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Lesson Overview
Law of Large Numbers. The LLN allows us to move from probability to statistics (reasoning about an 
unknown data generating process using data from that process).


Statistical estimators. We define a statistical estimator, which is a function of a collection of random 
variables (data) aimed at giving a “best guess” at some unknown quantity from some probability 
distribution.


Bias, variance, and MSE. Two important properties of statistical estimators are their bias and 
variance, which are measures of how good the estimator is at guessing the target. These form the 
estimator’s MSE.


Stochastic gradient descent (SGD). Gradient descent needs to take a gradient over all  training 
examples, which may be large; SGD estimates the gradient to speed up the process. 

Gauss-Markov Theorem. We show that OLS is the minimum variance estimator in the class of all 
unbiased, linear estimators.  

Statistical analysis of OLS risk. We analyze the risk of OLS — how well it’s expected to do on future 
examples drawn from the same distribution it was trained on.
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Lesson Overview
Big Picture: Least Squares
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https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html


Law of Large Numbers 
Theorem and Statistical Estimation 101
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Statistical Estimation
Intuition

In probability theory, we assumed we knew some data generating process (as 
a distribution) , and we analyzed observed data under that process.


.


Statistics can be thought of as the “reverse process.” We see some data and 
we try to make inferences about the process that generated the data.


 

ℙx

ℙx ⟹ x1, …, xn

x1, …, xn ⟹ ℙx
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Statistical Estimation
Intuition

In probability theory, we assumed we knew some data generating process (as 
a distribution) , and we analyzed observed data under that process.


.


Statistics can be thought of as the “reverse process.” We see some data and 
we try to make inferences about the process that generated the data.





In order to do so, we need to formalize the notion that “collecting a lot of data” 
gives us a peek at the underlying process!

ℙx

ℙx ⟹ x1, …, xn

x1, …, xn ⟹ ℙx



Law of Large Numbers
Intuition

Averages of a large number of random samples converge to their mean.


Example. The average die roll after many trials is expected to be close to 3.5.
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Independence
Independent and identically distributed (i.i.d.)

A collection of random variables  are independent and identically 
distributed (i.i.d.) if their joint distribution can be factored entirely:


.


Very common assumption in ML!

X1, …, Xn

pX1,…,Xn
(x1, …, xn) =

n

∏
i=1

pXi
(xi)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Law of Large Numbers
Theorem Statement

Theorem (Weak Law of Large Numbers). Let  be independent and identically 
distributed (i.i.d.) random variables with finite mean . Let their sample average 
be denoted as


.


Then, for any ,


.


This type of convergence is also called convergence in probability.

X1, …, Xn
μ := 𝔼[Xi]

Xn :=
1
n

n

∑
i=1

Xi

ϵ > 0

lim
n→∞

ℙ ( |Xn − μ | < ϵ) = 1
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Markov’s Inequality
Statement and Proof

Theorem (Markov’s Inequality). Let  
be any nonnegative random variable 
and suppose that  exists. For any 

,


.


X

𝔼[X]
α > 0

ℙ(X > α) ≤
𝔼[X]

α
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Markov’s Inequality
Statement and Proof

For any ,


.


Proof. 


Because ,


α > 0

ℙ(X > α) ≤
𝔼[X]

α

X > 0

𝔼(X) = ∫
∞

0
xpX(x)dx = ∫

t

0
xpX(x)dx + ∫

∞

t
xpX(x)dx

≥ ∫
∞

t
xpX(x)dx ≥ t∫

∞

t
pX(x)dx = tℙ(X > t)
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Chebyshev’s Inequality
Statement and Proof

Theorem (Chebyshev’s Inequality). 
Let  be any arbitrary random variable, 
and let  and . 
Then,





X
μ := 𝔼[X] σ2 = Var(X)

ℙ( |X − μ | ≥ α) ≤
σ2

α2
.
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Chebyshev’s Inequality
Statement and Proof




Proof.  

Apply Markov’s inequality to the 
random variable :





ℙ( |X − μ | ≥ α) ≤
σ2

α2
.

|X − μ |2

ℙ( |X − μ | ≥ α) = ℙ( |X − μ |2 ≥ α2) ≤
𝔼[(X − μ)2]

α2
=

σ2

α2
.
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Law of Large Numbers
Proof

Let  be i.i.d. with their sample average denoted as


.


Then, for any ,


.


Proof (simplified version with ).


Assuming , apply Chebyshev’s inequality to :


.

X1, …, Xn

Xn :=
1
n

n

∑
i=1

Xi

ϵ > 0

lim
n→∞

ℙ ( |Xn − μ | < ϵ) = 1

σ2 < ∞

σ2 < ∞ Xn

ℙ( |Xn − μ | > ϵ) ≤
Var(Xn)

ϵ2
=

σ2

nϵ2
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Sample Average
Definition

For i.i.d. random variables , their sample average/sample mean/
empirical mean is the quantity:


.

X1, …, Xn

Xn :=
1
n

n

∑
i=1

Xi



Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin 
toss, with  for tails and  for heads. Clearly, .


Suppose we independently toss  coins, obtaining RVs .


Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn



Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin 
toss, with  for tails and  for heads. Clearly, .


Suppose we independently toss  coins, obtaining RVs .





Law of large numbers states that for any , no matter how small:


Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn

Xn :=
1
n

n

∑
i=1

Xi =  average frequency of heads

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1
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Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin toss, with  for tails and  for heads. Clearly, 
.


Law of large numbers states that for any , no matter how small:





We can quantify this more exactly with Chebyshev’s inequality:





Therefore, using Chebyshev’s inequality:


Xi Xi = 0 Xi = 1
μ := 𝔼[Xi] = 1/2

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1

Var(Xn) =
σ2

n
=

1
4n

ℙ(0.4 ≤ Xn ≤ 0.6) = ℙ( |Xn − μ | ≤ 0.1)
= 1 − ℙ( |Xn − μ | > 0.1)

≥ 1 −
1

4n(0.1)2
= 1 −

25
n
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Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin toss, with  for 
tails and  for heads. Clearly, .


Law of large numbers states that for any , no matter how small:





From the previous slide:


.


So, for example, for  flips, the probability that the frequency of heads is between  and  
is at least .

Xi Xi = 0
Xi = 1 μ := 𝔼[Xi] = 1/2

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1

ℙ(0.4 ≤ Xn ≤ 0.6) ≥ 1 −
25
n

n = 100 0.4 0.6
0.75
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Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the outcome of a 
single fair coin toss, with  for tails and  for heads. 
Clearly, .


Law of large numbers states that for any , no matter how 
small:





From the previous slide:


.


So, for example, for  flips, the probability that the 
frequency of heads is between  and  is at least .

Xi
Xi = 0 Xi = 1

μ := 𝔼[Xi] = 1/2

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1

ℙ(0.4 ≤ Xn ≤ 0.6) ≥ 1 −
25
n

n = 100
0.4 0.6 0.75
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Statistical Estimation
Intuition

In a nutshell: 

Make some assumptions about data that we’re to collect.


(i.i.d. assumption).


Collect as much data as we can about the phenomenon.


(  coin flips).


Use the data to derive characteristics (statistics) about how the data 
were generated 


(the true mean )


via some estimator.


( )

n = 100

𝔼[Xi] = 0.5

Xn =
1
n

n

∑
i=1

Xi



Generalization
Intuition

Statistics/statistical inference concerns drawing conclusions about data that 
we’ve already been given. 

Generalization is a big concern in machine learning — we also want to 
describe future data well.


Key link: 


If the future data comes from the same distribution as our past data, then we 
can hope to generalize by describing our past data well!
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Statistical Estimators 
Definition and examples



Statistical Estimator
Intuition

A (statistical) estimator is a “best guess” at some (unknown) quantity of 
interest (the estimand) using observed data.


We will only concern ourselves with point estimation, where we want to 
estimate a single, fixed quantity of interest (as opposed to, say, an interval).


The quantity doesn’t have to be a single number; it could be, for example, a 
fixed vector, matrix, or function.



Statistical Estimator
Definition

Let  be  i.i.d. random variables drawn from some distribution . An 
estimator  of some fixed, unknown parameter  is some function of 

:


.


Defined similarly for random vectors.


X1, …, Xn n ℙX̂θn θ
X1, …, Xn

̂θn = g(X1, …, Xn)
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Statistical Estimator
Definition

Let  be  i.i.d. random variables drawn from some distribution . An 
estimator  of some fixed, unknown parameter  is some function of :


.


Defined similarly for random vectors.


Importantly: statistical estimators are functions of random variables, so they are 
themselves random variables!

X1, …, Xn n ℙX̂θn θ X1, …, Xn

̂θn = g(X1, …, Xn)
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Statistical Estimator
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin 
toss, with  for tails and  for heads. Clearly, .


Suppose we independently toss  coins, obtaining RVs .


Estimand: .


Estimator: .

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi
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Statistical Estimator
Example: Estimating coin flip

Example. Let  be a random variable 
denoting the outcome of a single fair coin 
toss, with  for tails and  for 
heads. Clearly, .


Suppose we independently toss  coins, 
obtaining RVs .


Estimand: .


Estimator: .

Xi

Xi = 0 Xi = 1
μ := 𝔼[Xi] = 1/2

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Estimating coin flip

Example. Let  be a random variable 
denoting the outcome of a single fair coin 
toss, with  for tails and  for 
heads. Clearly, .


Suppose we independently toss  coins, 
obtaining RVs .


Estimand: .


Estimator: .

Xi

Xi = 0 Xi = 1
μ := 𝔼[Xi] = 1/2

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Estimating coin flip

Example. Let  be a random variable 
denoting the outcome of a single fair coin 
toss, with  for tails and  for 
heads. Clearly, .


Suppose we independently toss  coins, 
obtaining RVs .


Estimand: .


Estimator: .

Xi

Xi = 0 Xi = 1
μ := 𝔼[Xi] = 1/2

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Variance Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin 
toss, with  for tails and  for heads. Clearly, .


Suppose we independently toss  coins, obtaining RVs .


Estimand: .


Estimator:  (biased sample variance).

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn

θ = Var(Xi) = (1/2)(1 − 1/2) = 1/4

̂θn = S2
n :=

1
n

n

∑
i=1

(Xi − Xn)2



Statistical Estimator
Example: Variance Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin 
toss, with  for tails and  for heads. Clearly, .


Suppose we independently toss  coins, obtaining RVs .


Estimand: .


Estimator:  (unbiased sample variance).

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn

θ = Var(Xi) = (1/2)(1 − 1/2) = 1/4

̂θn = s2
n :=

1
n − 1

n

∑
i=1

(Xi − Xn)2



Statistical Estimator
Example: Variance Estimation

Example. Let  be a random variable denoting 
the outcome of a single fair coin toss, with  
for tails and  for heads. Clearly, 

.


Suppose we independently toss  coins, obtaining 
RVs .


Estimand: .


Estimator:  

(unbiased sample variance).

Xi
Xi = 0

Xi = 1
μ := 𝔼[Xi] = 1/2

n
X1, …, Xn

θ = Var(Xi) = (1/2)(1 − 1/2) = 1/4

̂θn = s2
n :=

1
n − 1

n

∑
i=1

(Xi − Xn)2
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Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable denoting the face after tossing a six-
sided fair die. Clearly, .


Suppose we independently roll  dice, obtaining RVs .


Estimand: .


Estimator: .

Xi
μ := 𝔼[Xi] = 3.5

n X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable 
denoting the face after tossing a six-sided 
fair die. Clearly, .


Suppose we independently roll  dice, 
obtaining RVs .


Estimand: .


Estimator: .

Xi

μ := 𝔼[Xi] = 3.5

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable 
denoting the face after tossing a six-sided 
fair die. Clearly, .


Suppose we independently roll  dice, 
obtaining RVs .


Estimand: .


Estimator: .

Xi

μ := 𝔼[Xi] = 3.5

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable denoting 
the face after tossing a six-sided fair die. Clearly, 

.


Suppose we independently roll  dice, obtaining 
RVs .


Estimand: .


Estimator: .


The estimator is itself a random variable!

Xi

μ := 𝔼[Xi] = 3.5

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable denoting 
the face after tossing a six-sided fair die. Clearly, 

.


Suppose we independently roll  dice, obtaining 
RVs .


Estimand: .


Estimator: .


The estimator is itself a random variable!

Xi

μ := 𝔼[Xi] = 3.5

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: OLS Estimator

Example. Let  be i.i.d. 
samples from the joint distribution  with the error 
model: 


, 


where  and  is a random variable with 
 independent from .


Estimand: .


Estimator: , where 
 and  are constructed from the 

samples row-wise.

(x1, y1)…, (xn, yn) ∈ ℝd × ℝ
ℙx,y

y = x⊤w* + ϵ

w* ∈ ℝd ϵ
𝔼[ϵ] = 0 x*

θ = w*
̂θn = ŵOLS = (X⊤X)−1X⊤y

X ∈ ℝn×d y ∈ ℝn −4

−3

−2

−1

0

1

2

3

4

5

https://samuel-deng.github.io/math4ml_su24/assets/figs/regression_noise.html
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Statistical Estimator
Example: Ridge Estimator

Example. Let  be i.i.d. samples from the joint 
distribution  with the error model: 


, 


where  and  is a random variable with  independent from .


Estimand: .


Estimator: , where  and  are 
constructed from the samples row-wise and  is the regularization parameter.

(x1, y1)…, (xn, yn) ∈ ℝd × ℝ
ℙx,y

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 x*

θ = w*
̂θn = ŵridge = (X⊤X + γI)−1X⊤y X ∈ ℝn×d y ∈ ℝn

γ > 0
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Statistical Estimators 
Variance and bias



Statistical Estimator
Random Variables

Remember that statistical estimators are random variables!


Below, the mean estimator  of  dice rolls .Xn n = 25 X1, …, X25

Deng, Samuel



Statistical Estimator
Random Variables

Remember that statistical estimators are random variables!


What are the properties of estimators as random variables?



Bias of Estimators
Intuition

The bias of an estimator is “how far off” it is from its estimand.
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Bias of Estimators
Definition

Let  be an estimator for the estimand . The bias of  is defined as:


.


We say that an estimator is unbiased if .

̂θn θ ̂θn

Bias( ̂θn) := 𝔼[ ̂θn] − θ

𝔼[ ̂θn] = θ

Deng, Samuel



Bias of Estimators
Example: Constant Estimator

Example. Consider i.i.d. random variables  with mean . 
Suppose we are estimating the mean, . What’s the bias of the estimator


?

X1, …, Xn μ := 𝔼[Xi]
μ

̂θn = 1

Deng, Samuel



Bias of Estimators
Example: Single Sample Estimator

Example. Consider i.i.d. random variables  with mean . 
Suppose we are estimating the mean, . What’s the bias of the estimator


?

X1, …, Xn μ := 𝔼[Xi]
μ

̂θn = Xn

Deng, Samuel
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Bias of Estimators
Example: Sample Mean

Example. Consider i.i.d. random variables  with mean . 
Suppose we are estimating the mean, . What’s the bias of the estimator


?

X1, …, Xn μ := 𝔼[Xi]
μ

̂θn =
1
n

n

∑
i=1

Xi
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Variance of Estimators
Intuition

The variance of an estimator is simply its variance, as a random variable. This is 
the “spread” of the estimates from the whatever the estimator’s mean is.

Deng, Samuel
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Variance of Estimators
Definition

The variance of an estimator  is simply its variance, as a random variable:


.


The standard error of an estimator is simply its standard deviation:


.

̂θn

Var( ̂θn) = 𝔼[( ̂θn − 𝔼[ ̂θn])2] = 𝔼[( ̂θn)2] − 𝔼[ ̂θn]2

se( ̂θn) := Var( ̂θn)



Variance of Estimators
Definition

The variance of an estimator  is simply its variance, as a random variable:


.


The standard error of an estimator is simply its standard deviation:


.


Notice: The variance of an estimator does not concern its estimand.

̂θn

Var( ̂θn) = 𝔼[( ̂θn − 𝔼[ ̂θn])2] = 𝔼[( ̂θn)2] − 𝔼[ ̂θn]2

se( ̂θn) := Var( ̂θn)



Variance of Estimators
Example: Constant Estimator

Example. Consider i.i.d. random variables  with mean . 
Suppose we are estimating the mean, . What’s the variance of the estimator


?

X1, …, Xn μ := 𝔼[Xi]
μ

̂θn = 1
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Variance of Estimators
Example: Single Sample Estimator

Example. Consider i.i.d. random variables  with mean . 
Suppose we are estimating the mean, . What’s the variance of the estimator


?

X1, …, Xn μ := 𝔼[Xi]
μ

̂θn = Xn

Deng, Samuel
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Variance of Estimators
Example: Sample Mean

Example. Consider i.i.d. random variables  with mean . 
Suppose we are estimating the mean, . What’s the variance of the estimator


?

X1, …, Xn μ := 𝔼[Xi]
μ

̂θn =
1
n

n

∑
i=1

Xi

Deng, Samuel
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Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  and , independent of . 
Suppose we construct a random matrix  and random vector  by drawing  
random examples  from . Then, the OLS estimator  has the 
following statistical properties: 

Expectation: .


Variance: .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n

(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2

Deng, Samuel
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Bias and Variance of OLS
Corollaries from Theorem

Under the error model:





 OLS estimator  has the following statistical properties: 

Expectation: .


Variance: , where .


This implies that, as an estimator of ,





y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var(ϵ) = σ2

w*

Bias(ŵ) = 0

Var(ŵ) = σ2𝔼[(X⊤X)−1]

Deng, Samuel
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Bias vs. Variance of Estimators
Summary

For an estimator  of the unknown 
estimand , its bias and variance are:





.

̂θn
θ

Bias( ̂θn) := 𝔼[ ̂θn] − θ

Var( ̂θn) = 𝔼[( ̂θn − 𝔼[ ̂θn])2]



Mean Squared Error 
Bias-Variance Tradeoff



Mean Squared Error
Intuition

Intuitively, the best kind of estimator  
should have low bias and low variance.


And it shouldn’t be “too far” from the 
estimate, in a distance sense.

̂θn



Mean Squared Error
Definition

The mean squared error of an estimator  of an estimand  is:


.


This is a common assessment of the quality of an estimator.

̂θn θ

MSE( ̂θn) := 𝔼[( ̂θn − θ)2]

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Bias-Variance Decomposition
Theorem Statement

Theorem (Bias-Variance Decomposition of MSE). Let  be an estimator of 
some estimand . The bias-variance decomposition of the mean squared error 
of  is:


.

̂θn
θ

̂θn

MSE( ̂θn) = 𝔼[( ̂θn − θ)2] = Bias( ̂θn)2 + Var( ̂θn)



Bias-Variance Decomposition
Theorem Statement

Theorem (Bias-Variance 
Decomposition of MSE). Let  be an 
estimator of some estimand . The bias-
variance decomposition of the mean 
squared error of  is:


̂θn
θ

̂θn

MSE( ̂θn) = 𝔼[( ̂θn − θ)2] = Bias( ̂θn)2 + Var( ̂θn)



Bias-Variance Decomposition
Proof

Want to show: 


Let . Then:





 

𝔼[( ̂θn − θ)2] = Bias( ̂θn)2 + Var( ̂θn)

θn := 𝔼[ ̂θn]

𝔼[( ̂θn − θ)2] = 𝔼[( ̂θn − θn + θn − θ)2]

Deng, Samuel



Bias-Variance Decomposition
Proof

Want to show: 


Let . Then:





 

𝔼[( ̂θn − θ)2] = Bias( ̂θn)2 + Var( ̂θn)

θn := 𝔼[ ̂θn]

𝔼[( ̂θn − θ)2] = 𝔼[( ̂θn − θn + θn − θ)2]

= 𝔼[( ̂θn − θn)2] + 2(θn − θ)𝔼[( ̂θn − θn)] + 𝔼[(θn − θ)2]



Bias-Variance Decomposition
Proof

Want to show: 


Let . Then:





 

𝔼[( ̂θn − θ)2] = Bias( ̂θn)2 + Var( ̂θn)

θn := 𝔼[ ̂θn]

𝔼[( ̂θn − θ)2] = 𝔼[( ̂θn − θn + θn − θ)2]

= 𝔼[( ̂θn − θn)2] + 2(θn − θ)𝔼[( ̂θn − θn)] + 𝔼[(θn − θ)2]

= (θn − θ)2 + 𝔼[( ̂θn − θn)2]

= (𝔼[ ̂θn] − θ)2 + 𝔼[( ̂θn − θn)2] = Bias( ̂θn)2 + Var( ̂θn)

Deng, Samuel

Deng, Samuel



Bias-Variance Decomposition
Example: Coin Flip Mean Estimator

Example. Let  be a random variable denoting the outcome of a single fair coin 
toss, with  for tails and  for heads. Clearly, .


What is the mean squared error of ?

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

Xn :=
1
n

n

∑
i=1

Xi

Deng, Samuel

Deng, Samuel



Bias-Variance Decomposition
Example: Coin Flip Mean Estimator

Example. Let  be a random variable denoting the outcome of a single fair coin 
toss, with  for tails and  for heads. Clearly, .


What is the mean squared error of ?


Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

Xn :=
1
n

n

∑
i=1

Xi

MSE(Xn) = Bias(Xn)2 + Var(Xn)



Bias-Variance Decomposition
Example: Coin Flip Mean Estimator

Example. Let  be a random variable denoting the outcome of a single fair coin toss, 
with  for tails and  for heads. Clearly, .


What is the mean squared error of ?








Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

Xn :=
1
n

n

∑
i=1

Xi

MSE(Xn) = Bias(Xn)2 + Var(Xn)

Bias(Xn) = 0

Var(Xn) =
1
4n

Deng, Samuel



Statistics of OLS
Mean Squared Error of OLS Estimator

Theorem (Statistical properties of OLS). Let  be a joint distribution  defined by the error 
model:


,


where  and  is a random variable with  and , independent of . Suppose 
we construct a random matrix  and random vector  by drawing  random examples 

 from . Then, the OLS estimator  has the following statistical properties: 

Expectation: .


Variance: .


Bias: , Variance:   

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n

(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2

Bias(ŵ) = 0 Var(ŵ) = σ2𝔼[(X⊤X)−1] ⟹ MSE(ŵ) = σ2𝔼[(X⊤X)−1]



Stochastic Gradient Descent 
Estimators for the gradient



Gradient Descent
Algorithm

Input: Function . Initial point . Step size .


For 


Compute: .


If  or  is sufficiently small, then return .

f : ℝd → ℝ x0 ∈ ℝd η ∈ ℝ

t = 1,2,3,…

xt ← xt−1 − η∇f(xt−1)

∇f(xt) = 0 xt − xt−1 f(xt)



Gradient Descent
Algorithm for OLS

Make an initial guess .


For 


• Compute: 
.


• Stopping condition: If 
, then return 

.

w0

t = 1,2,3,…

wt ← wt−1 − 2ηX⊤ (Xw − y)

∥wt − wt−1∥ ≤ ϵ
f(wt)

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html


What’s the problem?
Update Step for OLS

Compute: 


.


This could be expensive for large 
datasets!

wt ← wt−1 − 2ηX⊤ (Xw − y)

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
Deng, Samuel

Deng, Samuel

Deng, Samuel



Stochastic Gradient Descent (SGD)
Intuition
In general, the objective function we do gradient descent on typically looks like:





Let us consider the average in this case. For OLS, adding the  out front, we have:


.


When we take a gradient, we take it over the entire dataset (all  examples):


.

f(w) =
1
n

n

∑
i=1

ℓ(w, (xi, yi))

1/n

f(w) =
1
n

∥Xw − y∥2 =
1
n

n

∑
i=1

(w⊤xi − yi)2

n

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2



Stochastic Gradient Descent (SGD)
Intuition

When we take a gradient, we take it over the entire dataset (all  examples):


.


Idea: What if we just randomly sampled an example  uniformly from  
and only took the gradient with respect to that example?


  

n

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2

i {1,…, n}

i ∼ Unif([n]) ⟹ ∇w(w⊤xi − yi)2



Stochastic Gradient Descent (SGD)
Intuition
In stochastic gradient descent we replace the gradient over the entire dataset


 


with an estimator of the gradient: .


Single-sample SGD: Sample a single example  uniformly from  and take the gradient: 


. 

Minibatch SGD: Sample a batch of  examples uniformly from all -subsets of  and take the 
gradient:


∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2

̂∇f(w)

i 1,…, n

̂∇f(w) = ∇w(w⊤xi − yi)2

k B = {i1, …, ik} k 1,…, n

̂∇f(w) = ∇w
1
k

k

∑
j=1

(w⊤xij − yij)
2



Gradient Estimator
Unbiased Estimate of the Gradient
Let’s try to find the statistical properties of the gradient estimator…


Estimand: . 

Estimator: Sample a single example  uniformly from  and take the 
gradient: 


.

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2

i 1,…, n

̂∇f(w) = ∇w(w⊤xi − yi)2



Gradient Estimator
Unbiased Estimate of the Gradient
Let’s try to find the statistical properties of the gradient estimator…


Estimand: . 

Estimator: Sample a single example  uniformly from  and take the gradient: 


.


Bias: The randomness is over the uniform sample, so:


 

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2

i 1,…, n

̂∇f(w) = ∇w(w⊤xi − yi)2

𝔼[ ̂∇f(w)] =
n

∑
i=1

1
n

∇w(w⊤xi − yi)2 =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2 ⟹ Bias( ̂∇f(w)) = 0



Stochastic Gradient Descent
Single-sample SGD for OLS
Input: Initial point . Step size 

.


For 


Sample  uniformly from .


Compute: 



If  is sufficiently small, then 

return .

w0 ∈ ℝd

η ∈ ℝ

t = 1,2,3,…

i 1,…, n

wt ← wt−1 − η ̂∇f(w) = wt−1 − η∇w(w⊤xi − yi)2

wt − wt−11
n

∥Xwt − y∥2

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html
Deng, Samuel

Deng, Samuel

Deng, Samuel



Stochastic Gradient Descent
Single-sample SGD for OLS

x1-axis x2-axis f(x1, x2)-axis descent start

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

descent start

0.5

1

1.5

2

2.5

3

3.5

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html


Stochastic Gradient Descent
Minibatch SGD
Input: Initial point . Step size . Mini-batch 
size .


For 


Sample  uniformly from all -subsets of 
.


Compute: 




If  is sufficiently small, then return 

.

w0 ∈ ℝd η ∈ ℝ
1 ≤ k ≤ n

t = 1,2,3,…

B = {i1, …, ik} k
{1,…, n}

wt ← wt−1 − η ̂∇f(w) = wt−1 −
η
k

k

∑
j=1

∇w(w⊤xij − yij)
2

wt − wt−11
n

∥Xwt − y∥2

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html


Stochastic Gradient Descent
Minibatch SGD

x1-axis x2-axis f(x1, x2)-axis descent start−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

descent start

0.5

1

1.5

2

2.5

3

3.5

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html


Gauss-Markov Theorem 
OLS as “optimal”



“Optimality” of OLS
Intuition

We evaluate statistical estimators  through their bias and variance, which 
make up their mean squared error:


.


In what sense is OLS optimal (compared to other possible estimators), with 
respect to bias and variance?

̂θn

MSE( ̂θn) = Bias( ̂θn)2 + Var( ̂θn)



Gauss-Markov Theorem
Intuition

Recall our model of errors:


, where  and .


We will claim that the OLS estimator





has the lowest variance within the class of linear, unbiased estimators.

y = Xw* + ϵ 𝔼[ϵ] = 0 Var(ϵi) = σ2 < ∞

ŵ = (X⊤X)−1X⊤y

Deng, Samuel

Deng, Samuel

Deng, Samuel



Gauss-Markov Theorem
Fixed Design Assumption

Recall our model of errors:


, where  and .


We will assume that  is fixed to make our derivation easier (we can 
also avoid this by taking conditional expectations/variances with respect to ).


Note: This still means that  is random because  is random.

y = Xw* + ϵ 𝔼[ϵ] = 0 Var(ϵi) = σ2 < ∞

X ∈ ℝn×d

X

y ϵ



Gauss-Markov Theorem
Linear Estimator

Recall our model of errors:


, where  and .


We want to estimate , using  and . A linear estimator of entry  is a linear 
combination of :


.


The OLS estimator is clearly a linear estimator:


.

y = Xw* + ϵ 𝔼[ϵ] = 0 Var(ϵi) = σ2 < ∞

w* X y w*i
y1, …, yn

ŵ*i = c1iy1 + … + cniyn

ŵ = (X⊤X)−1X⊤y

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Gauss-Markov Theorem
“Greater Than” for Matrices

We need to compare the variances of random vectors, , where .


Recall that, for random vectors,  is given by a positive semidefinite 
covariance matrix. For PSD matrices, the Loewner order imposes an ordering:


 means that  is PSD.


 means that  is positive definite.


They are ordered in the sense that their quadratic forms obey the ordering:


.

Var(w) w ∈ ℝd

Var(w)

A ≤ B A − B

A < B A − B

x⊤Ax ≤ x⊤Bx

Deng, Samuel

Deng, Samuel

Deng, Samuel



Gauss-Markov Theorem
Theorem Statement

Theorem (Gauss-Markov Theorem). Let  be fixed and let  be given entry-wise 
by the linear error model:


,


where  is a random vector with ,  and each  is independent. 
Let  be any linear estimator of , with entries:


,


such that  is unbiased, i.e. . Then, the OLS estimator  has 
variance (and, thus, mean squared error) no larger than :


, where  is some PSD matrix.

X ∈ ℝn×d y ∈ ℝn

y = Xw* + ϵ

ϵ ∈ ℝn 𝔼[ϵi] = 0 Var(ϵi) = σ2 < ∞ ϵi
w̃ ∈ ℝd w*

w̃i = c1iy1 + … + cniyn

w̃ 𝔼[w̃] = w* ŵ = (X⊤X)−1X⊤y
w̃

Var(ŵ) = Var(w̃) + A A ∈ ℝd×d

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Gauss-Markov Theorem
Proof

Step 1: Formally state the “other” linear estimator.


Suppose that  is another linear estimator of . We can write it as:


, where .


Without loss of generality, let:


 where .


w̃ ∈ ℝd w*

w̃ = Cy C ∈ ℝn×d

C = (X⊤X)−1X⊤ + D D ∈ ℝd×n

Deng, Samuel



Gauss-Markov Theorem
Proof

Step 2: We know that  is an unbiased estimator, so enforce .


Calculate the expectation of .





But because we assumed  is unbiased,


.

w̃ 𝔼[w̃] = w*

w̃
𝔼[w̃] = 𝔼[Cy]

= 𝔼 [((X⊤X)−1X⊤ + D)(Xw* + ϵ)] (Step 1) 

= ((X⊤X)−1X⊤ + D)Xw* + ((X⊤X)−1X⊤ + D)𝔼[ϵ]
= ((X⊤X)−1X⊤ + D)Xw* 𝔼[ϵ] = 0
= w* + DXw*

w̃

w* + DXw* = w* ⟹ DX = 0

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Gauss-Markov Theorem
Proof

Step 3: Using the fact that  from Step 2, show .


Finally, let’s analyze the variance of :


DX = 0 Var(w̃) ≤ Var(ŵ)

w̃
Var(w̃) = Var(Cy)

= CVar(y)C⊤

= σ2CIn×nC⊤ (ϵi are independent)

= σ2((X⊤X)−1X⊤ + D)(X(X⊤X)−1 + D⊤)
= σ2((X⊤X)−1X⊤X(X⊤X)−1 + (X⊤X)−1X⊤D⊤ + DX(X⊤X)−1 + DD⊤)
= σ2(X⊤X)−1 + σ2(X⊤X)−1(DX)⊤ + σ2DX(X⊤X)−1 + σ2DD⊤

= σ2(X⊤X)−1 + σ2DD⊤ (Step 2)

= Var(ŵ) + σ2DD⊤ (Variance of OLS estimator)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Mean Squared Error
Trading bias for reduction in variance

The Gauss-Markov Theorem states that 
 has the smallest variance 

out of all linear estimators with no bias.


Recall the MSE is how we evaluate an estimator:


.


But unbiasedness might not always be a good 
thing if the variance is high!

ŵ = (X⊤X)−1X⊤y

MSE(ŵ) = Bias(ŵ)2 + Var(ŵ)

Deng, Samuel



Mean Squared Error
Trading bias for reduction in variance

The Gauss-Markov Theorem states that 
 has the smallest variance 

out of all linear estimators with no bias.


Recall the MSE is how we evaluate an estimator:


.


Can we trade a bit of bias for a reduction in 
variance?

ŵ = (X⊤X)−1X⊤y

MSE(ŵ) = Bias(ŵ)2 + Var(ŵ)



Mean Squared Error
Trading bias for reduction in variance

The ridge regression estimator:





for  does exactly that! The  parameter 
controls the bias-variance tradeoff.


Bias comes from “shrinking” the  
coefficients to zero.


Variance reduction comes from constraining 
the coefficients to preferably come from a 
constrained ball.

ŵridge = (X⊤X + γI)−1X⊤y

γ > 0 γ

ŵ

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su24/story_ls/ls4_1.html
Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Regression 
Statistical analysis of risk



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  and , independent of . 
Suppose we construct a random matrix  and random vector  by drawing  
random examples  from . Then, the OLS estimator  has the 
following statistical properties: 

Expectation: .


Variance: .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n

(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2



Bias and Variance of OLS
Corollaries from Theorem

Under the error model:





 OLS estimator  has the following statistical properties: 

Expectation: .


Variance: , where .


This implies that, as an estimator of ,





y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var(ϵ) = σ2

w*

Bias(ŵ) = 0

Var(ŵ) = σ2𝔼[(X⊤X)−1]



Regression
Setup, with randomness

,


where  is a random variable with  and  is independent of .


Draw  examples: random matrix  and random vector .


Ultimate goal: Find  that generalizes on a new :


 

Intermediary goal: Find  that does well on the training samples:


 =  


This is what we’ve been doing!

y = x⊤w* + ϵ

ϵ 𝔼[ϵ] = 0 ϵ x

n X ∈ ℝn×d y ∈ ℝn

f(x) := ŵ⊤x (x0, y0) ∼ ℙx,y

R( ̂f ) := 𝔼x0,y0
[( ̂f(x0) − y0)2]

f(x) := ŵ⊤x

R̂( ̂f ) :=
1
n

n

∑
i=1

( ̂f(xi) − yi)2 1
n

∥Xŵ − y∥2

Deng, Samuel

Deng, Samuel



Statistical Analysis of Risk
Breaking down generalization error

Ultimate goal: Find  that generalizes on a new :


.


f(x) := ŵ⊤x (x0, y0) ∼ ℙx,y

R( ̂f ) := 𝔼x0,y0
[( ̂f(x0) − y0)2]

Deng, Samuel



Statistical Analysis of Risk
Breaking down generalization error

Ultimate goal: Find  that generalizes on a new :


.


This was the notion of risk or generalization error — how well we do on a new, 
randomly drawn example.


Can we analyze this in terms of OLS? 

f(x) := ŵ⊤x (x0, y0) ∼ ℙx,y

R( ̂f ) := 𝔼x0,y0
[( ̂f(x0) − y0)2]



Statistical Analysis of Risk
Breaking down generalization error

Ultimate goal: Find  that generalizes on a new :


.





What is random in the above expectation?


 is random because it’s a new example .


 is random because it’s a new label .


 is random because it depends on the training data  and .

f(x) := ŵ⊤x (x0, y0) ∼ ℙx,y

R( ̂f ) := 𝔼x0,y0
[( ̂f(x0) − y0)2]

⟹ R(ŵ) = 𝔼[(ŵ⊤x0 − y0)2]

x0 x0 ∼ ℙx

y0 y0 ∼ ℙy

ŵ X y



Statistical Analysis of Risk
Law of Total Expectation

Ultimate goal: Find  that generalizes on a new :


.


Let  be randomly drawn training data, which the estimator  depends on.  
By the tower rule/law of total expectation:


f(x) := ŵ⊤x (x0, y0) ∼ ℙx,y

R(ŵ) = 𝔼[(ŵ⊤x0 − y0)2]

X, y ŵ

R(ŵ) = 𝔼x0 [𝔼y0 [𝔼X,y [(ŵ⊤x0 − y0)2 ∣ y0] ∣ x0]]



Statistical Analysis of Risk
Law of Total Expectation

Ultimate goal: Find  that generalizes on a new :


.


Let  be randomly drawn training data, which the estimator  depends on.  
By the tower rule/law of total expectation:





Let’s analyze this quantity!

f(x) := ŵ⊤x (x0, y0) ∼ ℙx,y

R(ŵ) = 𝔼[(ŵ⊤x0 − y0)2]

X, y ŵ

R(ŵ) = 𝔼x0 [𝔼y0 [𝔼X,y [(ŵ⊤x0 − y0)2 ∣ y0] ∣ x0]]

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Statistical Analysis of Risk
Analyzing the risk




Denote:  

R(ŵ) = 𝔼x0 [𝔼y0 [𝔼X,y [(ŵ⊤x0 − y0)2 ∣ y0] ∣ x0]]
R(ŵ ∣ x0) := 𝔼y0 [𝔼X,y [(ŵ⊤x0 − y0)2 ∣ y0] ∣ x0]



Statistical Analysis of Risk
Analyzing the risk




Note: We are conditioning on , so the only random quantity in the last term is .

R(ŵ ∣ x0):= 𝔼y0 [𝔼X,y [(ŵ⊤x0 − y0)2 ∣ y0] ∣ x0]
= Var(y0 ∣ x0) + 𝔼 [(ŵ⊤x0 − 𝔼[ŵ⊤x0])2] + (𝔼[ŵ⊤x0] − x⊤

0 w*)2

= Var(y0 ∣ x0) + Var(ŵ⊤x0) + Bias(ŵ⊤x0)2

= σ2 + 𝔼 [x⊤
0 (X⊤X)−1x0σ2]

x0 X⊤X
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Statistical Analysis of Risk
Analyzing the risk

 from the previous slide.


Consider the empirical covariance matrix . If  is large and , then , where 

 is the covariance matrix of the features.





Now, take the expectation over all :





R(ŵ ∣ x0) = σ2 + 𝔼 [x⊤
0 (X⊤X)−1x0σ2]

1
n

(X⊤X) n 𝔼[x] = 0 X⊤X → nΣ
Σ := Var(x) ∈ ℝd×d

R(ŵ ∣ x0) = σ2 + 𝔼 [x⊤
0 (X⊤X)−1x0σ2] = σ2 +

σ2

n
x⊤

0 Σ−1x0

x0 ∼ ℙx

𝔼x0
[R(ŵ ∣ x0)] = σ2 +

σ2

n
𝔼x0 [x⊤

0 Σ−1x0]



Trace
Definition and the “trace trick”

For a  square matrix , the trace of , denoted , is the sum of its 
diagonal entries:


.


“Trace trick:” For any quadratic form  where  and ,


d × d A A tr(A)

tr(A) =
d

∑
i=1

aii = a11 + … + add

x⊤Ax x ∈ ℝd A ∈ ℝd×d

x⊤Ax = tr(x⊤Ax) = tr(xx⊤A) = tr(Axx⊤)



Statistical Analysis of Risk
Analyzing the risk

 from the previous slide.


Consider the empirical covariance matrix . If  is large and , then , where  
is the covariance matrix of the features.





Now, take the expectation over all :





Using the “trace trick,”


R(ŵ ∣ x0) = σ2 + 𝔼 [x⊤
0 (X⊤X)−1x0σ2]

1
n

(X⊤X) n 𝔼[x] = 0 X⊤X → nΣ Σ := Var(x) ∈ ℝd×d

R(ŵ ∣ x0) = σ2 + 𝔼 [x⊤
0 (X⊤X)−1x0σ2] = σ2 +

σ2

n
x⊤

0 Σ−1x0

x0 ∼ ℙx

R(ŵ) = 𝔼x0
[R(ŵ ∣ x0)] = σ2 +

σ2

n
𝔼x0 [x⊤

0 Σ−1x0]

R(ŵ) = σ2 +
σ2

n
Ex0 [tr (Σ−1x0x⊤

0 )] = σ2 +
σ2

n
tr (Σ−1𝔼[x0x⊤

0 ]) = σ2 +
σ2

n
tr (Σ−1Σ) = σ2 +

σ2d
n



Statistical Analysis of Risk
Theorem Statement

Theorem (Risk of OLS). Let  be a joint distribution  defined by the error model:


,


where  and  is a random variable with  and , independent 
of . Suppose we construct a random matrix  and random vector  by 
drawing  random examples  from . 


Then, the OLS estimator  has risk:


.

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2

x X ∈ ℝn×d y ∈ ℝn

n (xi, yi) ℙx,y

ŵ = (X⊤X)−1X⊤y

R(ŵ) = 𝔼[(ŵ⊤x0 − y0)2] = σ2 +
σ2d
n



Risk and MSE
Theorem Statement

Theorem (Risk and MSE). Let  be a joint distribution  defined by the 
error model:


,


where  and  is a random variable with  and , 
independent of . Consider any linear predictor, , where  depends 
on random training data  and . Then, for a random , the 
predictor  is an estimator of , and its risk is:


.

ℙx,y ℝd × ℝ

y = f(x) + ϵ

f : ℝd → ℝ ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2

x f̃(x) = w̃⊤x w̃
X ∈ ℝn×d y ∈ ℝn x0

f̃(x0) f(x0)

R(w̃) = σ2 + MSE( f̃(x0))



Risk of OLS
 and d = 1 d = 2
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https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html


Recap 



Lesson Overview
Law of Large Numbers. The LLN allows us to move from probability to statistics (reasoning about an 
unknown data generating process using data from that process).


Statistical estimators. We define a statistical estimator, which is a function of a collection of random 
variables (data) aimed at giving a “best guess” at some unknown quantity from some probability 
distribution.


Bias, variance, and MSE. Two important properties of statistical estimators are their bias and 
variance, which are measures of how good the estimator is at guessing the target. These form the 
estimator’s MSE.


Stochastic gradient descent (SGD). Gradient descent needs to take a gradient over all  training 
examples, which may be large; SGD estimates the gradient to speed up the process. 

Gauss-Markov Theorem. We show that OLS is the minimum variance estimator in the class of all 
unbiased, linear estimators.  

Statistical analysis of OLS risk. We analyze the risk of OLS — how well it’s expected to do on future 
examples drawn from the same distribution it was trained on.

n



Lesson Overview
Big Picture: Least Squares
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https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html
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