
By: Samuel Deng

Math for ML
Week 5.1: Basic Probability Theory, Models, and Data



Logistics & Announcements
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Lesson Overview
Probability Spaces. We’ll review the basic axioms and components of probability: 
sample space, events, and probability measures. This allows us to ditch these notions 
and introduce random variables.


Random variables. Review of the definition of a random variable, its distribution/law, its 
PDF/PMF/CDF, and joint distributions of several RVs.


Expectation, variance, and covariance. Review of these basic summary statistics of 
random variables and common properties.


Random vectors. Introduce the idea of a random vector, which is just a list of multiple 
random variables. Discuss generalizations of expectation and variance to random 
vectors.


Data as random, statistical model of ML. Introduce the statistical model of ML and the 
random error model. Introduce modeling assumptions. State and prove basic statistical 
properties of the OLS estimator.



Lesson Overview
Big Picture: Least Squares
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https://samuel-deng.github.io/math4ml_su24/assets/figs/regression_noise.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html


Motivation 
Data as randomly distributed



Regression
Setup
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trace 2
trace 3
trace 4
trace 5
trace 6
trace 7

Collect labeled training data  Fit the model   Generalize on new ⟹ ŵ ⟹ x0
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Regression
Setup

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .
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Regression
Setup

Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  
for , or:





To find , we follow the principle of least squares. 


i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2



Regression
Setup

Original Goal: Given a new, unseen , we wanted to generalize:


.


To do this, we fit the “training data”:  such that  for , or:





To find , we follow the principle of least squares. 


(x0, y0) ∈ ℝd × ℝ

ŵ⊤x0 ≈ y0

ŵ ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2



Regression
Setup

To find , we follow the principle of least squares. 





Least squares expanded is just:





Put a  there, and it looks like we’re minimizing an average…

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

∥Xw − y∥2 =
n

∑
i=1

(w⊤xi − yi)2

1/n
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Regression with randomness
Setup

Each row  for  is a random vector. Each  is a random variable. There exists a joint distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well to a newly drawn .


Our notion of error is the squared loss:


.


To choose the model , make the assumption that it is linear: , for some .


To choose the model , we attempt to minimize the expected squared loss, or the risk:





As a substitute, we can minimize the empirical risk:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ (x0, y0) ∼ ℙx,y

ℓ( f(x), y) := (y − f(x))2

f f(x) = w⊤x w

f

𝔼x,y[(y − f(x))2] = ∫ (y − f(x))2dℙ(x, y)

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2



Regression
Modeling randomness

−4 −2 0 2 4

−10

−5

0

5

10

−4 −2 0 2 4

−10

−5

0

5

10

−4 −2 0 2 4

−10

−5

0

5

10

−4 −2 0 2 4

−15

−10

−5

0

5

10

−4 −2 0 2 4

−10

−5

0

5

10



Probability Spaces 
Sample Spaces, Events, and Random Variables



Sample Space
Example: Flipping 2 fair coins

Consider the following experiment:


Alice and Bob both have a fair coin. 
They each flip their coins 
simultaneously, and the result can be 
either  or .


What are the possible outcomes of this 
experiment?

H T



Sample Space
Intuition and definition

The sample space of some experiment on 
which we want to model probabilities is the 
set of all possible outcomes. We usually 
denote this .


Example: 

.

Ω

Ω = {HH, HT, TH, TT}

Deng, Samuel



Events
Intuition and definition

Given a sample space , an event is a 
subset  of outcomes. Denote a 
collection of events .


Example: 




Ω
A ⊆ Ω

𝒜

A = {HT, TH} = {"exactly 1 head"}

𝒜 = {∅, {HH}, {HT}, …, {HH, HT, TH, TT}}
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Events
Intuition and definition

Events are subsets, so they obey the usual rules 
and definitions of set logic.


 (union)


 (intersection)


 (complement)


Example: 




A ∪ B

A ∩ B

AC

A = {HT, TH} = {"exactly 1 head"}

AC = {HH, TT}
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Probability Measure
Intuition and definition

A probability measure is a set function 
 mapping from sets to a 

number in . 


For an event , we call  the 
probability that event  occurs.


Can be interpreted as “degree of belief” or 
“long-run frequency.”  

Or just the “mass” of a particular subset!

ℙ : 𝒜 → [0,1]
[0,1]

A ∈ 𝒜 ℙ(A)
A
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Probability Measure
Axiomatic Properties

Any valid probability measure  satisfies 
two properties:


1. The measure of the entire sample space:


.


2. For disjoint events 


 


also known as countable additivity.

ℙ

ℙ(Ω) = 1

A1, A2, A3, …

ℙ (A1 ∪ A2 ∪ A3 ∪ …) = ℙ(A1) + ℙ(A2) + ℙ(A3) + …
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Probability Measure
Properties of probability measures

1. Complements. For any event , the probability of the complement is:


.


2. Subsets of events. For two events , if , then:


.


3. Unions of events. For any two events ,


.


4. Union bound. For any finite collection of events ,


.

A ∈ 𝒜

ℙ(AC) = 1 − ℙ(A)

A, B ∈ 𝒜 A ⊆ B

ℙ(B) ≤ ℙ(A)

A, B ∈ 𝒜

ℙ(A ∪ B) = ℙ(A) + ℙ(B) − ℙ(A ∩ B)

A1, …, An

ℙ (A1 ∪ … ∪ An) ≤
n

∑
i=1

ℙ(Ai)
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Probability Measure
Example Measures

For discrete outcome spaces, a common 
way to measure probabilities is to make 
outcomes equally probable:


 for .


This isn’t the only valid measure, e.g.


ℙ({ω}) = 1/ |Ω | ω ∈ Ω

ℙ({HH}) = 1

Deng, Samuel



Conditional Probabilities
Intuition and definition

For events , the conditional probability of  
given  is:


.


Example: 

 





A, B B
A

ℙ(B ∣ A) =
ℙ(A ∩ B)

ℙ(A)

A = {Bob's coin is H}

B = {Alice's coin is T}

C = {Alice's coin is H}
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Conditional Probabilities
Chain Rule and Bayes’ Rule

The chain rule of conditional probability is:


.


This easily gives us Bayes’ rule:


.


Bayes’ rule can be thought of as how we “update our beliefs.”

ℙ(A ∩ B) = ℙ(A ∣ B)ℙ(B) = ℙ(B ∣ A)ℙ(A)

ℙ(A ∣ B) =
ℙ(B ∣ A)ℙ(A)

ℙ(B)



Conditional Probabilities
Law of Total Probability

The law of total probability allows us to chop up 
probabilities into an exact sum of distinct events. 


If  is a countable collection of 
events, then, for any event :


 





B1, B2, B3, …
A

ℙ(A) = ∑
i

ℙ(A ∩ Bi)

ℙ(A) = ∑
i

ℙ(A ∣ Bi)ℙ(Bi)
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Probability Space
Intuition and definition

A tuple of a sample space, event space ( -algebra), 
and probability measure  is called a 
probability space. 

Example:








 for all .

σ
(Ω, 𝒜, ℙ)

Ω = {HH, HT, TH, TT}

𝒜 = {∅, {HH}, {HT}, …, {HH, HT, TH, TT}}

ℙ({ω}) = 1/4 ω ∈ Ω
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Probability Space
Intuition and definition

A tuple of a sample space, event space (
-algebra), and probability measure

 is called a probability space. 

We avoid dealing with these directly! 
Instead, we use random variables.

σ

(Ω, ℱ, ℙ)
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Random Variables
Example: Flipping 2 fair coins

Consider the following function:





where number of heads, .


Random variables are functions that 
assign a numerical quantity to every 
outcome in the sample space.

X : Ω → ℝ

X(ω) = H

Deng, Samuel
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Random Variables
Example: Flipping 2 fair coins

Consider the following function:





where  if at least one , and  
otherwise.


Random variables are functions that 
assign a numerical quantity to every 
outcome in the sample space.

X : Ω → ℝ

X(ω) = 1 H 0
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Random Variables
Example: Flipping 2 fair coins

Consider the following function:





where  where  is the 
number of .


Random variables are functions that 
assign a numerical quantity to every 
outcome in the sample space.

X : Ω → ℝ

X(ω) = 341x x
T
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Random Variable
Intuition and definition

A random variable is a function 
 that takes outcomes 

 of the sample space and maps 
them to real values.

X : Ω → ℝ
ω ∈ Ω



Random Variable
Intuition and definition

A random variable is a function 
 that takes outcomes 

 of the sample space and maps 
them to real values.


We typically use random variables to 
talk about events without referencing 
the underlying sample space.

X : Ω → ℝ
ω ∈ Ω
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Random Variable
Intuition and definition

Let  be defined as


.


Let the underlying probability measure 
assign outcomes to be equally likely: 





Then, for any , 


.

X : Ω → ℝ

X(ω) = # of heads, H

ℙ({ω}) = 1/4

S ⊆ ℝ

ℙX(S) = ℙ(X ∈ S)
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Random Variable
Intuition and definition

Let  be defined as


.


For any , 





Example.


What’s ?


What’s ?

X : Ω → ℝ

X(ω) = # of heads, H

S ⊆ ℝ

ℙX(S) = ℙ(X ∈ S) = ℙ({ω ∈ Ω : X(ω) ∈ S})

ℙX(1)

ℙX(20)
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Random Variable
The distribution of a random variable

Let  be some underlying probability space.


Random variables  come with a distribution/law, . 

This implicitly defines a probability measure on . For ,


.


(Ω, 𝒜, ℙ)

X : Ω → ℝ ℙX

ℝ S ⊆ ℝ

ℙX(S) = ℙ(X ∈ S) = ℙ(X−1(S)) = ℙ({ω ∈ Ω : X(ω) ∈ S})

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Random Variable
The distribution of a random variable

Let  be some underlying probability space.


Random variables  come with a distribution/law, . 

This implicitly defines a probability measure on . For ,


.


This allows us to just talk about the numbers in !

(Ω, 𝒜, ℙ)

X : Ω → ℝ ℙX

ℝ S ⊆ ℝ

ℙX(S) = ℙ(X ∈ S) = ℙ(X−1(S)) = ℙ({ω ∈ Ω : X(ω) ∈ S})

ℝ



Probability Spaces
Putting everything together

The sample space is the set of all possible outcomes:


.


The event space ( -algebra) is some collection of events:





The (underlying/base) probability measure is how we 
measure the “mass” of events:


 for .


A random variable on  is a function  
associating outcomes  to numerical values in :


Ω = {HH, TH, HT, TT}

σ

𝒜 = {∅, {HH}, {TT}, …, {HH, HT, TH, TT}}

ℙ(ω) = 1/4 ω ∈ Ω

(Ω, 𝒜, ℙ) X : Ω → ℝ
ω ∈ Ω ℝ

X(ω) = # of heads in ω
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Probability Spaces
Putting everything together

Example: 


Compute :


Compute :


Compute :

ℙ(X = 0)

ℙ(X = 1)

ℙ(X = 2)
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Random Variables 
Distributions of random variables



Cumulative Distribution Function
Intuition and definition

Let  be some random variable (on an underlying probability space 
).  

The cumulative distribution function (CDF) of  is the function 
 defined as:





This function allows us to get probabilities in an interval:


X : Ω → ℝ
(Ω, 𝒜, ℙ)

X
FX : ℝ → [0,1]

FX(x) = ℙ(X ≤ x)

ℙ(a ≤ X ≤ b) = F(b) − F(a)
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Cumulative Distribution Function
Examples

2 1 0 1 2 3 4
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]



Cumulative Distribution Function
Properties

2 1 0 1 2 3 4
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]

Right-continuous. Every for every point 
, the CDF satisfies: 


.


Monotonically nondecreasing. For every 
, .


Limits at infinities. The limits at both 
infinities are:


 and .

a ∈ ℝ

lim
x→a+

f(x) = f(a)

x ≤ y FX(x) ≤ FX(y)

lim
x→−∞

FX(x) = 0 lim
x→∞

FX(x) = 1
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Discrete vs. Continuous RVs
Difference in CDF

Discrete RVs have “jumps” in the CDF; (absolutely) continuous RVs are smooth.

2 1 0 1 2 3 4
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]



Discrete Random Variables
Intuition and definition

A discrete random variable is a random variable whose range 





is countable or finite. 


Example. 


 with  counting the number of heads.


 defined by  if  and  otherwise.

X(Ω) = {x ∈ ℝ : X(ω) = x for some ω ∈ Ω}

X : {HH, HT, TH, TT} → ℝ X(ω)

X : [0,1] → ℝ X(ω) = 0 ω < 0.5 X(ω) = 1
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Discrete Random Variables
Probability mass function

A discrete random variable  has a 
probability mass function (PMF) 

  defined by:


.


Example. What’s the PMF of the RV 
 with  counting the 

number of heads?

X

pX : ℝ → [0,1]

pX(x) = ℙ[X = x]

X : Ω → ℝ X(ω)
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Discrete Random Variables
Example: Flipping 2 fair coins

Example. What’s the PMF of the RV  with  counting the 
number of heads?

X : Ω → ℝ X(ω)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.1

0.2

0.3

0.4

0.5

p(
x)
=

[X
=
x]
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Continuous Random Variables
Intuition and definition

A continuous random variable is a random variable whose range 





is uncountably infinite. 


For continuous random variables, the probability at any point  is zero!


. 


So there is no “probability mass function,” but there is a probability density function.

X(Ω) = {x ∈ ℝ : X(ω) = x for some ω ∈ Ω}

x ∈ ℝ

ℙ[X = x] = 0



Continuous Random Variables
Probability density functions

A continuous random variable  has a probability density function (PDF)  (notice the 
output space need not be ) with the properties:


For all ,  and .


To get probabilities from the PDF:


.


We can also obtain the CDF by the fundamental theorem of calculus:


.

X pX : ℝ → ℝ
[0,1]

x ∈ ℝ pX(x) ≥ 0 ∫ℝ
pX(z)dz = 1

ℙ(a ≤ X ≤ b) = ∫
b

a
pX(z)dz

pX(x) = F′￼(x)



Continuous Random Variables
Intuition for the PDF

PDFs do NOT give probabilities. 


Think of them in analogy to the physical notion of density:


.


In an infinitesimally small interval, we can get a probability:


.

density =
mass

volume

ℙ(x − ϵ ≤ X ≤ x + ϵ) = ∫
x+ϵ

x−ϵ
pX(z)dz ≈ 2ϵpX(x)
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Continuous Random Variables
Example: Picking uniformly in the interval

Example. What’s the PDF of the RV  with the uniform random 
variable on ?

X : Ω → ℝ
[0,5]

2 0 2 4 6 8
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
p(
x)
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Continuous vs. Discrete RVs
Example: Uniform Discrete and Uniform Continuous

Continuous RV uniform on .[0,0.75]

0.5 0.0 0.5 1.0 1.5
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

p(
x)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
x

0.00

0.05

0.10

0.15

0.20

0.25

p(
x)
=

[X
=
x]

Discrete RV uniform on .{0,0.25,0.5,0.75}
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Continuous vs. Discrete RVs
Example: Uniform Discrete and Uniform Continuous

Continuous RV uniform on .[0,0.75] Discrete RV uniform on .{0,0.25,0.5,0.75}

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]
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Continuous vs. Discrete RVs
Summary

For continuous RVs,








For discrete RVs,


.


ℙ(X = x) = 0

ℙ(b ≤ X ≤ b) = ∫
b

a
pX(x)dx

ℙ(X = x) ∈ [0,1]

0.5 0.0 0.5 1.0 1.5
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

p(
x)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
x

0.00

0.05

0.10

0.15

0.20

0.25
p(
x)
=

[X
=
x]

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)
=

[X
x]
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Random Variables 
Multiple random variables



Joint Distribution
Example: Tossing coins and rolling die

Consider two experiments: 


Alice tosses a fair coin, Bob tosses a 
fair coin. 


Charlie rolls a fair six-sided die.


Let  count the number of heads in 
the first experiment.


Let  be the integer of the face of the 
die in the second experiment.

X

Y

Deng, Samuel



Joint Distribution
Definition

Let  be random variables. The joint 
distribution of  is the probability 
distribution written  with corresponding 
PMF/PDF:


.


For discrete random variables,


.

X1, …, Xn
X1, …, Xn

ℙX1,…,Xn

pX1,…,Xn
(x1, …, xn)

pX1,…,Xn
(x1, …, xn) = ℙ(X1 = x1, …, Xn = xn)
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Marginal Distribution
Definition

For two random variables ,  with joint 
distribution , the marginal 
distribution of  is obtained by “summing 
out”/“integrating out” the variable we don’t 
care about:





X Y
pX,Y(x, y)

X

pX(x) = ∑
y

pX,Y(x, y)

pX(x) = ∫
∞

−∞
pX,Y(x, y)dy
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Conditional Distribution
Definition

For two random variables ,  with joint 
distribution , the conditional 
distribution of  given  is given by 
only considering the events where .


X Y
pX,Y(x, y)

X Y = y
Y = y

pX∣Y(x ∣ y) =
pX,Y(x, y)

pY(y)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Joint Discrete Distributions
Joint, marginal, and conditional
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Joint Continuous Distributions
Joint, marginal, and conditional
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Joint Distributions
Summary

Let  be a joint distribution.


The sum rule/marginalization allows us to get from a joint to a marginal distribution.





The product rule/factorization allows us to “factor” the joint distribution into the 
marginal and conditional distributions.


.

pX,Y(x, y)

pX(x) =
∑y pX,Y(x, y) Y is discrete

∫ ∞
−∞

pX,Y(x, y) Y is continuous

pX,Y(x, y) = pY∣X(y ∣ x)pX(x) = pX∣Y(x ∣ y)pY(y)

Deng, Samuel



Independence
Intuition and definition

We say that two random variables  are independent if their joint distribution 
factors into their respective distributions:


.


Another definition: the conditional distribution is the marginal.


 and .

X, Y

pX,Y(x, y) = pX(x)pY(y)

pX∣Y(x ∣ y) = pX(x) pY∣X(y ∣ x) = pY(y)

Deng, Samuel



Independence
Intuition and definition

We say that two random variables  are independent if their joint distribution factors into their 
respective distributions:


.


Another definition: the conditional distribution is the marginal.


 and .


For more than two RVs, let  be a collection of RVs indexed by . Then,  are independent if, 
for any finite subset of indices ,


.

X, Y

pX,Y(x, y) = pX(x)pY(y)

pX∣Y(x ∣ y) = pX(x) pY∣X(y ∣ x) = pY(y)

{Xi}i∈I I {Xi}
{i1, …, ik} ∈ I

pXi1,…,Xik
(Xi1, …, Xik) =

k

∏
j=1

pXij
(xij)



Independence
Independent and identically distributed (i.i.d.)

A collection of random variables  are independent and identically 
distributed (i.i.d.) if their joint distribution can be factored entirely:


.


Very common assumption in ML!

X1, …, Xn

pX1,…,Xn
(x1, …, xn) =

n

∏
i=1

pXi
(xi)



Expectation 
Definition and Properties



Expected Value
Intuition

The expectation/expected value or mean of a random variable is its “center of 
mass.”
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Expected Value
Definition

The expectation/expected value or mean of a random variable  is


 for discrete 


 for continuous 

X

𝔼[X] = ∑
x

xpX(x) X

𝔼[X] = ∫
∞

−∞
xpX(x)dx X

Deng, Samuel



Expected Value
Definition (Functions of RVs)

The expectation/expected value or mean of a function  of a random variable 
 is


 for discrete 


 for continuous 


A function of a random variable is a random variable!

g(X)
X

𝔼[g(X)] = ∑
x

g(x)pX(x) X

𝔼[g(X)] = ∫
∞

−∞
g(x)pX(x)dx X

Deng, Samuel

Deng, Samuel

Deng, Samuel



Expected Value
Properties of the expected value

Linearity. The expectation is a linear operator:


 and ,


for any random variables  and  (need not be independent)!


𝔼[αX] = α𝔼[X] 𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X Y



Expected Value
Properties of the expected value

Linearity. The expectation is a linear operator:


 and ,


for any random variables  and  (need not be independent)!


Product (for indepndent RVs). For independent random variables 


.


More generally, for independent :


.

𝔼[αX] = α𝔼[X] 𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X Y

X, Y

𝔼[XY] = 𝔼[X]𝔼[Y]

X1, …, Xn

𝔼 [
n

∏
i=1

Xi] =
n

∏
i=1

𝔼[Xi]

Deng, Samuel



Conditional Expectation
Intuition

The conditional expectation is the “best guess” of a random variable’s 
expectation, given an event occurs.


Depending on context, this is a random variable or a function. 

 is a function .


 is a random variable .

𝔼[X ∣ Y = y] g(y) = 𝔼[X ∣ Y = y]

𝔼[X ∣ Y] g(Y)

Deng, Samuel
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Conditional Expectation
Intuition

Consider the roll of a six-sided fair die.


Let  if the roll is even,  otherwise.


Let if the roll is prime,  otherwise.


What is ?


What is ?


What is ?


What is  and ?

X = 1 X = 0

Y = 1 Y = 0

𝔼[X]

𝔼[X ∣ Y = 1]

𝔼[X ∣ Y = 0]

𝔼[X ∣ Y = y] 𝔼[X ∣ Y]

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel
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Conditional Expectation
Definition (given events)

If  is an event and  is a discrete random variable, the conditional expectation of  given  is:


.


If ,  are discrete random variables, the conditional expectation of  given  is:


.


If ,  are continuous random variables with joint density , ’s marginal  and conditional density 

, the conditional expectation of  given  is:


.

A X X A

𝔼[X ∣ A] = ∑
x

ℙX[X = x ∣ A]

X Y X Y = y

𝔼[X ∣ Y = y] = ∑
x

xpX∣Y(x ∣ y) = ∑
x

xℙ[X = x ∣ Y = y]

X Y pX,Y(x, y) Y pY(y)

pX∣Y(x ∣ y) =
pX,Y(x, y)

pY(y)
X Y = y

𝔼[X ∣ Y = y] = ∫
∞

−∞
xpX∣Y(x ∣ y)dx

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Conditional Expectation
Definition (given a random variable)

For two random variables  and , think of the conditional expectation of  
given  as the “best guess” of  only using the information from :


 is a random variable (a function  of the RV ).


We can obtain this random variable by figuring out the function  for 
 and then “plugging back in” the random variable .


X Y X
Y Y X

𝔼[Y ∣ X] g(X) X

g(x)
𝔼[Y ∣ X = x] g(X)

Deng, Samuel
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Conditional Expectation
Definition (given a random variable)

Example. A stick of length  is broken at a point  chosen uniformly at random. 
Given that , choose another breakpoint  uniformly on the interval . 
What is the random variable ? What is its mean?

1 X
X = x Y [0,x]

𝔼[Y ∣ X]

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel
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Conditional Expectation
Properties of conditional expectation

Independence. If  is independent of ,


.


Pulling out what’s known. For any function , 


.


Linearity. For any random variables  and scalar ,


 and .


Law of total expectation/tower rule. For any random variables ,


.

X Y

𝔼[X ∣ Y] = 𝔼[X]

g

𝔼[h(X)Y ∣ X] = h(X)𝔼[Y ∣ X]

X, Y, Z α ∈ ℝ

𝔼[X + Y ∣ Z] = 𝔼[X ∣ Z] + 𝔼[Y ∣ Z] 𝔼[αX ∣ Z] = α𝔼[X ∣ Z]

X, Y

𝔼[𝔼[Y ∣ X]] = 𝔼[Y]

Deng, Samuel
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Variance 
Definition and Covariance



Variance
Intuition

The variance of a random variable is how “spread” around its expectation it is.
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Variance
Definition

The variance of a random variable  is:


.


This can also be written (using linearity of expectation):


.

Var(X)

Var(X) = 𝔼[(X − 𝔼[X])2]

Var(X) = 𝔼[X2] − 𝔼[X]2

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel
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Variance
Definition

The variance of a random variable  is:


.


This can also be written (using linearity of expectation):


.


The standard deviation is .

Var(X)

Var(X) = 𝔼[(X − 𝔼[X])2]

Var(X) = 𝔼[X2] − 𝔼[X]2

Var(X)

Deng, Samuel



Variance
Properties of variance

The variance is NOT linear, but we do have, for ,


.


If  are independent (more generally, uncorrelated),


.

α, β ∈ ℝ

Var(αX + β) = α2Var(X)

X1, …, Xn

Var(X1 + … + Xn) = Var(X1) + … + Var(Xn)

Deng, Samuel
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Covariance
Intuition

The covariance measures the linear relationship between two random variables. 

Deng, Samuel
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Covariance
Definition

The covariance of  is


.


The outer expectation is over both  and  (their joint distribution).


This can also be rewritten as:


.


X, Y

Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])]

X Y

Cov(X, Y) = 𝔼[XY] − 𝔼[X]𝔼[Y]

Deng, Samuel
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Covariance
Definition

The covariance of  is


.


The outer expectation is over both  and  (their joint distribution).


This can also be rewritten as:


.


The correlation is what we get from normalizing the covariance:


 

X, Y

Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])]

X Y

Cov(X, Y) = 𝔼[XY] − 𝔼[X]𝔼[Y]

ρ(X, Y) =
Cov(X, Y)

Var(X)Var(Y)



Covariance
Properties of covariance

Covariance follows the “symmetry” property:


.


Covariance follows the “bilinearity” property:


.


Covariance follows the “positive definiteness” property:


.


Cov(X, Y) = Cov(Y, X)

Cov(αX + βY, Z) = αCov(X, Z) + βCov(Y, Z)

Cov(X, X) = Var(X) ≥ 0

Deng, Samuel



Summary Statistics
Expectation, Variance, and Covariance
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Random Vectors 
Multivariate Random Variables



Random Vectors
Definition

So far, we have only been talking about single-variable distributions.


We can talk about multivariable distributions by considering random vectors:


X =

X1
X2
⋮
Xn

Deng, Samuel

Deng, Samuel



Random Vectors
Expectation

The expectation of a random vector just comes from taking the entry-wise 
expectation:


𝔼[X] =

𝔼[X1]
𝔼[X2]

⋮
𝔼[Xn]



Random Vectors
Covariance Matrix

The variance of a random vector generalizes to the covariance matrix


In the  case,


.


What do you notice about this matrix?

d = 2

Σ = [ Var(X1) Cov(X1, X2)
Cov(X2, X1) Var(X2) ]

Deng, Samuel

Deng, Samuel



Random Vectors
Covariance Matrix

The variance of a random vector generalizes to the covariance matrix





In general, .

Σ = 𝔼[(X − 𝔼[X])(X − 𝔼[X])⊤] =

Var(X1) Cov(X1, X2) … Cov(X1, Xn)
Cov(X2, X1) Var(X2) … Cov(X2, Xn)

⋮ ⋮ ⋱ ⋮
Cov(Xn, X1) Cov(Xn, X2) … Var(Xn)

Σi,j = Cov(Xi, Xj)

Deng, Samuel



Random Vectors
Covariance Matrix

The covariance matrix is symmetric.


.


The covariance matrix is also positive semidefinite.


 for all .

Σ = Σ⊤

x⊤Σx ≥ 0 x ∈ ℝd

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Data as random 
Modeling regression with probability



Regression
Modeling randomness
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Regression
Setup (Review)

Observed: Matrix of training samples  and vector of training labels . 





Unknown: Weight vector  with weights .


Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  for , or:


X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Review)

Goal: For each , we predict: .


Choose a weight vector that “fits the training data”:  such that  
for , or:





To find , we follow the principle of least squares. 


i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

ŵ ∈ ℝd yi ≈ ̂yi
i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2



Regression
Setup (Review)

Original goal: 


Given a new, unseen , we wanted to generalize:


.


Choose a weight vector that “fits the training data”:  such that  for , or:





To find , we follow the principle of least squares. 


(x0, y0) ∈ ℝd × ℝ

ŵ⊤x0 ≈ y0

ŵ ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xŵ = ŷ ≈ y .

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2



Regression
Setup (Review)

To find , we follow the principle of least squares. 





Least squares expanded is just:





Put a  there, and it looks like we’re minimizing an average…

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

∥Xw − y∥2 =
n

∑
i=1

(w⊤xi − yi)2

1/n

Deng, Samuel

Deng, Samuel
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Regression
A note on ŵ
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Regression
A note on ŵ
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Regression
A note on ŵ
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Regression with randomness
Setup

Each row  for  is a random vector. Each  is a random variable. There exists a joint distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well to a newly drawn .


Our notion of error is the squared loss:


.


To choose the model , make the assumption that it is linear: , for some .


To choose the model , we attempt to minimize the expected squared loss, or the risk:





As a substitute, we can minimize the empirical risk:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ (x0, y0) ∼ ℙx,y

ℓ( f(x), y) := (y − f(x))2

f f(x) = w⊤x w

f

𝔼x,y[(y − f(x))2] = ∫ (y − f(x))2dℙ(x, y)

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2



Regression with randomness
Setup

Each row  for  is a random vector. Each  is a random variable. There exists a joint distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well to a newly drawn .


Our notion of error is the squared loss:


.


To choose the model , make the assumption that it is linear: , for some .


To choose the model , we attempt to minimize the expected squared loss, or the risk:





As a substitute, we can minimize the empirical risk:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ (x0, y0) ∼ ℙx,y

ℓ( f(x), y) := (y − f(x))2

f f(x) = w⊤x w

f

𝔼x,y[(y − f(x))2] = ∫ (y − f(x))2dℙ(x, y)

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2



Regression with randomness
Setup

Each row  for  is a random vector. Each  is a random 
variable. There exists a joint distribution  over , where we draw:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ

ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y



Regression with randomness
Training examples

Matrix of training samples  and vector of training labels . 





Each entry is a random variable, think of  as a -dimensional random vector.


Each label is a random variable, think of  as a random variable.


Each  pair is drawn from a joint distribution, 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
=

← x⊤
1 →

⋮
← x⊤

n →
.

x⊤
i ∈ ℝd d

yi ∈ ℝ

(xi, yi) ∈ ℝd × ℝ ℙx,y



Regression with randomness
Setup

Each row  for  is a random vector. Each  is a random variable. There exists a joint distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well to a newly drawn .


Our notion of error is the squared loss:


.


To choose the model , make the assumption that it is linear: , for some .


To choose the model , we attempt to minimize the expected squared loss, or the risk:





As a substitute, we can minimize the empirical risk:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ (x0, y0) ∼ ℙx,y

ℓ( f(x), y) := (y − f(x))2

f f(x) = w⊤x w

f

𝔼x,y[(y − f(x))2] = ∫ (y − f(x))2dℙ(x, y)

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2



Each row  for  is a random vector. Each  is a random 
variable. There exists a joint distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well 
to a newly drawn .


Our notion of error is the squared loss:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ

ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ
(x0, y0) ∼ ℙx,y

ℓ( f(x), y) := (y − f(x))2

Regression with randomness
Setup

Deng, Samuel
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Regression with randomness
Model of error

Each  pair is drawn from a joint distribution,  

 

Some deterministic function  explains as much as it can


Some randomness  models the unexplained relationship, where we assume


 and  is independent of .

(xi, yi) ∈ ℝd × ℝ ℙx,y

yi = f*(xi) + ϵi

f* : ℝd → ℝ

ϵi

𝔼[ϵi] = 0 ϵi xi
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Regression with randomness
Model of error

Each  pair is drawn from a 
joint distribution,  

 

Some deterministic function  
explains as much as it can


Some randomness  models the 
unexplained relationship, where we assume


 and  is independent of .

(xi, yi) ∈ ℝd × ℝ
ℙx,y

yi = f*(xi) + ϵi

f* : ℝd → ℝ

ϵi

𝔼[ϵi] = 0 ϵi xi
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Regression with randomness
Model of error

Each  pair is drawn from a 
joint distribution,  

 

Some deterministic function  
explains as much as it can


Some randomness  models the 
unexplained relationship, where we assume


 and  is independent of .

(xi, yi) ∈ ℝd × ℝ
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yi = f*(xi) + ϵi

f* : ℝd → ℝ
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Regression with randomness
Model of error

Each  pair is drawn from a 
joint distribution,  

 

Deterministic linear function 





Some randomness  models the unexplained 
relationship, where we assume


 and  is independent of .

(xi, yi) ∈ ℝd × ℝ
ℙx,y

yi = x⊤
i w* + ϵi

f(x) = x⊤w*

ϵi

𝔼[ϵi] = 0 ϵi xi
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Regression with randomness
Model of error
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Regression with randomness
Goal, with randomness

Each  pair is drawn from a joint distribution,  

, where  and  is independent of .


This gives us  and , so we can also write:


, where  is a random vector.


(xi, yi) ∈ ℝd × ℝ ℙx,y

yi = x⊤
i w* + ϵi 𝔼[ϵi] = 0 ϵi xi

X ∈ ℝn×d y ∈ ℝn

y = Xw* + ϵ ϵ ∈ ℝn
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Regression with randomness
Goal, with randomness

Each  pair is drawn from 
a joint distribution,  

We can draw a new  from the 
distribution . 

We want to find a model  for 
predicting on this new example.


Notion of “badness” is squared loss 


.

(xi, yi) ∈ ℝd × ℝ
ℙx,y

(x0, y0)
ℙx,y

f : ℝd → ℝ

ℓ( f(x0), y0) := (y0 − f(x0))2
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Regression with randomness
Setup

Each row  for  is a random vector. Each  is a random variable. There exists a joint distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well to a newly drawn .


To choose the model , make the assumption that it is linear: , for some .


Our notion of error is the squared loss:


.


To choose the model , we attempt to minimize the expected squared loss, or the risk:





As a substitute, we can minimize the empirical risk:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ (x0, y0) ∼ ℙx,y

f f(x) = w⊤x w

ℓ( f(x), y) := (y − f(x))2

f

𝔼x,y[(y − f(x))2] = ∫ (y − f(x))2dℙ(x, y)

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2



Regression with randomness
Goal, with randomness

Each  pair is drawn from a joint distribution,  

We can draw a new  from the distribution . 

We want to find a linear function  for predicting on this new example:





Notion of “badness” is squared loss:


.


To make a decision, we care about the expected loss (risk):


(xi, yi) ∈ ℝd × ℝ ℙx,y

(x0, y0) ℙx,y

f : ℝd → ℝ

f(x) = w⊤x

ℓ( f(x0), y0) := (y0 − f(x0))2

R( f ) := 𝔼(x0,y0)[(y0 − f(x0))2]
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Regression
Goal, with randomness

,


where  is a random variable with  and , with  is independent of .


Draw  examples: random matrix  and random vector .


Ultimate goal: Find  that generalizes on a new :


 

Intermediary goal: Find  that does well on the training samples:


.

y = x⊤w* + ϵ

ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 ϵ x

n X ∈ ℝn×d y ∈ ℝn

f(x) := ŵ⊤x (x0, y0) ∼ ℙx,y

R( ̂f ) := 𝔼x0,y0
[( ̂f(x0) − y0)2]

f(x) := ŵ⊤x

R̂( ̂f ) :=
1
n

n

∑
i=1

( ̂f(xi) − yi)2



Regression
Goal, with randomness

,


where  is a random variable with  and  is independent of .


Draw  examples: random matrix  and random vector .


Ultimate goal: Find  that generalizes on a new 
:


 

Intermediary goal: Find  that does well on the training 
samples, minimizing empirical risk:


 =  


This is what we’ve been doing all along!

y = x⊤w* + ϵ

ϵ 𝔼[ϵ] = 0 ϵ x

n X ∈ ℝn×d y ∈ ℝn

f(x) := ŵ⊤x
(x0, y0) ∼ ℙx,y

R( ̂f ) := 𝔼x0,y0
[( ̂f(x0) − y0)2]

f(x) := ŵ⊤x

R̂( ̂f ) :=
1
n

n

∑
i=1

( ̂f(xi) − yi)2 1
n

∥Xŵ − y∥2
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Regression with randomness
Setup

Each row  for  is a random vector. Each  is a random variable. There exists a joint distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well to a newly drawn .


To choose the model , make the assumption that it is linear: , for some .


Our notion of error is the squared loss:


.


To choose the model , we attempt to minimize the expected squared loss, or the risk:





As a substitute, we can minimize the empirical risk:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ (x0, y0) ∼ ℙx,y

f f(x) = w⊤x w

ℓ( f(x), y) := (y − f(x))2

f

R( f ) := 𝔼x,y[(y − f(x))2] = ∫ (y − f(x))2dℙ(x, y)

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2
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Statistics of the OLS Estimator 
Bias and Variance 



Statistics of the Error Model
Setup

Let  be a random vector and  be random variable be drawn from 
the joint distribution , where


,


where  is a random variable with  and , with  
independent of .


x ∈ ℝd y ∈ ℝ
ℙx,y

y = x⊤w* + ϵ

ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 ϵ
x

Deng, Samuel



Statistics of the Error Model
Expectation




, because errors are independent of .

y = x⊤w* + ϵ

𝔼[ϵ ∣ x] = 0 x
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Statistics of the Error Model
Variance




, because errors are independent of .


, because errors are independent of .


y = x⊤w* + ϵ

𝔼[ϵ ∣ x] = 0 x

Var(ϵ ∣ x) = σ2 x
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Statistics of the Error Model
Conditional Expectation




, because errors are independent of .


, because errors are independent of .


, the regression function.


y = x⊤w* + ϵ

𝔼[ϵ ∣ x] = 0 x

Var(ϵ ∣ x) = σ2 x

𝔼[y ∣ x] = x⊤w*
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Statistics of the Error Model
Conditional Expectation




, because errors are independent of .


, because errors are independent of .


, the regression function.


This is the target we’re aiming for!

y = x⊤w* + ϵ

𝔼[ϵ ∣ x] = 0 x

Var(ϵ ∣ x) = σ2 x

𝔼[y ∣ x] = x⊤w*



Statistics of OLS
Using OLS to minimize empirical risk




Find  that does well on training samples, minimizing empirical risk:


 =  


Obtain the least squares estimator the same way: 

. 

y = x⊤w* + ϵ

f(x) := ŵ⊤x

R̂( ̂f ) :=
1
n

n

∑
i=1

( ̂f(xi) − yi)2 1
n

∥Xŵ − y∥2

ŵ = (X⊤X)−1X⊤y
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Statistics of OLS
Using OLS to minimize empirical risk




Obtain the least squares estimator the same way:


.  

This  is a random vector now!


If we condition on , we can get statistics on this random vector:


y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ ∈ ℝd

X ∈ ℝn×d



Statistics of OLS
Expectation




Obtain the least squares estimator the same way:


.  

This  is a random vector now!


If we condition on , we can get statistics on this random vector:


Expectation: 

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ ∈ ℝd

X ∈ ℝn×d

𝔼[ŵ ∣ X] = w*
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Statistics of OLS
Variance




Obtain the least squares estimator the same way:


.  

This  is a random vector now!


If we condition on , we can get statistics on this random vector:


Expectation: .


Variance: .

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ ∈ ℝd

X ∈ ℝn×d

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2
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Statistics of OLS
Intuition




Obtain the least squares estimator the same way:


.  

This  is a random vector now!


If we condition on , we can get 
statistics on this random vector:


Expectation: .


Variance: .

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ ∈ ℝd

X ∈ ℝn×d

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2
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Statistics of OLS
Intuition




Obtain the least squares estimator the same way:


.  

This  is a random vector now!


If we condition on , we can get 
statistics on this random vector:


Expectation: .


Variance: .

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ ∈ ℝd

X ∈ ℝn×d

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2 −4
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Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  and , independent of . 
Suppose we construct a random matrix  and random vector  by drawing  
random examples  from . Then, the OLS estimator  has the 
following statistical properties: 

Expectation: .


Variance: .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n

(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2
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Recap 



Lesson Overview
Probability Spaces. We’ll review the basic axioms and components of probability: 
sample space, events, and probability measures. This allows us to ditch these notions 
and introduce random variables.


Random variables. Review of the definition of a random variable, its distribution/law, its 
PDF/PMF/CDF, and joint distributions of several RVs.


Expectation, variance, and covariance. Review of these basic summary statistics of 
random variables and common properties.


Random vectors. Introduce the idea of a random vector, which is just a list of multiple 
random variables. Discuss generalizations of expectation and variance to random 
vectors.


Data as random, statistical model of ML. Introduce the statistical model of ML and the 
random error model. Introduce modeling assumptions. State and prove basic statistical 
properties of the OLS estimator.



Lesson Overview
Big Picture: Least Squares
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Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html
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