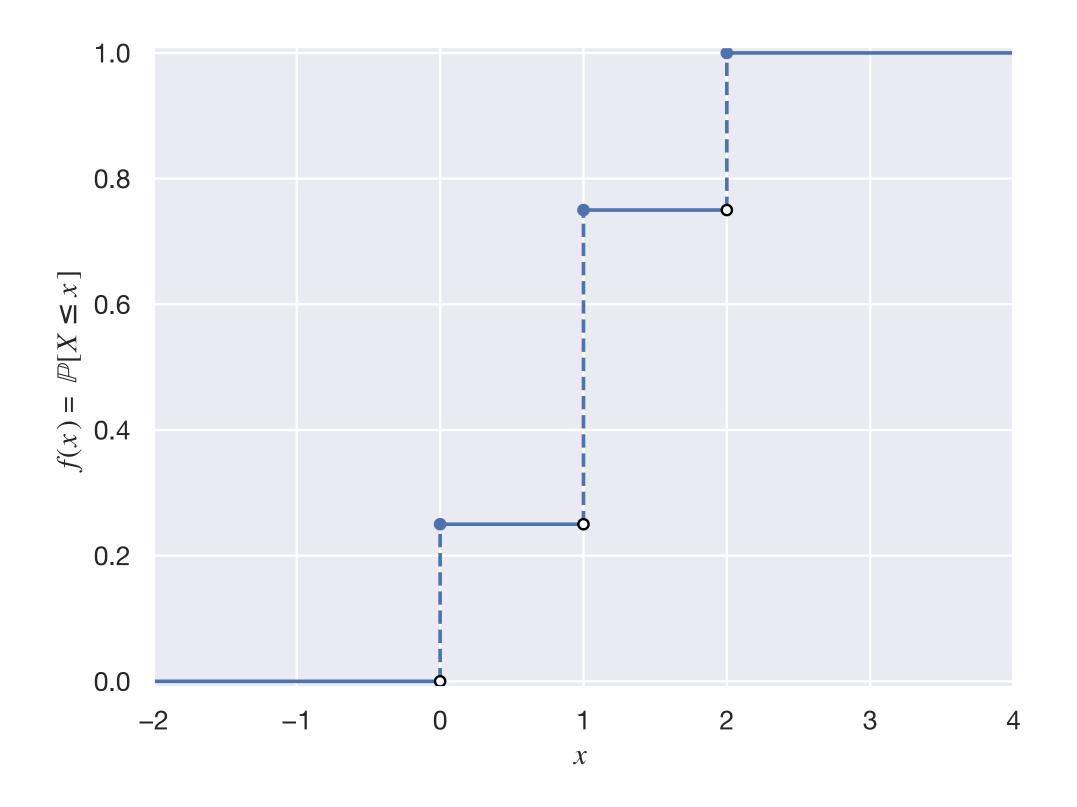
 $\mathbb{P}(a \le X \le b) = F(b) - F(a)$

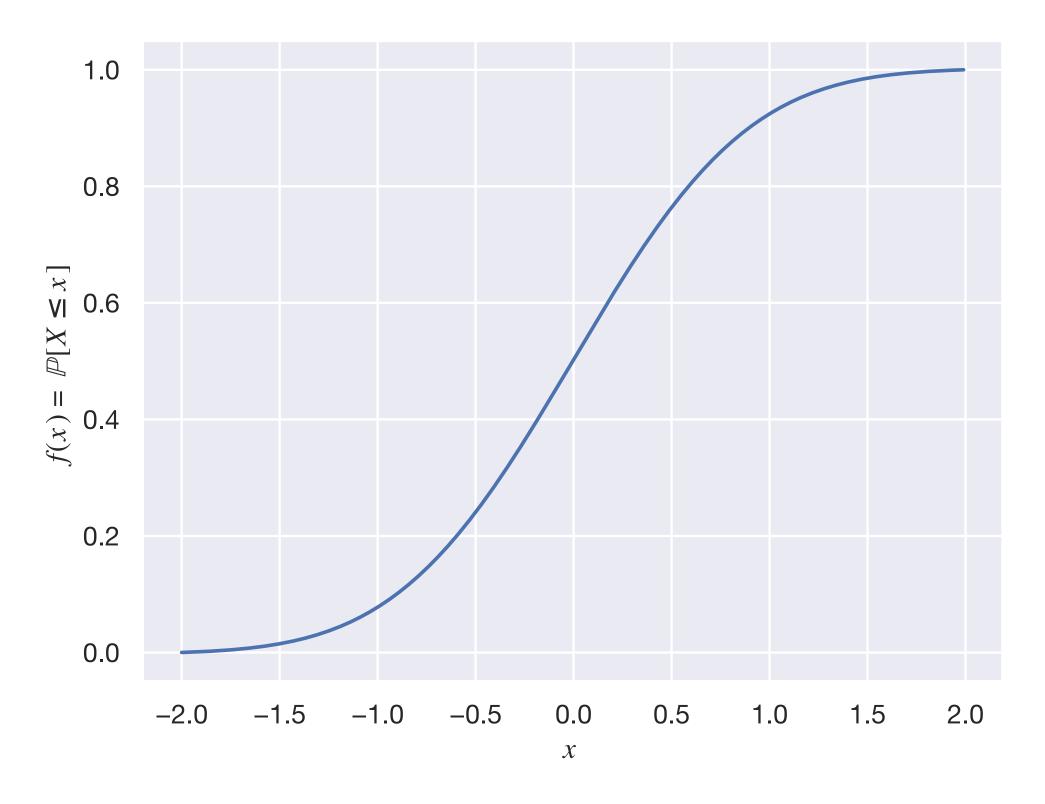
7 IMPLICIT

Let $X : \Omega \to \mathbb{R}$ be some random variable (on an underlying probability space

$$= \mathbb{P}(X \le x)$$

Cumulative Distribution Function Examples





Cumulative Distribution Function Properties $F(x) = \mathbb{P}tX \leq x$

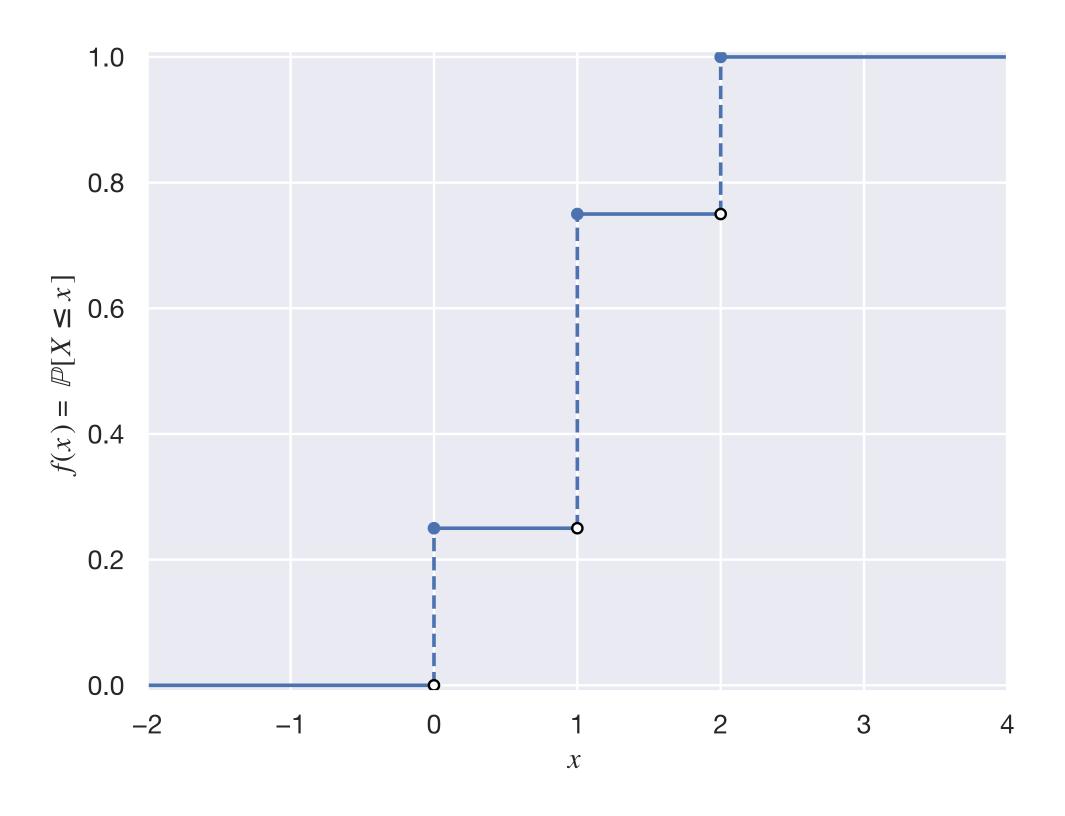
<u>Right-continuous.</u> Every for every point $a \in \mathbb{R}$, the CDF satisfies:

$$\lim_{x \to a+} f(x) = f(a).$$

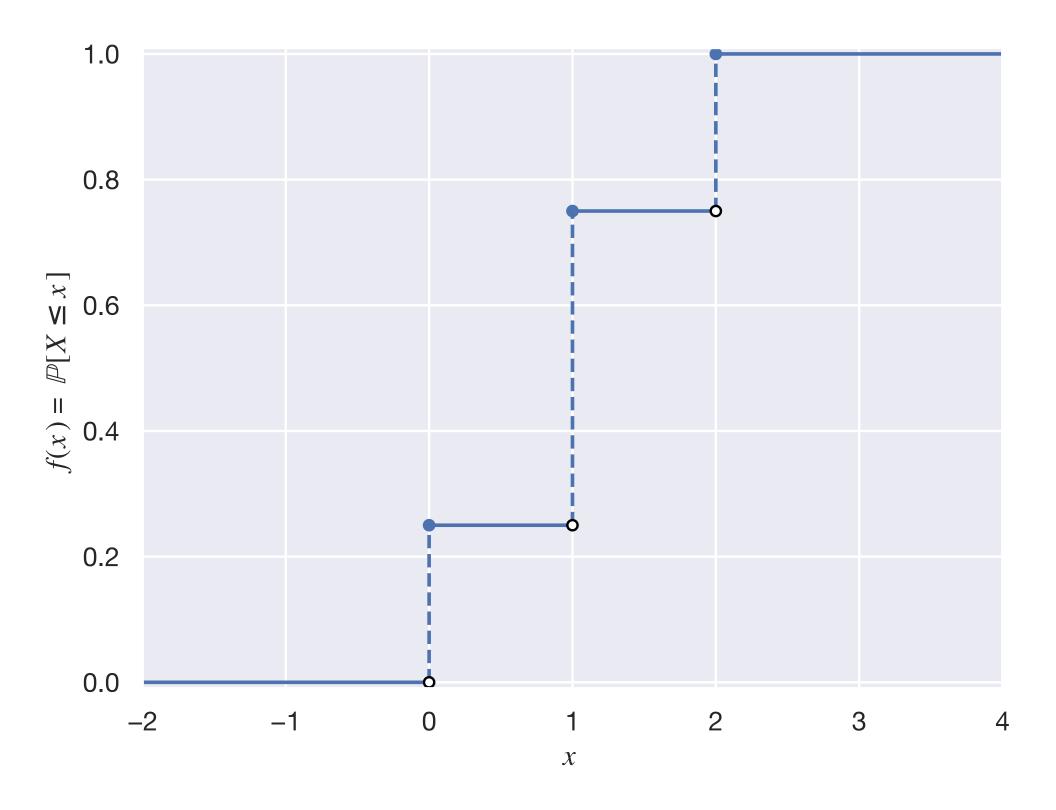
Monotonically nondecreasing. For every $x \leq y, F_X(x) \leq F_X(y).$

Limits at infinities. The limits at both infinities are:

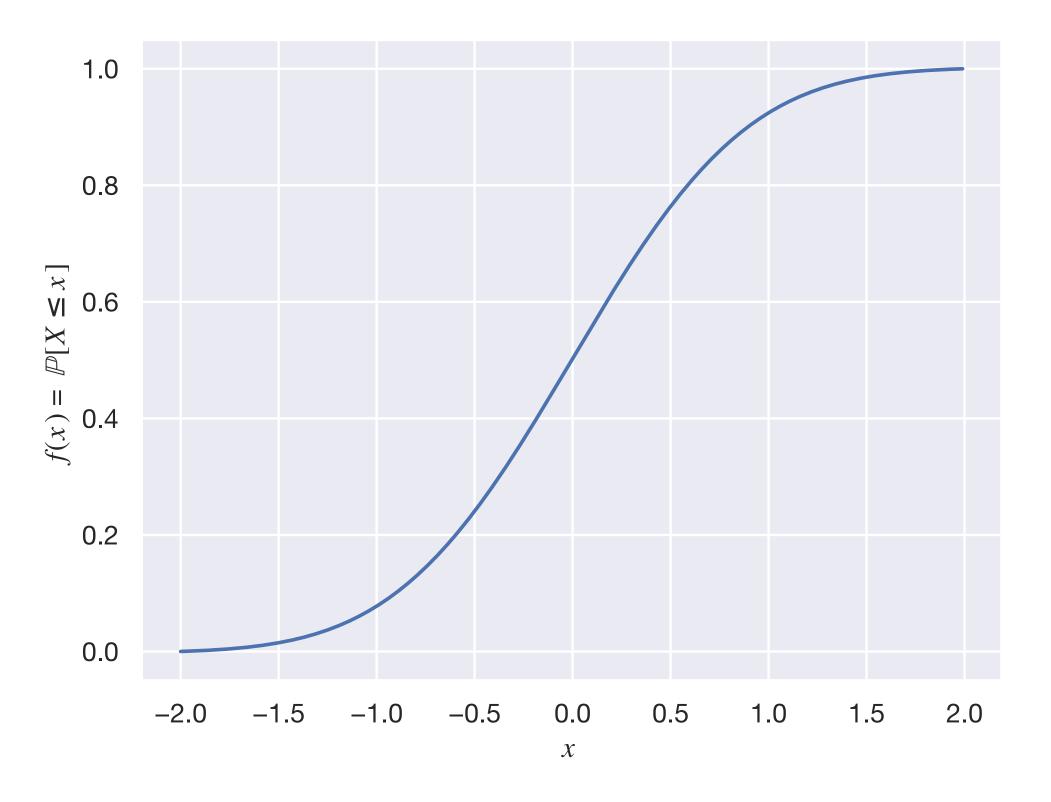
> $\lim F_X(x) = 0 \text{ and } \lim F_X(x) = 1.$ $x \rightarrow -\infty$ $x \rightarrow \infty$



Discrete vs. Continuous RVs Difference in CDF



Discrete RVs have "jumps" in the CDF; (absolutely) continuous RVs are smooth.



Discrete Random Variables Intuition and definition

A <u>discrete random variable</u> is a random variable whose range $X(\Omega) = \{x \in \mathbb{R} : X(\omega) = x \text{ for some } \omega \in \Omega\}$

is countable or finite.

Example.

 $X: \{HH, HT, TH, TT\} \rightarrow \mathbb{R}$ with $X(\omega)$ counting the number of heads.

 $X: [0,1] \to \mathbb{R} \text{ defined by } X(\omega) = 0 \text{ if } \omega < 0.5 \text{ and } X(\omega) = 1 \text{ otherwise.}$

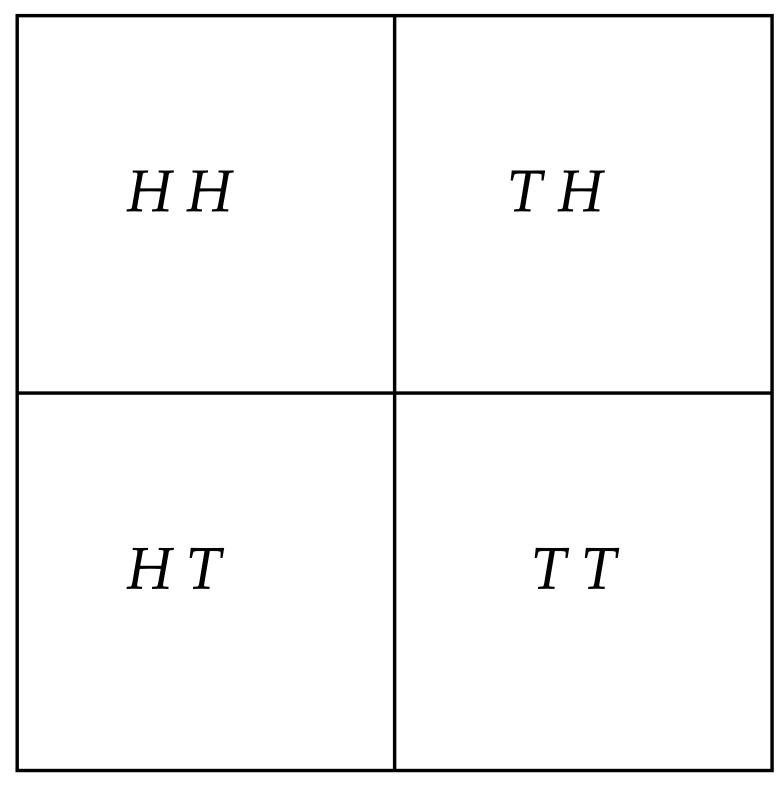
Discrete Random Variables Probability mass function

A discrete random variable *X* has a *probability mass function (PMF)* $p_X : \mathbb{R} \to [0,1]$ defined by:

$$p_X(x) = \mathbb{P}[X = x].$$

Example. What's the PMF of the RV $X: \Omega \to \mathbb{R}$ with $X(\omega)$ counting the number of heads?

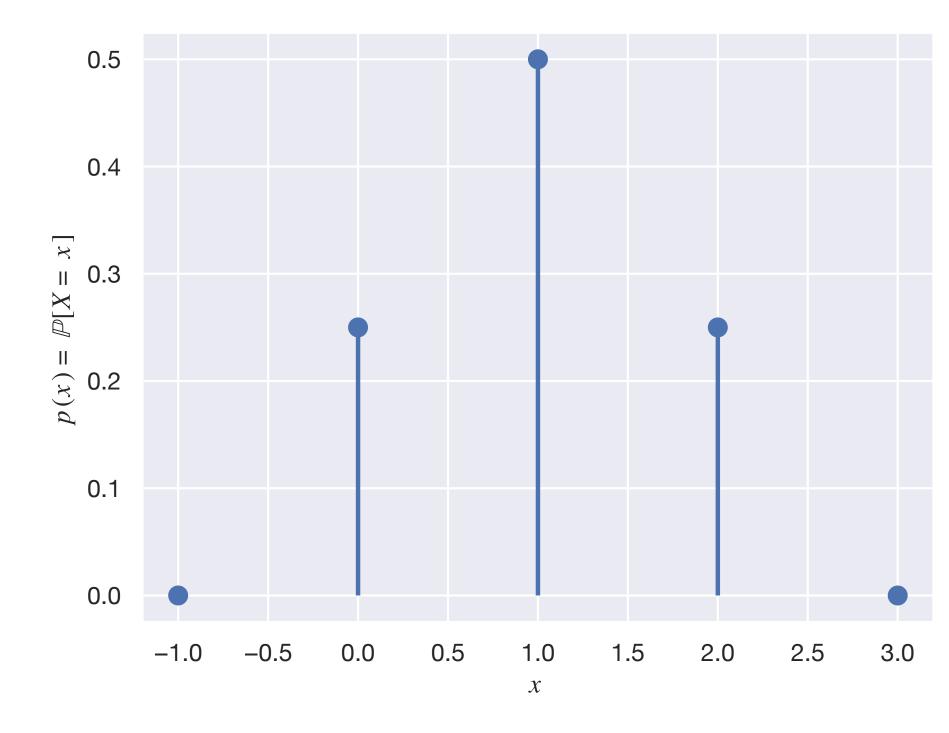
Ptx=0) = 1/4Pt + = 1) = 1/2Ptx=2]=1/4



Ω

Discrete Random Variables Example: Flipping 2 fair coins

Example. What's the PMF of the RV $X : \Omega \to \mathbb{R}$ with $X(\omega)$ counting the number of heads?



HH	ΤH
ΗT	ΤТ

Continuous Random Variables Intuition and definition

A <u>continuous random variable</u> is a random variable whose range

 $X(\Omega) = \{x \in \mathbb{R} : X(\omega) = x \text{ for some } \omega \in \Omega\}$

is uncountably infinite.

For continuous random variables, the probability at any point $x \in \mathbb{R}$ is zero! $\mathbb{P}|X$

$$= x] = 0.$$

So there is no "probability mass function," but there is a *probability density function*.

Continuous Random Variables Probability density functions

A continuous random variable X has a <u>probability density function (PDF)</u> $p_X : \mathbb{R} \to \mathbb{R}$ (notice the output space need not be [0,1]) with the properties:

For all $x \in \mathbb{R}$, $p_X(x)$

To get probabilities from the PDF:

 $\mathbb{P}(a \le X \le$

We can also obtain the CDF by the fundamental theorem of calculus:

$$p_X(.)$$

$$0 \ge 0$$
 and $\int_{\mathbb{R}} p_X(z) dz = 1.$

$$(b) = \int_{a}^{b} p_{X}(z)dz.$$

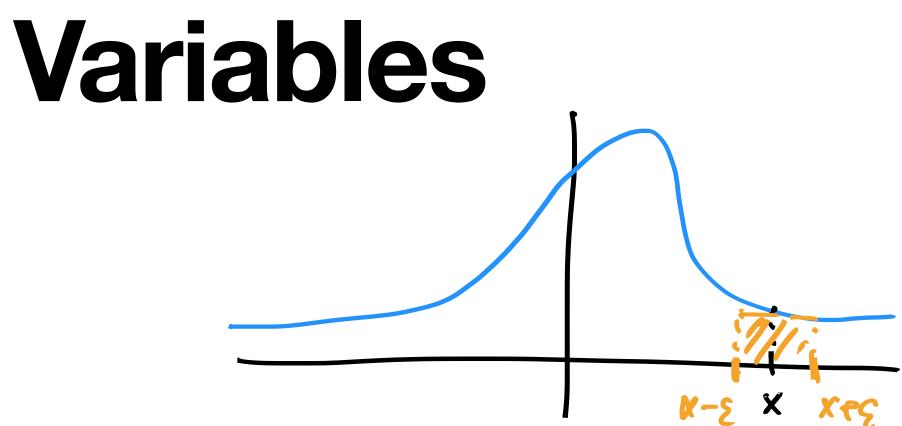
(x)=F'(x).

Continuous Random Variables Intuition for the PDF

PDFs do NOT give probabilities. Think of them in analogy to the physical notion of *density*: density = $\frac{\text{mass}}{\text{volume}}$.

In an infinitesimally small interval, we can get a probability:

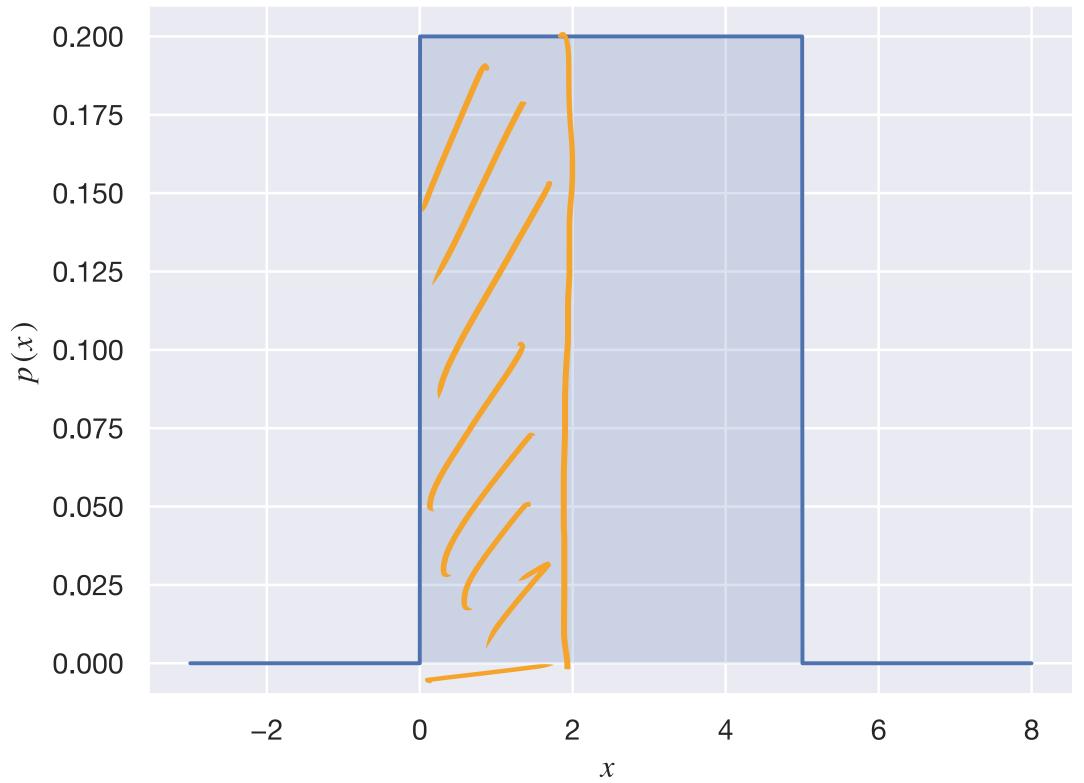
$$\mathbb{P}(x - \epsilon \le X \le x + \epsilon)$$



 $f(x) = \int_{-\infty}^{x+\epsilon} p_X(z) dz \approx 2\epsilon p_X(x).$ $J_{\chi-\epsilon}$

Continuous Random Variables Example: Picking uniformly in the interval · X equal dersity on enj in tail.

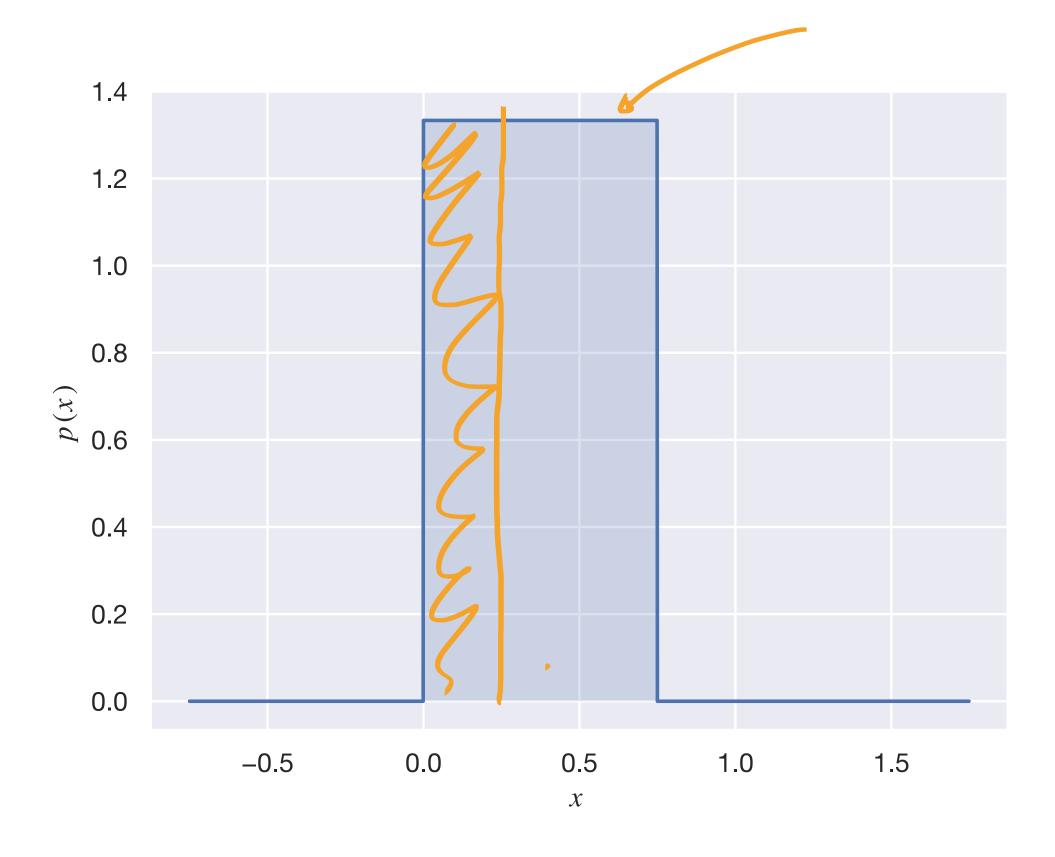
Example. What's the PDF of the RV $X : \Omega \to \mathbb{R}$ with the uniform random variable on [0,5]?



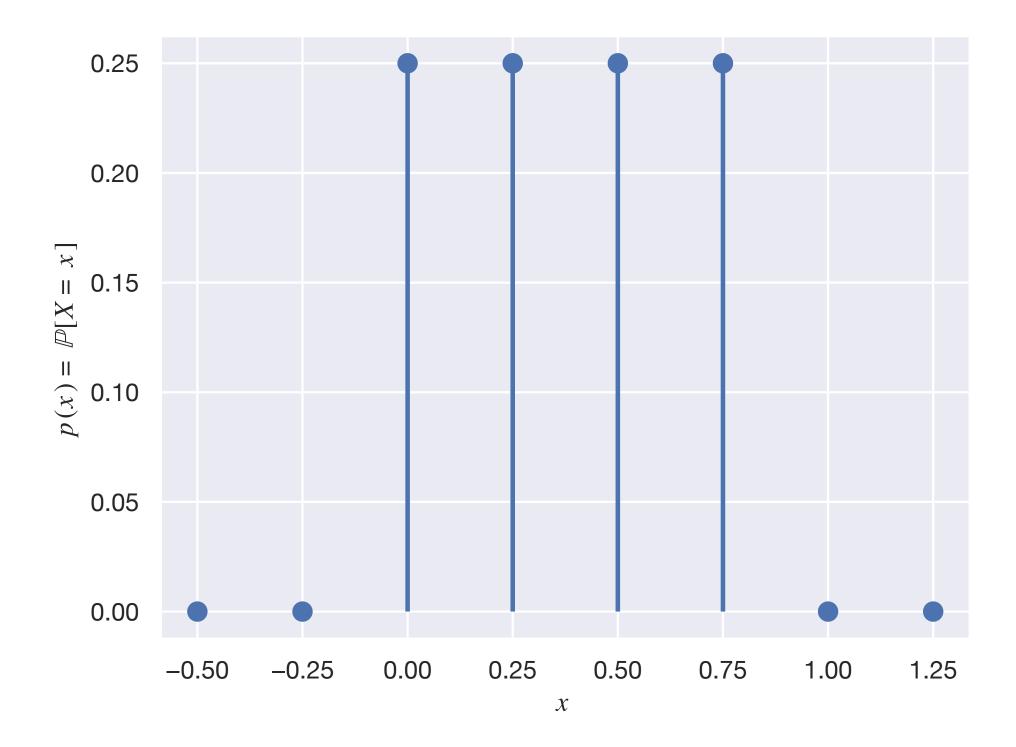
 $P(x \in [0, 2])$ = $z \times \partial_{z} = \sqrt{D, 4}$

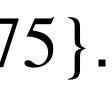
Continuous vs. Discrete RVs Example: Uniform Discrete and Uniform Continuous

Continuous RV uniform on [0,0.75].



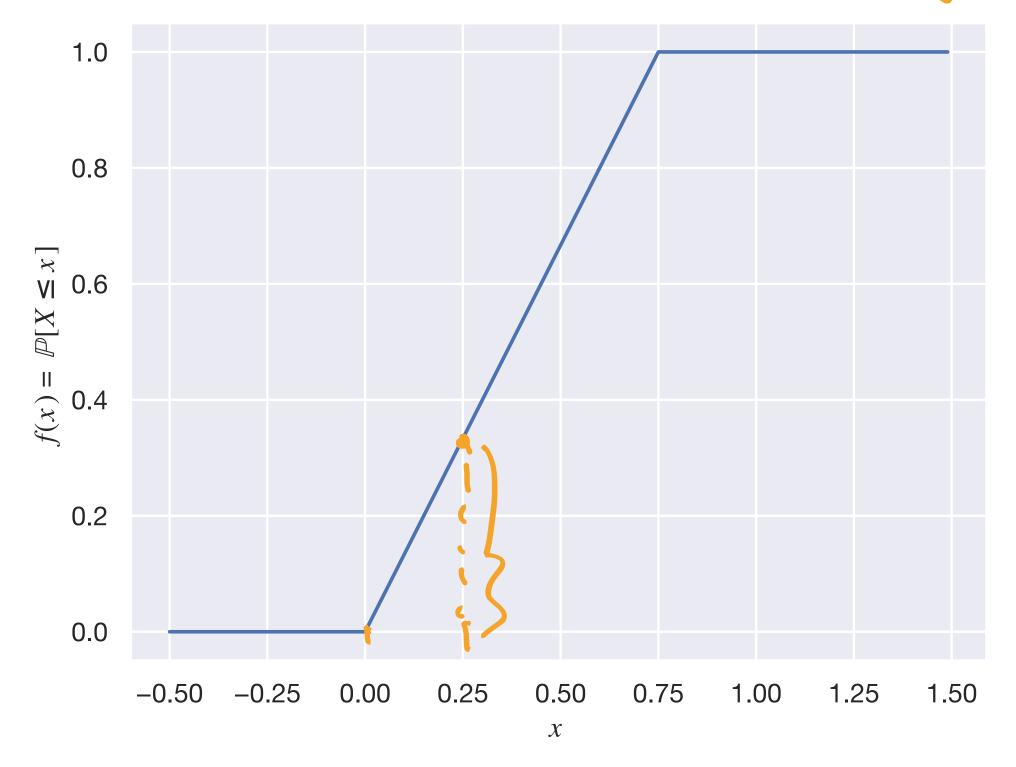
Discrete RV uniform on {0,0.25,0.5,0.75}.



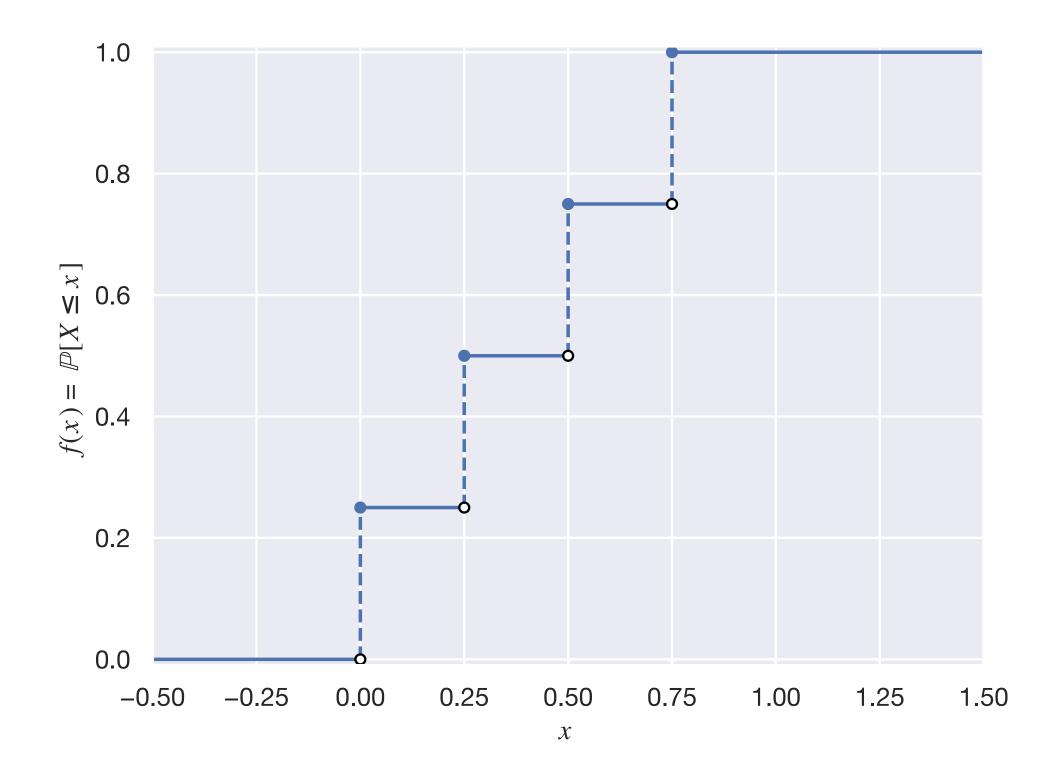


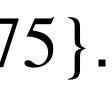
Continuous vs. Discrete RVs Example: Uniform Discrete and Uniform Continuous

Continuous RV uniform on [0,0.75]. $F(b) - F(a) = Pta \le x \le b7$



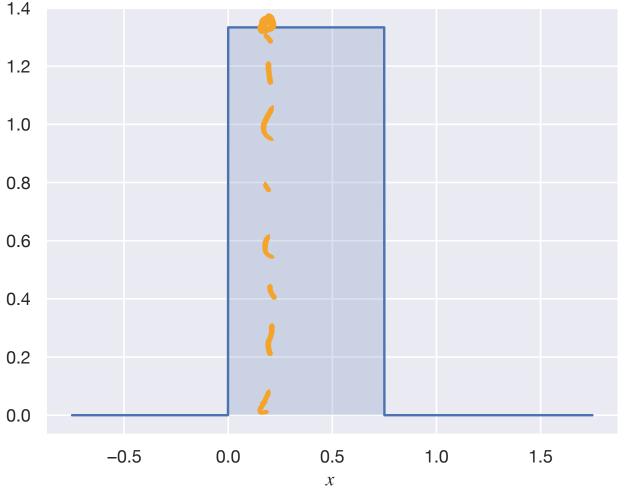
Discrete RV uniform on $\{0, 0.25, 0.5, 0.75\}$.





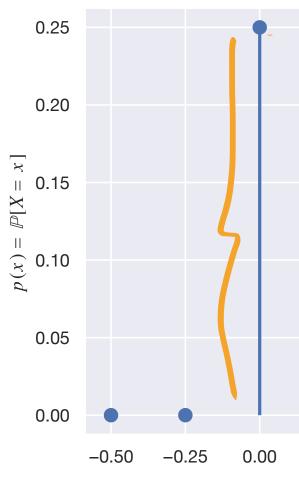
Continuous vs. Discrete RVs Summary

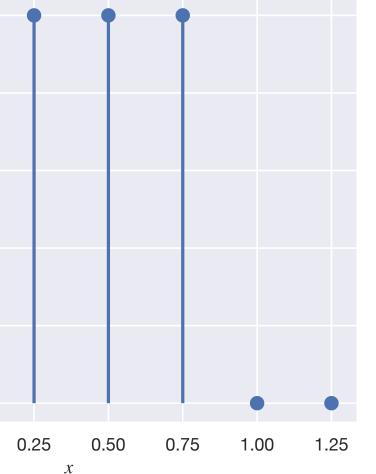
For continuous RVs, 1.0 0.8 (x) 0.6 $\mathbb{P}(X = x) = 0$ 0.4 $\mathbb{P}(b \le X \le b) = \int_{a}^{b} p_X(x) dx$ 0.2

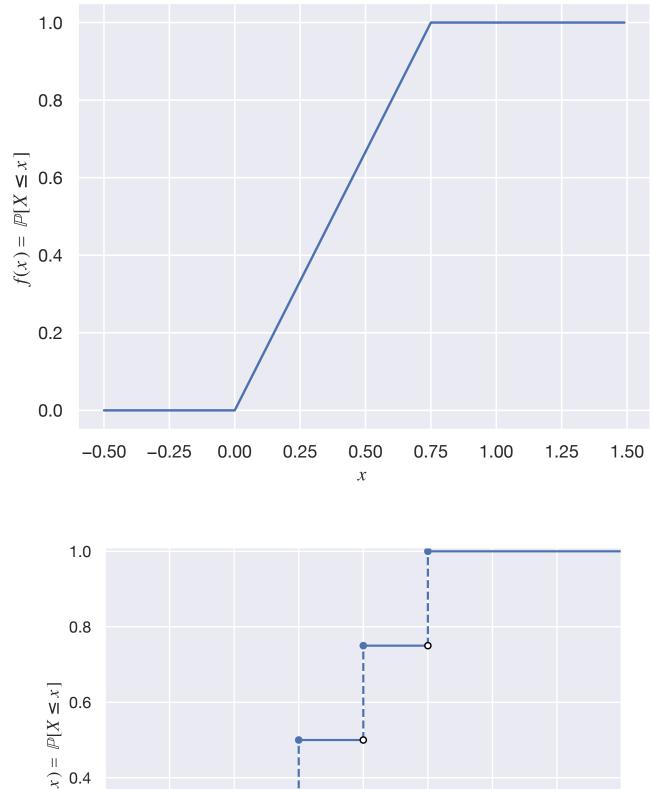


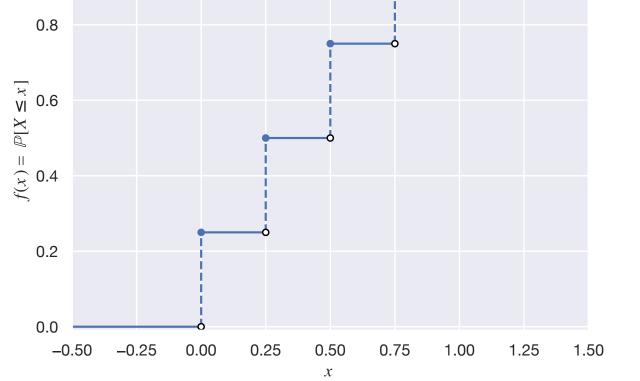
For discrete RVs,

 $\mathbb{P}(X = x) \in [0,1].$





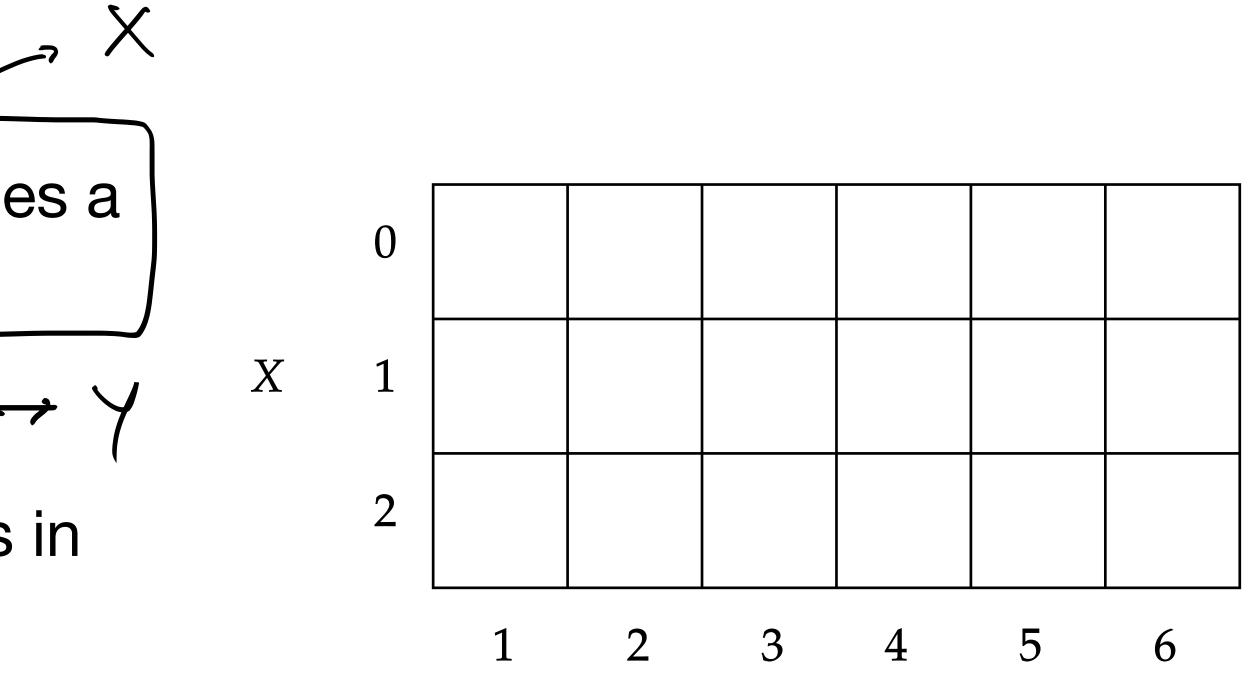




Random Variables Multiple random variables

Joint Distribution Example: Tossing coins and rolling die

Consider two experiments:



Alice tosses a fair coin, Bob tosses a fair coin.

Charlie rolls a fair six-sided die. $\rightarrow \gamma$

Let X count the number of heads in the first experiment.

Let Y be the integer of the face of the die in the second experiment.

 γ

Joint Distribution Definition

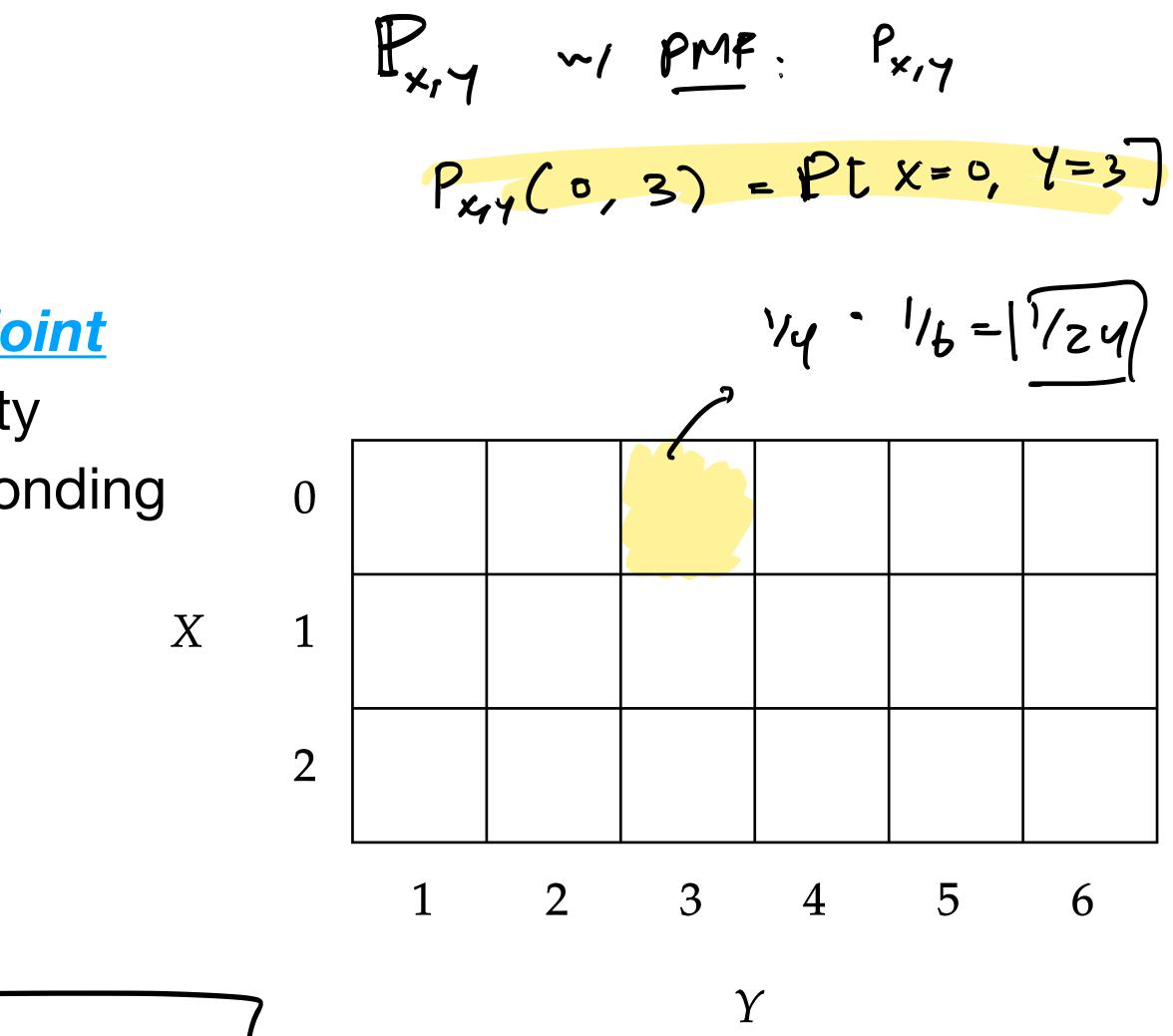
Let $X_1, ..., X_n$ be random variables. The *joint distribution* of $X_1, ..., X_n$ is the probability distribution written $\mathbb{P}_{X_1,...,X_n}$ with corresponding PMF/PDF:

$$p_{X_1,\ldots,X_n}(x_1,\ldots,x_n).$$

 $= x_n$).

For discrete random variables,

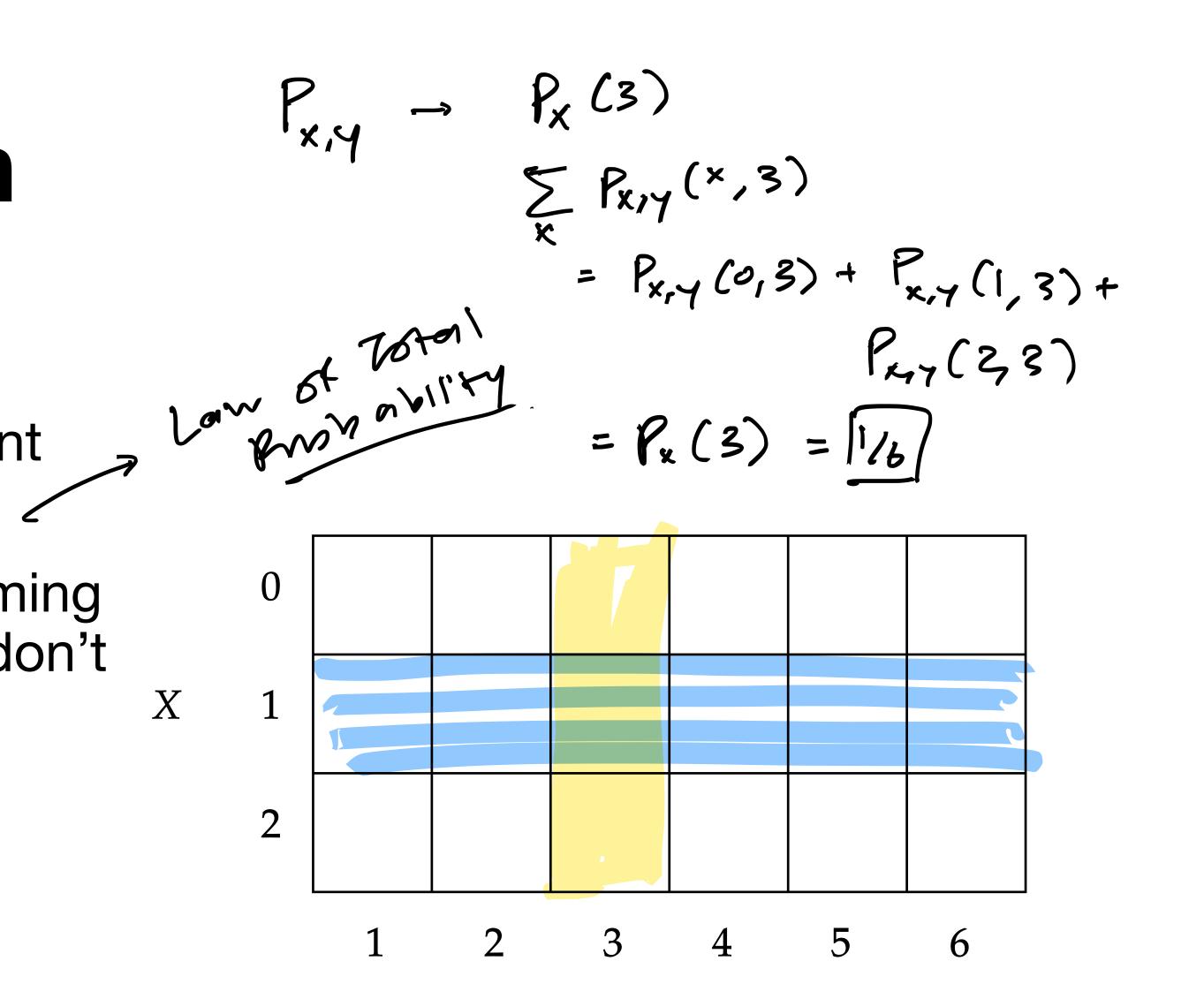
$$p_{X_1,...,X_n}(x_1,...,x_n) = \begin{bmatrix} P(X_1 = x_1,...,X_n \\ PMF \end{bmatrix}$$



Marginal Distribution Definition

For two random variables X, Y with joint distribution $p_{X,Y}(x, y)$, the <u>marginal</u> <u>distribution</u> of X is obtained by "summing out"/"integrating out" the variable we don't care about:

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$
$$p_X(x) = \int_{-\infty}^{\infty} p_{X,Y}(x,y) dy$$



Y

Conditional Distribution $P_{+|x}(+|x)$ Definition = Pyix (Y | X=0) $=\frac{P_{x,y}(0, Y)}{P_{x}(0)} = \frac{P_{x,y}(0, Y)}{\frac{1}{4}} = 4P_{x,y}(0, Y)$ For two random variables X, Y with joint distribution $p_{X,Y}(x, y)$, the <u>conditional</u> <u>distribution</u> of X given Y = y is given by 0 only considering the events where Y = y. 1 2

$$p_{X|Y}(x \mid y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

4

5

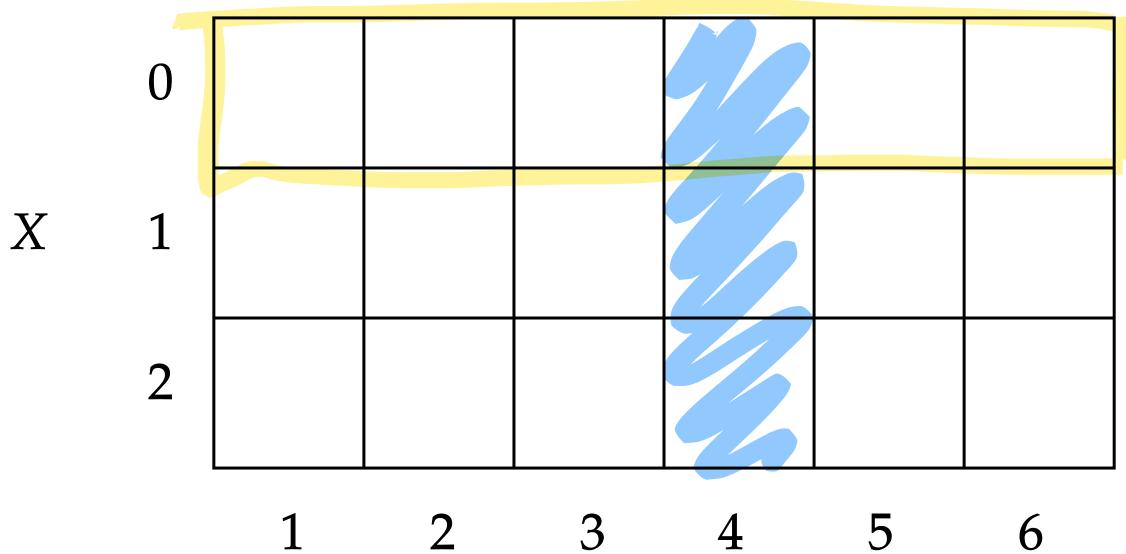
6

3

1

2

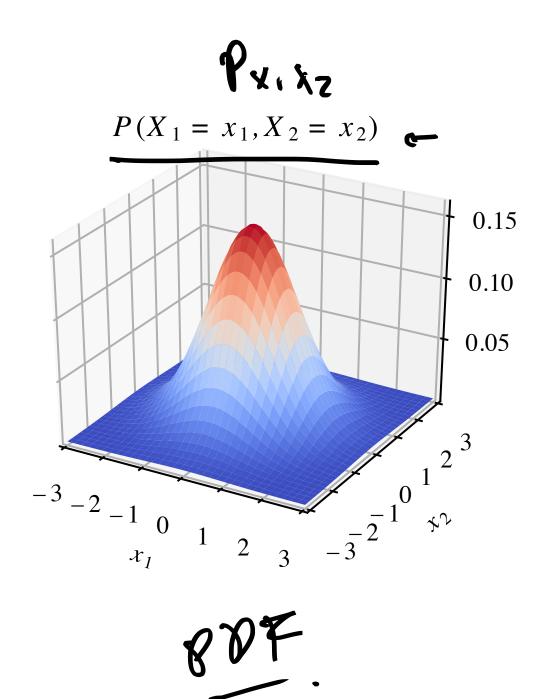
Joint Discrete Distributions Joint, marginal, and conditional

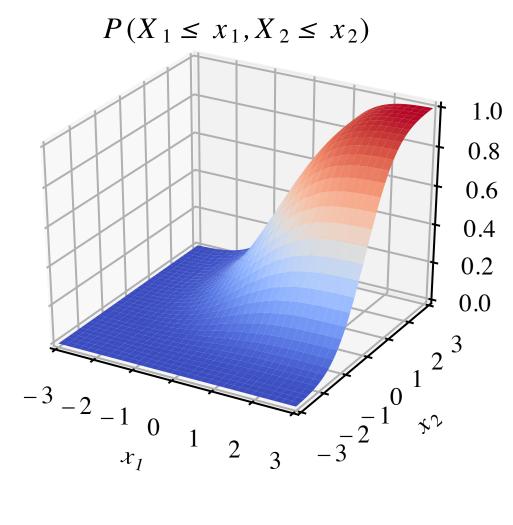


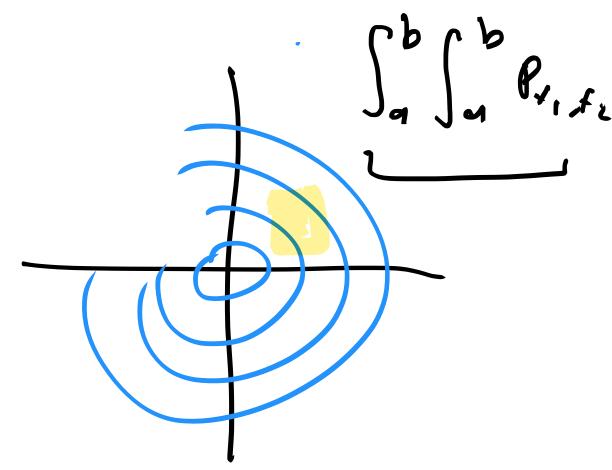
4 3 5 6

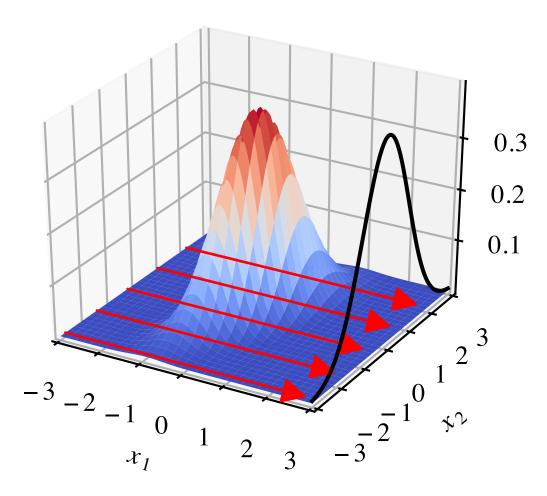
Y

Joint Continuous Distributions Joint, marginal, and conditional

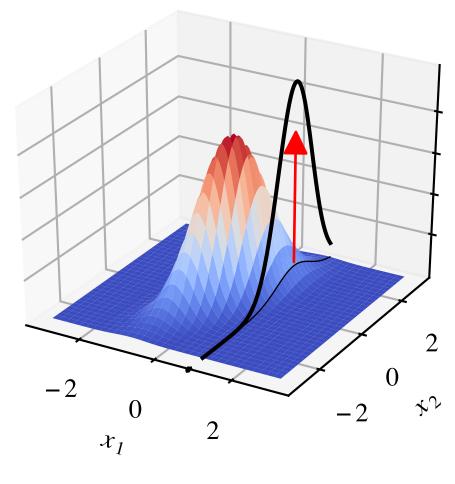








of X2 Marginon $\int P_{X_1,X_2}(X_1,N_2) dX_1$



Conducal P X2 [X1=1

0.4 0.3 0.2 0.1

Joint Distributions Summary

Let $p_{X,Y}(x, y)$ be a joint distribution.

The sum rule/marginalization allows us to get from a joint to a marginal distribution.

$$p_X(x) = \begin{cases} \sum_y p_{X,x} \\ \int_{-\infty}^{\infty} p_X \end{cases}$$

The *product rule/factorization* allows us to "factor" the joint distribution into the marginal and conditional distributions.

$$p_{X,Y}(x,y) = p_{Y|X}(y \mid x)$$

- Y(x, y) *Y* is discrete
- $X_{X,Y}(x, y)$ *Y* is continuous

 $x)p_X(x) = p_{X|Y}(x | y)p_Y(y).$

Independence Intuition and definition

We say that two random variables X, Y are <u>independent</u> if their joint distribution factors into their respective distributions:

$$p_{X,Y}(x,y)$$

Another definition: the conditional distribution is the marginal.

$$p_{X|Y}(x \mid y) = p_X(x) \text{ and } p_{Y|X}(y \mid x) = p_Y(y).$$

Knowledge of -1
descript other
 $y \in X$
 $y \in X$

$$= p_X(x)p_Y(y).$$

Independence Intuition and definition

We say that two random variables X, Y are *independent* if their joint distribution factors into their respective distributions:

 $p_{X,Y}(x,y)$

Another definition: the conditional distribution is the marginal.

$$p_{X|Y}(x \mid y) = p_X(x) \text{ and } p_{Y|X}(y \mid x) = p_Y(y).$$

for any finite subset of indices $\{i_1, \ldots, i_k\} \in I$,

$$p_{X_{i_1},\ldots,X_{i_k}}(X_{i_1},\ldots,X_{i_k}) = \prod_{j=1}^k p_{X_{i_j}}(x_{i_j}).$$

$$) = p_X(x)p_Y(y).$$

For more than two RVs, let $\{X_i\}_{i \in I}$ be a collection of RVs indexed by I. Then, $\{X_i\}$ are independent if,

Independence Independent and identically distributed (i.i.d.)

<u>distributed (i.i.d.)</u> if their joint distribution can be factored entirely:

 $p_{X_1,\ldots,X_n}(x_1,\ldots)$

A collection of random variables X_1, \ldots, X_n are **independent and identically**

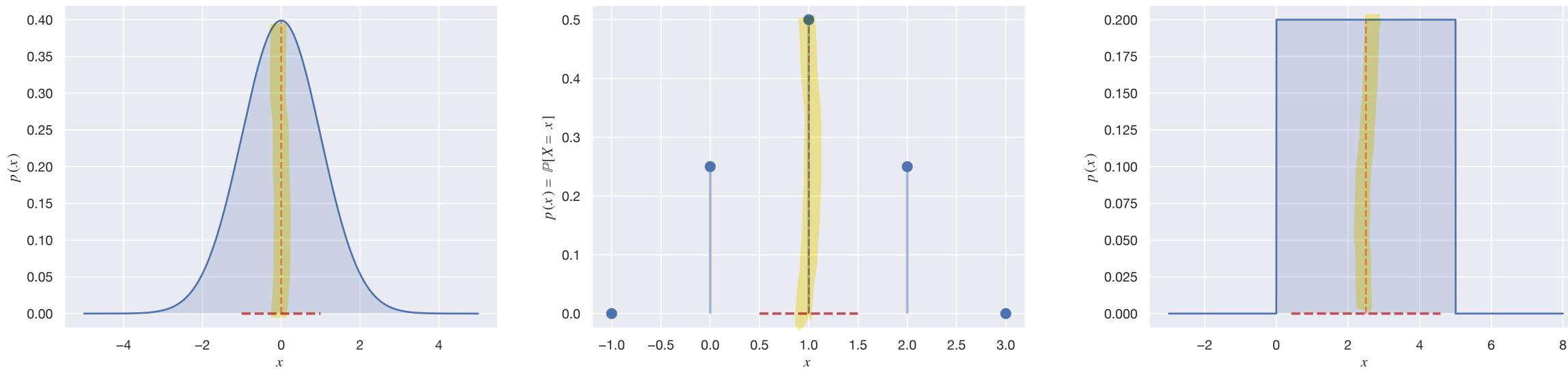
$$(x_n) = \prod_{i=1}^n p_{X_i}(x_i).$$

Very common assumption in ML!

Expectation Definition and Properties

Expected Value Intuition

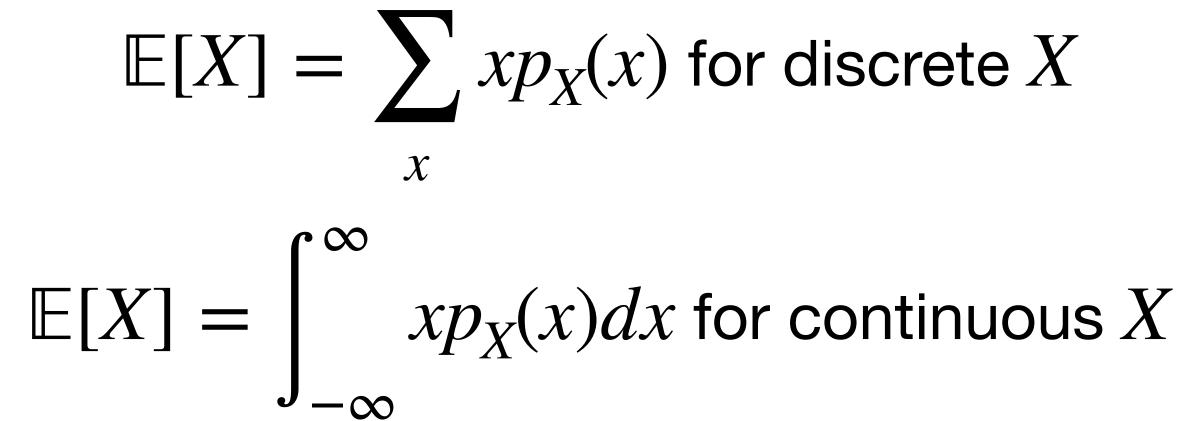
The <u>expectation/expected value</u> or mass."

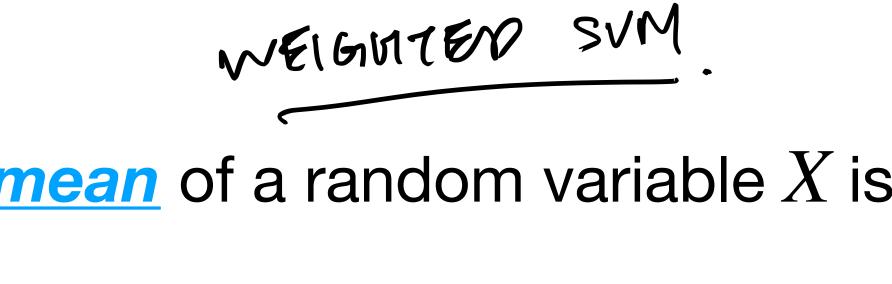


The <u>expectation/expected value</u> or <u>mean</u> of a random variable is its "center of

Expected Value Definition

The <u>expectation/expected value</u> or <u>mean</u> of a random variable X is





Expected Value Definition (Functions of RVs)

X is

$$\mathbb{E}[g(X)] = \sum_{x} g_{x}$$
$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)$$

A function of a random variable is a random variable!

The <u>expectation/expected value</u> or <u>mean</u> of a function g(X) of a random variable

x $z(x)p_X(x)$ for discrete X

 $p_{X}(x)dx$ for continuous X

Expected Value Properties of the expected value

- **Linearity.** The expectation is a linear operator:
- for any random variables X and Y (need not be independent)!

$\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X]$ and $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$,

Expected Value Properties of the expected value

Linearity. The expectation is a linear operator:

for any random variables X and Y (need not be independent)!

Product (for indepndent RVs). For independent random variables X, Y

i=1

More generally, for independent X_1, \ldots, X_n :

E: encrions - P.

- $\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X]$ and $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$,

 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$

$$\mathbb{E}\left[\prod_{i=1}^{n} X_{i}\right] = \prod_{i=1}^{n} \mathbb{E}[X_{i}].$$

Conditional Expectation Intuition

The <u>conditional expectation</u> is the "best guess" of a random variable's expectation, given an event occurs.

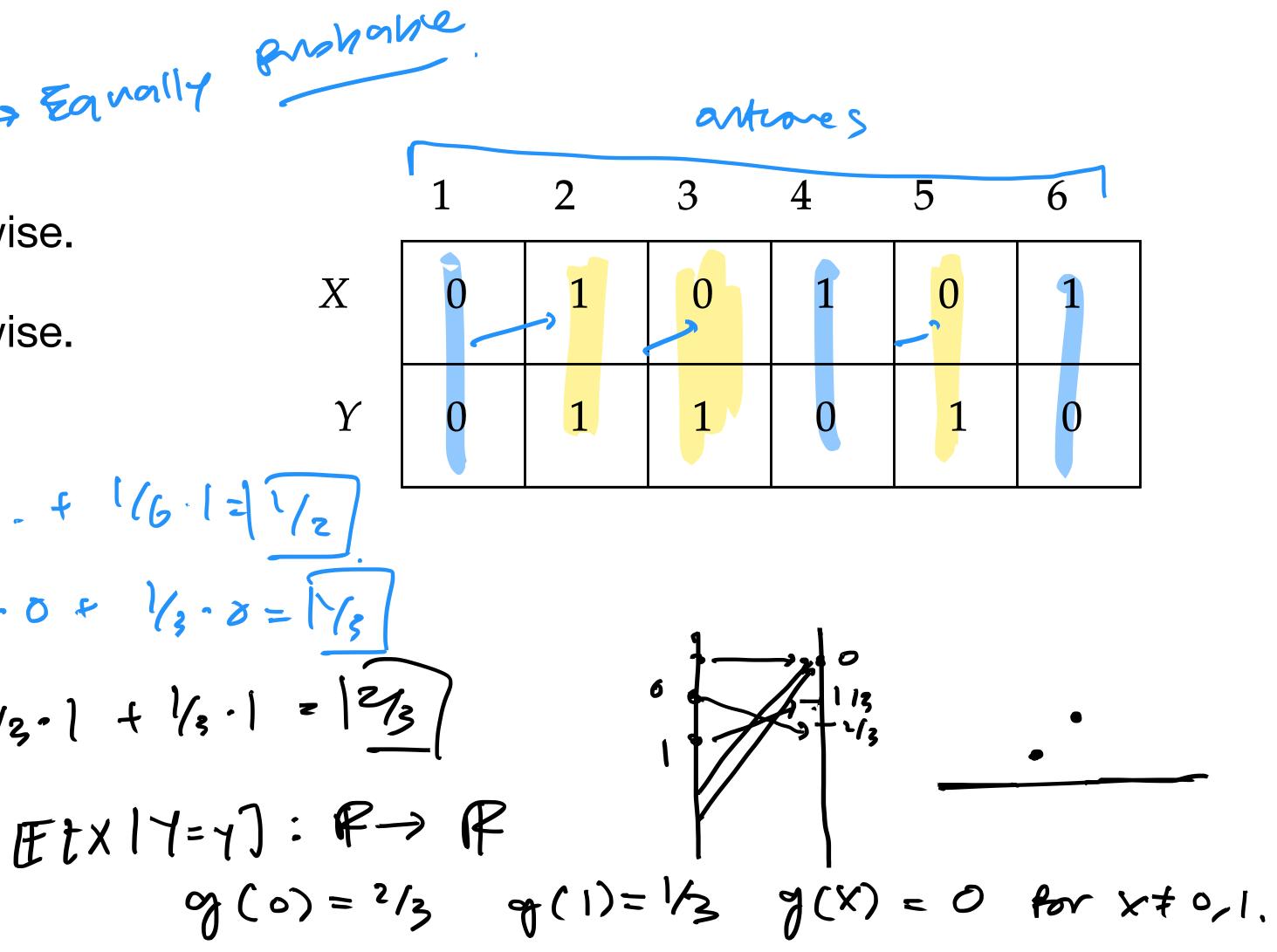
Depending on context, this is <u>a random variable</u> or a function.

- $\mathbb{E}[X \mid Y = y] \text{ is a function } g(y) = \mathbb{E}[X \mid Y = y].$
 - $\mathbb{E}[X \mid Y]$ is a random variable g(Y).

Conditional Expectation Intuition

Consider the roll of a six-sided fair die. Let X = 1 if the roll is even, X = 0 otherwise. Let Y = 1 if the roll is prime, Y = 0 otherwise.

What is $\mathbb{E}[X]$? = $\frac{1}{6} \cdot 0 + \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{4} - \frac{1}{6} \cdot \frac{1}{6} \cdot$ What is $\mathbb{E}[X | Y = 1]? = \frac{1}{3} - \frac{1}{3}$ What is $\mathbb{E}[X | Y = 0]? = \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1$ What is $\mathbb{E}[X \mid Y = y]$ and $\mathbb{E}[X \mid Y]$?



Conditional Expectation Definition (given events) $\longrightarrow \mathbb{P}$ (a number)

If A is an event and X is a discrete random variable, the <u>conditional expectation</u> of X given A is: $\mathbb{E}[X \mid A] =$

If X, Y are discrete random variables, the <u>conditional expectation</u> of X given Y = y is: $\mathbb{E}[X \mid Y = y] = \sum_{x} x p_{X|Y}$

If *X*, *Y* are continuous random variables with joint dens

$$p_{X|Y}(x \mid y) = \frac{p_{X,Y}(x, y)}{p_Y(y)}$$
, the conditional expectation

lf

 $\mathbb{E}[X \mid Y = y] =$

$$\sum_{x} \mathbb{P}_{X}[X = x \mid A].$$

$$f(x \mid y) = \sum_{x} x \mathbb{P}[X = x \mid Y = y].$$

sity $p_{X,Y}(x,y)$, Y's marginal $p_Y(y)$ and conditional density of X given Y = y is: (mtm

$$= \int_{-\infty}^{\infty} x p_{X|Y}(x \mid y) dx.$$

Conditional Expectation Definition (given a random variable)

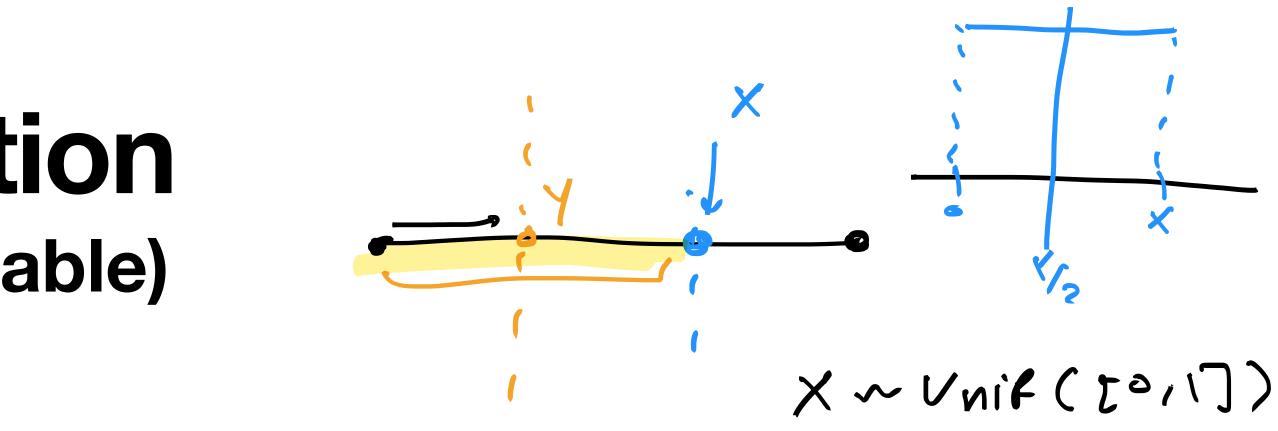
given Y as the "best guess" of \mathcal{X} only using the information from \mathcal{X} :

We can obtain this random variable by figuring out the function g(x) for $\mathbb{E}[Y \mid X = x]$ and then "plugging back in" the random variable g(X).

For two random variables X and Y, think of the <u>conditional expectation</u> of X $\mathbb{E}[Y \mid X]$ is a random variable (a function g(X) of the RV X).

Conditional Expectation Definition (given a random variable)

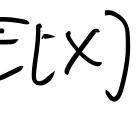
What is the random variable $\mathbb{E}[Y \mid X]$? What is its mean? EC11x7 E[Y] = g(X)= ET(X) = g(X) = X/z



Example. A stick of length 1 is broken at a point X chosen uniformly at random. Given that X = x, choose another breakpoint Y uniformly on the interval [0,x].

ET1X=x] - "Mont is the expected volve or 7 if the stick is [0, x]?"

 $E[E[X] = E[g(X)]^2 E[Z] = E[X]$ $=\frac{1}{z}\cdot\frac{1}{z}\cdot\frac{1}{z}$

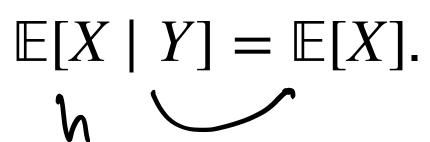


Conditional Expectation Properties of conditional expectation

Independence. If X is independent of Y, Pulling out what's known. For any function,

Linearity. For any random variables X, Y, Z and scalar $\alpha \in \mathbb{R}$,

Law of total expectation/tower rule. For any random variables X, Y,

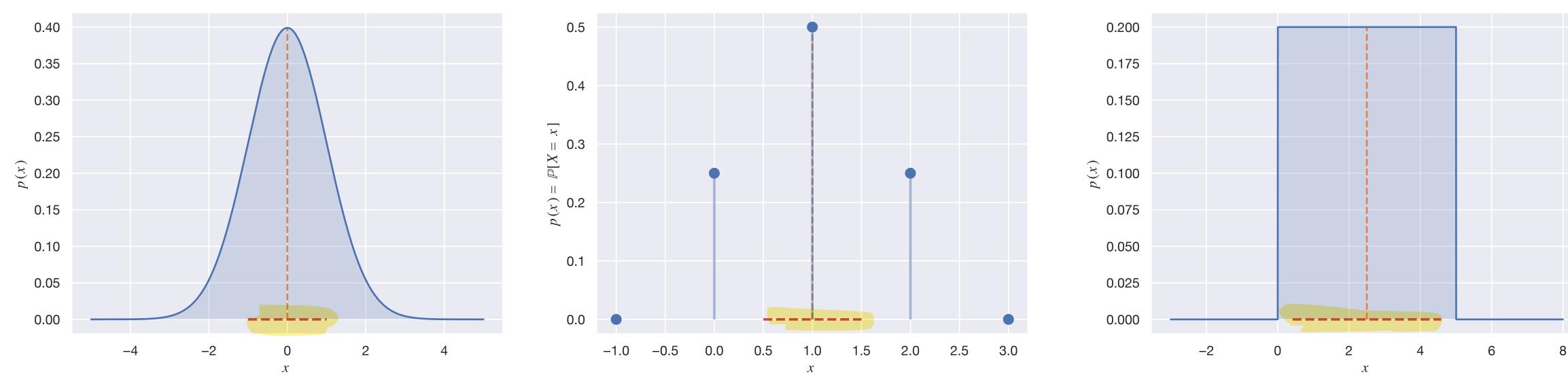


- $\mathbb{E}[h(X)Y \mid X] = h(X)\mathbb{E}[Y \mid X].$
- $\mathbb{E}[X + Y \mid Z] = \mathbb{E}[X \mid Z] + \mathbb{E}[Y \mid Z] \text{ and } \mathbb{E}[\alpha X \mid Z] = \alpha \mathbb{E}[X \mid Z].$

 - RV.

Variance Definition and Covariance

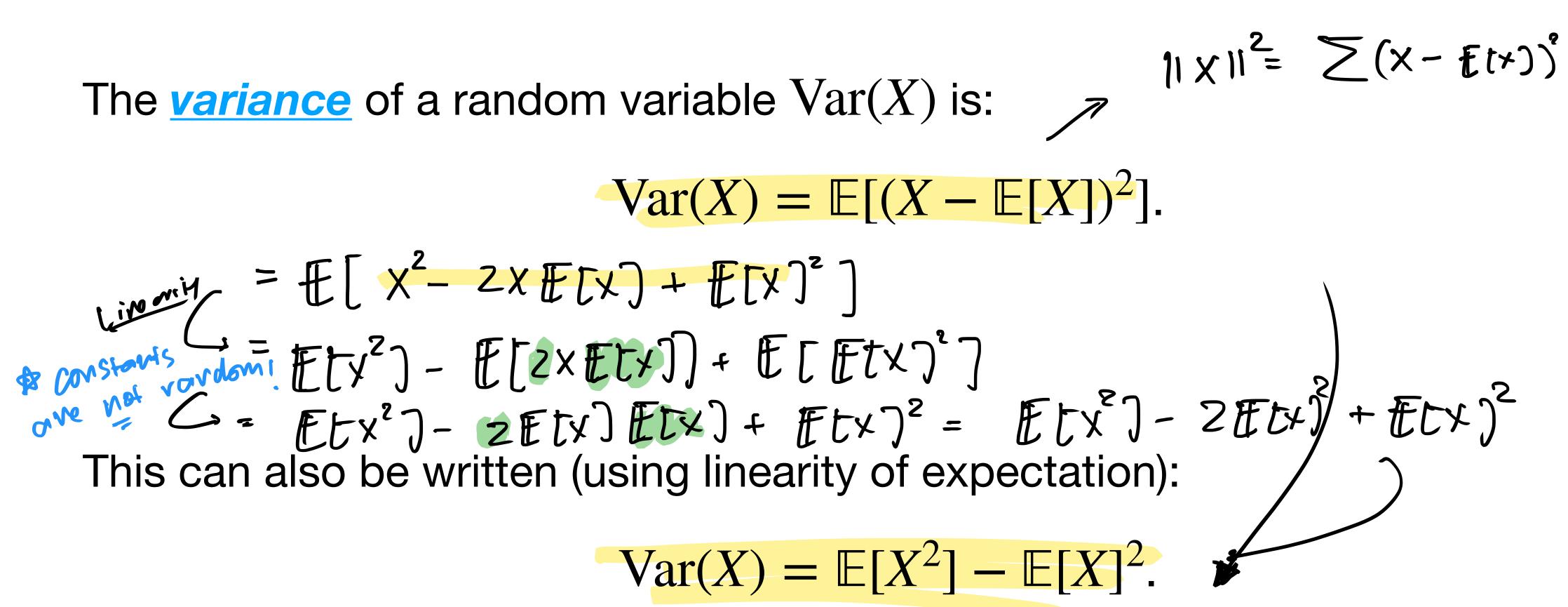
Variance Intuition



The *variance* of a random variable is how "spread" around its expectation it is.

Variance Definition

The <u>variance</u> of a random variable Var(X) is: \mathbb{Z}



Variance Definition

The <u>variance</u> of a random variable Var(X) is:

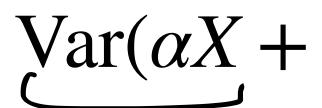
This can also be written (using linearity of expectation):

 $\operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$ The <u>standard deviation</u> is $\sqrt{\operatorname{Var}(X)}$. \rightarrow vaits we storted

$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2].$

Variance **Properties of variance**

The variance is NOT linear, but we do have, for $\alpha, \beta \in \mathbb{R}$,



If X_1, \ldots, X_n are independent (more generally, *uncorrelated*), $Var(X_1 + ... + X_n) =$

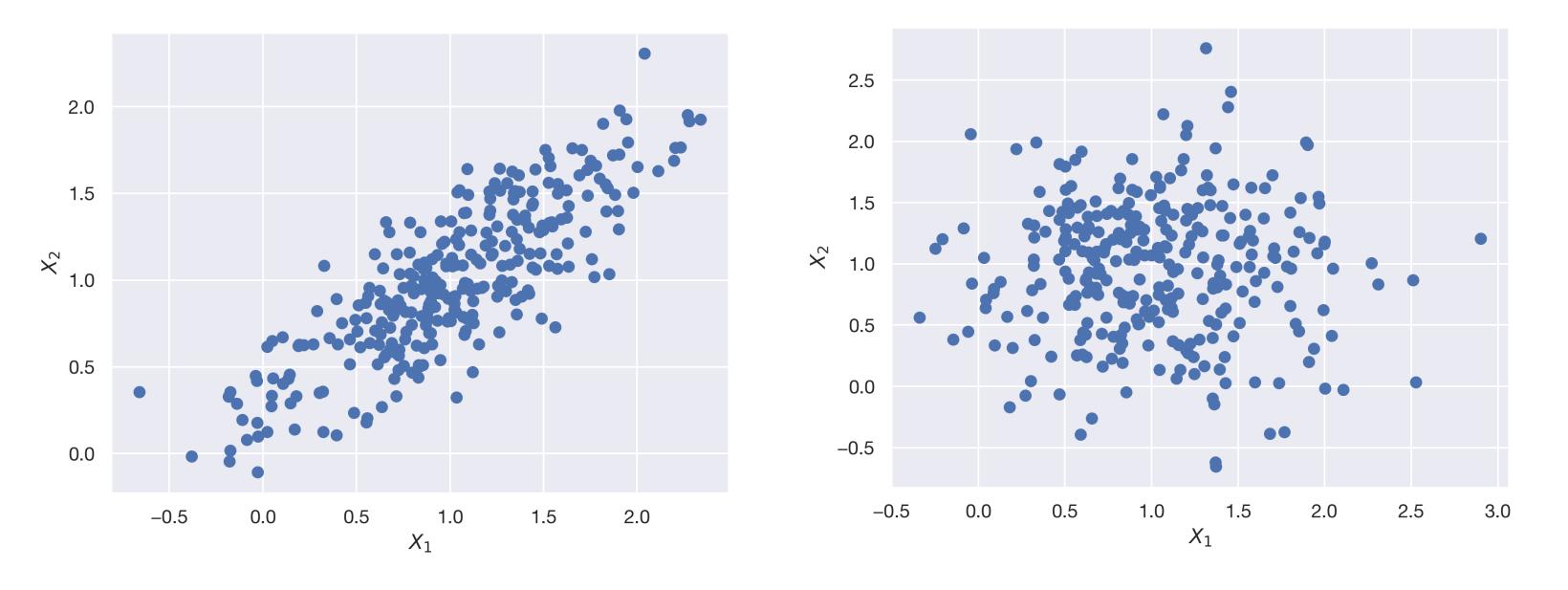
$$Var(dX) = d^2 Var(X)$$

 $Var(B) = 0$

$$\beta) = \alpha^2 \operatorname{Var}(X).$$

$$= \operatorname{Var}(X_1) + \ldots + \operatorname{Var}(X_n).$$

Covariance Intuition



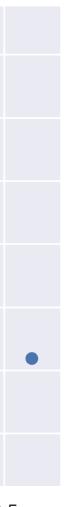
(OV(x,xz)>0

The <u>covariance</u> measures the linear relationship between two random variables.

2.5 2.0 \times^{\sim} 1.0 0.5 0.0 -0.5 0.0 0.5 1.0 X_1

 $Cov(x_1, x_2) < 0$

col(4, 1/2) = 0



Covariance Definition

CON(+1+)The <u>covariance</u> of X, Y is J

The outer expectation is over both X and Y (their joint distribution).

This can also be rewritten as:

$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$

$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$

Covariance Definition

The <u>covariance</u> of X, Y is

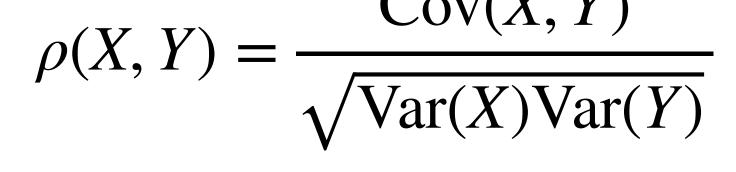
The outer expectation is over both X and Y (their joint distribution). This can also be rewritten as:

The <u>correlation</u> is what we get from normalizing the covariance:

$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$

$\operatorname{Cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$

$\operatorname{Cov}(X, Y)$

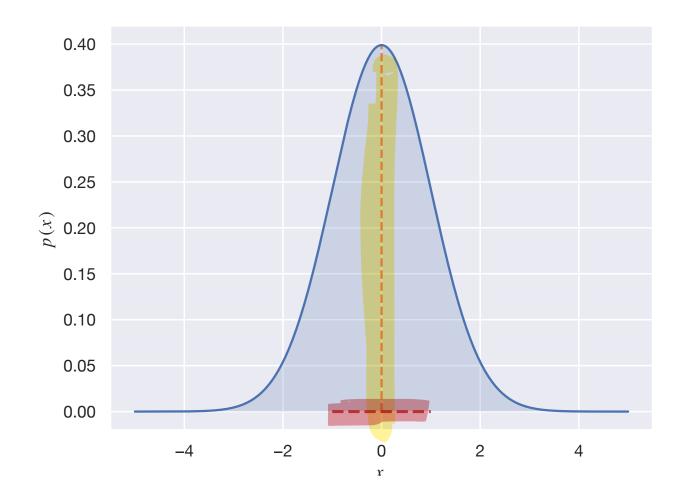


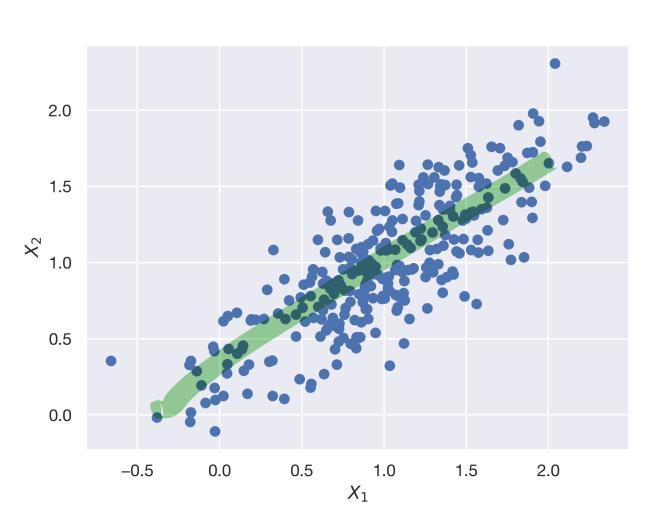
Covariance Properties of covariance

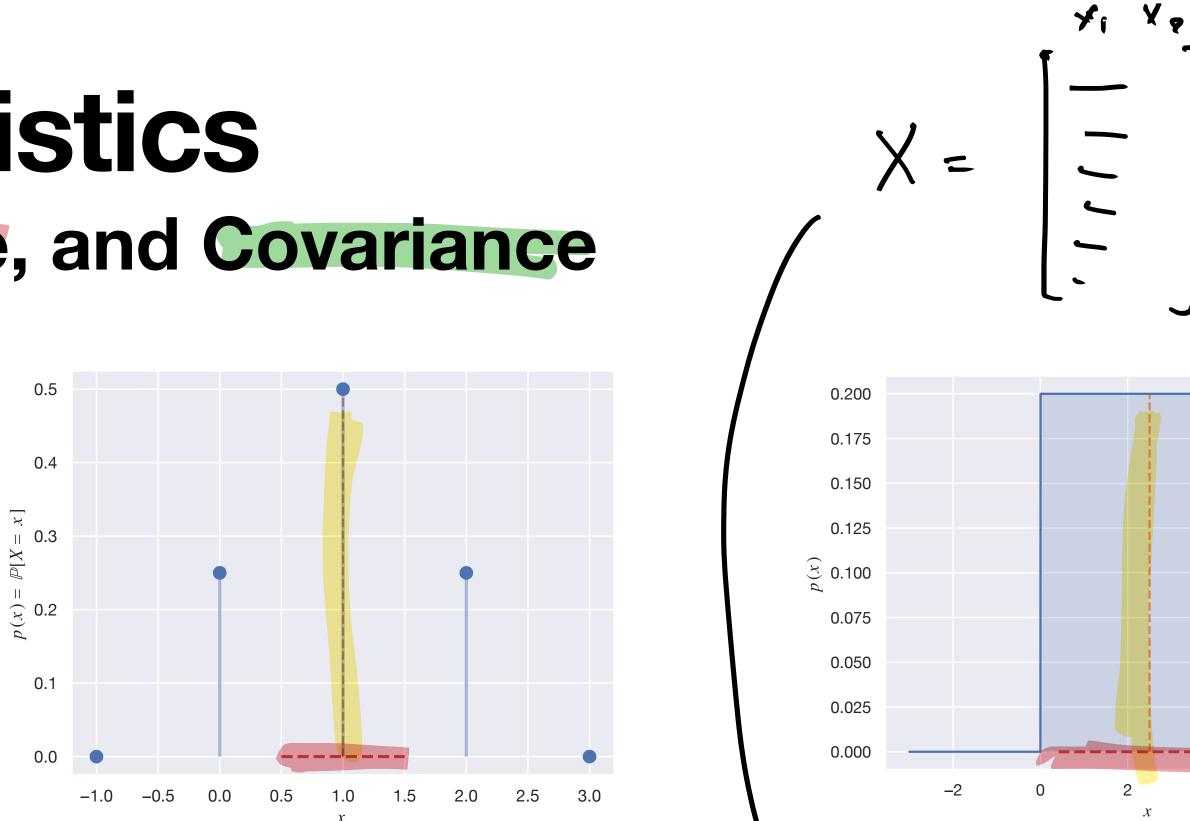
- Covariance follows the "symmetry" property: Cov(X, Y) = Cov(Y, X).
- Covariance follows the "bilinearity" property:
 - $\operatorname{Cov}(\alpha X + \beta Y, Z) = \alpha \operatorname{Cov}(X, Z) + \beta \operatorname{Cov}(Y, Z).$
- Covariance follows the "positive definiteness" property:
 - $\operatorname{Cov}(X, X) = \operatorname{Var}(X) \ge 0.$

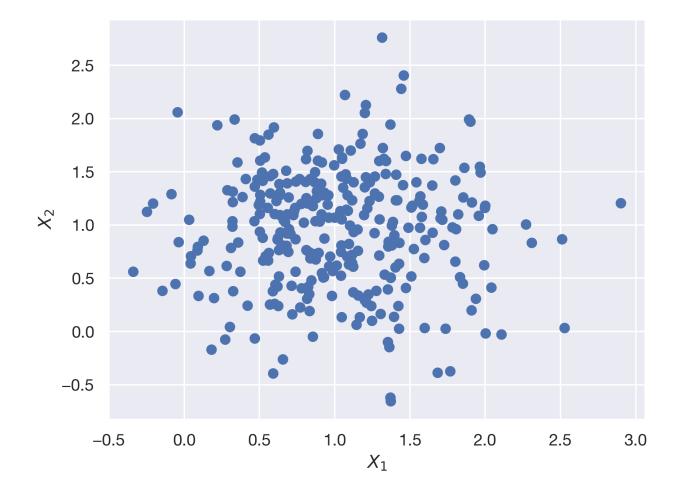
 χ'

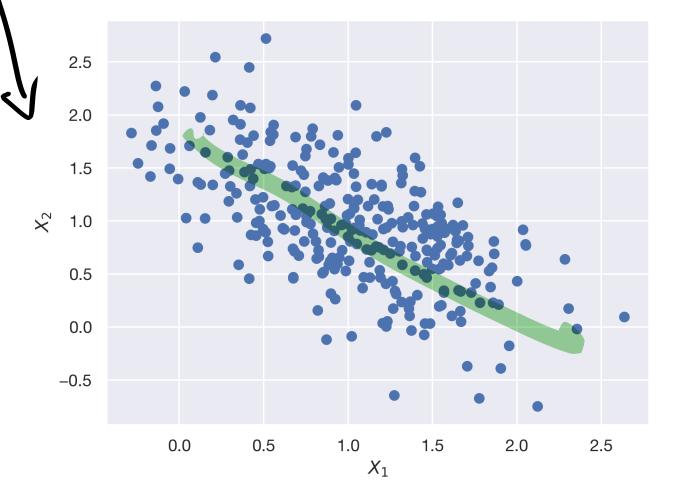
Summary Statistics Expectation, Variance, and **Covariance**











Random Vectors Multivariate Random Variables

Random Vectors Definition

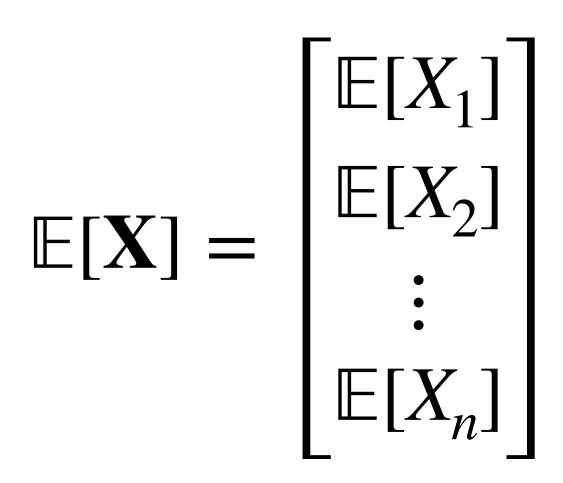
So far, we have only been talking about single-variable distributions. We can talk about multivariable distributions by considering <u>random vectors</u>:

 $f: \mathcal{R} \to \mathcal{R}'$ $f: \mathcal{R} \to \mathcal{R}'$

 X_1 $\mathbf{X} = \begin{bmatrix} \mathbf{X}_{2} \\ \mathbf{X}_{2} \\ \mathbf{X}_{n} \end{bmatrix}$

Random Vectors Expectation

The <u>expectation</u> of a random vector just comes from taking the entry-wise expectation:

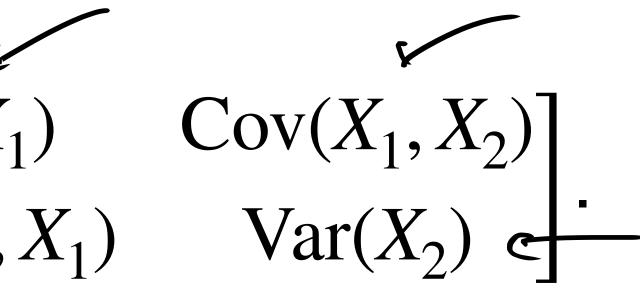


Random Vectors Covariance Matrix

The variance of a random vector generalizes to the <u>covariance matrix</u> In the d = 2 case, $\boldsymbol{\Sigma} = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) \end{bmatrix}.$

What do you notice about this matrix?

 $X = \begin{bmatrix} X_{f} \\ X_{z} \end{bmatrix}$



Random Vectors Covariance Matrix

The variance of a random vector generalizes to the covariance matrix

$\boldsymbol{\Sigma} = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\mathsf{T}}] = \begin{bmatrix} \mathbf{C} \mathbf{O}^{\mathsf{T}} \\ \mathbf{C} \mathbf{O}^{\mathsf{T}} \end{bmatrix}$

In general, $\Sigma_{i,j} = \operatorname{Cov}(X_i, X_j)$.

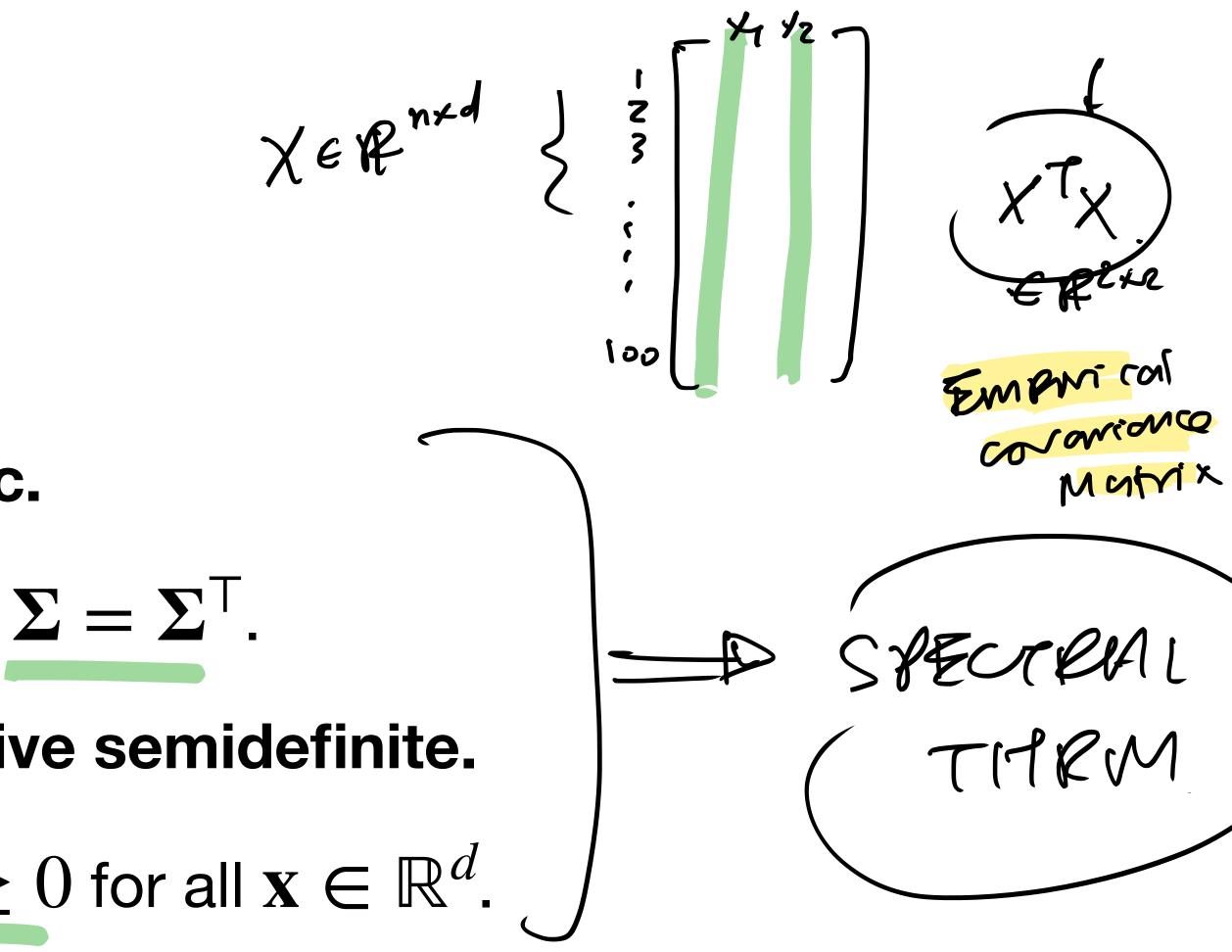
Var (X_1)	$\operatorname{Cov}(X_1, X_2)$	• • •	$\operatorname{Cov}(X_1, X_n)$
$\operatorname{Cov}(X_2, X_1)$	$Var(X_2)$	• • •	$\operatorname{Cov}(X_2, X_n)$
•	• • •	•••	• • •
$\operatorname{Cov}(X_n, X_1)$	$\operatorname{Cov}(X_n, X_2)$	• • •	$Var(X_n)$

Random Vectors Covariance Matrix

The covariance matrix is symmetric.

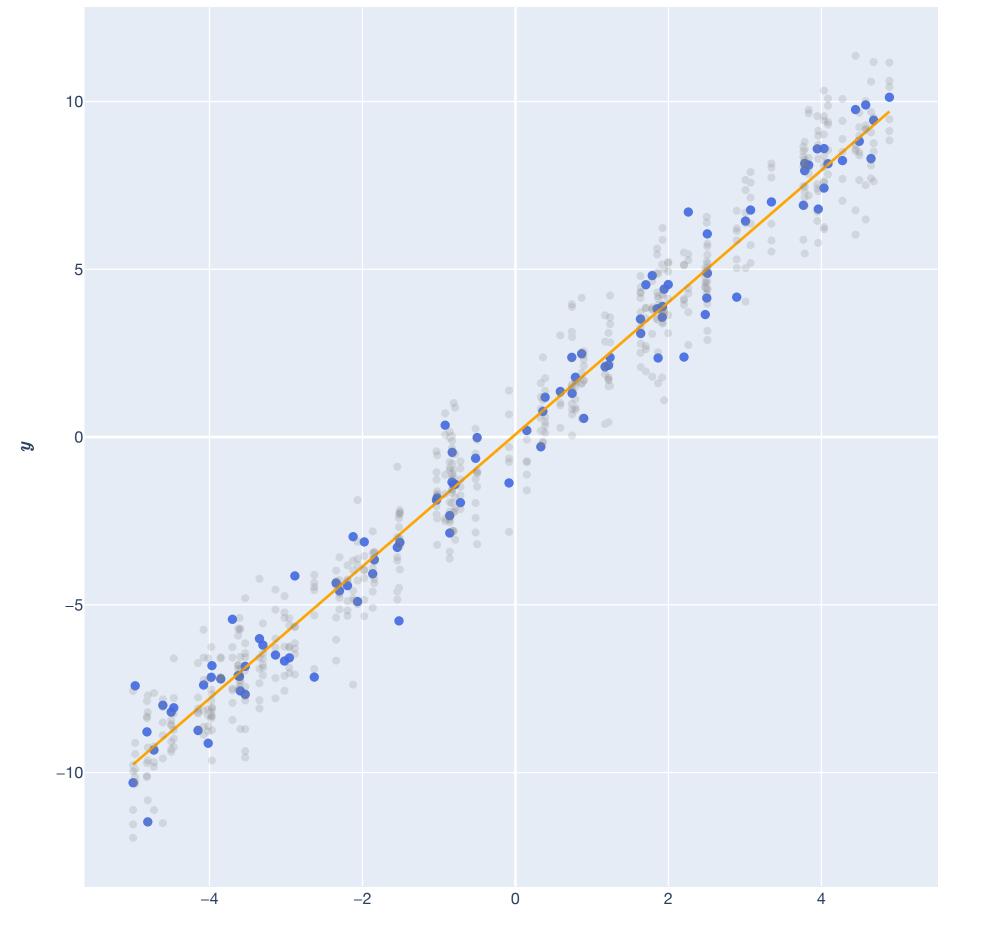
The covariance matrix is also positive semidefinite.

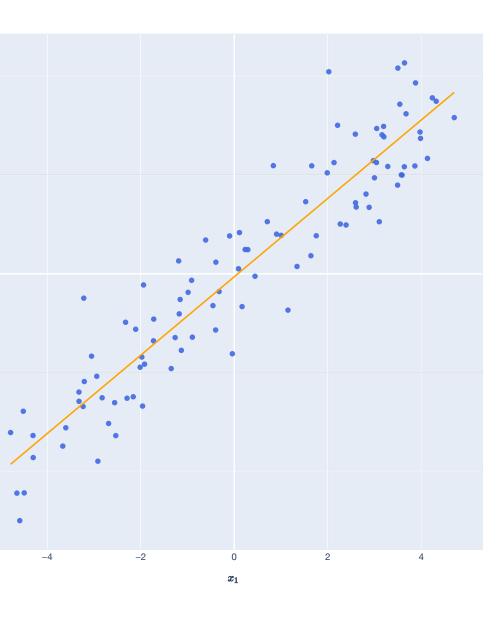
$$\mathbf{x}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{x} \ge \mathbf{0}$$

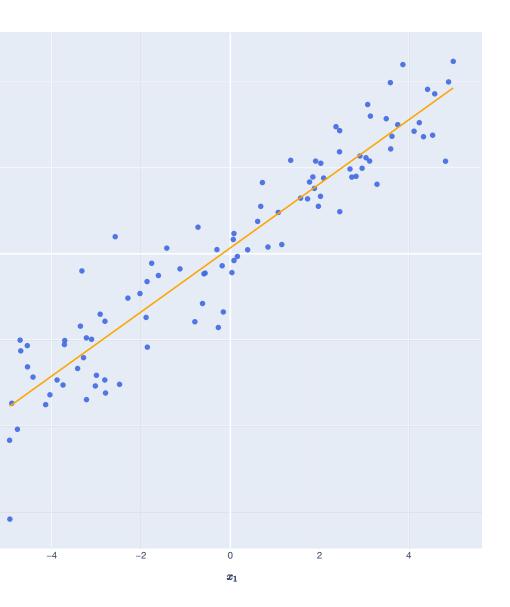


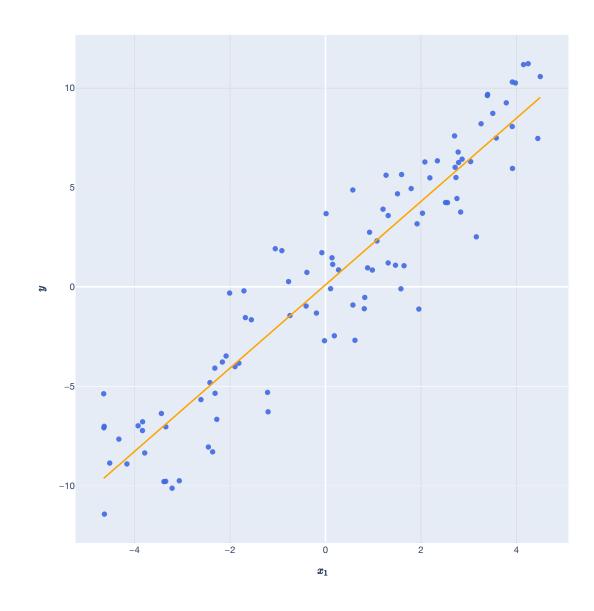
Data as random Modeling regression with probability

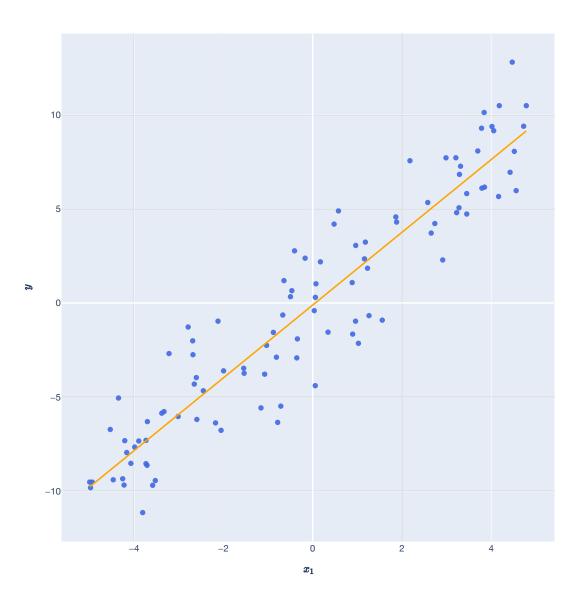
RegressionModeling randomness











$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \leftarrow & \mathbf{x}_1^\top & \rightarrow \\ & \vdots & \\ \leftarrow & \mathbf{x}_n^\top & \rightarrow \end{bmatrix}$$

<u>Unknown</u>: Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

<u>**Goal:</u>** For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.</u>

<u>**Observed:**</u> Matrix of *training* samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of *training* labels $\mathbf{y} \in \mathbb{R}^{n}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

 $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

for $i \in [n]$, or:

To find $\hat{\mathbf{W}}$, we follow the principle of least squares.

 $\mathbf{w} \in \mathbb{R}^d$

- **<u>Goal</u>:** For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$. Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$
 - $\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y}$.
 - $\hat{\mathbf{w}} = \arg \min \|\|\mathbf{X}\mathbf{w} \mathbf{y}\|^2$

Original goal:

Given a new, unseen $(\mathbf{x}_0, y_0) \in \mathbb{R}^d \times \mathbb{R}$, we wanted to generalize: $\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_0 \approx y_0.$

Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or: $\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y}$.

To find $\hat{\mathbf{w}}$, we follow the *principle of least squares*.

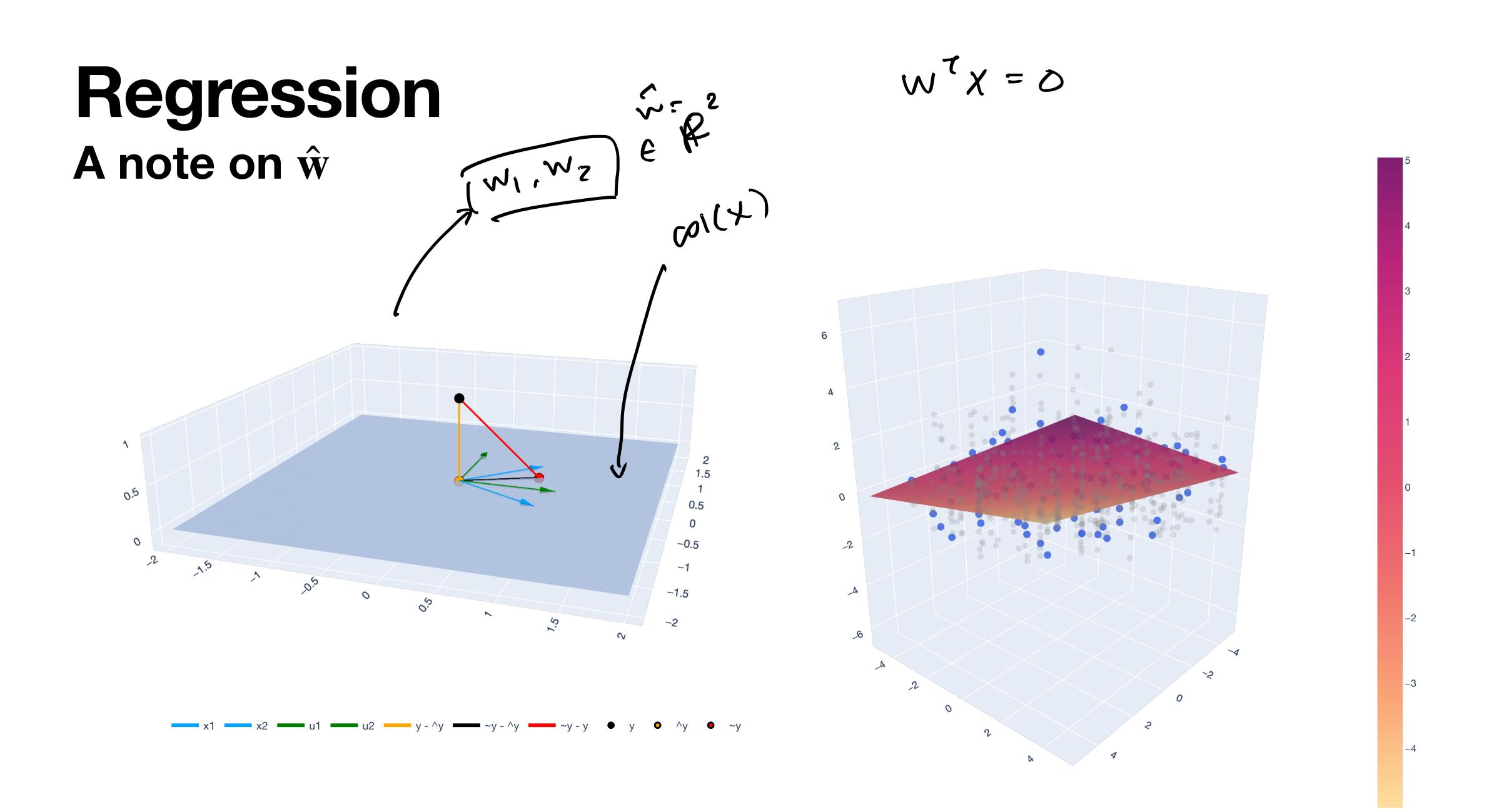
 $\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$ $\mathbf{w} \in \mathbb{R}^d$

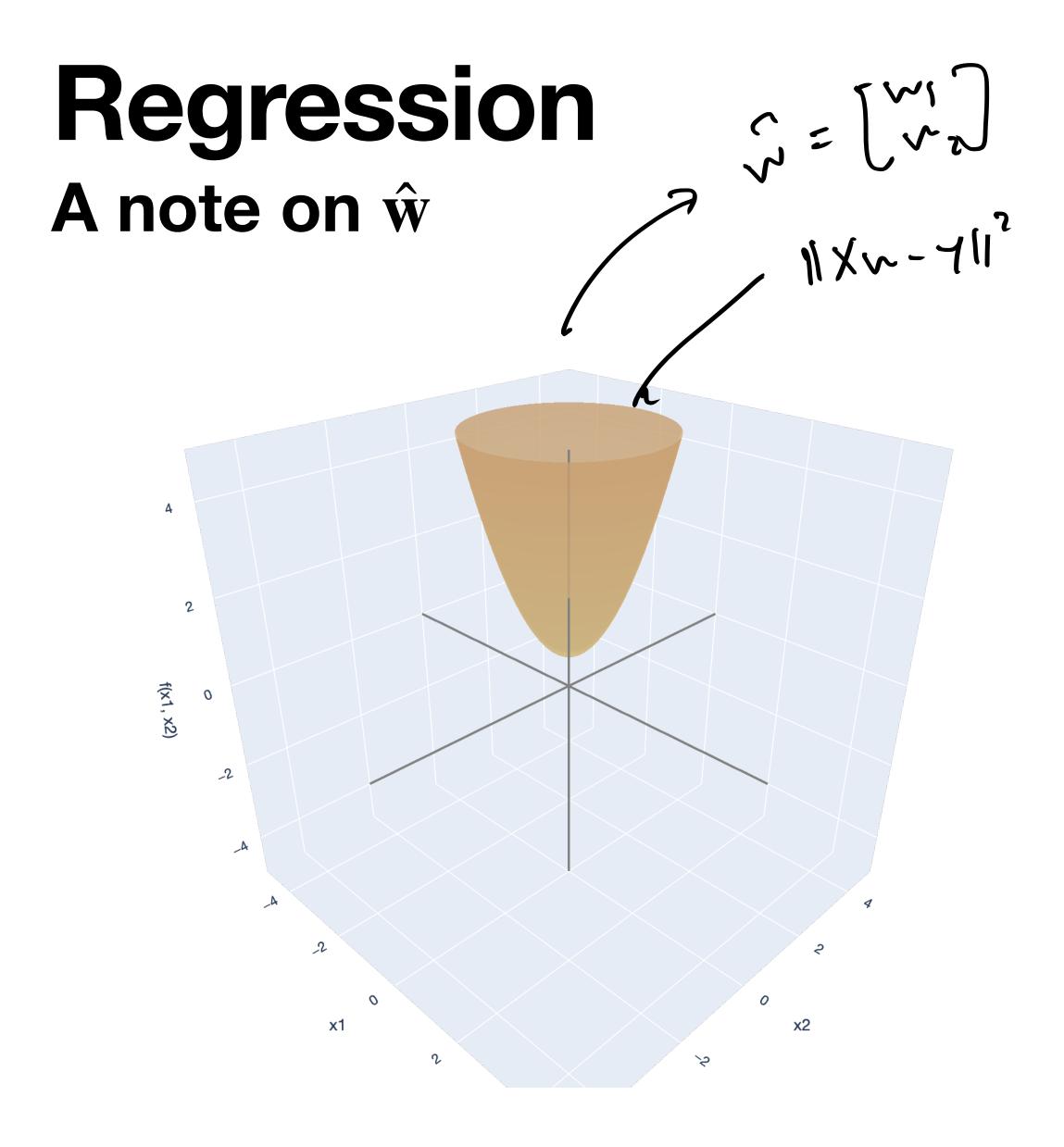
To find $\hat{\mathbf{W}}$, we follow the *principle of least squares*. Least squares expanded is just:

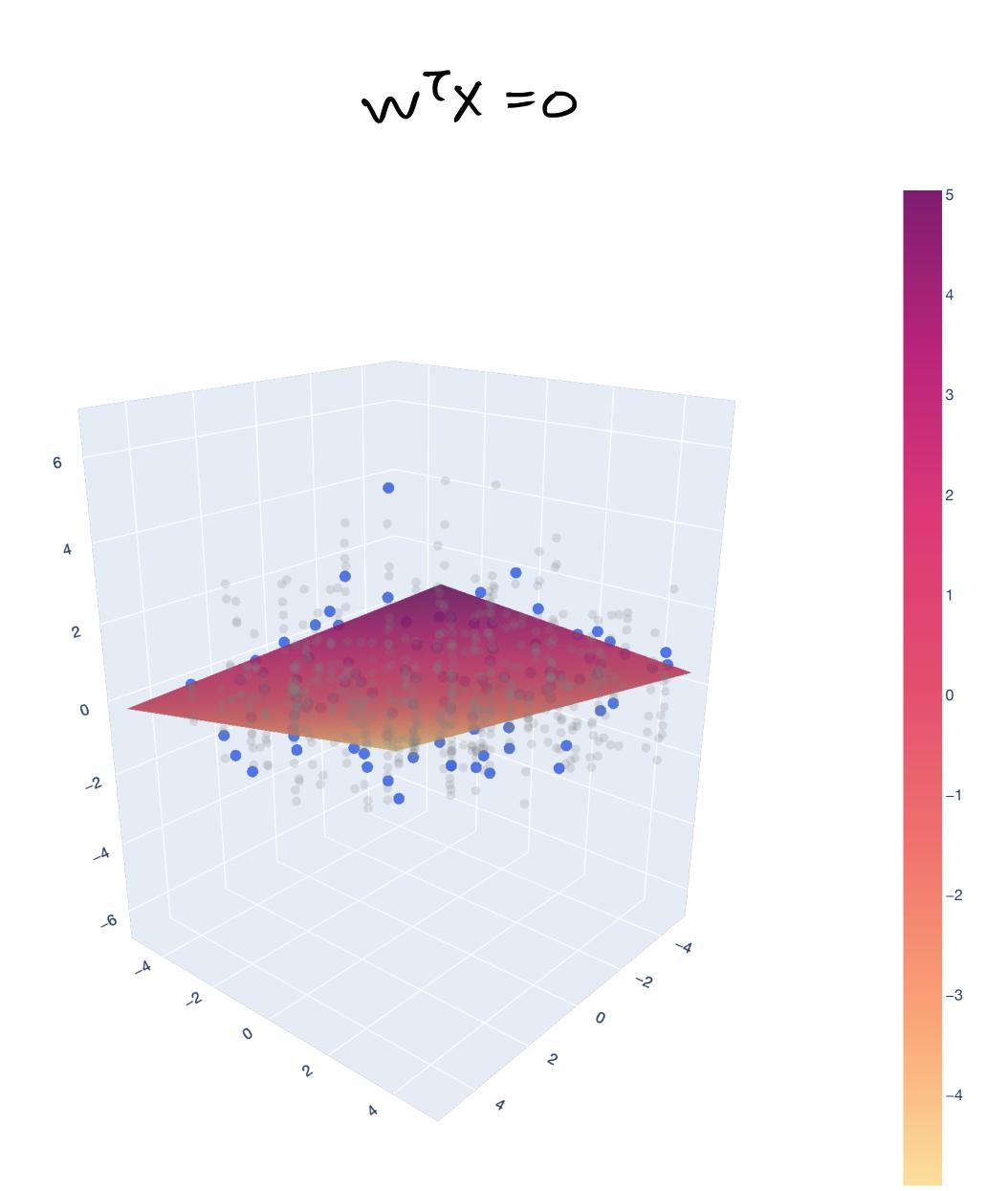
Put a 1/n there, and it looks like we're minimizing an average...

i=1

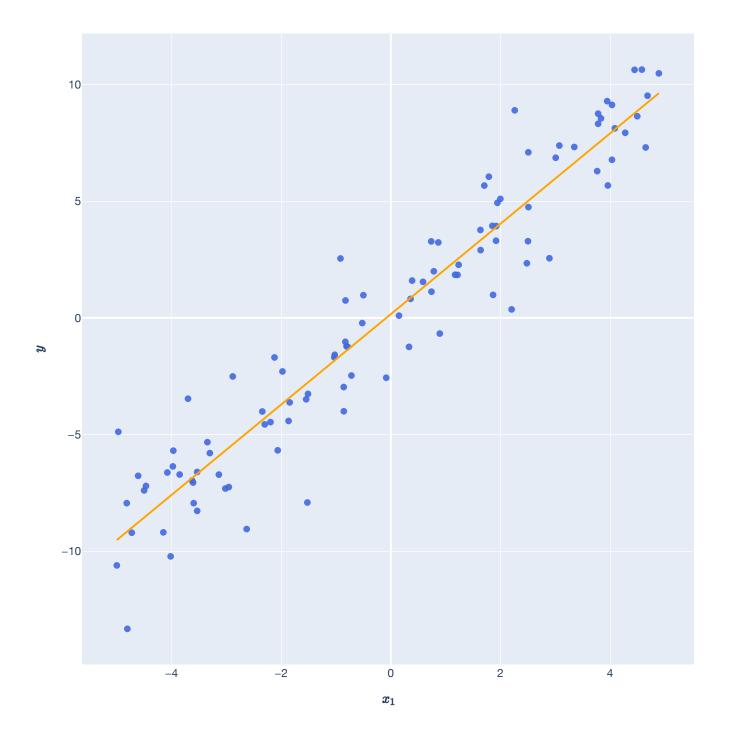


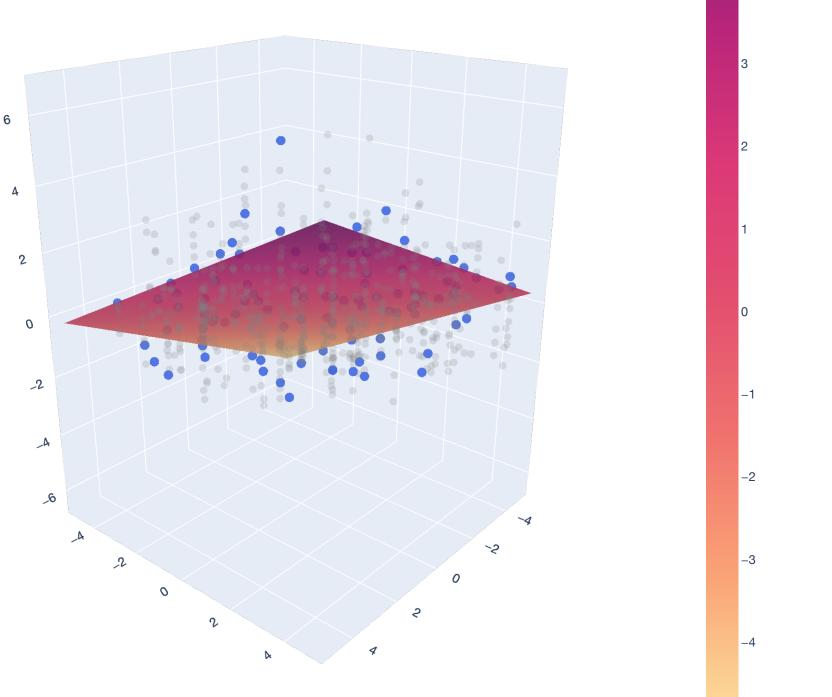


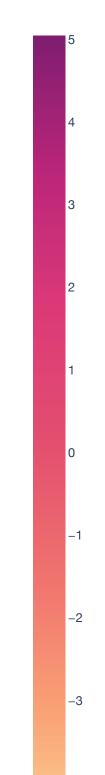




Regression A note on \hat{w}







Each row $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ for $i \in [n]$ is a <u>random vector</u>. Each $y_i \in \mathbb{R}$ is a <u>random variable</u>. There exists a joint distribution $\mathbb{P}_{\mathbf{x},y}$ over $\mathbb{R}^d \times \mathbb{R}$, where we draw: $(\mathbf{x}_i, y_i) \sim \mathbb{P}_{\mathbf{x}, \mathbf{y}}$ We want to find a <u>model</u> of the data, a function $f : \mathbb{R}^d \to \mathbb{R}$ that generalizes well to a newly drawn $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$.

Our notion of error is the <u>squared loss</u>:

 $\ell(f(\mathbf{X}),$ To choose the model *f*, make the assumption that it is *linear*: $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x}$, for some **w**. To choose the model *f*, we attempt to minimize the expected squared loss, or the *risk*:

$$\mathbb{E}_{\mathbf{x},y}[(y - f(\mathbf{x}))^2] = \int (y - f(\mathbf{x}))^2 d\mathbb{P}(\mathbf{x}, y)$$

As a substitute, we can minimize the **empirical risk**:

$$\hat{R}(f) :=$$

$$y) := (y - f(\mathbf{x}))^2.$$

$$\frac{1}{n}\sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2.$$

Each row $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ for $i \in [n]$ is a *random vector*. Each $y_i \in \mathbb{R}$ is a *random variable*. There exists a joint distribution $\mathbb{P}_{\mathbf{x},y}$ over $\mathbb{R}^d \times \mathbb{R}$, where we draw: $(\mathbf{x}_i, y_i) \sim \mathbb{P}_{\mathbf{x}, \mathbf{y}}$ We want to find a <u>model</u> of the data, a function $f : \mathbb{R}^d \to \mathbb{R}$ that generalizes well to a newly drawn $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$.

Our notion of error is the <u>squared loss</u>:

 $\ell(f(\mathbf{X}),$ To choose the model f, make the assumption that it is *linear*: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$, for some w. To choose the model *f*, we attempt to minimize the expected squared loss, or the *risk*:

$$\mathbb{E}_{\mathbf{x},y}[(y - f(\mathbf{x}))^2] = \int (y - f(\mathbf{x}))^2 d\mathbb{P}(\mathbf{x},y)$$

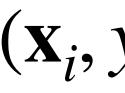
As a substitute, we can minimize the *empirical risk*:

$$\hat{R}(f) :=$$

$$y) := (y - f(\mathbf{x}))^2.$$

$$\frac{1}{n}\sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2.$$

Each row $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ for $i \in [n]$ is a <u>random vector</u>. Each $y_i \in \mathbb{R}$ is a <u>random</u>



<u>variable.</u> There exists a joint distribution $\mathbb{P}_{\mathbf{x},v}$ over $\mathbb{R}^d \times \mathbb{R}$, where we draw:

 $(\mathbf{x}_i, y_i) \sim \mathbb{P}_{\mathbf{x}, \mathbf{v}}$

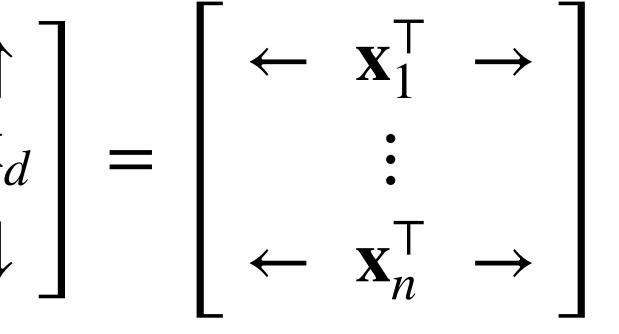
Regression with randomness Training examples

Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$. $\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \leftarrow & \mathbf{x}_1^\top \to \\ \vdots & \\ \leftarrow & \mathbf{x}_n^\top \to \end{bmatrix}.$

Each entry is a random variable, think of $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ as a *d*-dimensional <u>random vector</u>.

Each label is a random variable, think of $y_i \in \mathbb{R}$ as a <u>random variable</u>.

Each $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ pair is drawn from a joint distribution, $\mathbb{P}_{\mathbf{x}, y_i}$



Each row $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ for $i \in [n]$ is a <u>random vector</u>. Each $y_i \in \mathbb{R}$ is a <u>random variable</u>. There exists a joint distribution $\mathbb{P}_{\mathbf{x},y}$ over $\mathbb{R}^d \times \mathbb{R}$, where we draw: $(\mathbf{x}_i, y_i) \sim \mathbb{P}_{\mathbf{x}, \mathbf{y}}$ We want to find a <u>model</u> of the data, a function $f : \mathbb{R}^d \to \mathbb{R}$ that generalizes well to a newly drawn $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$. Our notion of error is the **squared loss**:

To choose the model f, make the assumption that it is *linear*: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$, for some w. To choose the model *f*, we attempt to minimize the expected squared loss, or the *risk*:

$$\mathbb{E}_{\mathbf{x},y}[(y - f(\mathbf{x}))^2] = \int (y - f(\mathbf{x}))^2 d\mathbb{P}(\mathbf{x}, y)$$

As a substitute, we can minimize the **empirical risk**:

$$\hat{R}(f) :=$$

$$\ell(f(\mathbf{x}), y) := (y - f(\mathbf{x}))^2.$$

$$\frac{1}{n}\sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2.$$

to a newly drawn $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, \mathbf{y}}$.

Our notion of error is the <u>squared loss</u>:

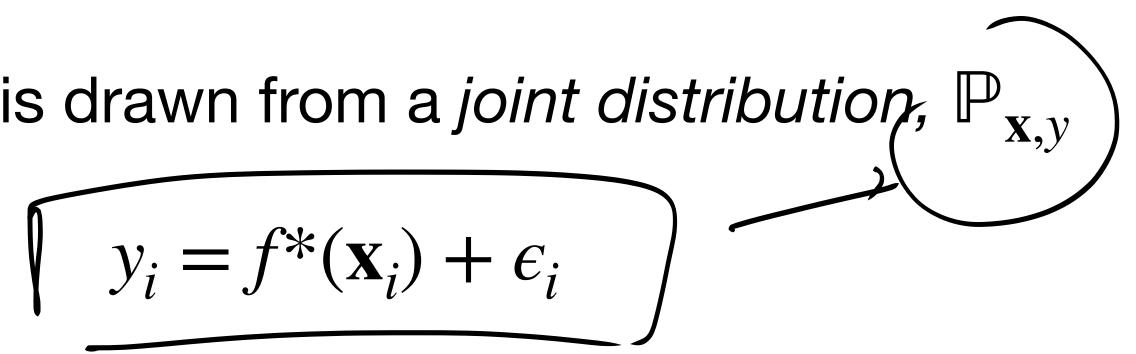
- Each row $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ for $i \in [n]$ is a <u>random vector</u>. Each $y_i \in \mathbb{R}$ is a <u>random</u> <u>variable.</u> There exists a joint distribution $\mathbb{P}_{\mathbf{x},v}$ over $\mathbb{R}^d \times \mathbb{R}$, where we draw:
 - $(\mathbf{x}_i, y_i) \sim \mathbb{P}_{\mathbf{x}, \mathbf{y}}$
- We want to find a <u>model</u> of the data, a function $f : \mathbb{R}^d \to \mathbb{R}$ that generalizes well

- $\left| f(x) \right|$ $\ell(f(\mathbf{x}), y) := (y - f(\mathbf{x}))^2.$

Regression with randomness Model of error (ASSVMPTION)

Each $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ pair is drawn from a *joint distribution*, $\mathbb{P}_{\mathbf{x}, y}$

Some deterministic function $f^* : \mathbb{R}^d \to \mathbb{R}$ explains as much as it can



- Some randomness ϵ_i models the unexplained relationship, where we assume
 - $\mathbb{E}[\epsilon_i] = 0$ and ϵ_i is independent of \mathbf{X}_i .

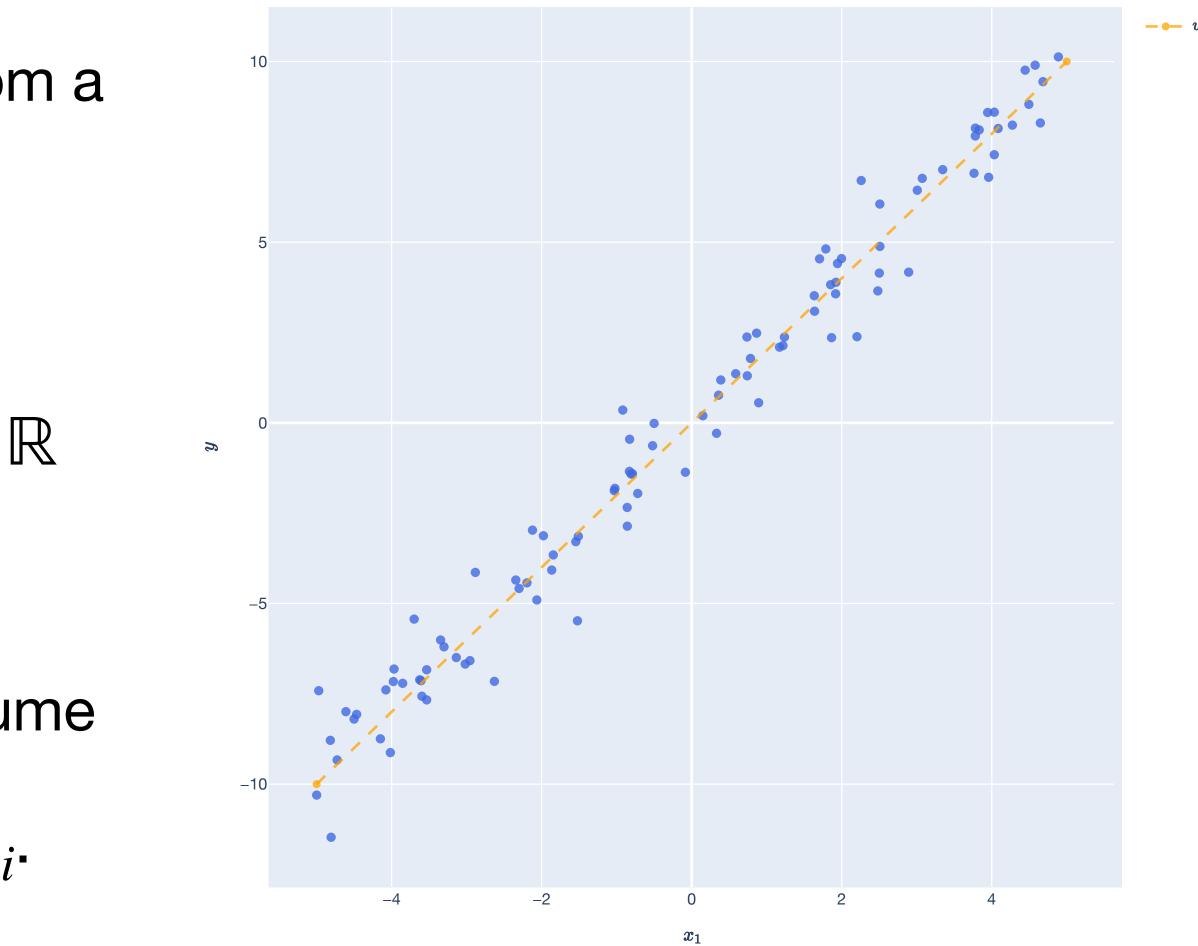
Each $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ pair is drawn from a *joint distribution,* $\mathbb{P}_{\mathbf{x}, y}$

$$y_i = f^*(\mathbf{x}_i) + \epsilon_i$$

Some deterministic function $f^* : \mathbb{R}^d \to \mathbb{R}$ explains as much as it can

Some randomness ϵ_i models the unexplained relationship, where we assume

 $\mathbb{E}[\epsilon_i] = 0$ and ϵ_i is independent of \mathbf{x}_i .



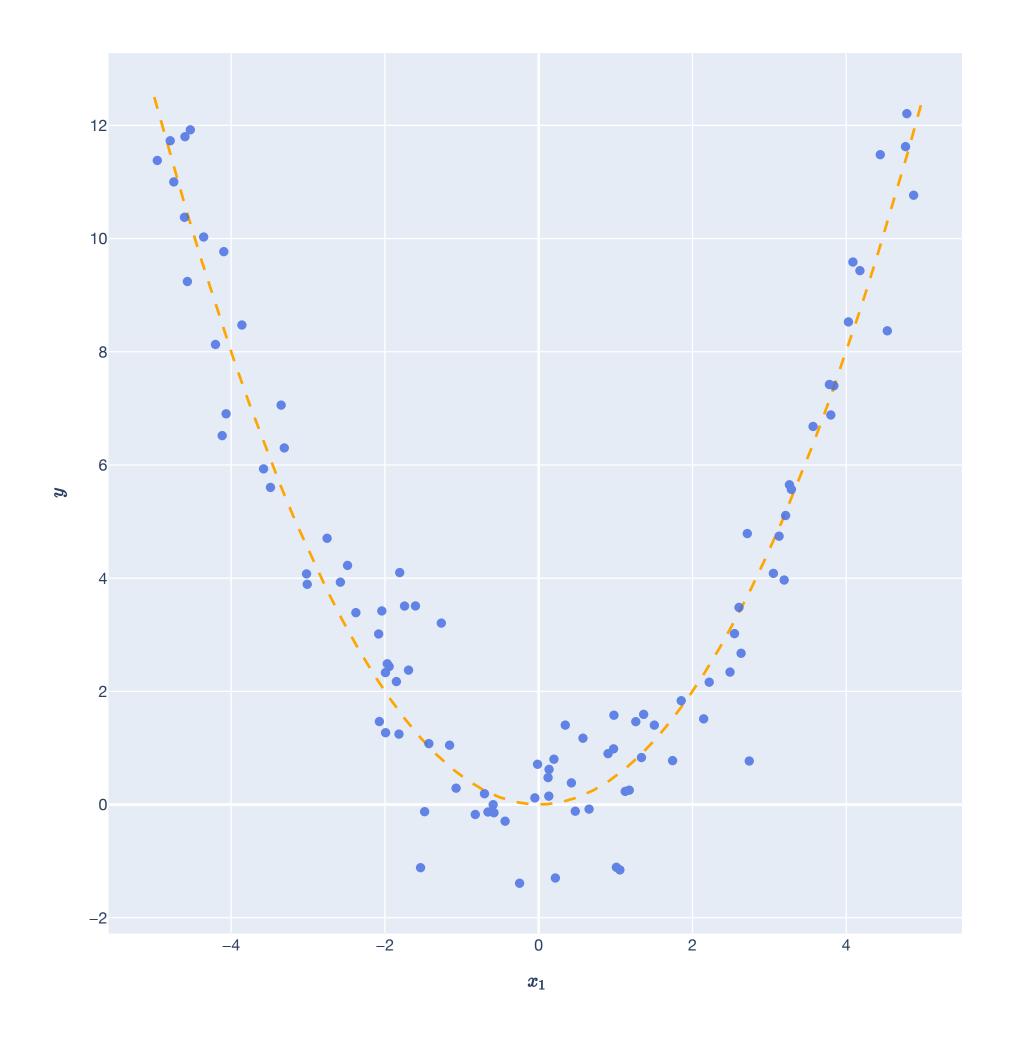
Each $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ pair is drawn from a joint distribution, $\mathbb{P}_{\mathbf{x}, \mathbf{y}}$

$$y_i = f^*(\mathbf{x}_i) + \epsilon_i$$

Some deterministic function $f^* : \mathbb{R}^d \to \mathbb{R}$ explains as much as it can

Some randomness ϵ_i models the unexplained relationship, where we assume

 $\mathbb{E}[\epsilon_i] = 0$ and ϵ_i is independent of \mathbf{X}_i .



Each $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ pair is drawn from a *joint distribution,* $\mathbb{P}_{\mathbf{x}, y}$

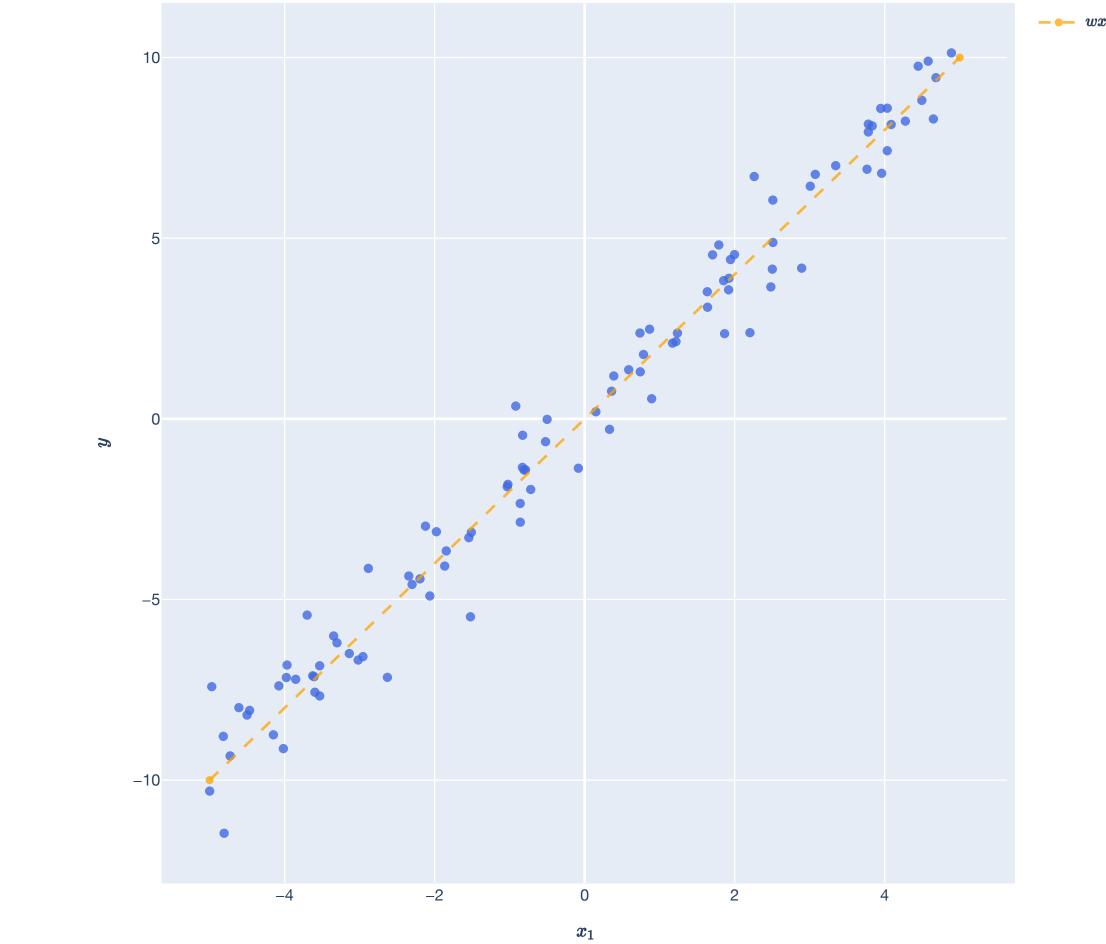
$$\int y_i = \mathbf{x}_i^{\mathsf{T}} \mathbf{w}^* + \epsilon_i$$

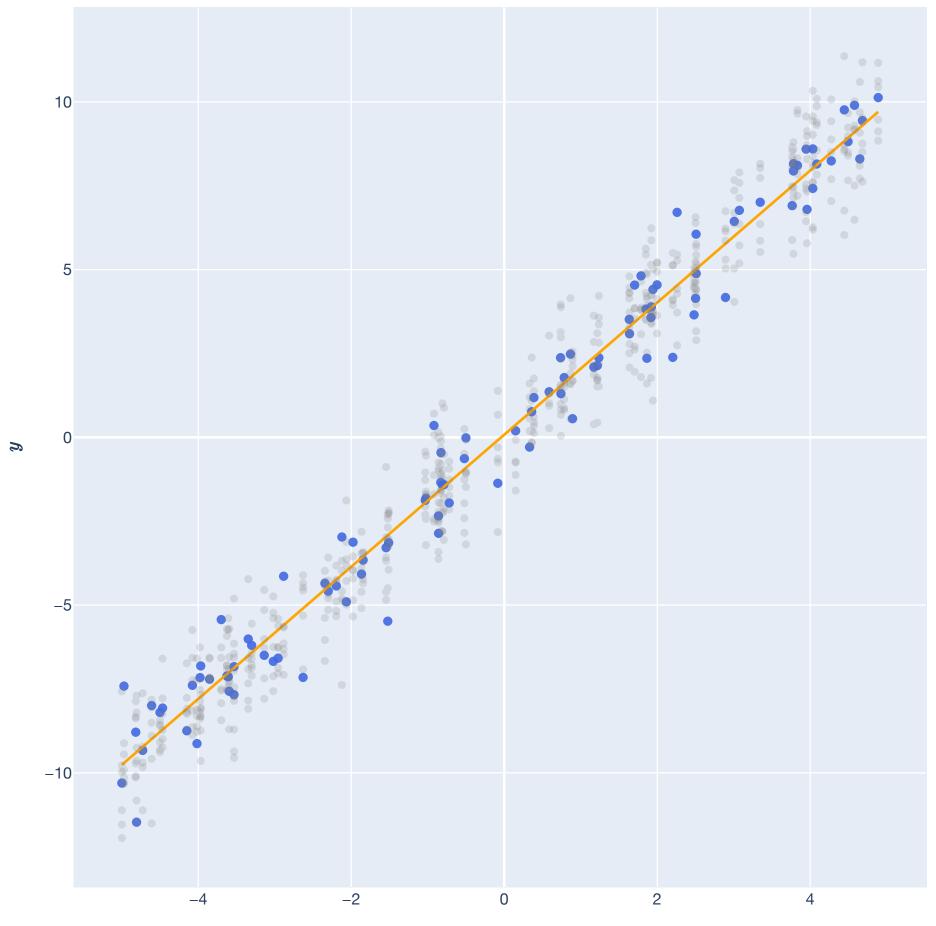
Deterministic linear function

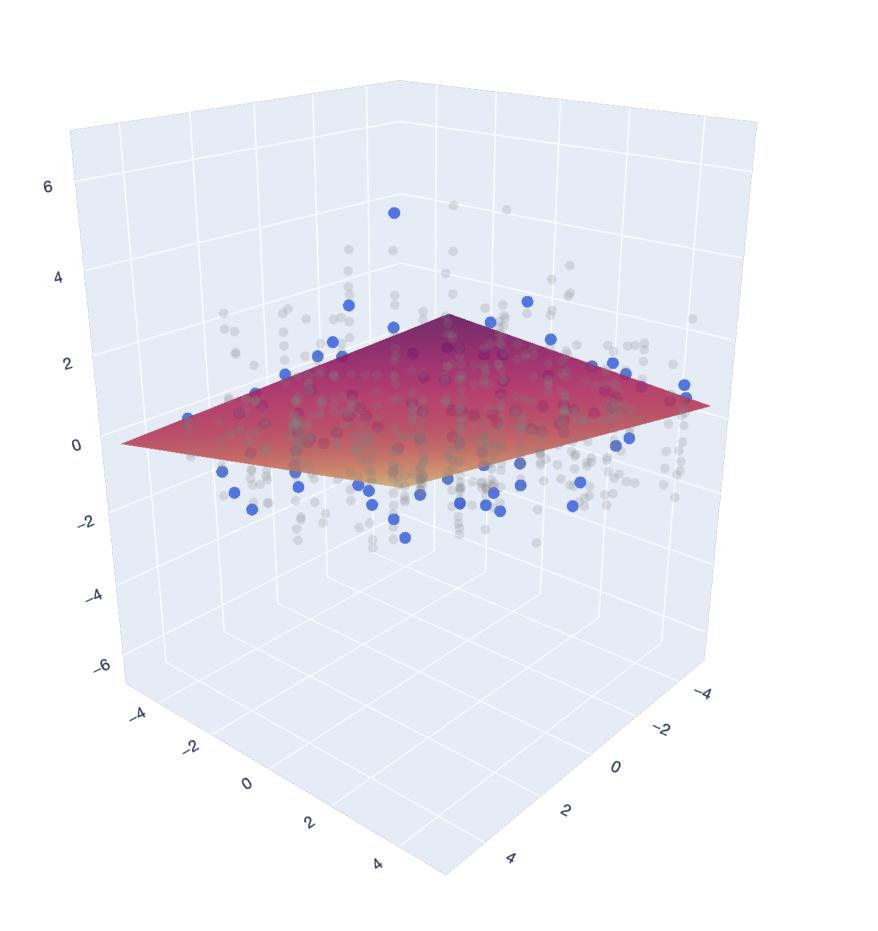
$$\int f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{w}^*$$

Some randomness ϵ_i models the unexplained relationship, where we assume

 $\mathbb{E}[\epsilon_i] = 0$ and ϵ_i is independent of \mathbf{x}_i .







Regression with randomness Goal, with randomness $(\chi^{\tau}\chi)^{-\tau}\chi^{\tau}\gamma$

Each
$$(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$$
 pair is drawn
 $y_i = \mathbf{x}_i^\top \mathbf{w}^* + \epsilon_i$, where $\mathbb{E}[\epsilon_i$
This gives us $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$,
 $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$, where

from a joint distribution, $\mathbb{P}_{\mathbf{x},y}$

[i] = 0 and ϵ_i is independent of \mathbf{x}_i .

so we can also write:

 $\epsilon \in \mathbb{R}^n$ is a random vector.

Regression with randomness Goal, with randomness

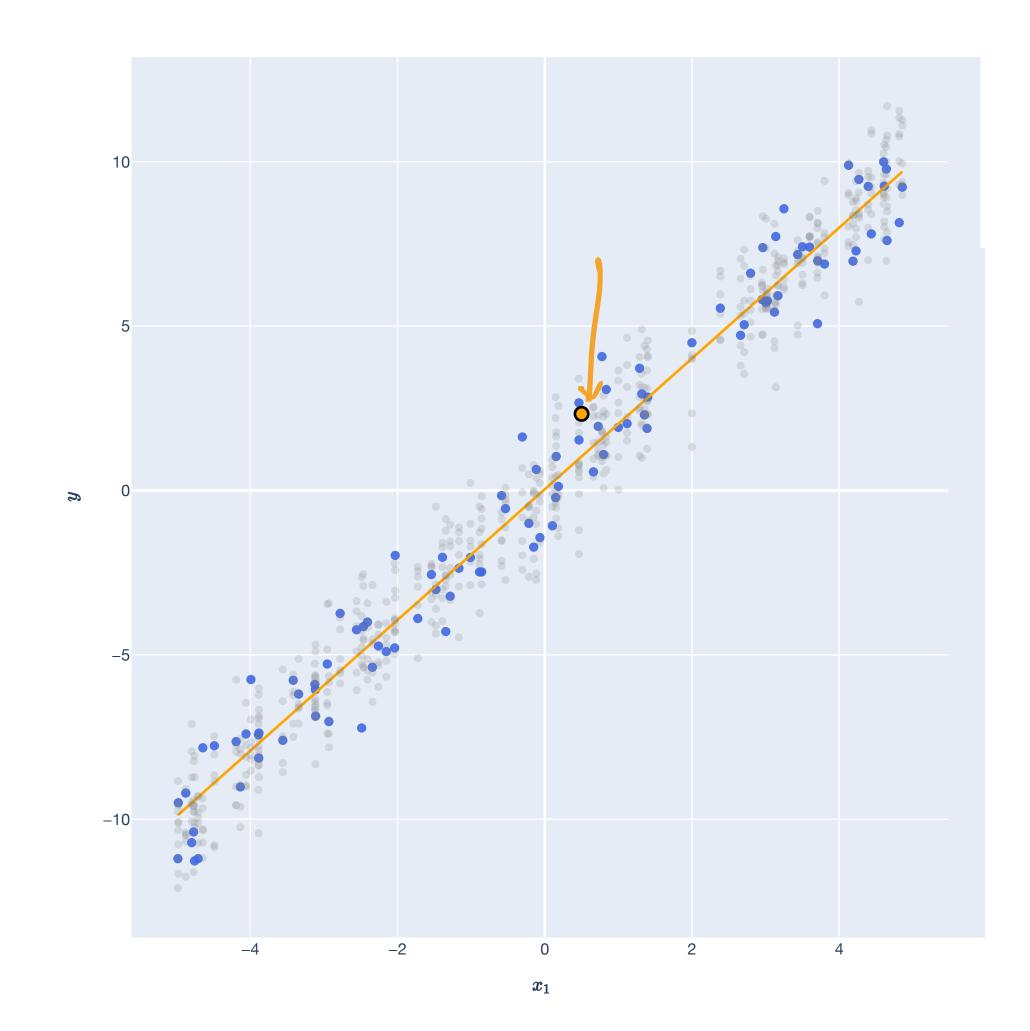
Each $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ pair is drawn from a *joint distribution*, $\mathbb{P}_{\mathbf{x}, y}$

We can draw a new (\mathbf{x}_0, y_0) from the distribution $\mathbb{P}_{\mathbf{x}, y}$.

We want to find a <u>model</u> $f : \mathbb{R}^d \to \mathbb{R}$ for predicting on this new example.

Notion of "badness" is squared loss

$$\ell(f(\mathbf{x}_0), y_0) := (y_0 - f(\mathbf{x}_0))^2.$$



Regression with randomness Setup

Each row $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ for $i \in [n]$ is a <u>random vector</u>. Each $y_i \in \mathbb{R}$ is a <u>random variable</u>. There exists a joint distribution $\mathbb{P}_{\mathbf{x},y}$ over $\mathbb{R}^d \times \mathbb{R}$, where we draw: $(\mathbf{x}_i, y_i) \sim \mathbb{P}_{\mathbf{x}, \mathbf{y}}$

We want to find a <u>model</u> of the data, a function $f : \mathbb{R}^d \to \mathbb{R}$ that generalizes well to a newly drawn $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y_0}$. To choose the model f, make the assumption that it is *linear*: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$, for some w. Our notion of error is the <u>squared loss</u>:

$$\mathscr{E}(f(\mathbf{x}), y) := (y - f(\mathbf{x}))^2.$$

To choose the model *f*, we attempt to minimize the expected squared loss, or the *risk*:

$$\mathbb{E}_{\mathbf{x},y}[(y - f(\mathbf{x}))^2] = \int (y - f(\mathbf{x}))^2 d\mathbb{P}(\mathbf{x},y)$$

As a substitute, we can minimize the **empirical risk**:

$$\hat{R}(f) :=$$

$$\frac{1}{n}\sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2.$$

Regression with randomness Goal, with randomness

Each $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ pair is drawn from a joint distribution, $\mathbb{P}_{\mathbf{x}, y_i}$ We can draw a new (\mathbf{x}_0, y_0) from the distribution $\mathbb{P}_{\mathbf{x}, y}$. We want to find a linear function $f : \mathbb{R}^d \to \mathbb{R}$ for predicting on this new example:

Notion of "badness" is <u>squared loss</u>:

 $\ell(f(\mathbf{x}_0), y_0)$

To make a decision, we care about the *expected* $R(f) := \mathbb{E}_{f}$

- $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$

Regression **Goal, with randomness**

where ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $Var(\epsilon) = \sigma^2$, with ϵ is independent of **x**. Draw *n* examples: random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $y \in \mathbb{R}^{n}$. **<u>Ultimate goal</u>:** Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}$ that generalize $R(\hat{f}) := \mathbb{E}_{\mathbf{x}}$

y =

Intermediary goal: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\top} \mathbf{x}$ that does well on the training samples:

 $\hat{R}(\hat{f}) := -\frac{1}{2}$ n

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^* + \epsilon$$
,

es on a new
$$(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$$
:

$$\sum_{\mathbf{x}_0, y_0} [(\hat{f}(\mathbf{x}_0) - y_0)^2]$$

$$-\sum_{i=1}^{n} (\hat{f}(\mathbf{x}_i) - y_i)^2.$$

Regression Goal, with randomness

$$y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon,$$

where ϵ is a *random variable* with $\mathbb{E}[\epsilon] = 0$ and ϵ is independent of **x**.

Draw *n* examples: random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $y \in \mathbb{R}^{n}$.

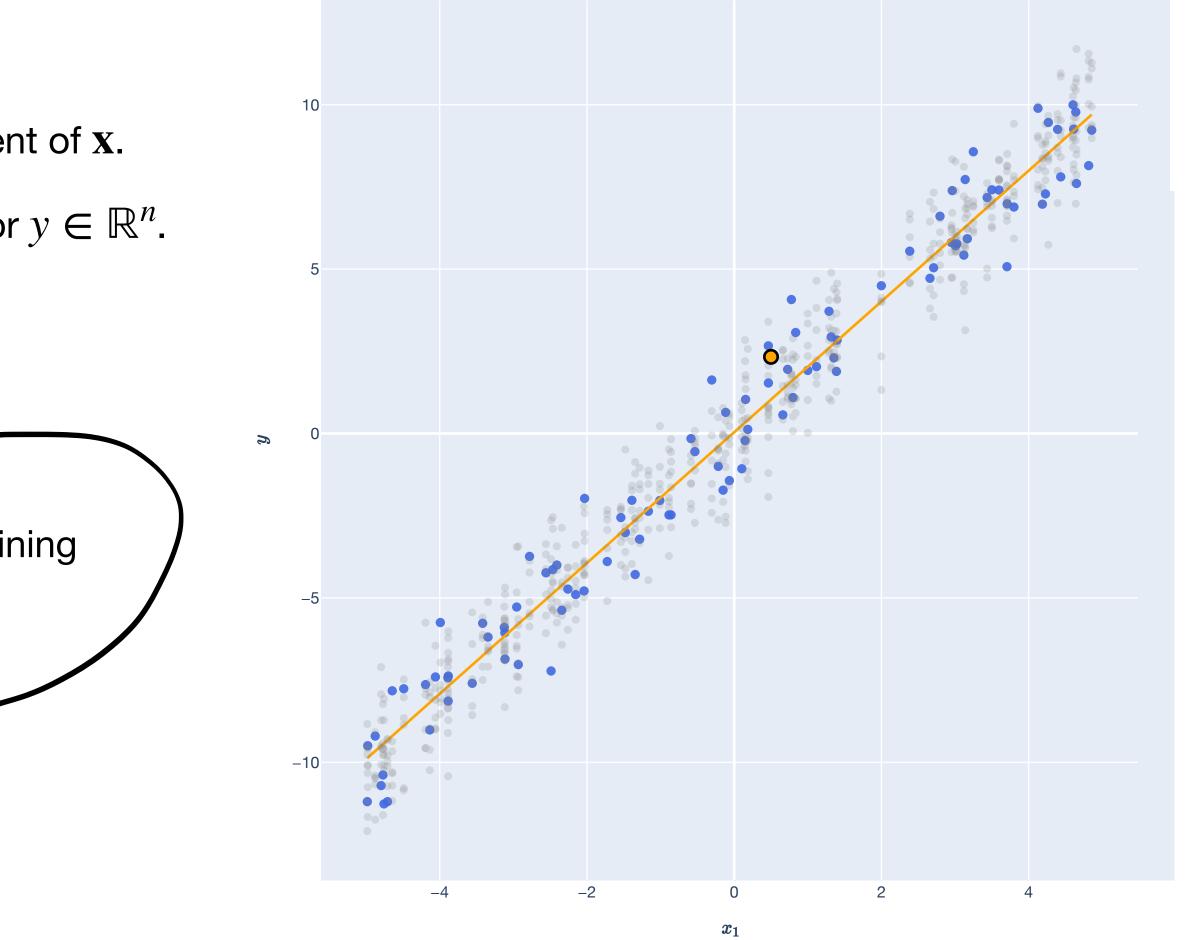
<u>Ultimate goal</u>: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}$ that *generalizes* on a new $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$:

$$R(\hat{f}) := \mathbb{E}_{\mathbf{x}_0, y_0}[(\hat{f}(\mathbf{x}_0) - y_0)^2]$$

Intermediary goal: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\top} \mathbf{x}$ that does well on the training samples, minimizing empirical risk:

$$\hat{R}(\hat{f}) := \frac{1}{n} \sum_{i=1}^{n} (\hat{f}(\mathbf{x}_{i}) - y_{i})^{2} = \frac{1}{n} ||\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}||^{2}$$

This is what we've been doing all along!



Regression with randomness Setup

Each row $\mathbf{x}_i^{\mathsf{T}} \in \mathbb{R}^d$ for $i \in [n]$ is a <u>random vector</u>. Each $y_i \in \mathbb{R}$ is a <u>random variable</u>. There exists a joint distribution $\mathbb{P}_{\mathbf{x},y}$ over $\mathbb{R}^d \times \mathbb{R}$, where we draw: $(\mathbf{x}_i, y_i) \sim \mathbb{P}_{\mathbf{x}, \mathbf{y}}$

We want to find a <u>model</u> of the data, a function $f : \mathbb{R}^d \to \mathbb{R}$ that generalizes well to a newly drawn $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$. To choose the model f, make the assumption that it is *linear*: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$, for some w. Our notion of error is the <u>squared loss</u>:

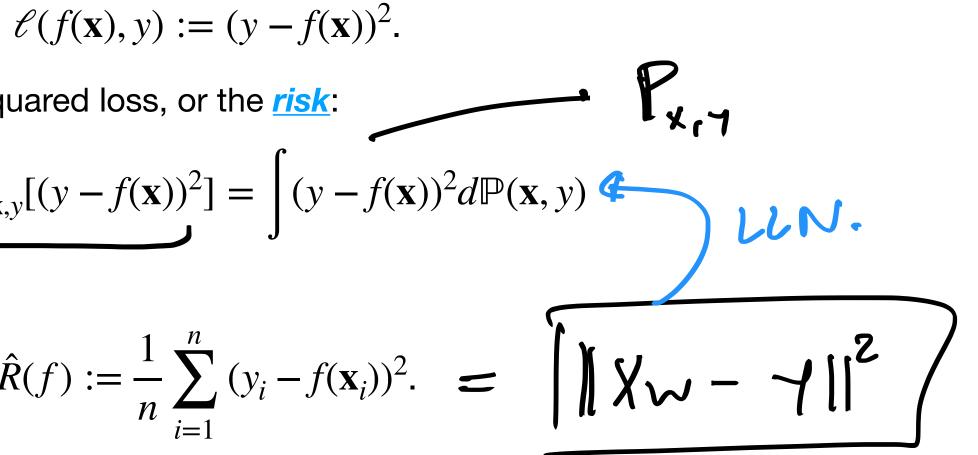
$$\ell(f(\mathbf{X}),$$

To choose the model f, we attempt to minimize the expected squared loss, or the <u>risk</u>:

$$R(f) := \mathbb{E}_{\mathbf{x}, y}[(y - f)]$$

As a substitute, we can minimize the *empirical risk*:

$$\hat{R}(f) :=$$



Statistics of the OLS Estimator Bias and Variance

Statistics of the Error Model Setup

Let $\mathbf{x} \in \mathbb{R}^d$ be a random vector and $y \in \mathbb{R}$ be random variable be drawn from the joint distribution $\mathbb{P}_{\mathbf{x}, \mathbf{y}}$, where

y =

where ϵ is a random variable with $\mathbb{E}[\epsilon]$ independent of **x**.

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^{*} + \epsilon,$$

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^{*} + \epsilon,$$

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^{*} = 0 \text{ and } \operatorname{Var}(\epsilon) = \sigma^{2}, \text{ with } \epsilon$$

Statistics of the Error Model Expectation

 $\mathbb{E}[\epsilon \mid \mathbf{x}] = 0$, because errors are independent of \mathbf{x} . $Ft \epsilon IX = F[\epsilon] = 0.$

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^* + \epsilon$$

y =

Statistics of the Error Model Variance

 $\mathbb{E}[\epsilon \mid \mathbf{x}] = 0$, because errors are independent of **x**. $Var(\epsilon \mid \mathbf{x}) = \sigma^2$, because errors are independent of \mathbf{x} .

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^* + \epsilon$$

y =

 $Var(\varepsilon | x) = E[(\varepsilon - E(\varepsilon))^2 | x] = E[\varepsilon^2 | x] = E[\varepsilon^2]$ = $Var(\varepsilon) = [6^2]$

Statistics of the Error Model **Conditional Expectation**

 $\mathbb{E}[\epsilon \mid \mathbf{x}] = 0$, because errors are independent of **x**. $Var(\epsilon \mid \mathbf{x}) = \sigma^2$, because errors are independent of **x**. $\mathbb{E}[y \mid \mathbf{x}] = \mathbf{x}^{\mathsf{T}} \mathbf{w}^*$, the <u>regression function</u>. FTYIXD= FTXTwt+feixD=

$y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon$

Statistics of the Error Model **Conditional Expectation**

 $\mathbb{E}[\epsilon \mid \mathbf{x}] = 0$, because errors are independent of \mathbf{x} . $Var(\epsilon \mid \mathbf{x}) = \sigma^2$, because errors are independent of **x**. $\mathbb{E}[y \mid \mathbf{x}] = \mathbf{x}^{\mathsf{T}} \mathbf{w}^*$, the <u>regression function</u>.

$y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon$

This is the target we're aiming for!

Statistics of OLS Using OLS to minimize empirical risk

Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\top} \mathbf{x}$ that does well on training samples, minimizing <u>empirical risk</u>:

$$\hat{R}(\hat{f}) := \frac{1}{n} \sum_{i=1}^{n} (\hat{f}(\mathbf{x}_{i}) - y_{i})^{2} = \frac{1}{n} ||\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}||^{2}$$

Obtain the least squares estimator the same way:

 $\hat{\mathbf{w}} = (\Sigma)$

y =

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^* + \epsilon$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

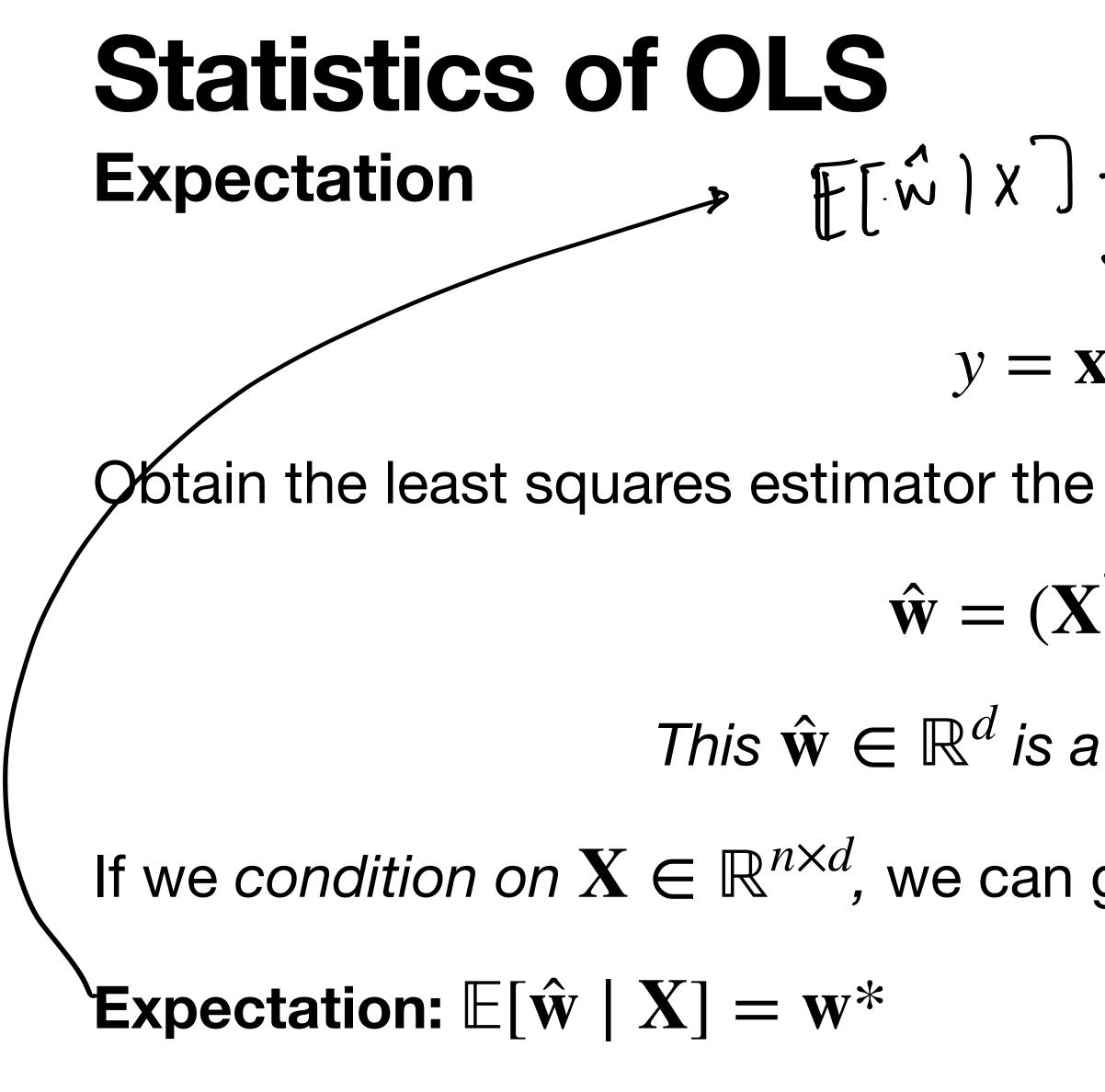
Statistics of OLS Using OLS to minimize empirical risk

Obtain the least squares estimator the same way:

- $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$
- This $\hat{\mathbf{w}} \in \mathbb{R}^d$ is a random vector now!

If we condition on $\mathbf{X} \in \mathbb{R}^{n \times d}$, we can get statistics on this random vector:

- $y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon$



$$= \underbrace{\mathbb{E}\left[\left(X^{T}X\right)^{-1}X^{T}Y \mid X\right]}_{= \cdot \underbrace{\mathbb{E}}\left[\left(X^{T}X\right)^{-1}X^{T}\left(Xw^{*}+\varepsilon\right) \mid X\right]}_{\mathbf{X}^{T}\mathbf{W}^{*}} + \varepsilon = \underbrace{\mathbb{E}\left[\left(X^{T}X\right)^{-1}X^{T}y \cdot * + \left(X^{T}X\right)^{-1}X^{T}\varepsilon\right]}_{= \underbrace{\mathbb{E}}\left[v^{*} + \left(X^{T}X\right)^{-1}X^{T}\varepsilon\right]}_{= \underbrace{\mathbb{E}}\left[v^{*}\right]} + \underbrace{\mathbb{E}\left[\left(x^{T}x\right)^{-1}x^{T}\varepsilon\right]}_{= \underbrace{\mathbb{E}}\left[v^{*}\right]}_{= \underbrace{\mathbb{E}}\left[v^{*}\right]} + \underbrace{\mathbb{E}\left[\left(x^{T}x\right)^{-1}x^{T}\varepsilon\right]}_{= \underbrace{\mathbb{E}}\left[v^{*}\right]}_{= \underbrace{\mathbb{$$



Statistics of OLS Variance

Obtain the least squares estimator the same way:

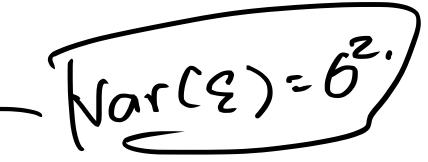
 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{v}.$

If we condition on $\mathbf{X} \in \mathbb{R}^{n \times d}$, we can get statistics on this random vector: Expectation: $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$.

Variance: $\operatorname{Var}[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^{2} \leftarrow \operatorname{Var}[\mathcal{C}] = \delta^{z}$

 $X^T X = V \lambda \sqrt{T}$ $(\chi T \chi)^{-1} = \sqrt{\lambda^{-1}} \sqrt{\tau}$ $y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon \qquad \begin{bmatrix} \mathbf{c}^* \mathbf{A} & \mathbf{o} \\ \mathbf{o} & \mathbf{c}^* \mathbf{A} \end{bmatrix} \mathbf{v}^{\mathsf{T}}$

This $\hat{\mathbf{w}} \in \mathbb{R}^d$ is a random vector now!



Statistics of OLS Intuition

$$y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon$$

Obtain the least squares estimator the same way:

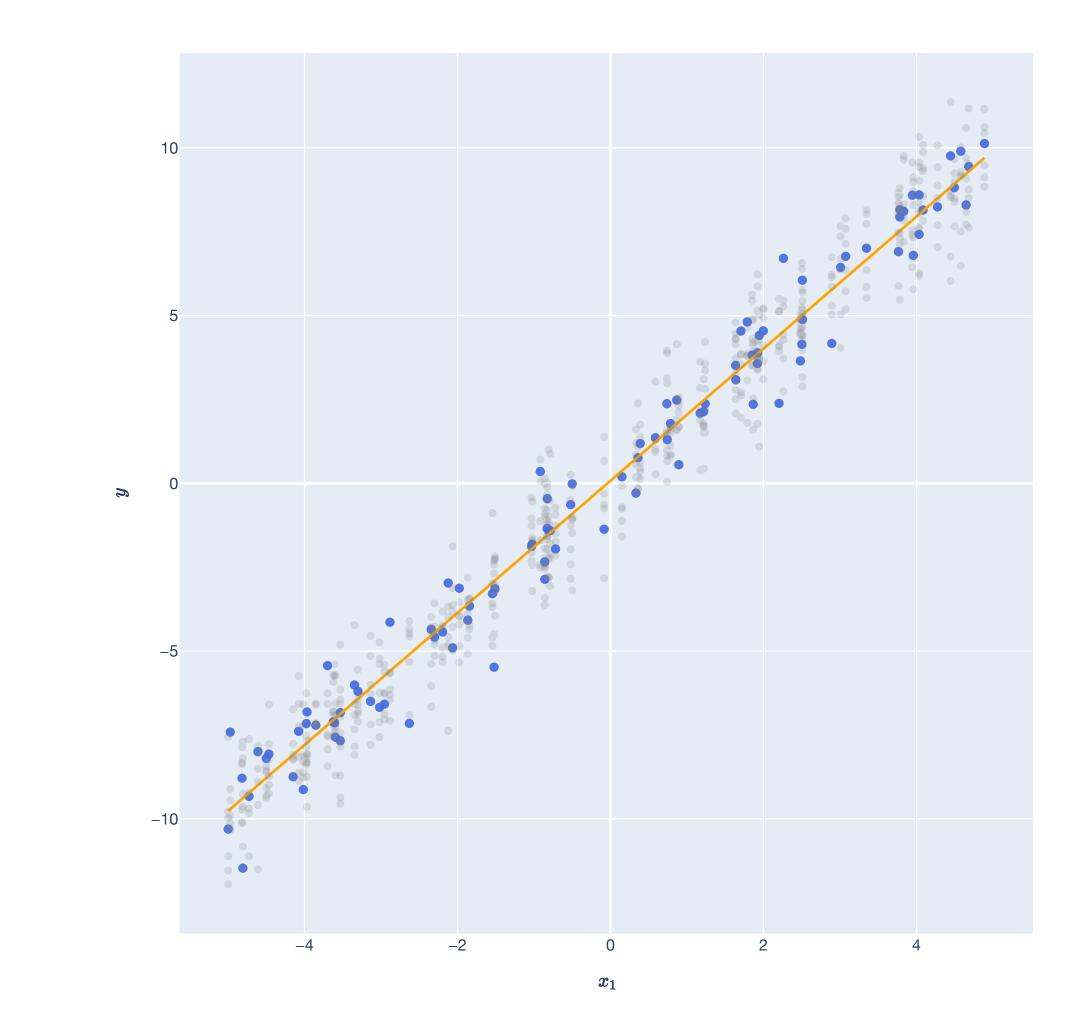
$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

This $\hat{\mathbf{w}} \in \mathbb{R}^d$ is a random vector now!

If we condition on $\mathbf{X} \in \mathbb{R}^{n \times d}$, we can get statistics on this random vector:

Expectation: $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$.

Variance: Var $[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^2$.



Statistics of OLS Intuition

$$y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon$$

Obtain the least squares estimator the same way:

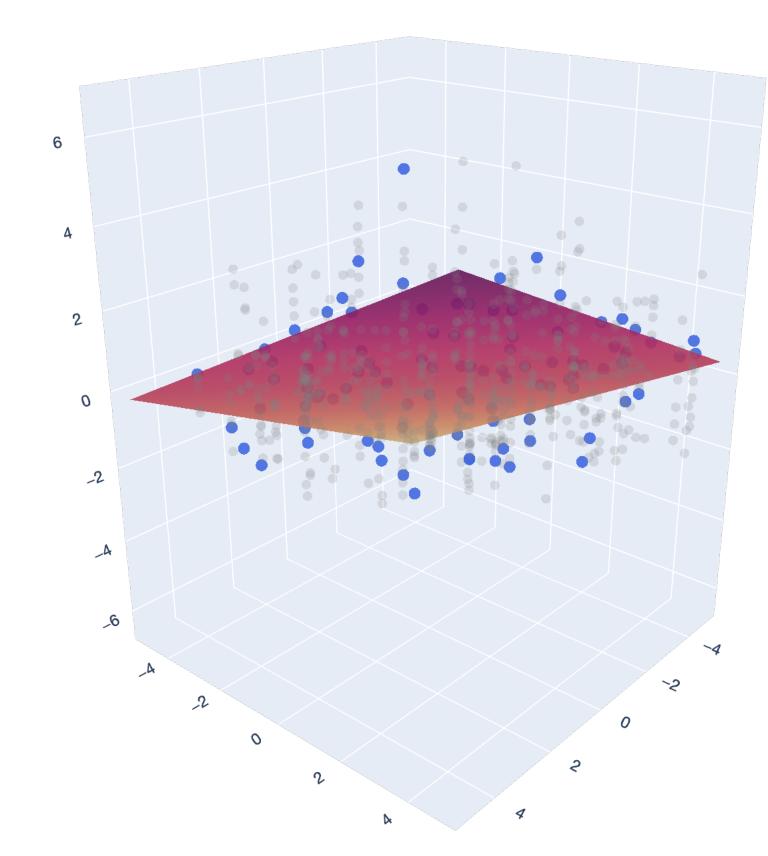
$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

This $\hat{\mathbf{w}} \in \mathbb{R}^d$ is a random vector now!

If we condition on $\mathbf{X} \in \mathbb{R}^{n \times d}$, we can get statistics on this random vector:

Expectation: $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$.

Variance: Var $[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^2$.



Statistics of OLS Theorem

the error model:

where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\operatorname{Var}(\epsilon) = \sigma^2$, independent of \mathbf{x} . Suppose we construct a random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $\mathbf{y} \in \mathbb{R}^n$ by drawing n random examples (\mathbf{x}_i, y_i) from $\mathbb{P}_{\mathbf{x}, y}$. Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ has the following statistical properties:

Theorem (Statistical properties of OLS). Let $\mathbb{P}_{\mathbf{x},v}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by

 $\mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \boldsymbol{\epsilon}.$

- **Expectation:** $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$.
- Variance: Var $[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\top}\mathbf{X})^{-1}\sigma^2$.

Recap

Lesson Overview

Probability Spaces. We'll review the basic axioms and components of probability: sample space, events, and probability measures. This allows us to ditch these notions and introduce *random variables*.

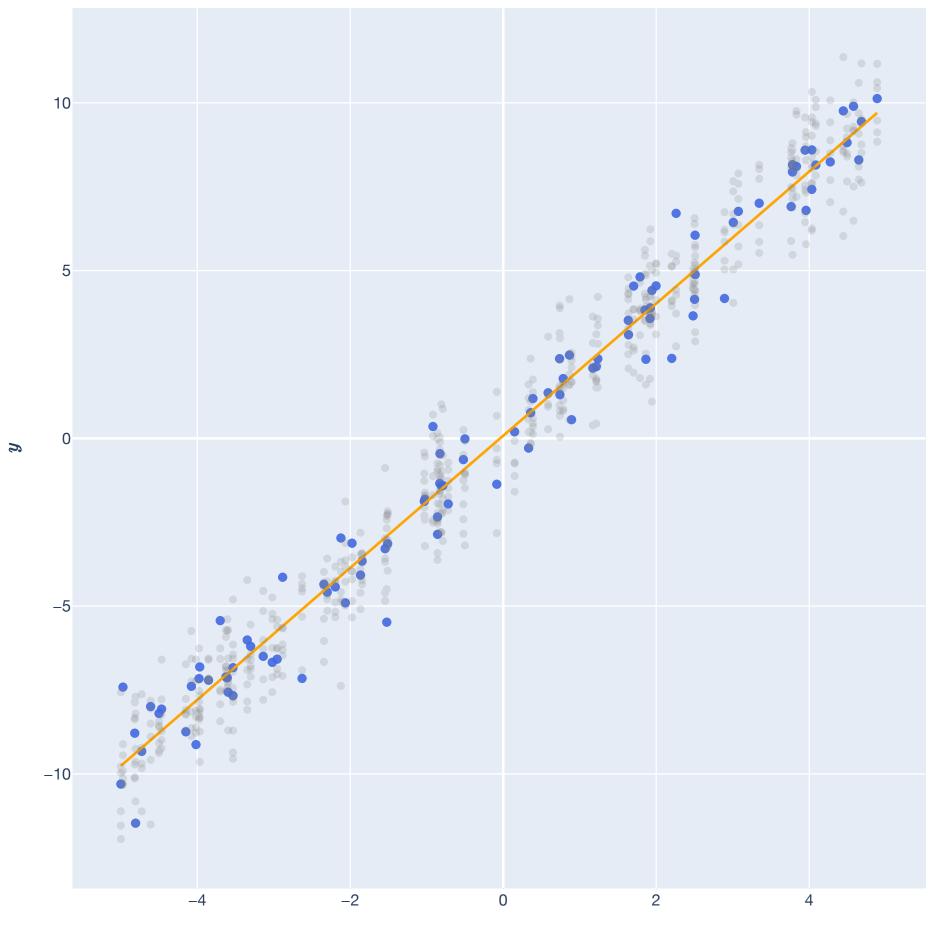
Random variables. Review of the definition of a random variable, its *distribution/law*, its PDF/PMF/CDF, and joint distributions of several RVs.

Expectation, variance, and covariance. Review of these basic summary statistics of random variables and common properties.

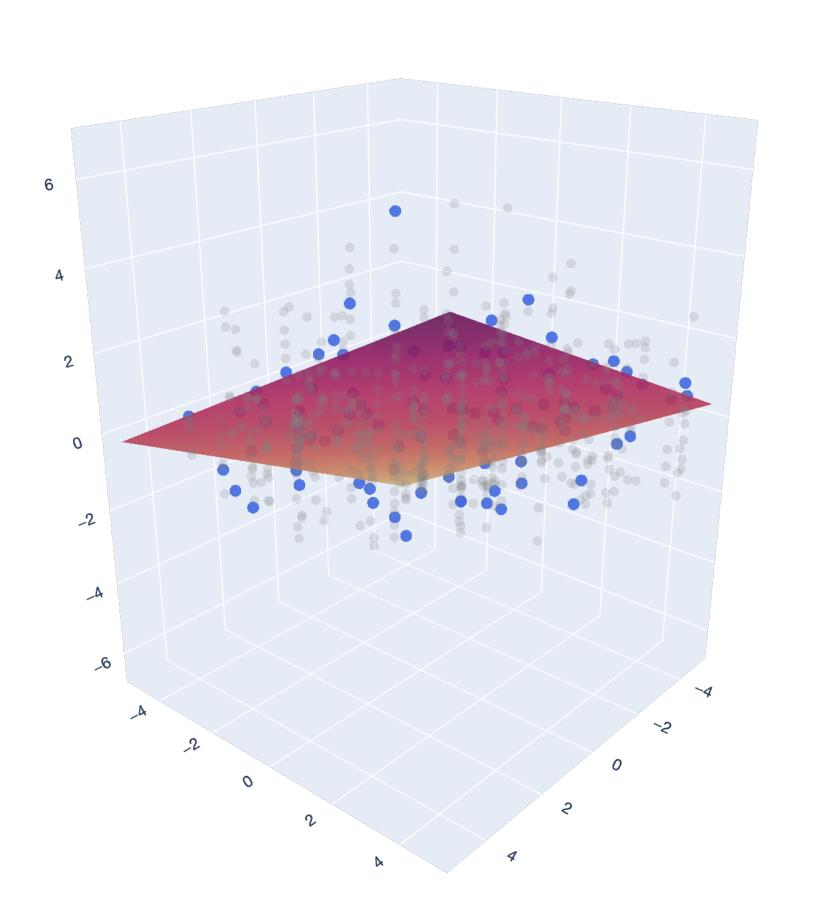
Random vectors. Introduce the idea of a *random vector*, which is just a list of multiple random variables. Discuss generalizations of expectation and variance to random vectors.

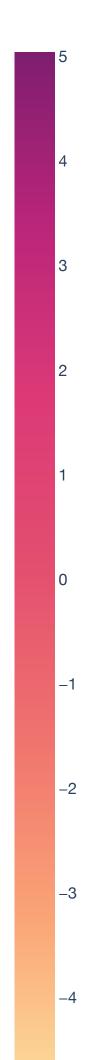
Data as random, statistical model of ML. Introduce the statistical model of ML and the random error model. Introduce *modeling assumptions.* State and prove basic statistical properties of the OLS estimator.

Lesson Overview Big Picture: Least Squares

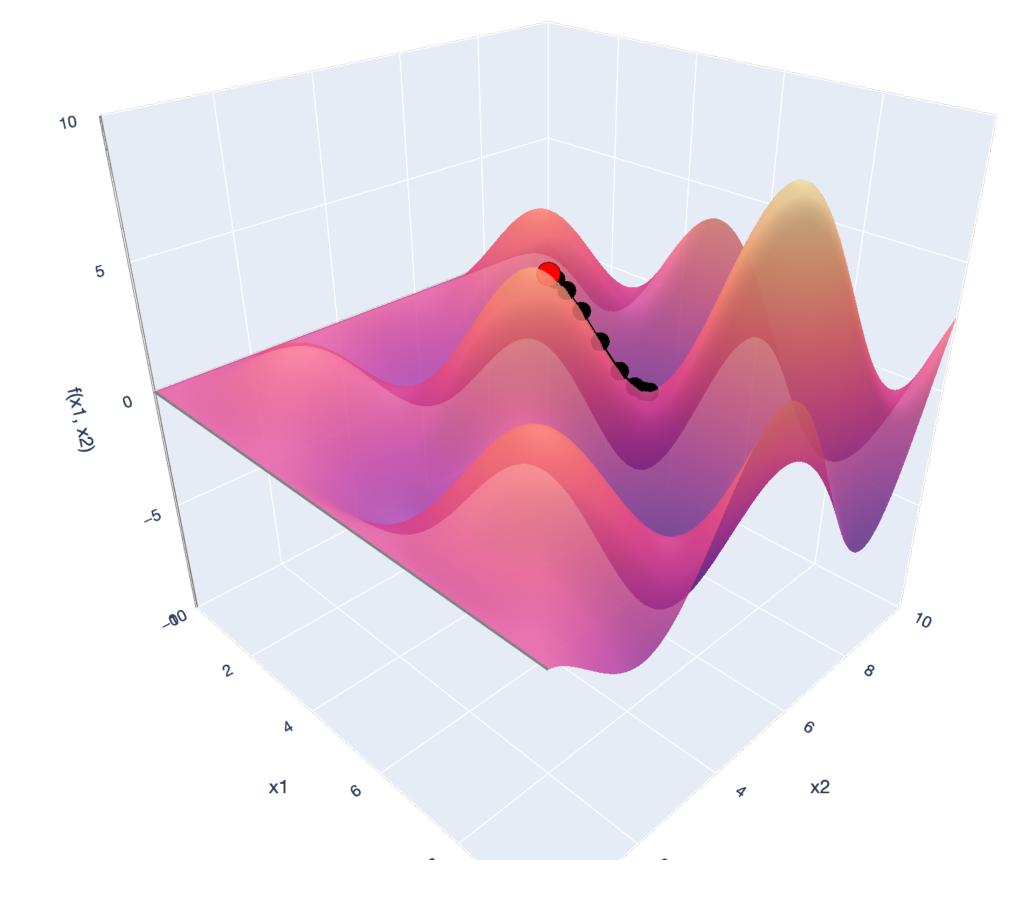


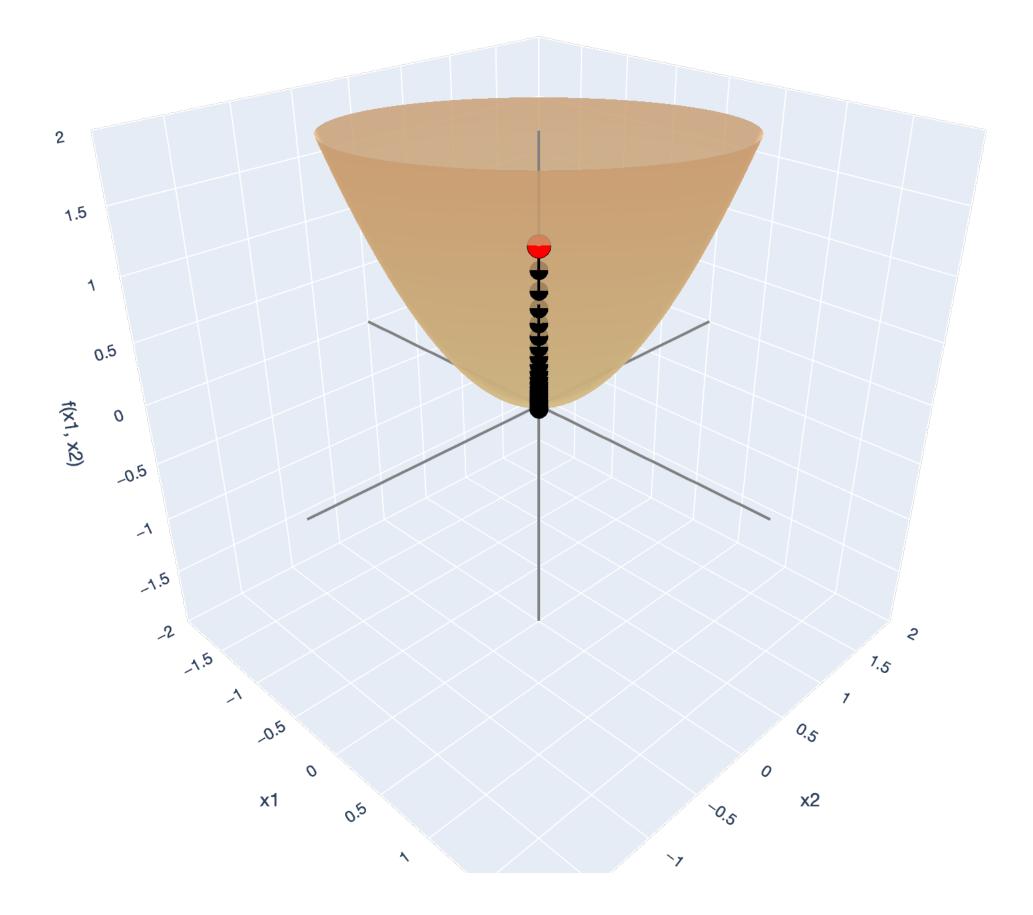
 x_1





Lesson Overview Big Picture: Gradient Descent





References

Mathematics for Machine Learning. Marc Pieter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.

Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman.