Math for ML Week 5.2: Bias, Variance, and Statistical Estimators

By: Samuel Deng

Logistics & Announcements

- PS4 is out, due next thes. Ilisq PM.
- · Paper Reading Project; peleased pomonon. (I-2 pages)
- R COURSE ENAUATIONS!

• PS5 released tomorrow (CLAST PROBLEM SET! ZENdrems)

Lesson Overview

Law of Large Numbers. The LLN allows us to move from probability to statistics (reasoning about an *unknown* data generating process using data from that process).

Statistical estimators. We define a *statistical estimator*, which is a function of a collection of random variables (data) aimed at giving a "best guess" at some unknown quantity from some probability distribution.

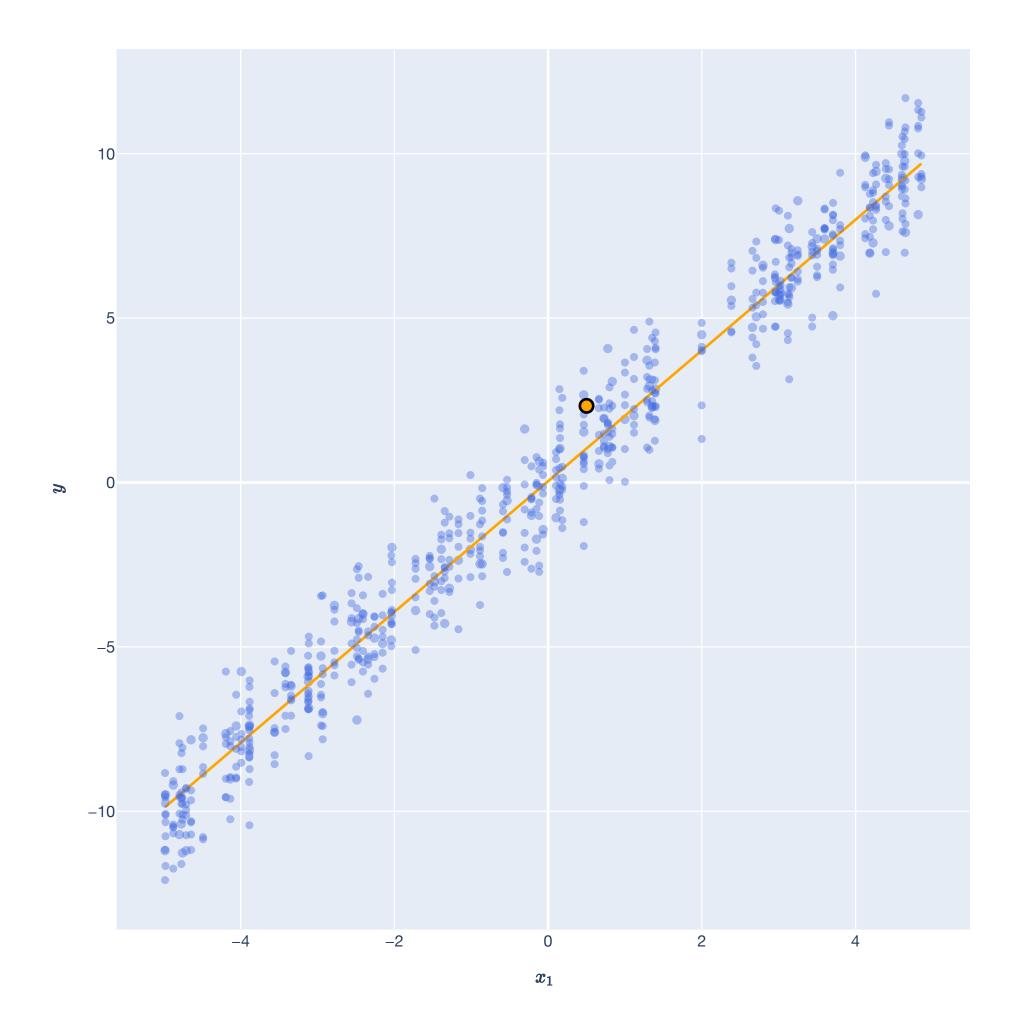
Bias, variance, and MSE. Two important properties of statistical estimators are their *bias* and *variance*, which are measures of how good the estimator is at guessing the target. These form the estimator's MSE.

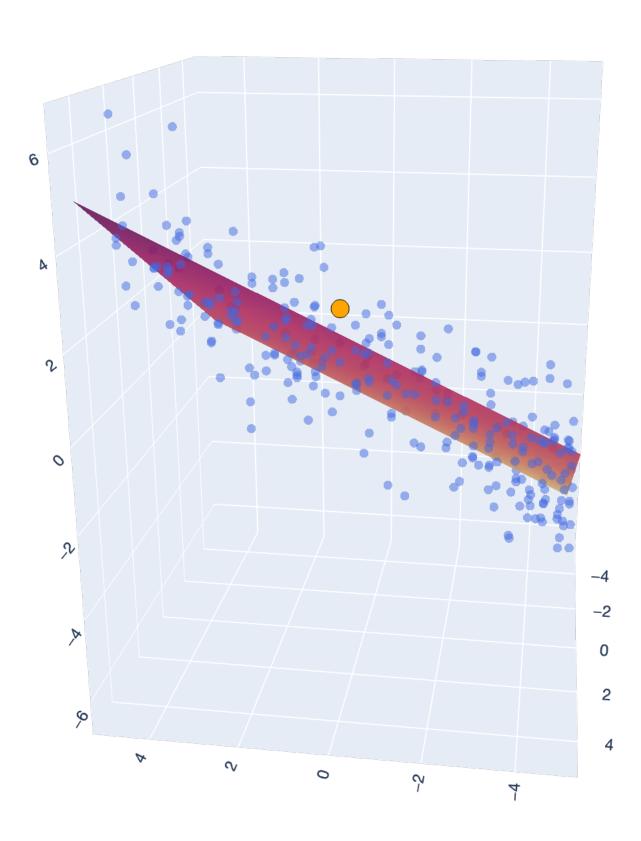
Stochastic gradient descent (SGD). Gradient descent needs to take a gradient over all *n* training examples, which may be large; SGD estimates the gradient to speed up the process.

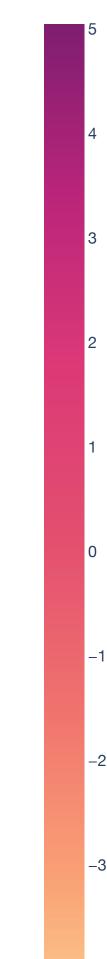
Gauss-Markov Theorem. We show that OLS is the minimum variance estimator in the class of all unbiased, linear estimators.

Statistical analysis of OLS risk. We analyze the *risk* of OLS — how well it's expected to do on future examples drawn from the same distribution it was trained on.

Lesson Overview Big Picture: Least Squares

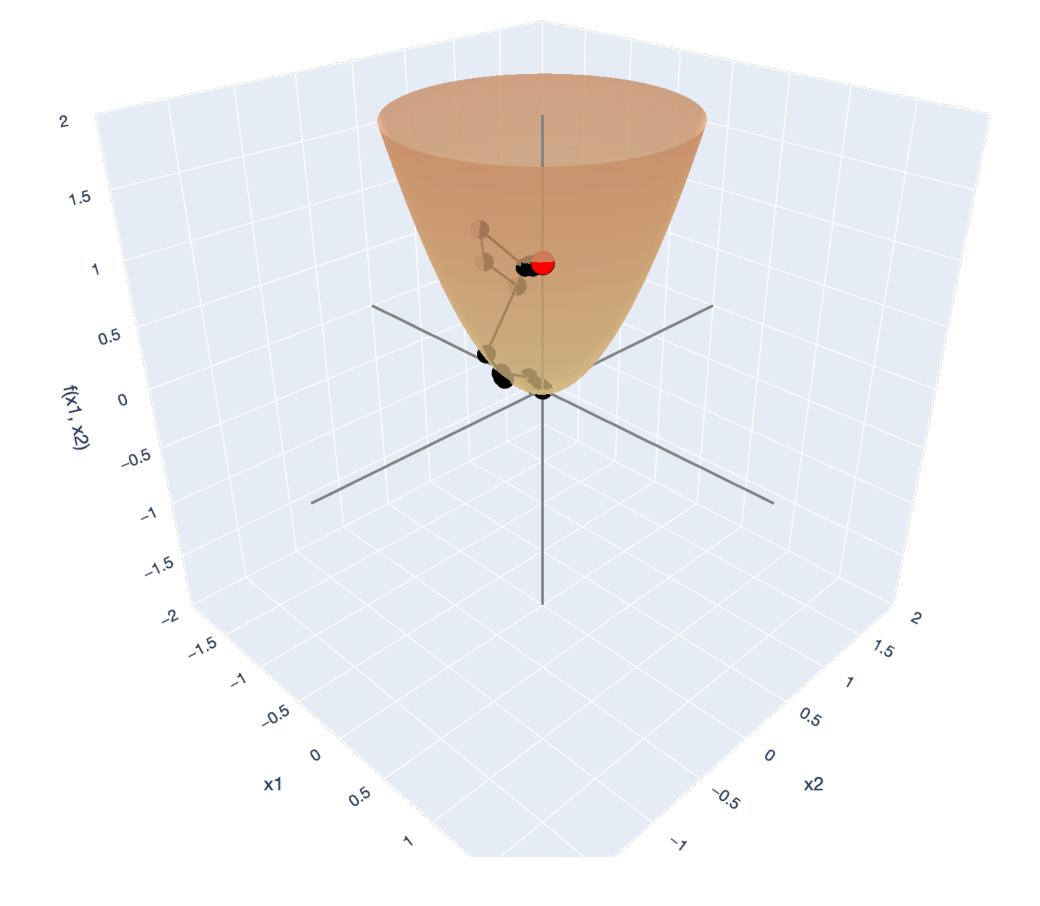


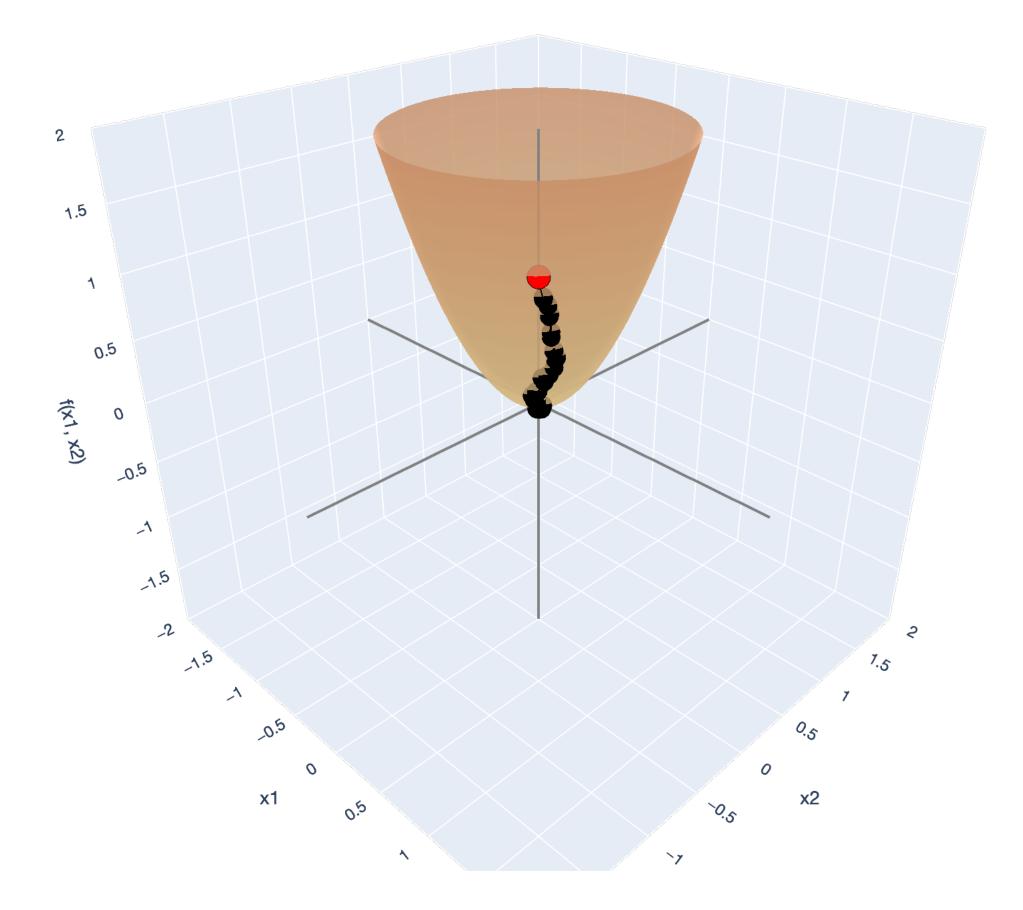




-4

Lesson Overview Big Picture: Gradient Descent





Law of Large Numbers

Statistical Estimation Intuition

a distribution) $\mathbb{P}_{\mathbf{x}}$, and we analyzed observed data under that process.

we try to make inferences about the process that generated the data.

In *probability theory*, we assumed we knew some data generating process (as

$\mathbb{P}_{\mathbf{x}} \implies \mathbf{X}_1, \dots, \mathbf{X}_n.$

<u>Statistics</u> can be thought of as the "reverse process." We see some data and

$$\mathbf{x}_1, \dots, \mathbf{x}_n \xrightarrow{?} \mathbb{P}_{\mathbf{x}}$$

Statistical Estimation Intuition

a distribution) $\mathbb{P}_{\mathbf{x}}$, and we analyzed observed data under that process.

we try to make inferences about the process that generated the data.

 $\mathbf{X}_1, \ldots,$

In *probability theory*, we assumed we knew some data generating process (as

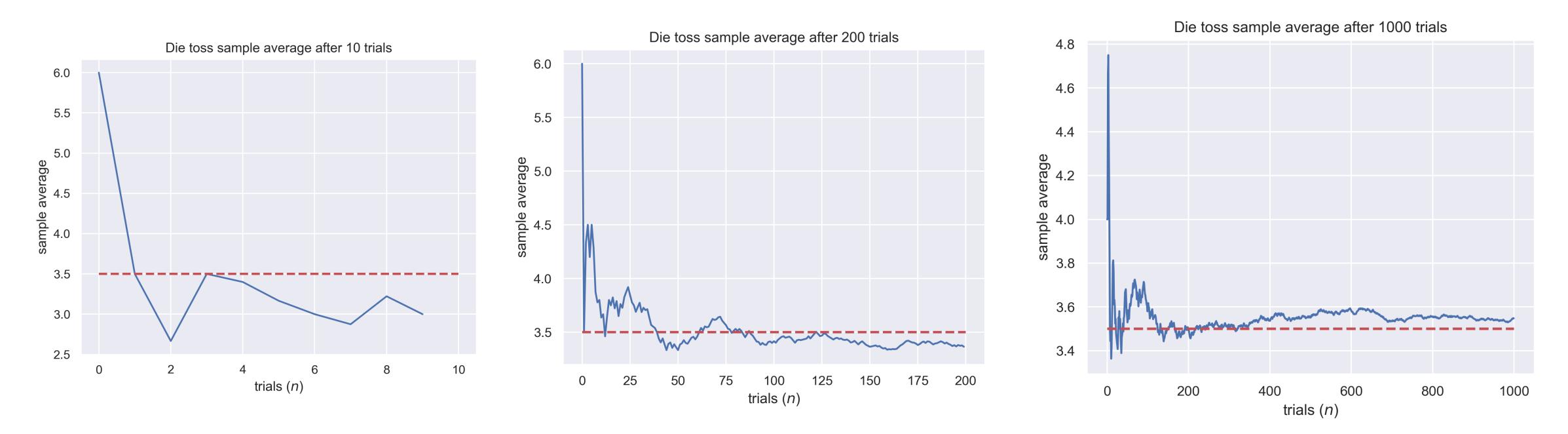
$\mathbb{P}_{\mathbf{x}} \implies \mathbf{X}_1, \dots, \mathbf{X}_n.$

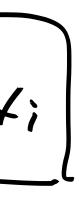
Statistics can be thought of as the "reverse process." We see some data and

$$\mathbf{x}_n \implies \mathbb{P}_{\mathbf{x}}$$

In order to do so, we need to formalize the notion that "collecting a lot of data" gives us a peek at the underlying process!

Law of Large Numbers X is a for a 6-sided die = F[X] = 1/6 · [+ 1/6 · 2 + ... + 1/6 · 6 = [3.5] Intuition Averages of a large number of random samples converge to their mean. **Example.** The average die roll after many trials is expected to be close to 3.5.





Independence Independent and identically distributed (i.i.d.)

distributed (i.i.d.) if their joint distribution can be factored entirely:

$$p_{X_1,\ldots,X_n}(x_1,\ldots$$

EQ $\chi_1, \chi_2, \chi_3, \dots$ = outcomes of a coin flip.

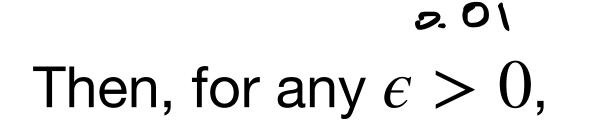
$\mathbb{E}[t \times 1] = \mathbb{E}[t \times 2] = \dots$ A collection of random variables X_1, \ldots, X_n are **independent and identically**

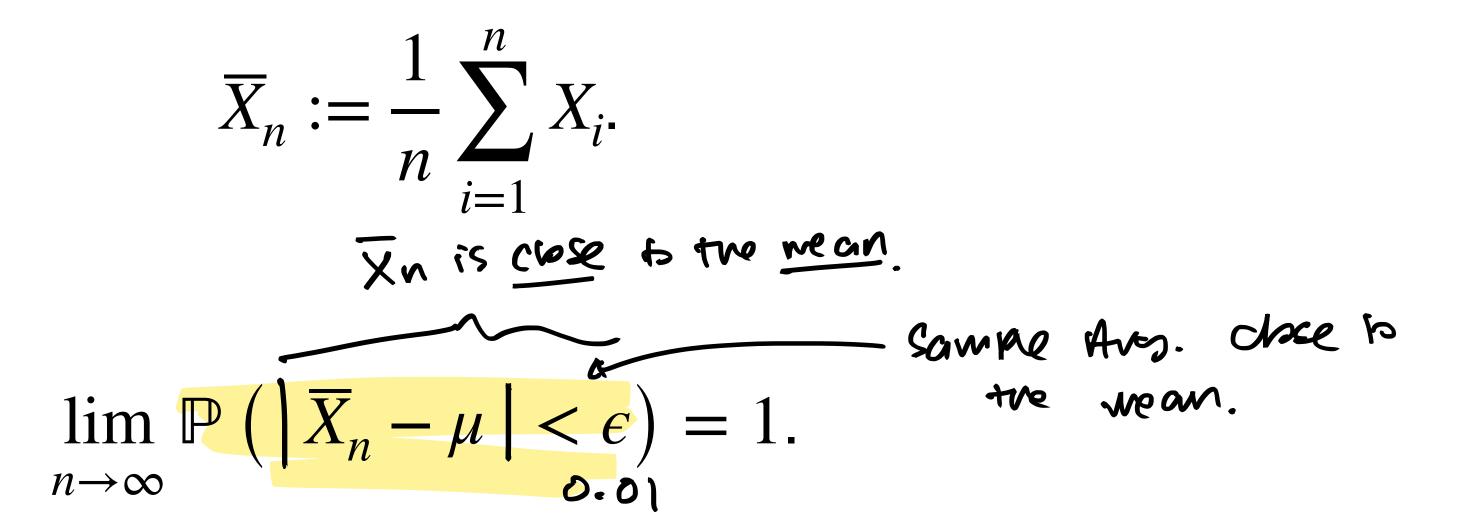
 $\dots, x_n) = \prod_{i=1}^n p_{X_i}(x_i).$ i=1Pt+i=の= Pt+i= 1= 1/2

Very common assumption in ML!

Law of Large Numbers **Theorem Statement**

be denoted as





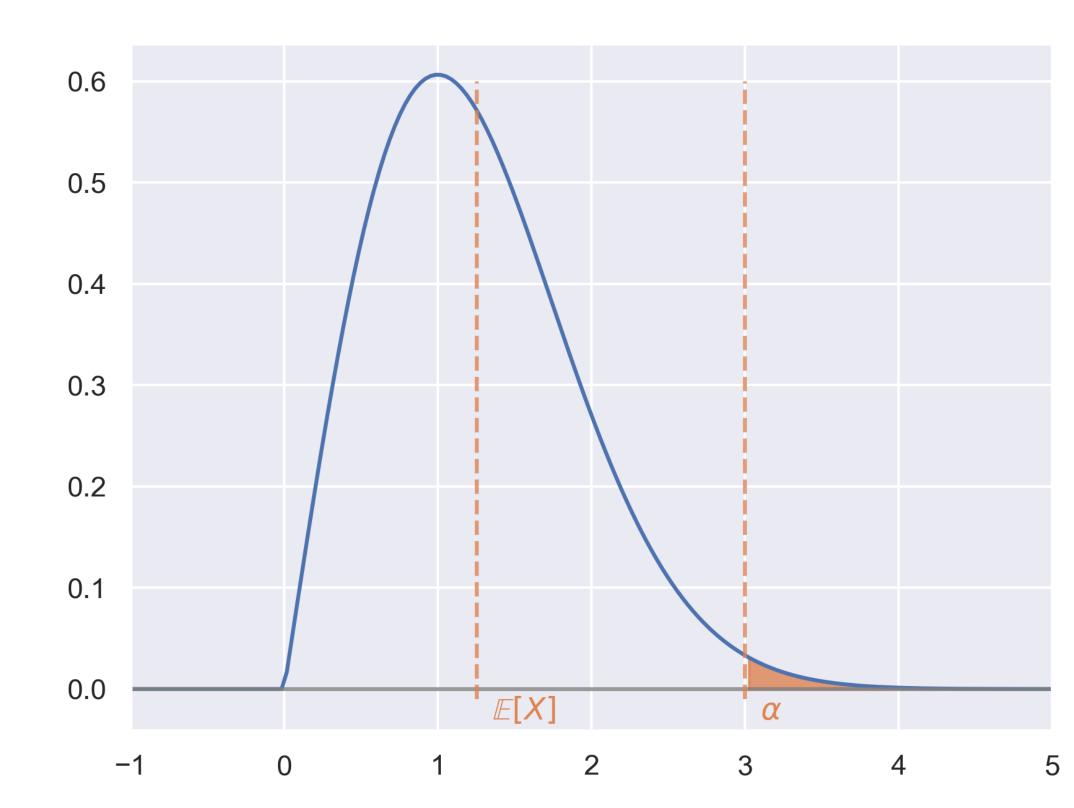
This type of convergence is also called <u>convergence in probability</u>.

Theorem (Weak Law of Large Numbers). Let X_1, \ldots, X_n be independent and identically distributed (i.i.d.) random variables with finite mean $\mu := \mathbb{E}[X_i]$. Let their sample average

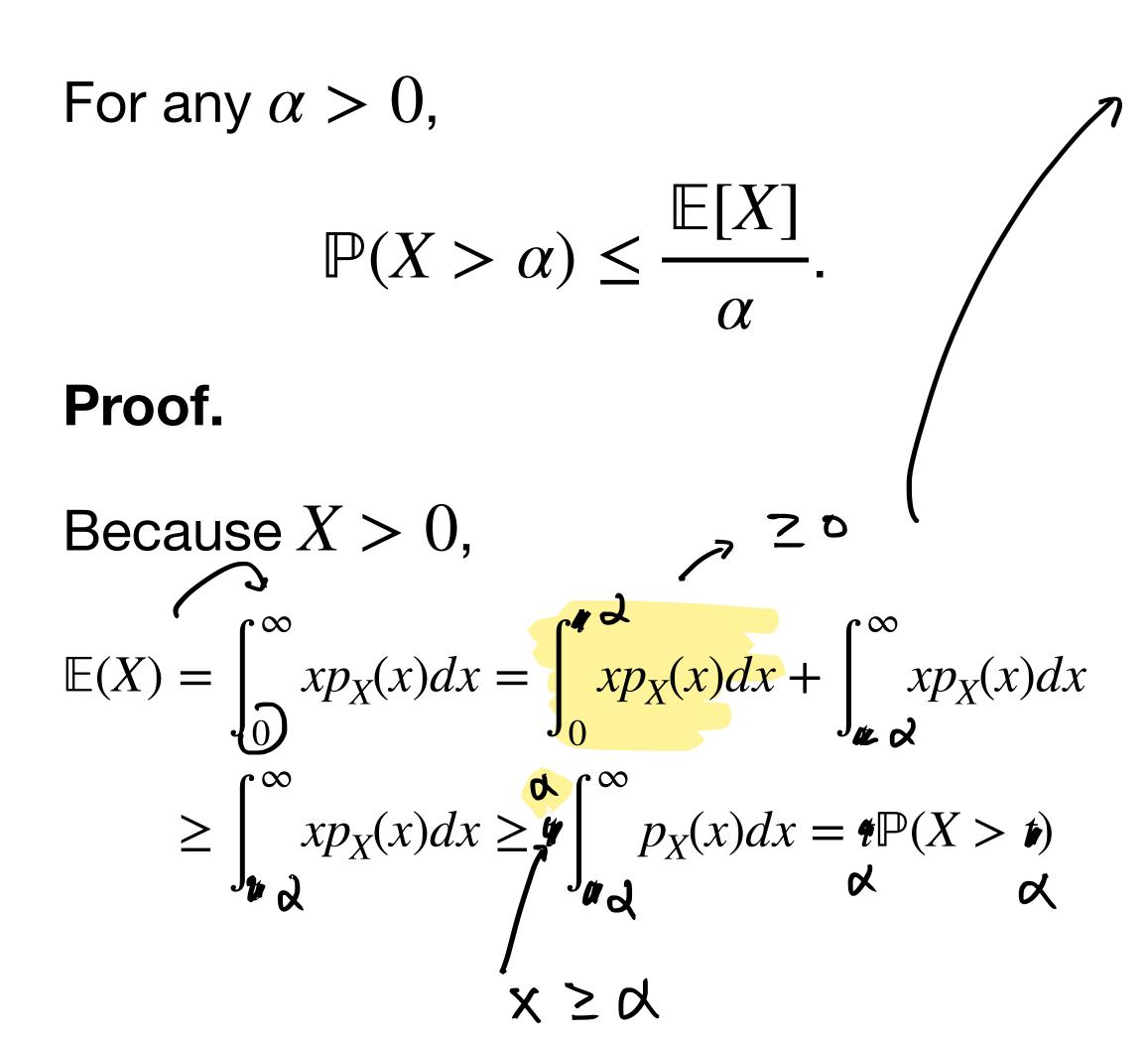
Markov's Inequality Statement and Proof

Theorem (Markov's Inequality). Let X be any nonnegative random variable and suppose that $\mathbb{E}[X]$ exists. For any $\alpha > 0$, $\alpha > 0$, $\mathbb{P}(X > \alpha) \leq \frac{\mathbb{E}[X]}{\alpha} = \frac{\mathbb{E}[X]}{3}$

XZO



Markov's Inequality Statement and Proof



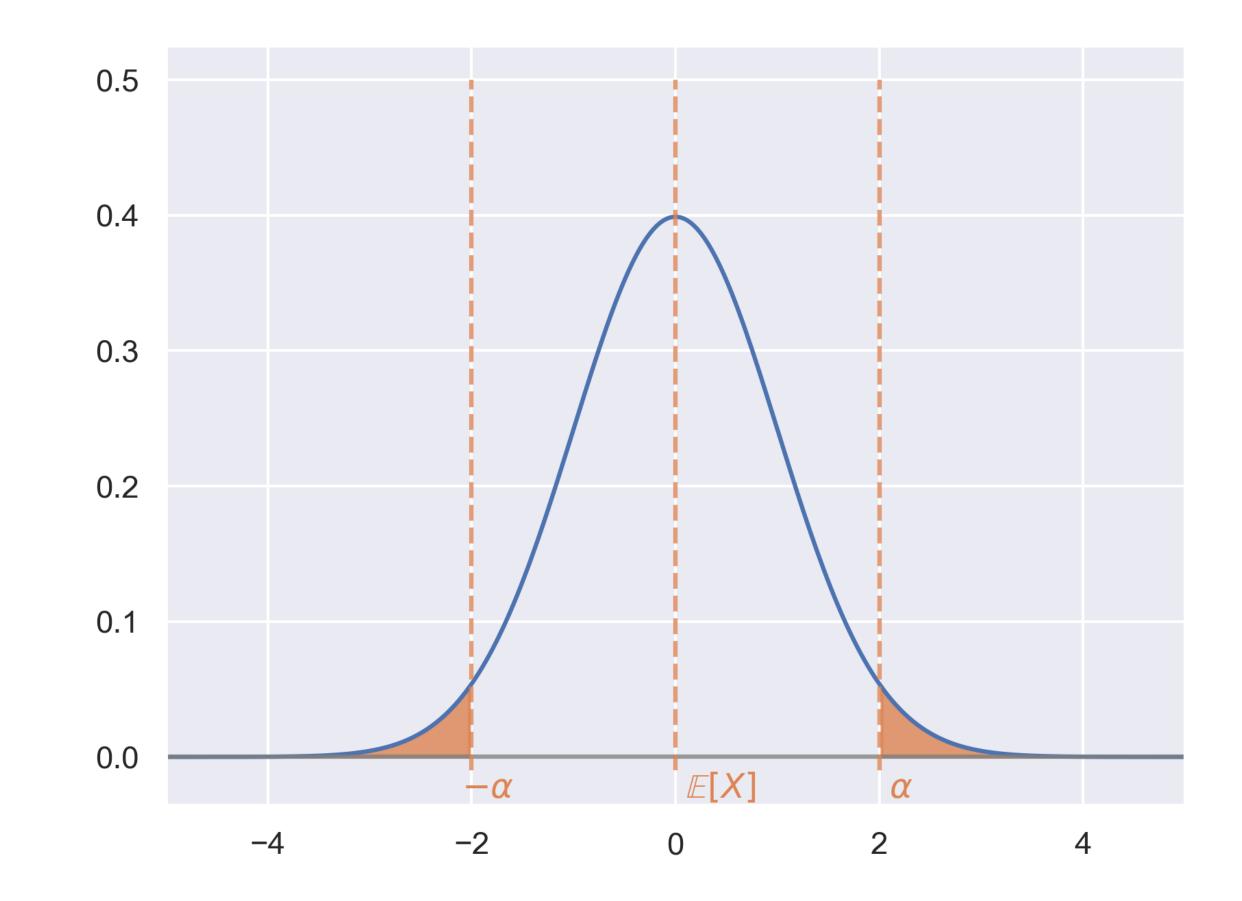
EtxJZ a P[x>d]



Chebyshev's Inequality Statement and Proof

Theorem (Chebyshev's Inequality). Let X be any arbitrary random variable, and let $\mu := \mathbb{E}[X]$ and $\sigma^2 = \operatorname{Var}(X)$. Then,

$$\mathbb{P}(|X - \mu| \ge \alpha) \le \frac{\sigma^2}{\alpha^2}.$$



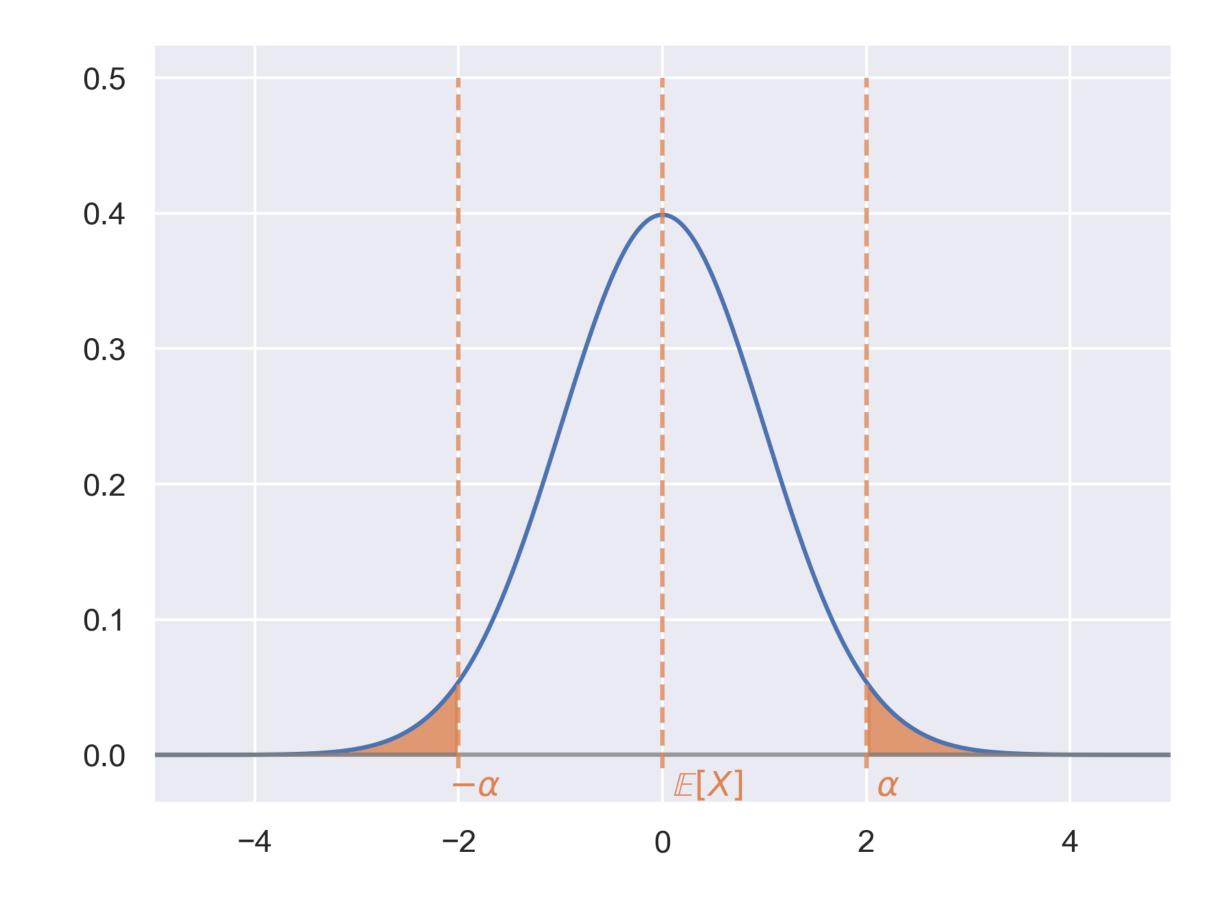
Chebyshev's Inequality Statement and Proof

$$\mathbb{P}(|X-\mu| \ge \alpha) \le \frac{\sigma^2}{\alpha^2}.$$

Proof.

Apply Markov's inequality to the random variable $|X - \mu|^2$:

$$\mathbb{P}(|X-\mu| \ge \alpha) = \mathbb{P}(|X-\mu|^2 \ge \alpha^2) \le \frac{\mathbb{E}[(X-\mu)^2]}{\alpha^2} = \frac{\sigma^2}{\alpha^2}.$$



Law of Large Numbers Proof

Let X_1, \ldots, X_n be i.i.d. with their sample average denoted as

$$\mathbb{P}(\left|\overline{X}_n-\mu\right|>$$

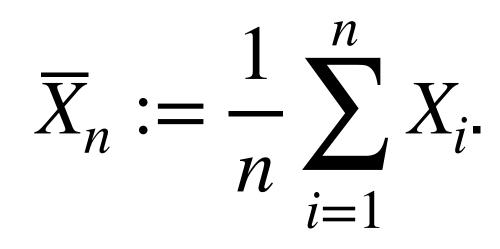
Q,BER

$= \alpha^2 Var(x)$ Var(Žti) = ŽVar(ti) for inder inc.

 $\lim_{n \to \infty} \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \epsilon\right) = 1. \qquad = \frac{1}{N^{2}} \sqrt{\alpha} \left(\sum_{i=1}^{\infty} \overline{X}_{i} - M\right),$ $\lim_{n \to \infty} \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \epsilon\right) = 1. \qquad = \frac{1}{N^{2}} \sqrt{\alpha} \left(\sum_{i=1}^{\infty} \overline{Y}_{i}\right) \qquad \text{inder}.$ $\lim_{n \to \infty} \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \epsilon\right) = 1. \qquad = \frac{1}{N^{2}} \sqrt{\alpha} \left(\sum_{i=1}^{\infty} \overline{Y}_{i}\right) \qquad \text{inder}.$ $\lim_{n \to \infty} \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| > \epsilon\right) \le \frac{\operatorname{Var}(\overline{X}_{n})^{M}}{\epsilon^{2}} = \frac{\sigma^{2}}{n\epsilon^{2}}, \qquad = \frac{1}{N} \sum_{i=1}^{\infty} \frac{\sigma^{2}}{1,2}$

Sample Average Definition

For i.i.d. random variables X_1, \ldots, X_n , their <u>sample average/sample mean/</u> empirical mean is the quantity:



Law of Large Numbers **Example: Mean Estimator for Coins**

Suppose we independently toss *n* coins, obtaining RVs X_1, \ldots, X_n .

- **Example.** Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

Law of Large Numbers **Example: Mean Estimator for Coins**

toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

Suppose we independently toss n coins, obtaining RVs X_1, \ldots, X_n .

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = a$$

Law of large numbers states that for any $\lim_{n\to\infty} \mathbb{P}(\mathbf{x}_n)$

- **Example.** Let X_i be a random variable denoting the outcome of a single fair coin

 - verage frequency of heads

$$\epsilon < 0$$
, no matter how small:
 $-1/2 \left(< \epsilon \right) = 1$

Law of Large Number Example: Mean Estimator for C

Example. Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

Law of large numbers states that for any $\epsilon > 0$, no matter how small:

 $\lim_{n\to\infty} \mathbb{P}(|\overline{X}$

We can quantify this more exactly with Chebyshev's inequality:

 $Var(\overline{X})$

Therefore, using Chebyshev's inequality:

 $\mathbb{P}(0.4 \le \overline{X}_n \le 0.6)$

PS

$$E[X_n] = E[\frac{1}{n} \sum_{i=1}^{n} Y_i]$$

Coins
 $= \frac{1}{n} \sum_{i=1}^{n} E[Y_n]$
 $= \frac{1}{n} \sum_{i=1}^{n} E[Y_n]$

$$\overline{\xi}_{n} - \frac{1}{2} < \epsilon = 1$$

$$\operatorname{Vow}(\mathcal{X}) = \overline{\mathbb{E}[\mathcal{X}^{2}]} - \overline{\mathbb{E}[\mathcal{Y}]}^{2}$$

$$= \overline{\mathbb{E}[\mathcal{X}]} - \frac{1}{4}$$

$$= \frac{1}{2} - \frac{1}{4}$$

$$P = \mathbb{P}(|\overline{X}_n - \mu| \le 0.1)$$

= $1 - \mathbb{P}(|\overline{X}_n - \mu| > 0.1)$
 $\ge 1 - \frac{1}{4n(0.1)^2} = 1 - \frac{25}{n}$ (where $\mathbb{P}(1)$

Law of Large Numbers **Example: Mean Estimator for Coins**

tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

Law of large numbers states that for any $\epsilon > 0$, no matter how small: $\lim_{n\to\infty} \mathbb{P}(\mathbf{x}_n)$

From the previous slide:

 $\mathbb{P}(0.4 \leq \overline{X}_n)$

So, for example, for n = 100 flips, the probability that the frequency of heads is between 0.4 and 0.6 is at least 0.75.

- **Example.** Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for

$$_{i} - 1/2 \Big| < \epsilon \Big| = 1$$

$$\leq 0.6) \geq 1 - \frac{25}{n}$$

Law of Large Numbers **Example: Mean Estimator for Coins**

Example. Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

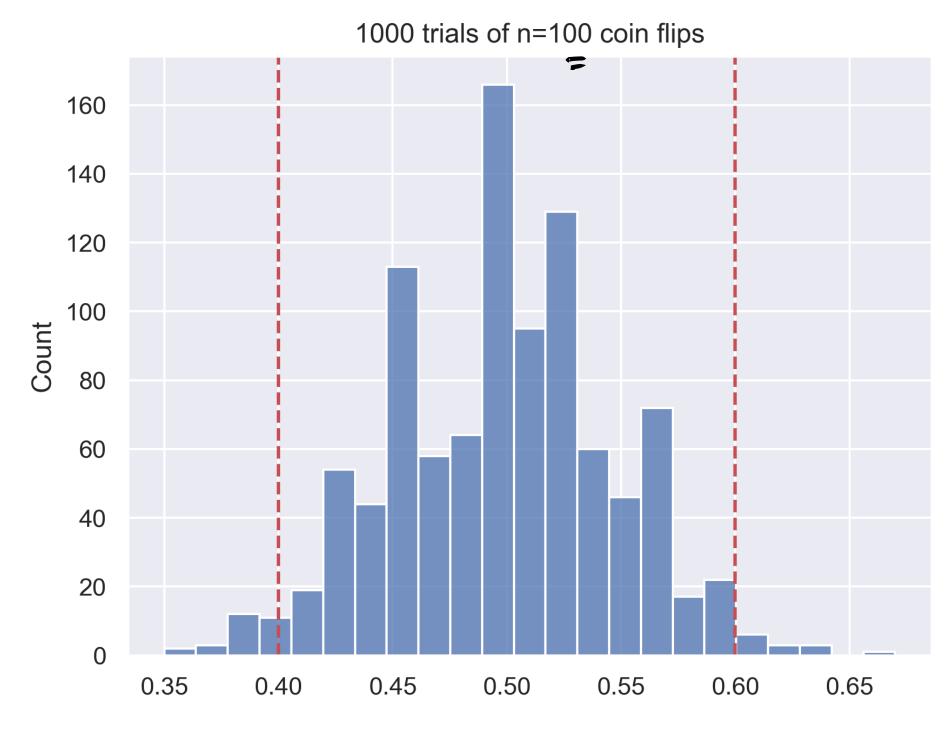
Law of large numbers states that for any $\epsilon > 0$, no matter how small:

$$\lim_{n \to \infty} \mathbb{P}(\left| \overline{X}_n - 1/2 \right| < \epsilon) = 1$$

From the previous slide:

$$\mathbb{P}(0.4 \le \overline{X}_n \le 0.6) \ge 1 - \frac{25}{n}$$

So, for example, for n = 100 flips, the probability that the frequency of heads is between 0.4 and 0.6 is at least 0.75. $\overline{X}_{100} = \frac{1}{100} \sum_{i=1}^{100} \frac{X_i}{X_i}$



Statistical Estimation Intuition

In a nutshell:

Make some assumptions about data that we're to collect.

(*i.i.d.* assumption).

Collect as much data as we can about the phenomenon.

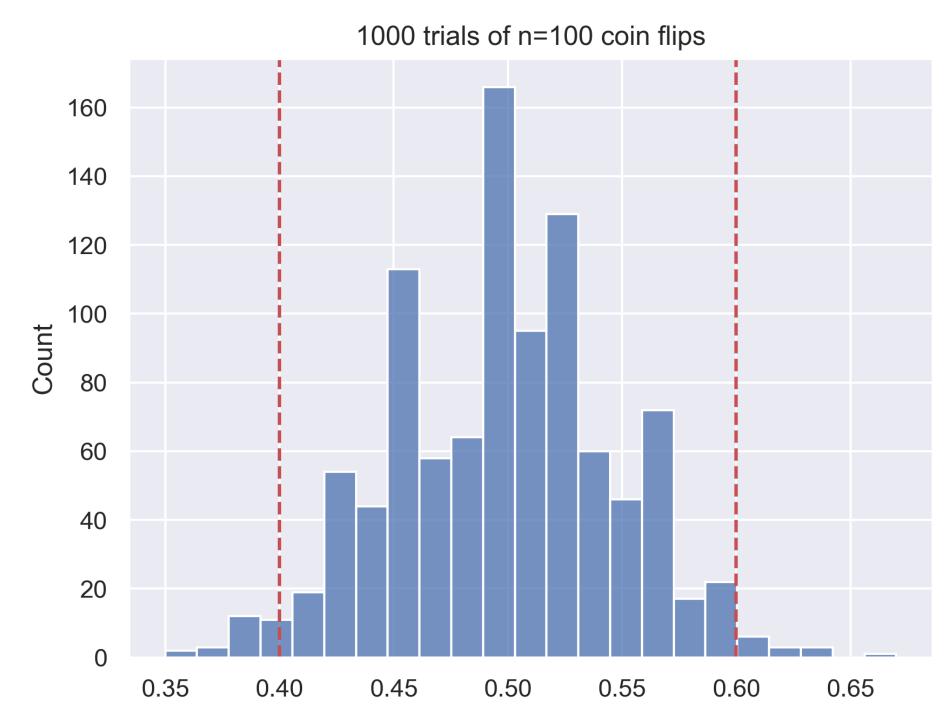
(n = 100 coin flips).

Use the data to derive characteristics (statistics) about how the data were generated

(the *true* mean $\mathbb{E}[X_i] = 0.5$)

via some estimator.

$$(\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i)$$



Generalization Intuition

<u>Statistics/statistical inference</u> concerns drawing conclusions about data that we've already been given.

Generalization is a big concern in machine learning — we also want to describe *future* data well.

If the future data comes from the same distribution as our past data, then we can hope to generalize by describing our past data well!

Key link:

Statistical Estimators Definition and examples

Statistical Estimator Intuition

A <u>(statistical) estimator</u> is a "best guess" at some (unknown) quantity of interest (the <u>estimand</u>) using observed data.

We will only concern ourselves with *point estimation*, where we want to estimate a single, fixed quantity of interest (as opposed to, say, an interval).

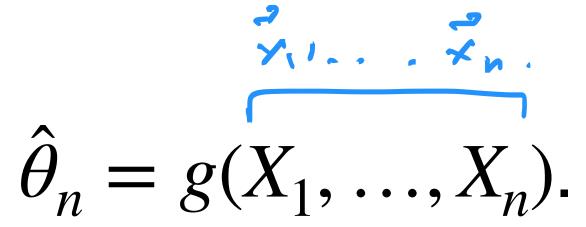
The quantity doesn't have to be a single number; it could be, for example, a fixed vector, matrix, or function.

Statistical Estimator Definition X., ..., Xn

<u>estimator</u> θ_n of some fixed, unknown parameter θ is some function of $X_1, ..., X_n$:

Defined similarly for random vectors.

Let X_1, \ldots, X_n be *n* i.i.d. random variables drawn from some distribution \mathbb{P}_X . An



Statistical Estimator Definition

Let X_1, \ldots, X_n be n i.i.d. random variable **estimator** $\hat{\theta}_n$ of some fixed, unknown $\hat{\theta}_n = g \hat{\theta}_n$

Defined similarly for random vectors.

Importantly: statistical estimators are functions of random variables, so they are *themselves* random variables!

Let X_1, \ldots, X_n be *n* i.i.d. random variables drawn from some distribution \mathbb{P}_X . An <u>estimator</u> $\hat{\theta}_n$ of some fixed, unknown parameter θ is some function of X_1, \ldots, X_n :

$$(X_1,\ldots,X_n)$$

Statistical Estimator Example: Mean Estimator for Coins

Suppose we independently toss n coins, obtaining RVs X_1, \ldots, X_n .

Estimand: $\hat{\theta} = \mu$. \overleftarrow{E} \overleftarrow{E} Estimator: $\hat{\theta}_n = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$. $\partial_{\mathbf{N}}(\mathbf{X}_{1},\ldots,\mathbf{X}_{\mathbf{N}})$

- **Example.** Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

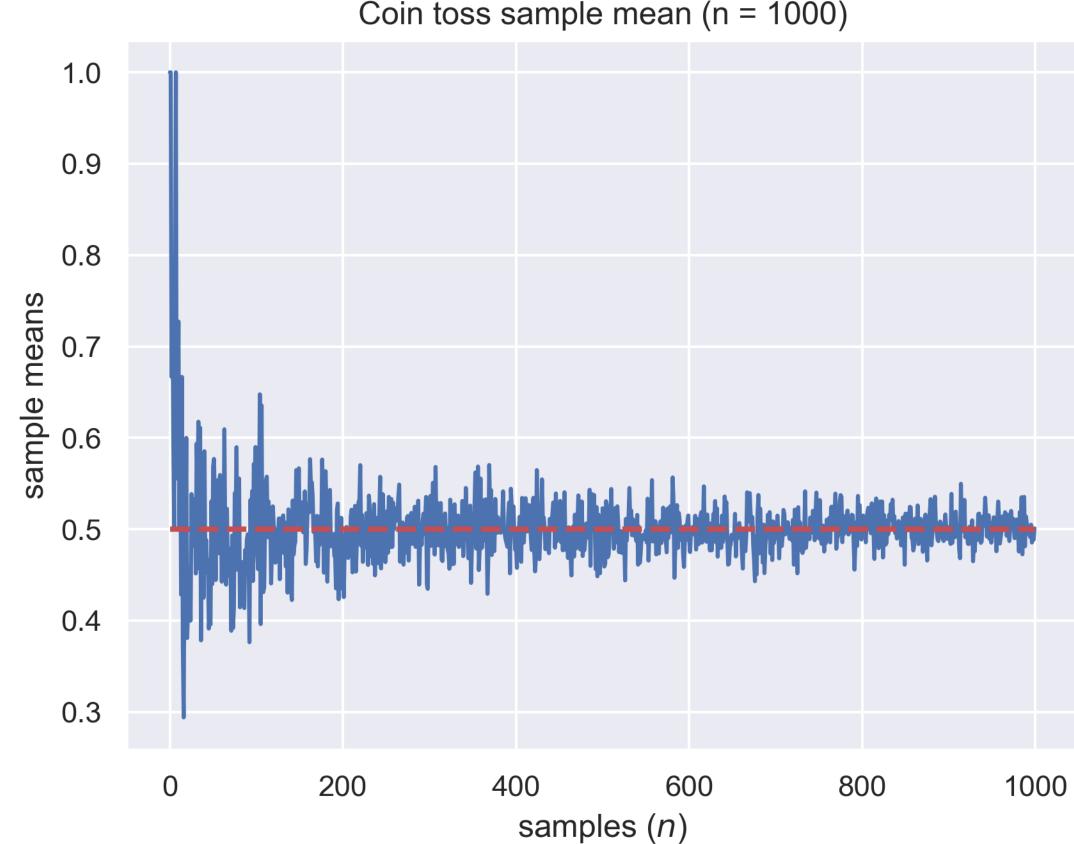
Statistical Estimator Example: Estimating coin flip

Example. Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

Suppose we independently toss *n* coins, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = \mu$.

Estimator:
$$\hat{\theta}_n = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
.



Coin toss sample mean (n = 1000)

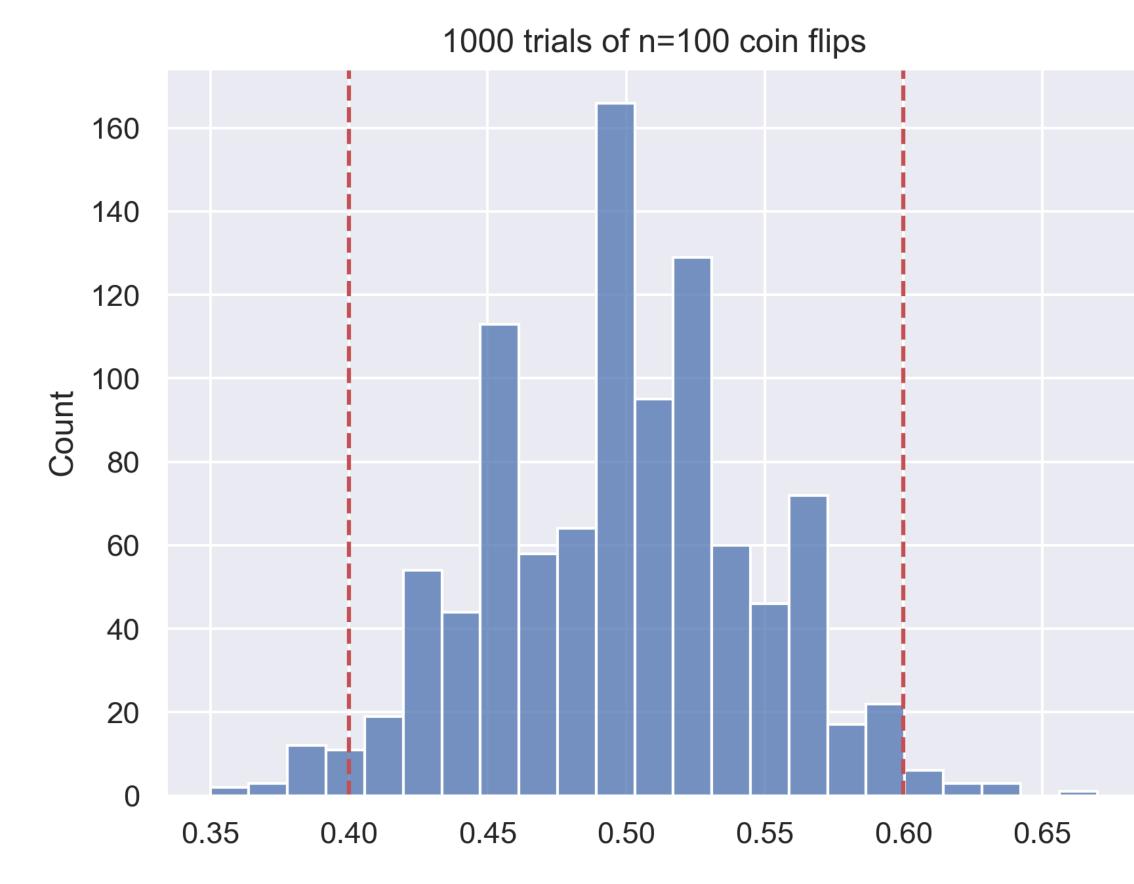
Statistical Estimator Example: Estimating coin flip

Example. Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

Suppose we independently toss n coins, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = \mu$.

Estimator:
$$\hat{\theta}_n = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
.



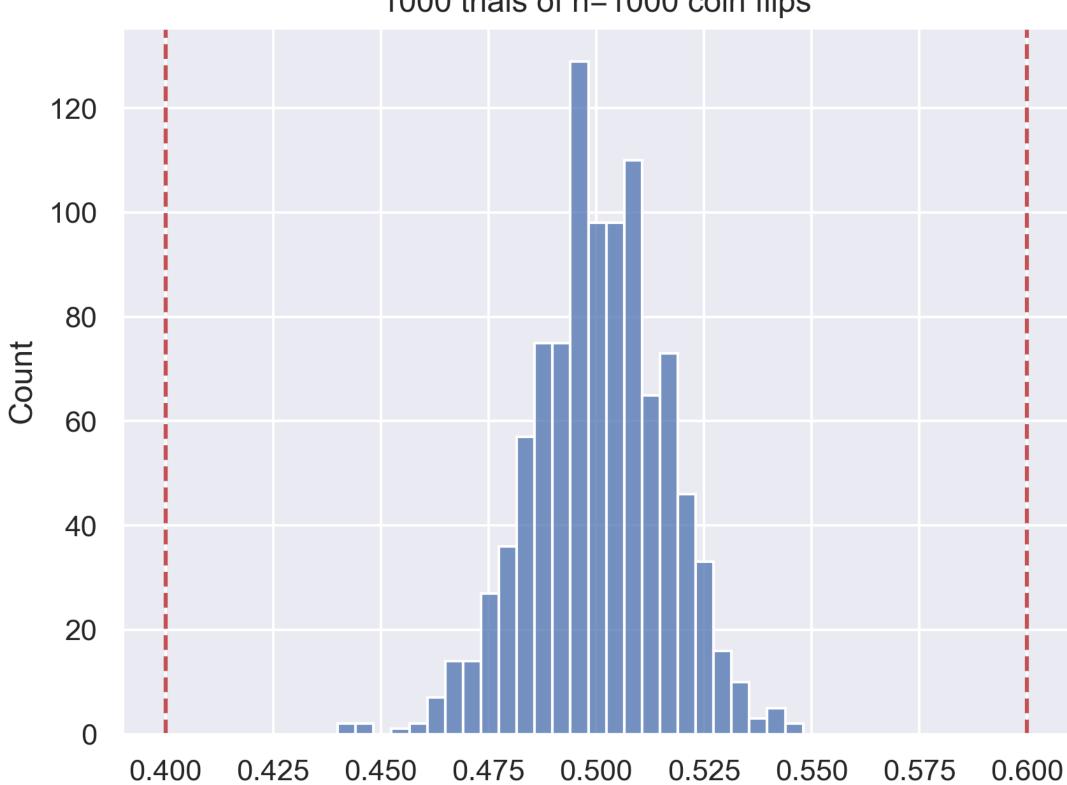
Statistical Estimator Example: Estimating coin flip

Example. Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

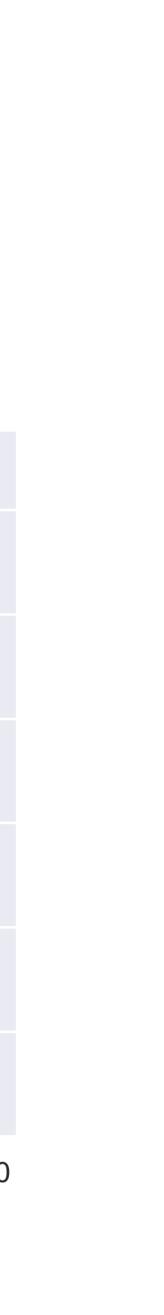
Suppose we independently toss *n* coins, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = \mu$.

Estimator:
$$\hat{\theta}_n = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
.



1000 trials of n=1000 coin flips



Statistical Estimator Example: Variance Estimator for Coins

Suppose we independently toss *n* coins, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = Var(X_i) = (1/2)(1 - 1/2)(1 -$

Estimator:
$$\hat{\theta}_n = S_n^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_i)$$

- **Example.** Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

$$1/2) = 1/4.$$

 $(\overline{K}_{n})^{2}$ (biased sample variance).

Statistical Estimator Example: Variance Estimator for Coins

Suppose we independently toss *n* coins, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = Var(X_i) = (1/2)(1 - 1/2)(1 -$

Estimator:
$$\hat{\theta}_n = s_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i)$$

- **Example.** Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

$$1/2) = 1/4.$$

 $(-\overline{X}_n)^2$ (unbiased sample variance).

Statistical Estimator Example: Variance Estimation

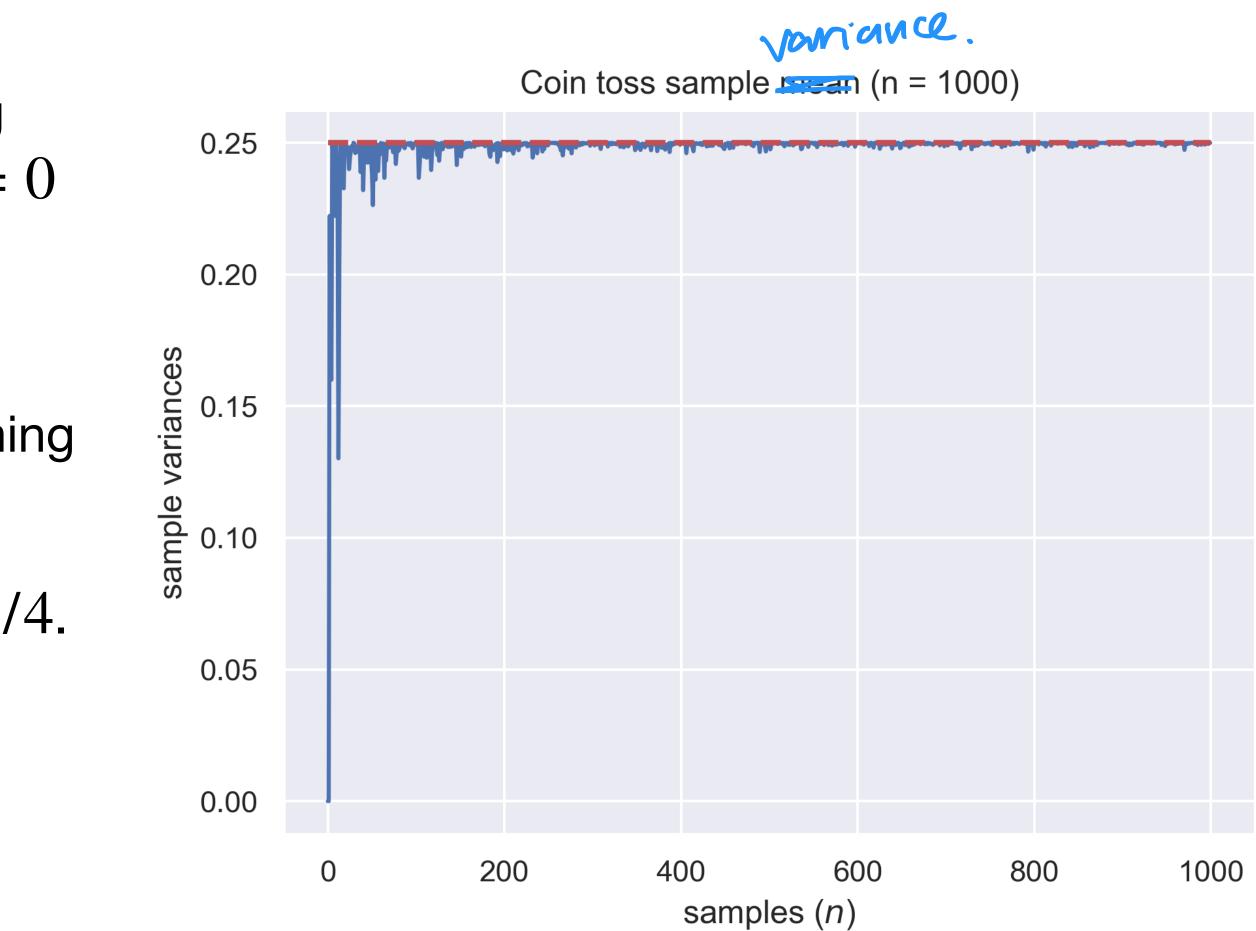
Example. Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

Suppose we independently toss n coins, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = Var(X_i) = (1/2)(1 - 1/2) = 1/4.$

Estimator:
$$\hat{\theta}_n = s_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

(*unbiased* sample variance).

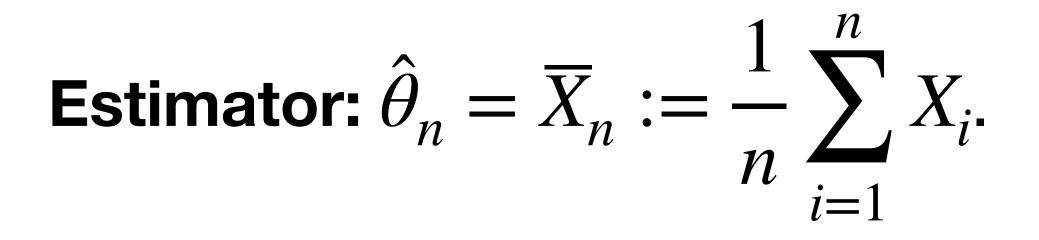


Statistical Estimator Example: Mean Estimator for Dice

sided fair die. Clearly, $\mu := \mathbb{E}[X_i] = 3.5$.

Suppose we independently roll *n* dice, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = \mu$.

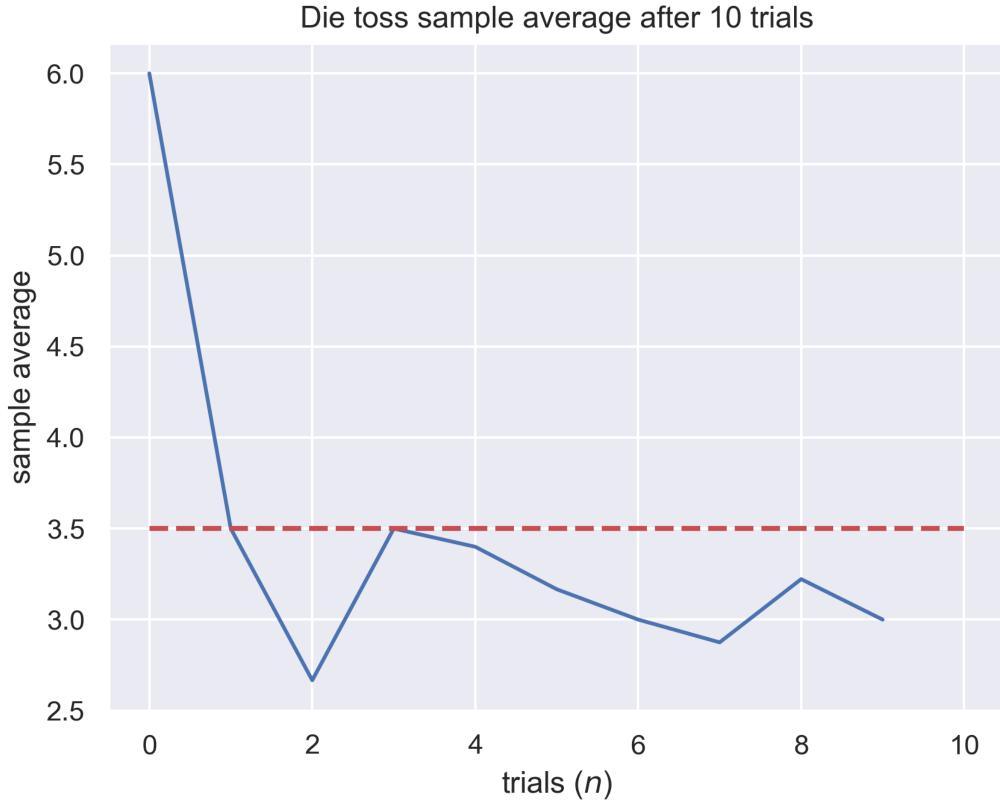


- **Example.** Let X_i be a random variable denoting the face after tossing a six-

Example. Let X_i be a random variable denoting the face after tossing a six-sided fair die. Clearly, $\mu := \mathbb{E}[X_i] = 3.5$.

Suppose we independently roll *n* dice, obtaining RVs X_1, \ldots, X_n .

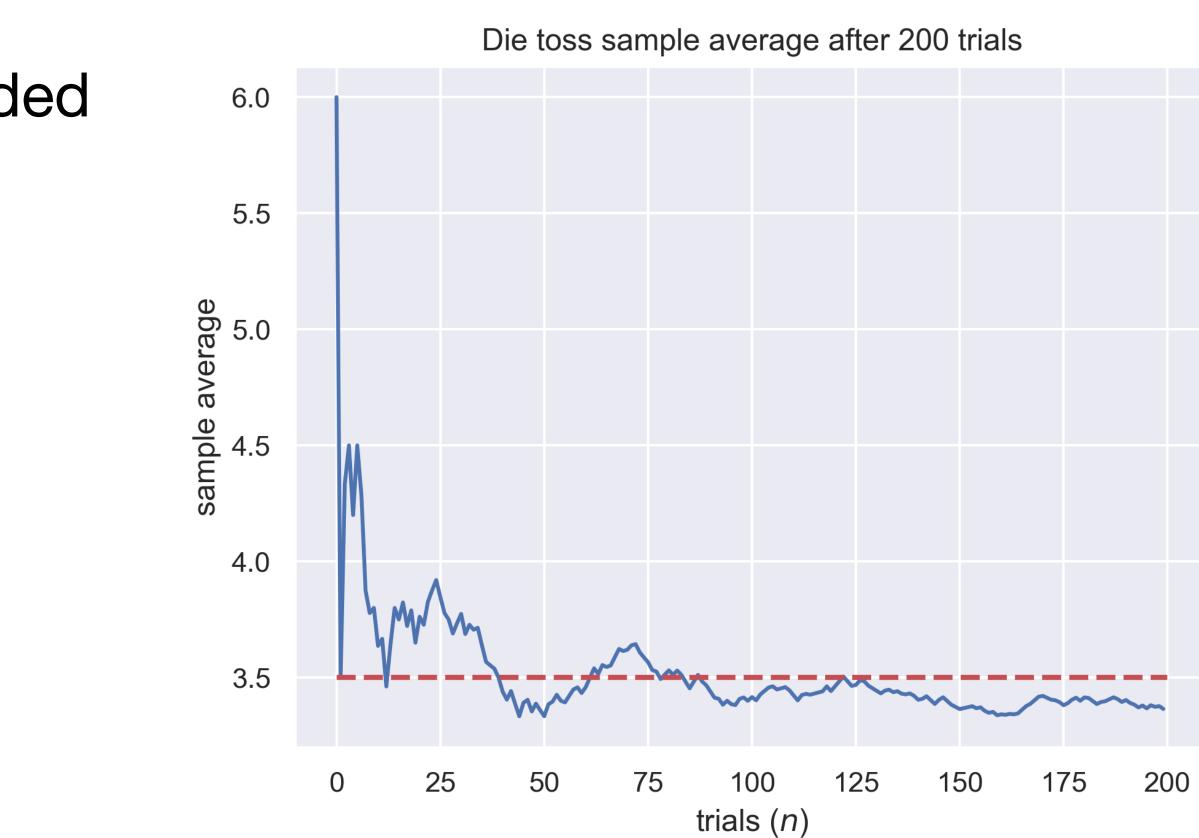
Estimand: $\theta = \mu$. **Estimator:** $\hat{\theta}_n = \overline{X}_n := \frac{1}{n}$ $n \stackrel{\frown}{i=1}$



Example. Let X_i be a random variable denoting the face after tossing a six-sided fair die. Clearly, $\mu := \mathbb{E}[X_i] = 3.5$.

Suppose we independently roll *n* dice, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = \mu$. Estimator: $\hat{\theta}_n = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.



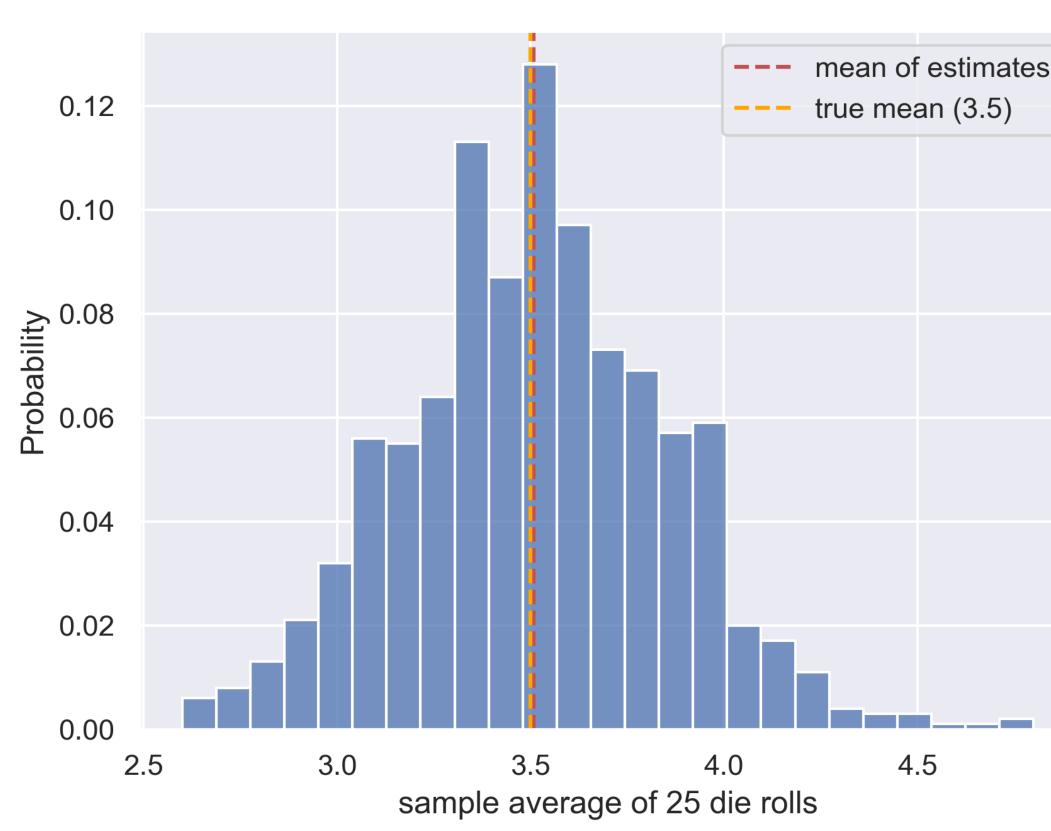
Example. Let X_i be a random variable denoting the face after tossing a six-sided fair die. Clearly, $\mu := \mathbb{E}[X_i] = 3.5.$

Suppose we independently roll *n* dice, obtaining $\mathsf{RVs}\,X_1,\ldots,X_n.$

Estimand: $\theta = \mu$.

Estimator:
$$\hat{\theta}_n = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i.$$

The estimator is itself a random variable!



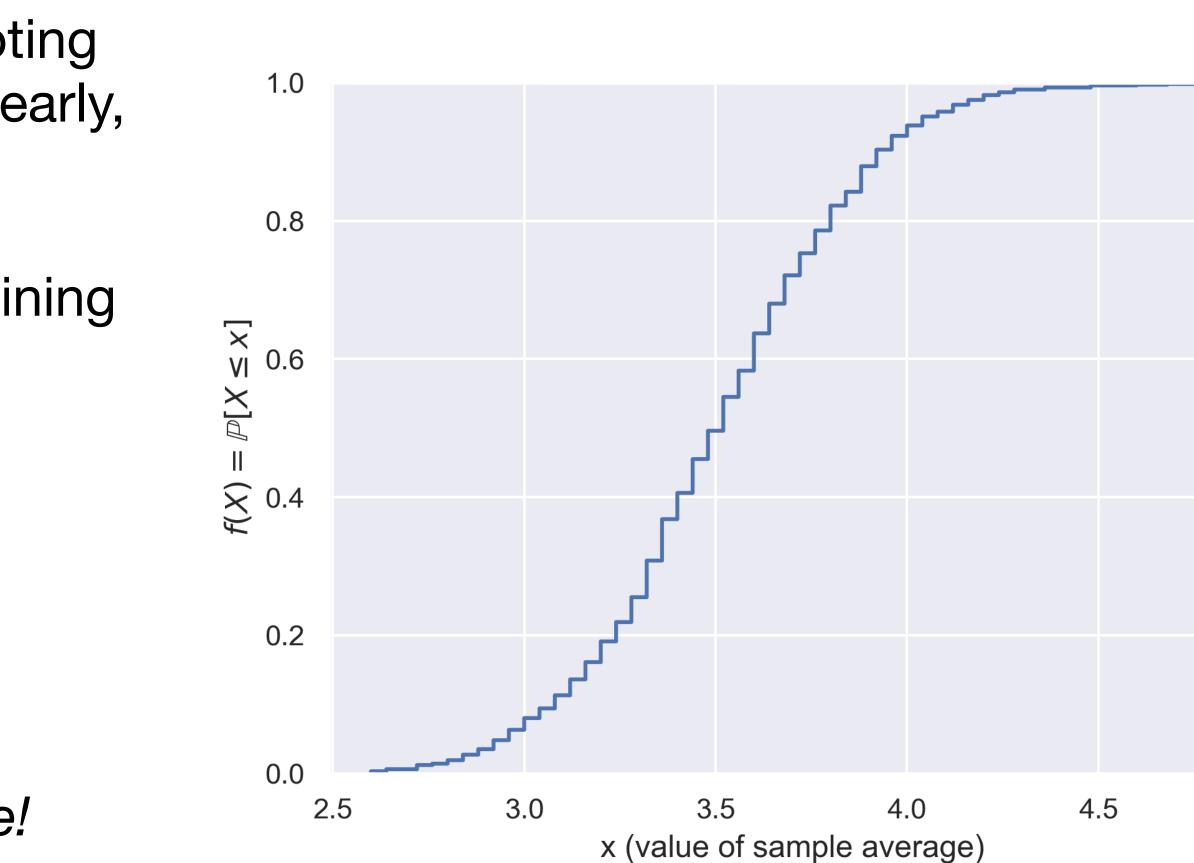
Example. Let X_i be a random variable denoting the face after tossing a six-sided fair die. Clearly, $\mu := \mathbb{E}[X_i] = 3.5$.

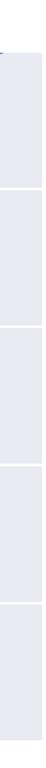
Suppose we independently roll *n* dice, obtaining RVs X_1, \ldots, X_n .

Estimand: $\theta = \mu$.

Estimator:
$$\hat{\theta}_n = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i.$$

The estimator is itself a random variable!





Statistical Estimator Example: OLS Estimator

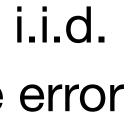
Example. Let $(\mathbf{x}_1, y_1) \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. samples from the joint distribution $\mathbb{P}_{\mathbf{X},v}$ with the error model:

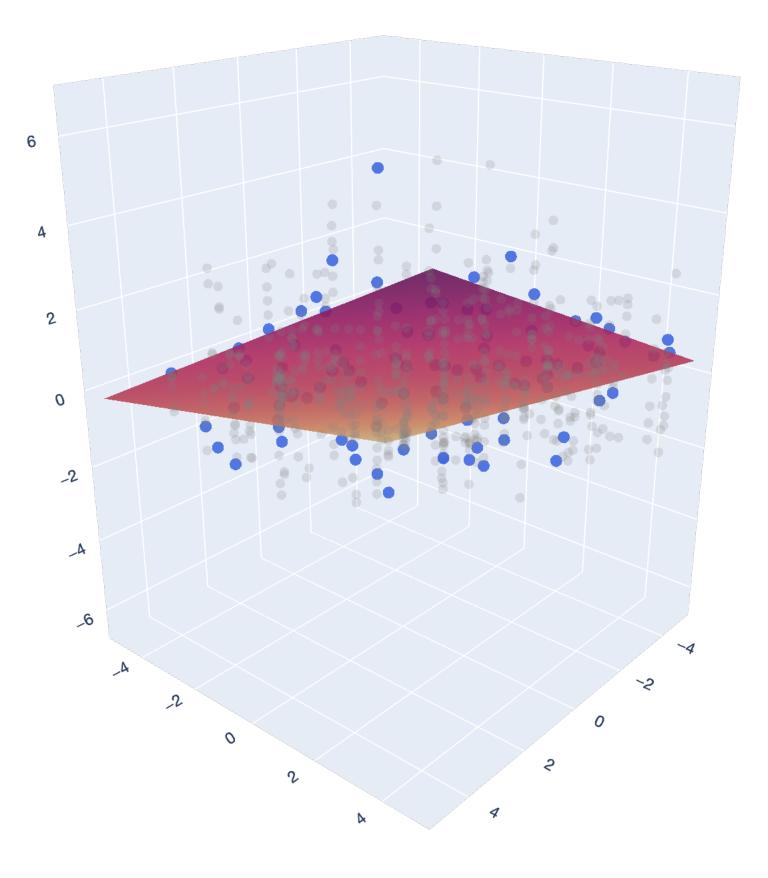
$$y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon,$$

where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable with $\mathbb{E}[\boldsymbol{\epsilon}] = 0$ independent from \mathbf{x}^* .

Estimand: $\theta = \mathbf{w}^*$. **Estimator:** $\hat{\theta}_n = \hat{\mathbf{w}}_{OLS} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$, where $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$ are constructed from the samples row-wise.

X = (1, 1) $\mathcal{E} = 1$





-2 -3

Statistical Estimator Example: Ridge Estimator

distribution $\mathbb{P}_{\mathbf{X},v}$ with the error model:

Estimand: $\theta = \mathbf{w}^*$. Estimator: $\hat{\theta}_n = \hat{\mathbf{w}}_{ridge} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$, where $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$ are constructed from the samples row-wise and $\gamma > 0$ is the *regularization parameter*.

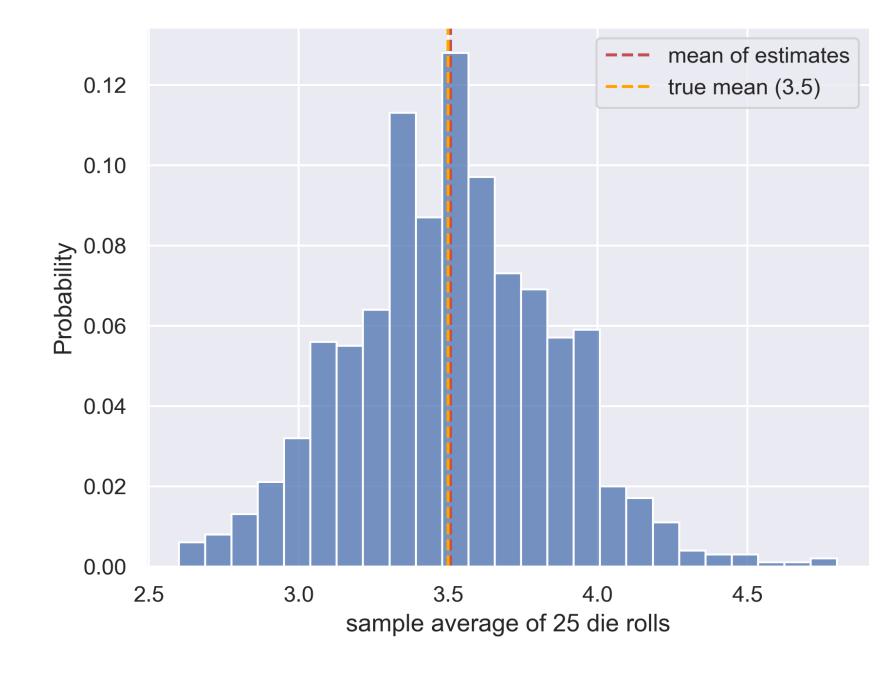
Example. Let $(\mathbf{x}_1, y_1) \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. samples from the joint $y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon,$

where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ independent from \mathbf{x}^* .

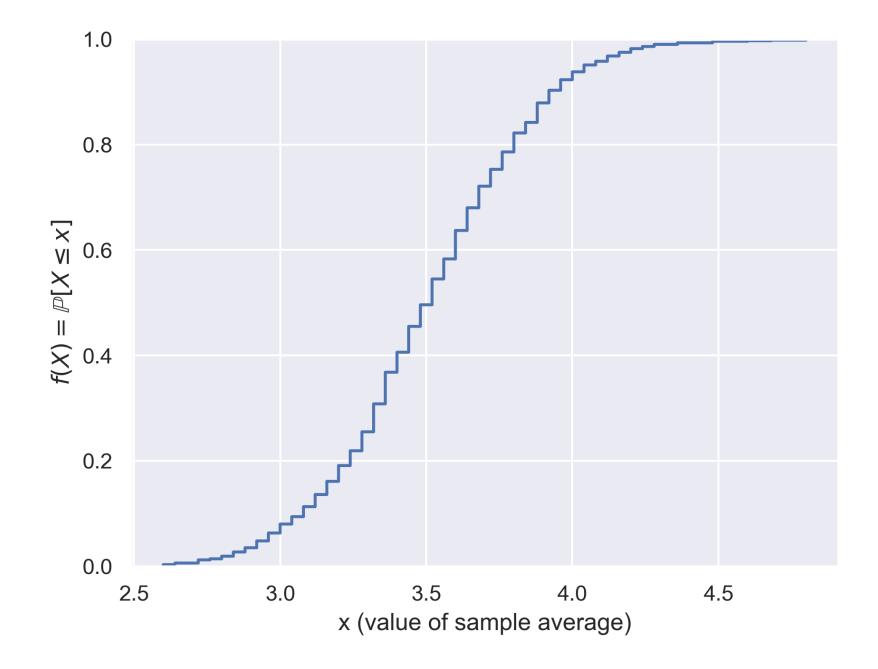
Statistical Estimators Variance and bias

Statistical Estimator Random Variables

Remember that statistical estimators are random variables! Below, the mean estimator \overline{X}_n of n = 25 dice rolls X_1, \ldots, X_{25} .

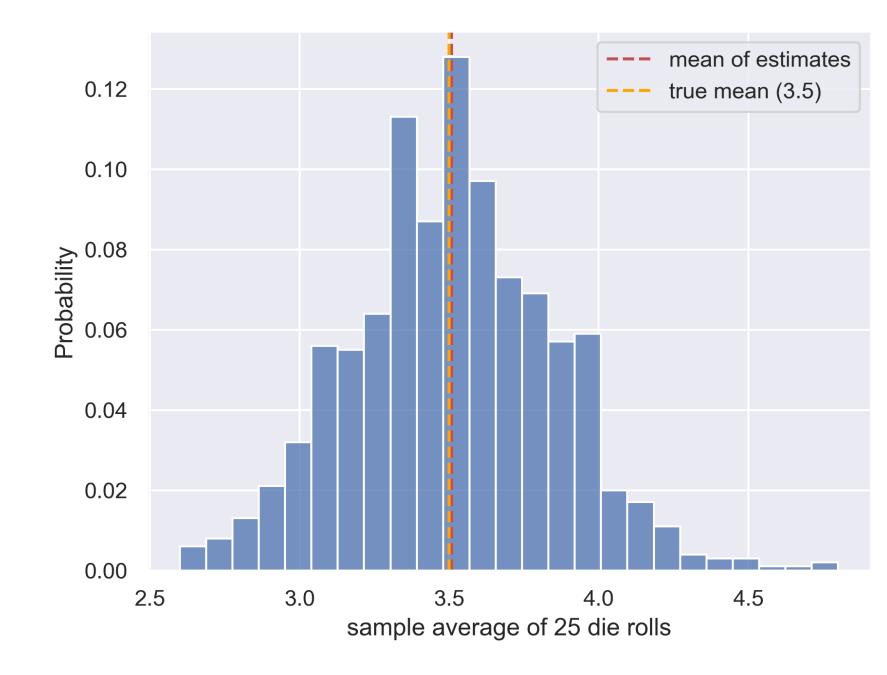


 $\frac{1}{2} \sum_{i=1}^{25} X_i$

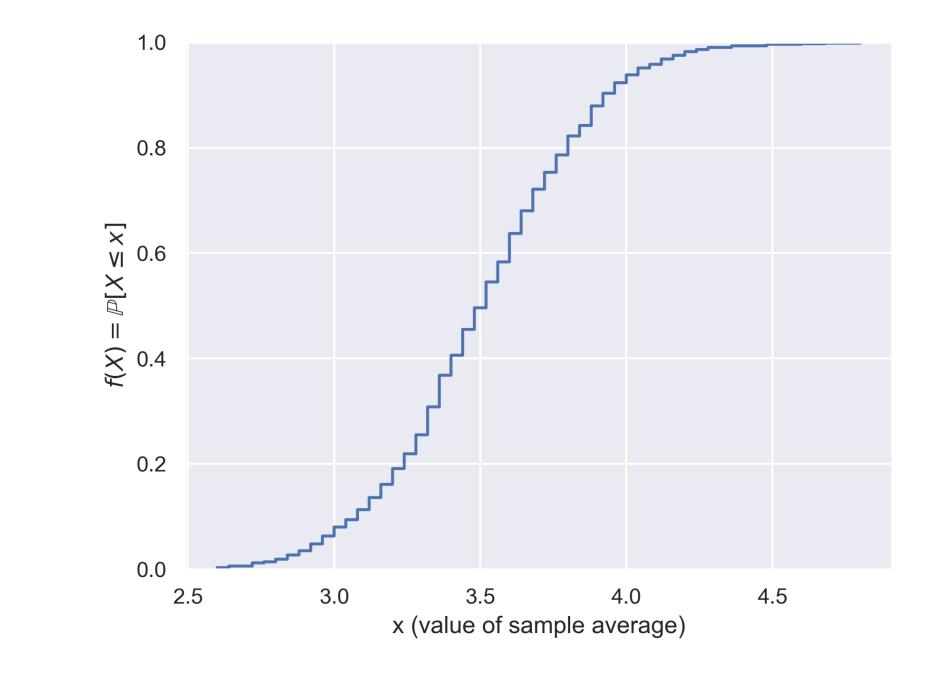


Statistical Estimator Random Variables

Remember that statistical estimators are random variables!

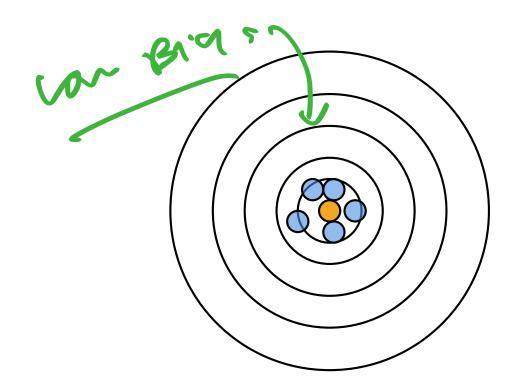


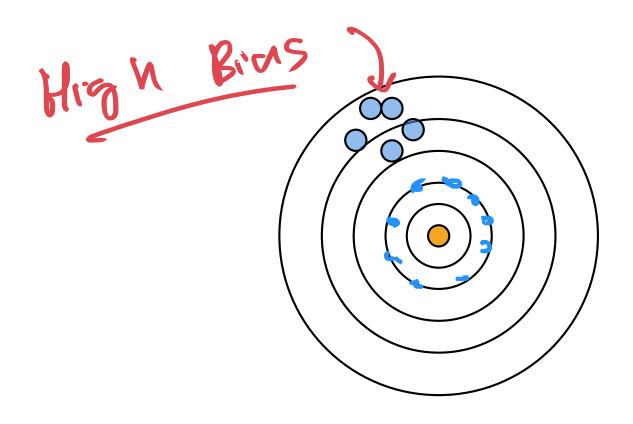
What are the properties of estimators as random variables?

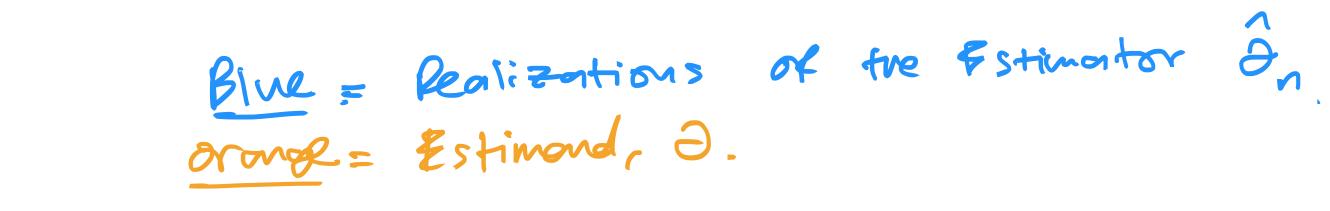


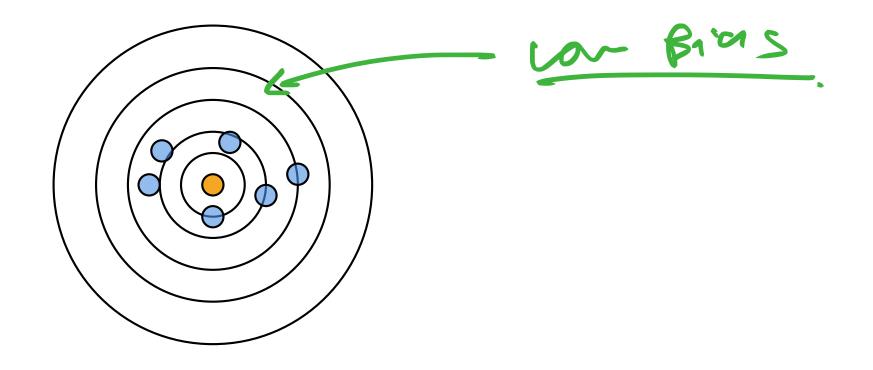
Bias of Estimators Intuition

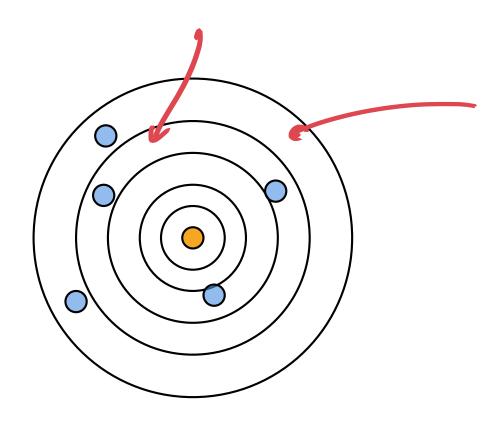
The **bias** of an estimator is "how far off" it is from its estimand.











Higher Bras

Bias of Estimators Definition

Let $\hat{\theta}_n$ be an estimator for the estimand θ . The **bias** of $\hat{\theta}_n$ is defined as:

We say that an estimator is <u>unbiased</u> if $\mathbb{E}[\hat{\theta}_n] = \theta$. $\implies \beta \in \mathbb{N} = 0$.

 $\operatorname{Bias}(\hat{\theta}_n) := \mathbb{E}[\hat{\theta}_n] - \theta.$

Bias of Estimators Example: Constant Estimator

Suppose we are estimating the mean, μ . What's the bias of the estimator

$$\hat{\theta}_n = 1?$$

$$\mathbb{E}[\hat{\partial}n] = \mathbb{E}[\hat{\partial}n] = [$$

$$\mathbb{E}[\hat{\partial}n] = \mathbb{E}[\hat{\partial}n] - M = [1 - M]$$

Example. Consider i.i.d. random variables X_1, \ldots, X_n with mean $\mu := \mathbb{E}[X_i]$.

P

Bias of Estimators Example: Single Sample Estimator

Suppose we are estimating the mean, μ . What's the bias of the estimator

Elgy = Eltr Univiased

Example. Consider i.i.d. random variables X_1, \ldots, X_n with mean $\mu := \mathbb{E}[X_i]$.

$$y_n = X_n?$$

 $\hat{\theta}_{1}$

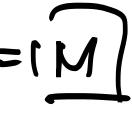
Bias of Estimators Example: Sample Mean

Suppose we are estimating the mean, μ . What's the bias of the estimator

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i?$$

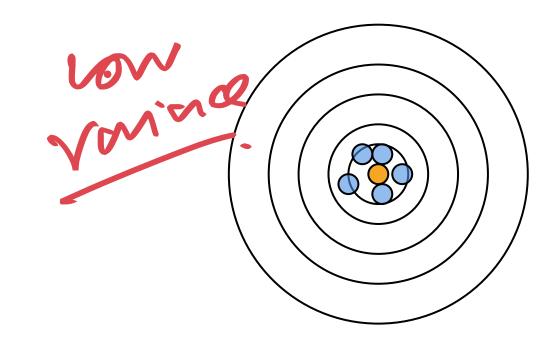
$$f[\hat{\partial}_n] = f[\hat{f} \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\sum}}} K_i] = \frac{1}{n} \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\sum}}} f[\mathcal{F}[\mathcal{H}]] = \frac{1}{n} \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\sum}}} M = \frac{n}{n} \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\sum}} M = \frac{n}{n} \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\sum}}} M = \frac{n}{n} \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\sum}} M = \frac{n}{n} \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{\sim}{\sum}}} M = \frac{n}{n} \stackrel{\sim}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\underset{i=1}{\overset{\sim}{\underset{i=1}{\underset{i$$

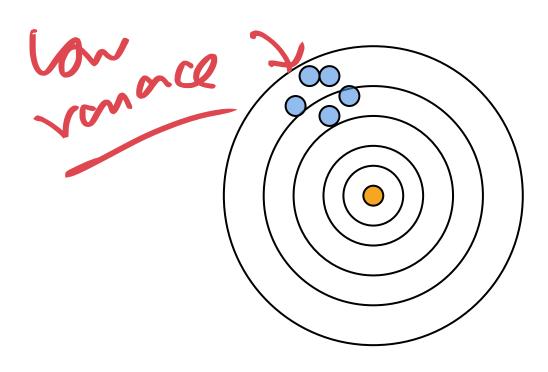
Example. Consider i.i.d. random variables X_1, \ldots, X_n with mean $\mu := \mathbb{E}[X_i]$.

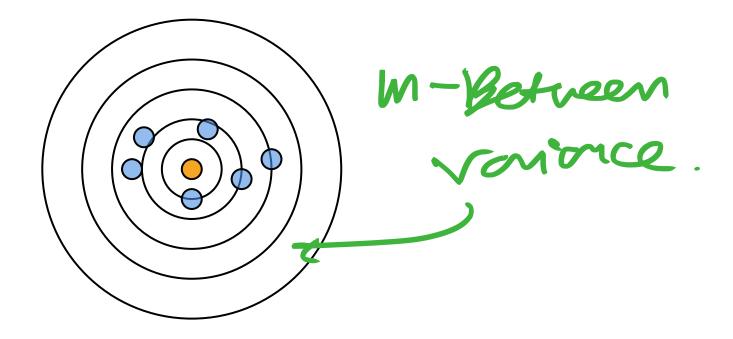


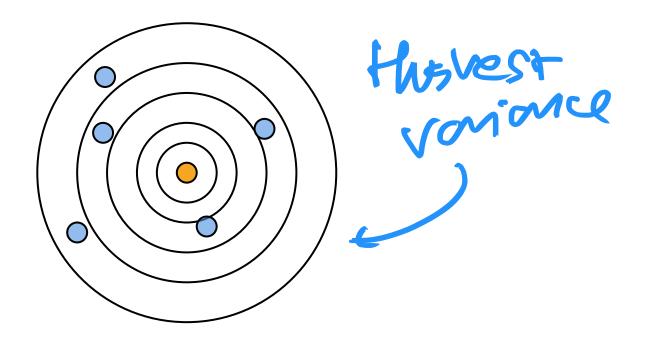
Variance of Estimators Intuition

The <u>variance</u> of an estimator is simply its variance, as a random variable. This is the "spread" of the estimates from the whatever the estimator's mean is.









Variance of Estimators Definition

- The <u>variance</u> of an estimator $\hat{\theta}_n$ is simply its variance, as a random variable: $\operatorname{Var}(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \mathbb{E}[$
- The standard error of an estimator is simply its standard deviation:
 - $se(\hat{\theta}_n) :=$

$$[\hat{\theta}_n])^2] = \mathbb{E}[(\hat{\theta}_n)^2] - \mathbb{E}[\hat{\theta}_n]^2.$$

$$=\sqrt{\operatorname{Var}(\hat{\theta}_n)}.$$

Variance of Estimators Definition

- The <u>variance</u> of an estimator $\hat{\theta}_n$ is simply its variance, as a random variable: $\operatorname{Var}(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \mathbb{E}[$
- The standard error of an estimator is simply its standard deviation:
 - $se(\hat{\theta}_n) :=$

Notice: The variance of an estimator *does not* concern its estimand.

$$[\hat{\theta}_n])^2] = \mathbb{E}[(\hat{\theta}_n)^2] - \mathbb{E}[\hat{\theta}_n]^2.$$

$$=\sqrt{\operatorname{Var}(\hat{\theta}_n)}.$$

Variance of Estimators **Example: Constant Estimator**

 $\hat{\theta}$

Var(é

Example. Consider i.i.d. random variables X_1, \ldots, X_n with mean $\mu := \mathbb{E}[X_i]$. Suppose we are estimating the mean, μ . What's the variance of the estimator

$$p_n = 1?$$

 $p_n = 1?$

Variance of Estimators **Example: Single Sample Estimator**

vonince 6² := Var(4) **Example.** Consider i.i.d. random variables X_1, \ldots, X_n with mean $\mu := \mathbb{E}[X_i]$. Suppose we are estimating the mean, μ . What's the variance of the estimator

> $\hat{\theta}_n = X_n?$ $\sqrt{qv}(\hat{\partial}_n) = \sqrt{qr}(\chi_n) = |\beta|$

Variance of Estimators **Example: Sample Mean**

 $\hat{\theta}_n =$ $Var(\partial_n) = Var(\frac{1}{n} \overset{!}{\geq} \overset{!}{\prec})$

Example. Consider i.i.d. random variables X_1, \ldots, X_n with mean $\mu := \mathbb{E}[X_i]$. Suppose we are estimating the mean, μ . What's the variance of the estimator

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i}?$$

$$= \frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} + 1\right) \quad \text{independent}$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}(+1) \quad \text{identically distanced}$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} 6^{2} \quad \text{identically distanced}$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} 6^{2} \quad \text{identically distanced}$$

Statistics of OLS Theorem

Theorem (Statistical properties of OLS). Let $\mathbb{P}_{\mathbf{x},y}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the error model:

where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable Suppose we construct a random matrix $\mathbf{X} \in$ random examples (\mathbf{x}_i, y_i) from $\mathbb{P}_{\mathbf{x}, y}$. Then, the following statistical properties:

Expectatio

Variance: Var[

$$y = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \epsilon,$$

able with $\mathbb{E}[\epsilon] = 0$ and $\operatorname{Var}(\epsilon) = \sigma^2$, independent of
 $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $\mathbf{y} \in \mathbb{R}^n$ by drawing *n*
en, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$ has the
 $\mathbb{E}[\mathbb{E}[\mathsf{t} \times |\mathsf{T}]] = \mathbb{E}[\mathsf{t} \times]$
ration: $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*.$ $\mathcal{P} \mathbb{E}[\tilde{\mathsf{w}}] = \mathbf{w}^*$
 $\operatorname{Var}[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \sigma^2.$ $\mathbb{E}[\operatorname{Var}[\tilde{\mathbf{w}} \mid \mathbf{X}]] = \mathbb{E}[\mathsf{t} \times \mathsf{T}]$

Bias and Variance of Corollaries from Theorem

Under the error model:

 $y = \mathbf{X} \cdot \mathbf{W}^* + \epsilon$

OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has the following statistical properties:

This implies that, as an estimator of w^* — Fsimond.

$$(or(\hat{w}) = Var(\hat{w})$$

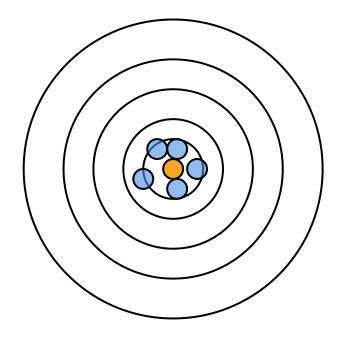
OLS
$$d=2$$
: convince monthix
 $var((L_{1}, 4z))$.
 $var((L_{1}, 4z))$.
 $z \geq z = [var(L_{1}) var(L_{1}, 1z)]$
 $var(L_{1}) var(L_{2})$.

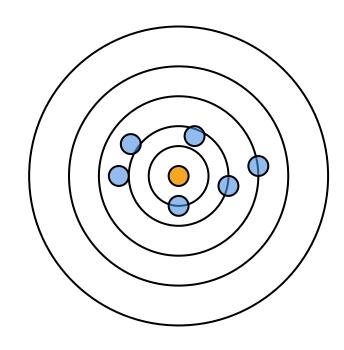
Expectation: $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$. Variance: Var $[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^2$, where Var $(\epsilon) = \sigma^2$. $Bias(\hat{\mathbf{w}}) = 0$ $= \sigma^2 \mathbb{E}[(\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1}] \ \mathbf{\mathcal{E}} \mathbf{\mathcal{P}}^{\mathbf{d} \mathbf{r} \mathbf{d}}$

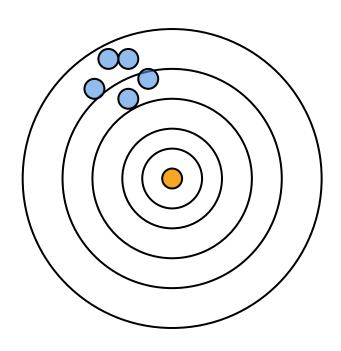
Bias vs. Variance of Estimators Summary

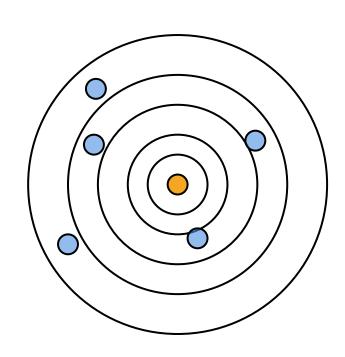
For an estimator $\hat{\theta}_n$ of the unknown estimand θ , its <u>bias</u> and <u>variance</u> are:

$$Bias(\hat{\theta}_n) := \mathbb{E}[\hat{\theta}_n] - \theta$$
$$Var(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n])^2].$$







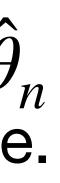


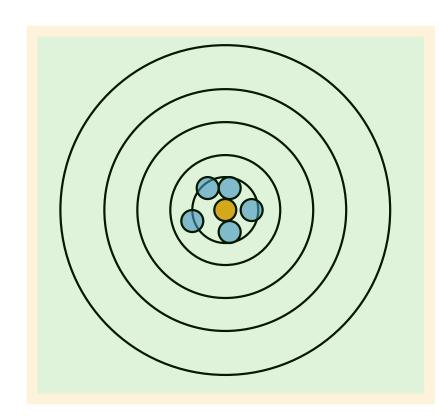
Mean Squared Error Bias-Variance Tradeoff

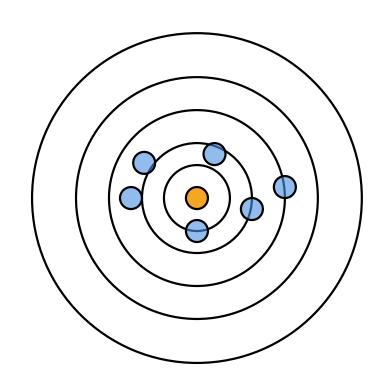
Mean Squared Error Intuition

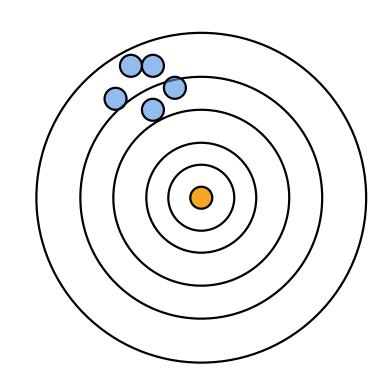
Intuitively, the best kind of estimator $\hat{\theta}_n$ should have low bias and low variance.

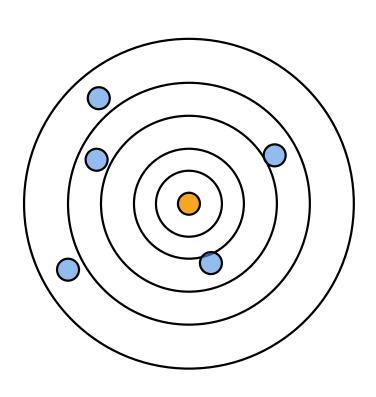
And it shouldn't be "too far" from the estimate, in a *distance* sense.





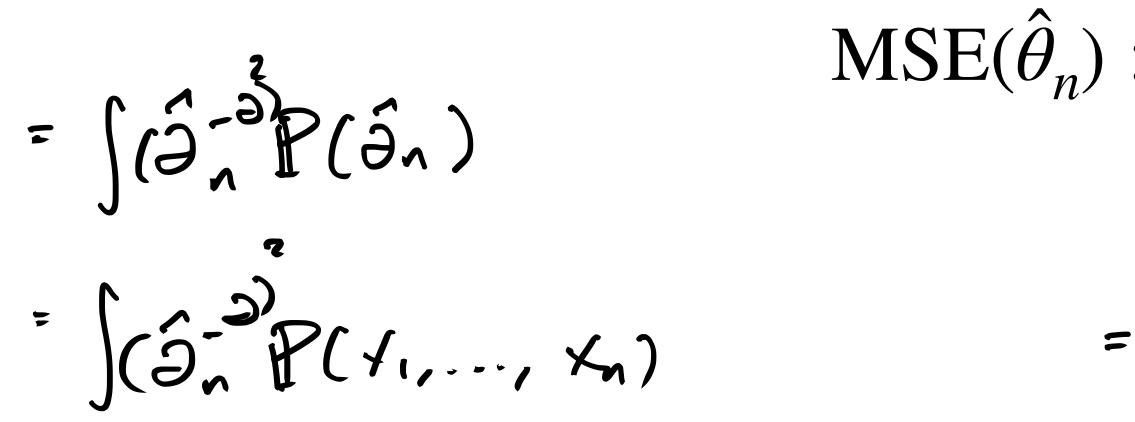






Mean Squared Error Definition

The mean squared error of an estimation



This is a common assessment of the quality of an estimator.

$$\begin{aligned} & \text{E[g(x)]} = \int g(x) \\ & \text{E[Sn]} \\ \text{ator } \hat{\theta}_n \text{ of an estimand } \theta \text{ is:} \\ & := \mathbb{E}[(\hat{\theta}_n - \theta)^2]. \\ & \text{fourdowness of } \hat{\theta}_n \\ & \text{fourdowness of } \hat{\theta}_n \\ & \text{fourdowness of } \hat{\mathcal{H}}_1, \dots, \hat{\mathcal{H}}_n \end{aligned}$$

Bias-Variance Decomposition Theorem Statement

of $\hat{\theta}_n$ is:

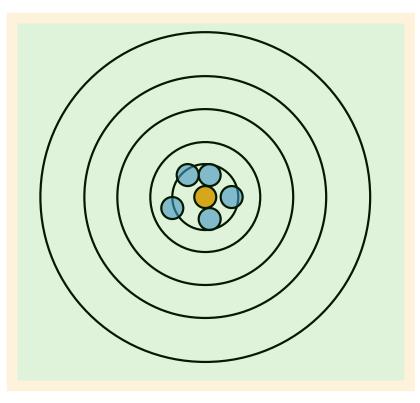
$$MSE(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2] = \text{Bias}(\hat{\theta}_n)^2 + \text{Var}(\hat{\theta}_n).$$

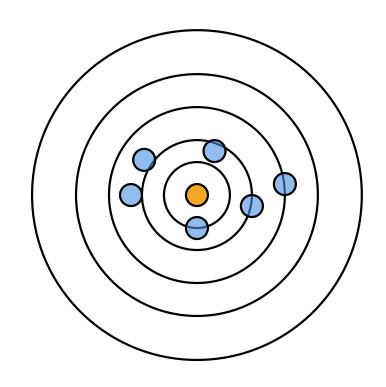
Theorem (Bias-Variance Decomposition of MSE). Let $\hat{\theta}_n$ be an estimator of some estimand θ . The <u>bias-variance decomposition</u> of the mean squared error

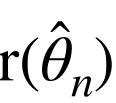
Bias-Variance Decomposition Theorem Statement

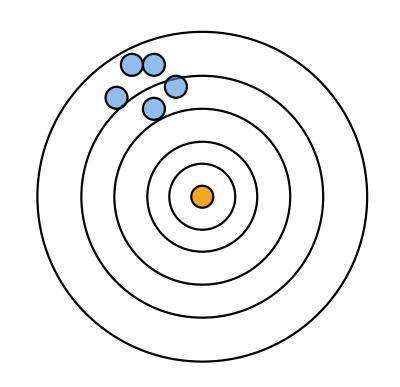
Theorem (Bias-Variance Decomposition of MSE). Let $\hat{\theta}_n$ be an estimator of some estimand θ . The **bias**variance decomposition of the mean squared error of θ_n is:

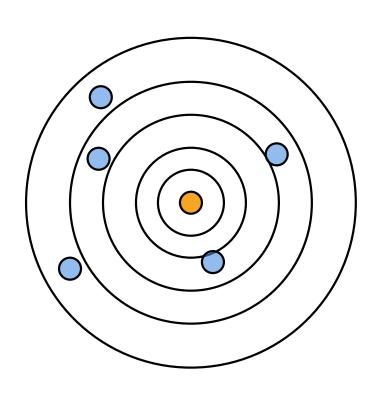
 $MSE(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2] = Bias(\hat{\theta}_n)^2 + Var(\hat{\theta}_n)$











Bias-Variance Decomposition Proof

Want to show: $\mathbb{E}[(\hat{\theta}_n - \theta)^2] = \text{Bias}(\hat{\theta}_n)^2 + \text{Var}(\hat{\theta}_n)$ Let $\overline{\theta}_n := \mathbb{E}[\hat{\theta}_n]$. Then: $\mathbb{E}[(\hat{\theta}_n - \theta)^2] = \mathbb{E}[(\hat{\theta}_n - \overline{\theta}_n + \overline{\theta}_n - \theta)^2]$

Bias-Variance Decomposition Proof

Want to show: $\mathbb{E}[(\hat{\theta}_n - \theta)^2] = \text{Bias}(\hat{\theta}_n)^2 + \text{Var}(\hat{\theta}_n)$ Let $\overline{\theta}_n := \mathbb{E}[\hat{\theta}_n]$. Then: $\mathbb{E}[(\hat{\theta}_n - \theta)^2] = \mathbb{E}[(\hat{\theta}_n - \overline{\theta}_n + \overline{\theta}_n - \theta)^2]$

$= \mathbb{E}[(\hat{\theta}_n - \overline{\theta}_n)^2] + 2(\overline{\theta}_n - \theta)\mathbb{E}[(\hat{\theta}_n - \overline{\theta}_n)] + \mathbb{E}[(\overline{\theta}_n - \theta)^2]$

Bias-Variance Decomposition Proof

Want to show: $\mathbb{E}[(\hat{\theta}_n - \theta)^2] = \text{Bias}(\theta_n - \theta)^2$ Let $\overline{\theta}_n := \mathbb{E}[\hat{\theta}_n]$. Then: $= (\overline{\theta}_n - \theta)^2 + \mathbb{E}[(\hat{\theta}_n - \overline{\theta}_n)^2]$

$$(\hat{\theta}_n)^2 + \operatorname{Var}(\hat{\theta}_n)$$

 $= (\mathbb{E}[\hat{\theta}_n] - \theta)^2 + \mathbb{E}[(\hat{\theta}_n - \overline{\theta}_n)^2] = \text{Bias}(\hat{\theta}_n)^2 + \text{Var}(\hat{\theta}_n)$

Bias-Variance Decomposition Example: Coin Flip Mean Estimator

What is the mean squared error of \overline{X}_n

Example. Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

$$:=\frac{1}{n}\sum_{i=1}^{n}X_{i}?$$

$$\frac{6^{2}}{6}=\frac{1}{4n}$$

Bias-Variance Decomposition Example: Coin Flip Mean Estimator

What is the mean squar

red error of
$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
?
MSE $(\overline{X}_n) = \text{Bias}(\overline{X}_n)^2 + \text{Var}(\overline{X}_n)^2$

Example. Let X_i be a random variable denoting the outcome of a single fair coin toss, with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

Bias-Variance Decomposition Example: Coin Flip Mean Estimator

with $X_i = 0$ for tails and $X_i = 1$ for heads. Clearly, $\mu := \mathbb{E}[X_i] = 1/2$.

What is the mean squared error of $X_n :=$

 $MSE(\overline{X}_n) = E$

Bia

Var

Example. Let X_i be a random variable denoting the outcome of a single fair coin toss,

$$\frac{1}{n} \sum_{i=1}^{n} X_{i}?$$

$$\operatorname{Bias}(\overline{X}_{n})^{2} + \operatorname{Var}(\overline{X}_{n})$$

$$\operatorname{as}(\overline{X}_{n}) = 0 \qquad \Longrightarrow \qquad \boxed{1/4n}$$

$$\operatorname{V}(\overline{X}_{n}) = \frac{1}{4n} \qquad \Longrightarrow \qquad \boxed{1/4n}.$$

Statistics of OLS Mean Squared Error of OLS Estimator

model:

where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\operatorname{Var}(\epsilon) = \sigma^2$, independent of **x**. Suppose we construct a random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $\mathbf{y} \in \mathbb{R}^n$ by drawing *n* random examples (\mathbf{x}_i, y_i) from $\mathbb{P}_{\mathbf{x}, y}$. Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$ has the following statistical properties:

- Variance: Var $[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^2$.
- Bias: Bias($\hat{\mathbf{w}}$) = 0, Variance: Var($\hat{\mathbf{w}}$) = $\sigma^2 \mathbb{E}[(\mathbf{X}^\top \mathbf{X})^{-1}] \Longrightarrow MSE(\hat{\mathbf{w}}) = \sigma^2 \mathbb{E}[(\mathbf{X}^\top \mathbf{X})^{-1}]$

Theorem (Statistical properties of OLS). Let $\mathbb{P}_{\mathbf{x},v}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the error $\mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \boldsymbol{\epsilon},$

Expectation: $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$.

Stochastic Gradient Descent Estimators for the gradient

Gradient Descent Algorithm

Input: Function $f : \mathbb{R}^d \to \mathbb{R}$. Initial point $\mathbf{x}_0 \in \mathbb{R}^d$. Step size $\eta \in \mathbb{R}$.

For t = 1, 2, 3, ...

Compute: $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} - \eta \nabla f(\mathbf{x}_{t-1})$.

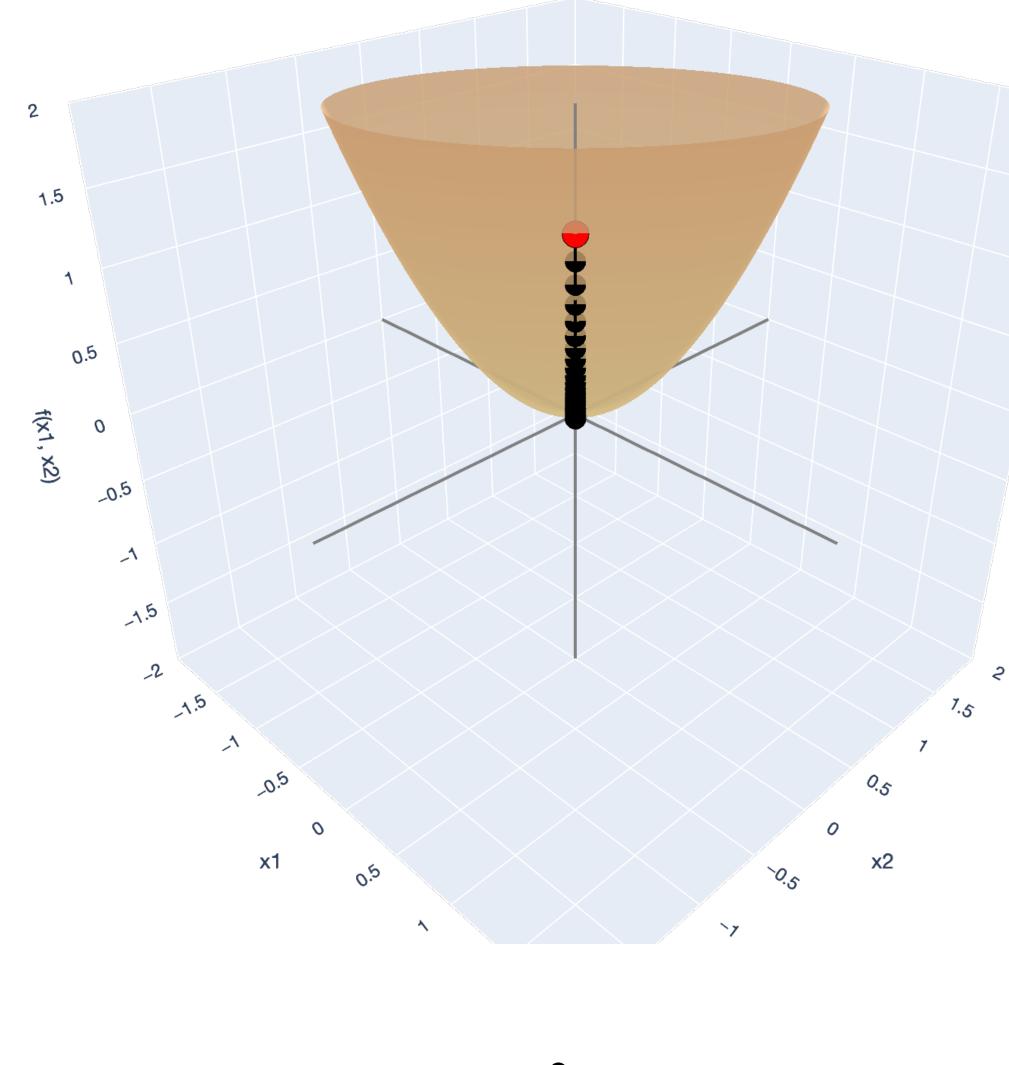
If $\nabla f(\mathbf{x}_t) = 0$ or $\mathbf{x}_t - \mathbf{x}_{t-1}$ is sufficiently small, then return $f(\mathbf{x}_t)$.

Gradient Descent Algorithm for OLS

Make an initial guess \mathbf{W}_0 .

For t = 1, 2, 3, ...

- Compute: $\mathbf{w}_t \leftarrow \mathbf{w}_{t-1} - 2\eta \mathbf{X}^{\top} (\mathbf{X}\mathbf{w} - \mathbf{y}).$
- Stopping condition: If $\|\mathbf{w}_t - \mathbf{w}_{t-1}\| \le \epsilon$, then return $f(\mathbf{w}_t)$.



x1-axis x2-axis f(x1, x2)-axis descent start

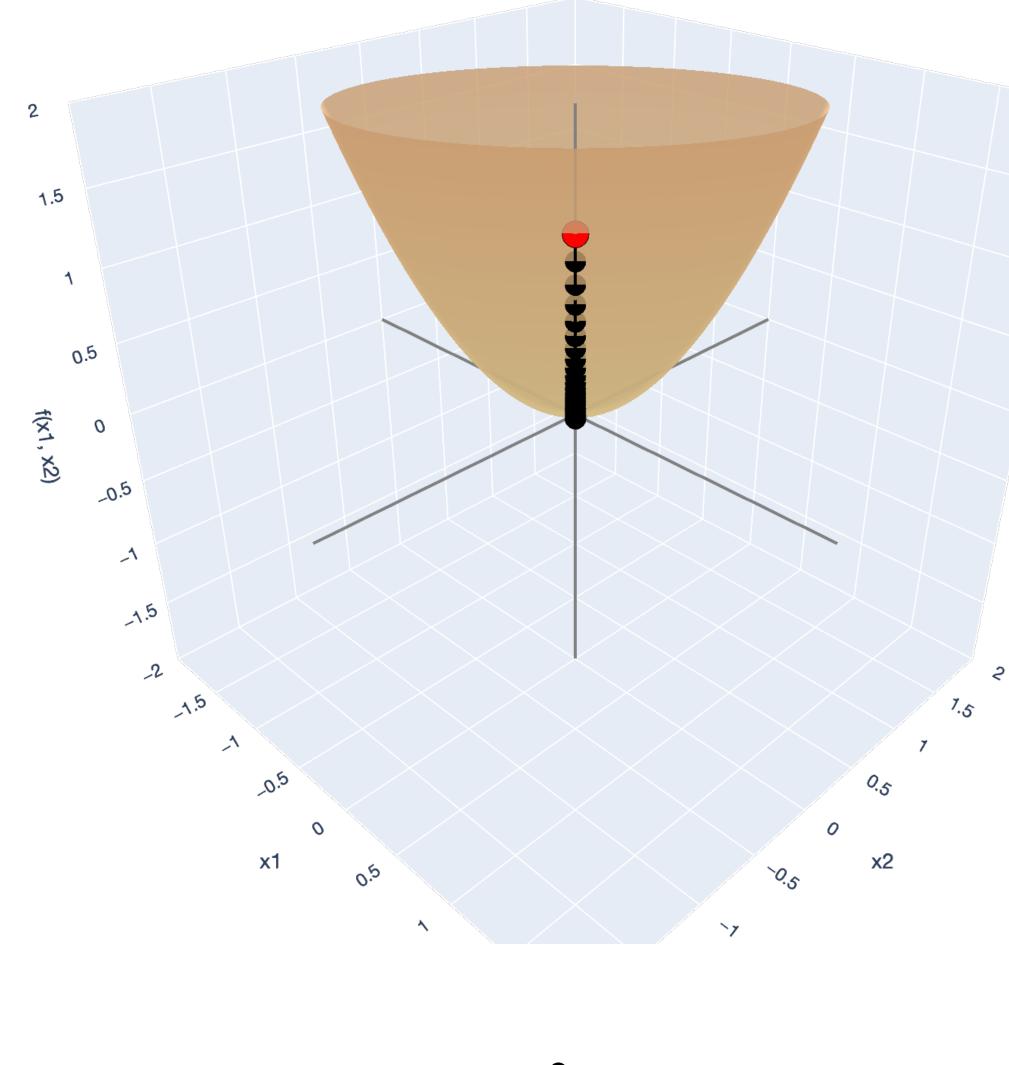
What's the problem? Update Step for OLS

Compute:

$$\mathbf{w}_t \leftarrow \mathbf{w}_{t-1} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y}).$$

This could be expensive for large datasets!

$$\nabla f(w) = \nabla \| X w - 4 \|^2$$



x1-axis x2-axis f(x1, x2)-axis descent start

Stochastic Gradient Descent (SGD) Intuition

In general, the objective function we do gradient descent on typically looks like:

$$f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}, (\mathbf{x}_i, y_i))$$

Let us consider the *average* in this case. For OLS, adding the 1/n out front, we have:

$$f(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)^2.$$

When we take a gradient, we take it over the *entire* dataset (all *n* examples):

$$\nabla f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2}.$$

Stochastic Gradient Descent (SGD) Intuition

$$\nabla f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2}.$$

and only took the gradient with respect to that example?

 $i \sim \text{Unif}([n]) =$

When we take a gradient, we take it over the *entire* dataset (all *n* examples):

Idea: What if we just randomly sampled an example i uniformly from $\{1, ..., n\}$

$$\implies \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)^2$$

Stochastic Gradient Descent (SGD) Intuition

In <u>stochastic gradient descent</u> we replace the gradient over the entire dataset

 $\nabla f(\mathbf{w}) = \frac{1}{w}$

with an estimator of the gradient: $\nabla f(\mathbf{w})$.

<u>Single-sample SGD</u>: Sample a single example *i* uniformly from $1, \ldots, n$ and take the gradient:

 $\widehat{\nabla f(\mathbf{w})} = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)^2.$

gradient:

 $f(\mathbf{w}) = \nabla$

$$\sum_{i=1}^{n} \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2}$$

Minibatch SGD: Sample a batch of k examples $B = \{i_1, ..., i_k\}$ uniformly from all k-subsets of 1, ..., n and take the

$$\mathbf{w} \frac{1}{k} \sum_{j=1}^{k} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i_j} - y_{i_j})^2$$

Gradient Estimator Unbiased Estimate of the Gradient

Let's try to find the statistical properties of the gradient estimator...

Estimand:
$$\nabla f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2}.$$

Estimator: Sample a single example *i* uniformly from $1, \ldots, n$ and take the gradient:

$$\widehat{\nabla f(\mathbf{w})} = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)^2.$$

Gradient Estimator Unbiased Estimate of the Gradient

Let's try to find the statistical properties of the gradient estimator...

Estimand:
$$\nabla f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2}.$$

Estimator: Sample a single example i uniformly from $1, \ldots, n$ and take the gradient:

$$\widehat{\nabla f(\mathbf{w})} =$$

Bias: The randomness is over the uniform sample, so:

$$\mathbb{E}[\widehat{\nabla f(\mathbf{w})}] = \sum_{i=1}^{n} \frac{1}{n} \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2} = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2} \implies \operatorname{Bias}(\widehat{\nabla f(\mathbf{w})}) = 0$$

$$\nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)^2$$

Stochastic Gradient Descent Single-sample SGD for OLS

Input: Initial point $\mathbf{w}_0 \in \mathbb{R}^d$. Step size $\eta \in \mathbb{R}$.

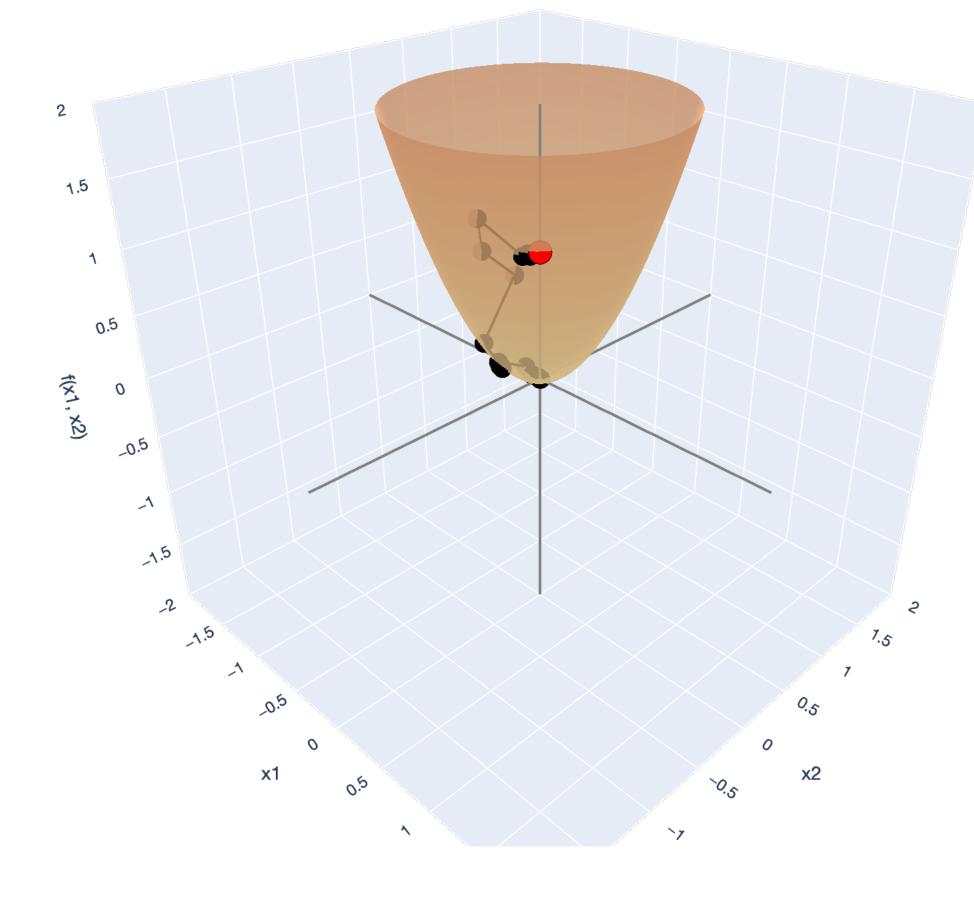
For t = 1, 2, 3, ...

Sample *i* uniformly from $1, \ldots, n$.

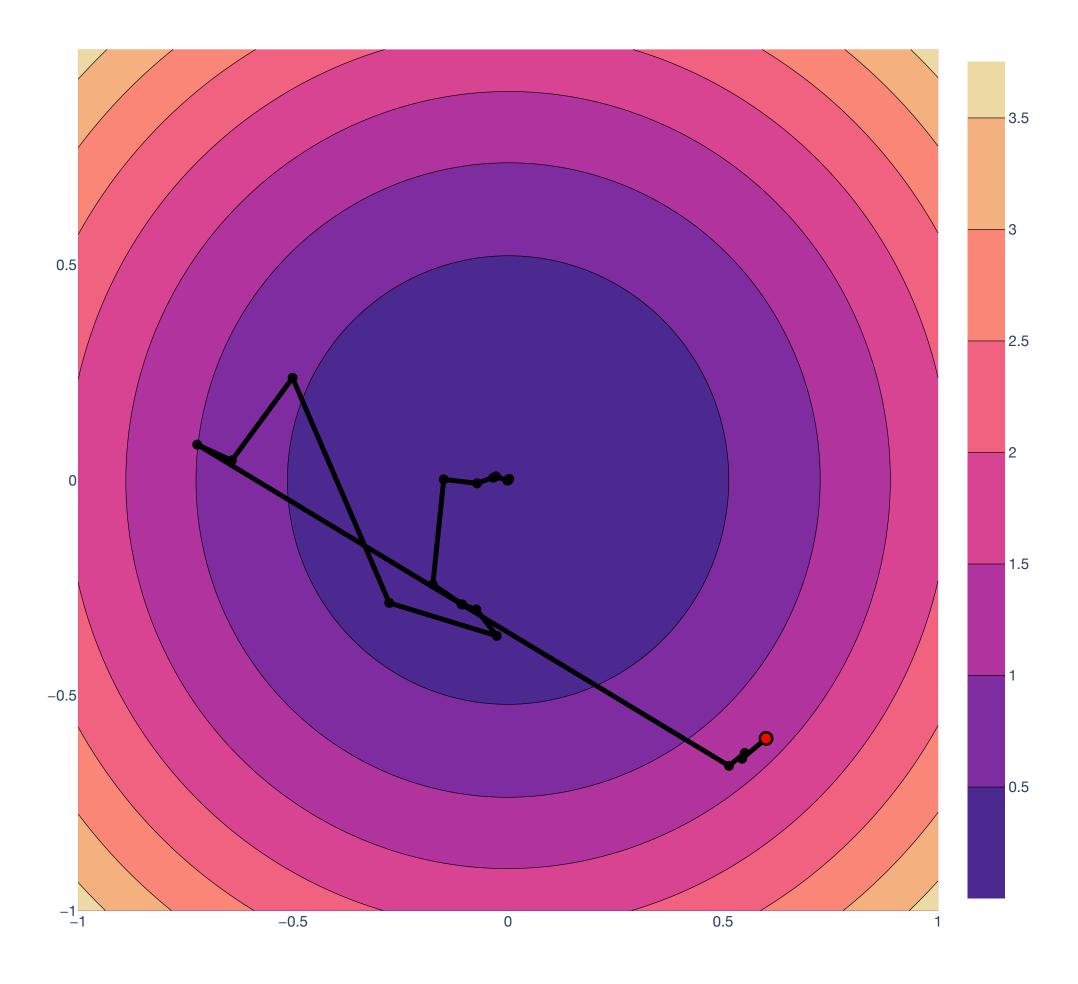
Compute: $\mathbf{w}_{t} \leftarrow \mathbf{w}_{t-1} - \eta \widehat{\nabla f(\mathbf{w})} = \mathbf{w}_{t-1} - \eta \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2}$

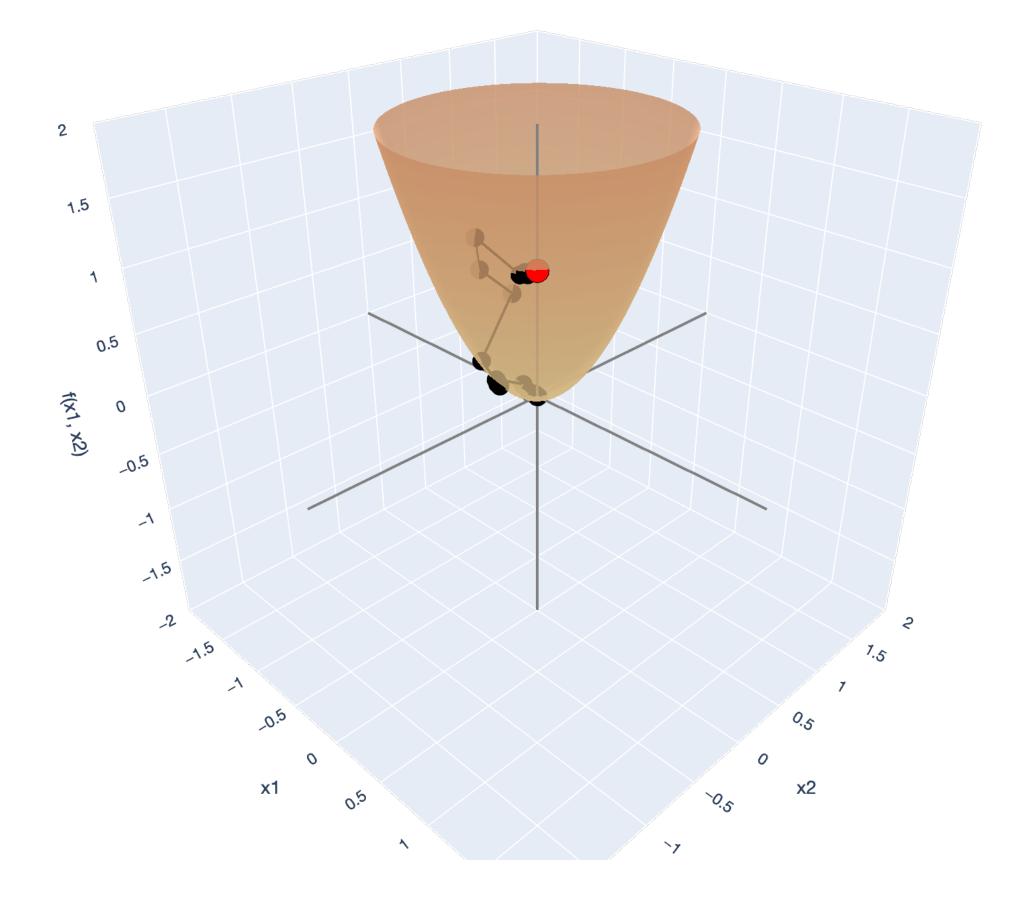
If $\mathbf{w}_t - \mathbf{w}_{t-1}$ is sufficiently small, then return $-\frac{1}{||\mathbf{X}\mathbf{w}_t - \mathbf{y}||^2}$. n

z(~ + - +) +



Stochastic Gradient Descent Single-sample SGD for OLS





Stochastic Gradient Descent Minibatch SGD

Input: Initial point $\mathbf{w}_0 \in \mathbb{R}^d$. Step size $\eta \in \mathbb{R}$. Mini-batch size $1 \leq k \leq n$.

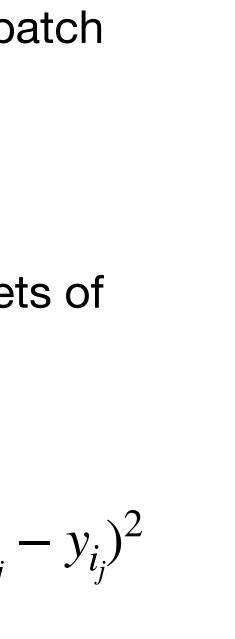
For t = 1, 2, 3, ...

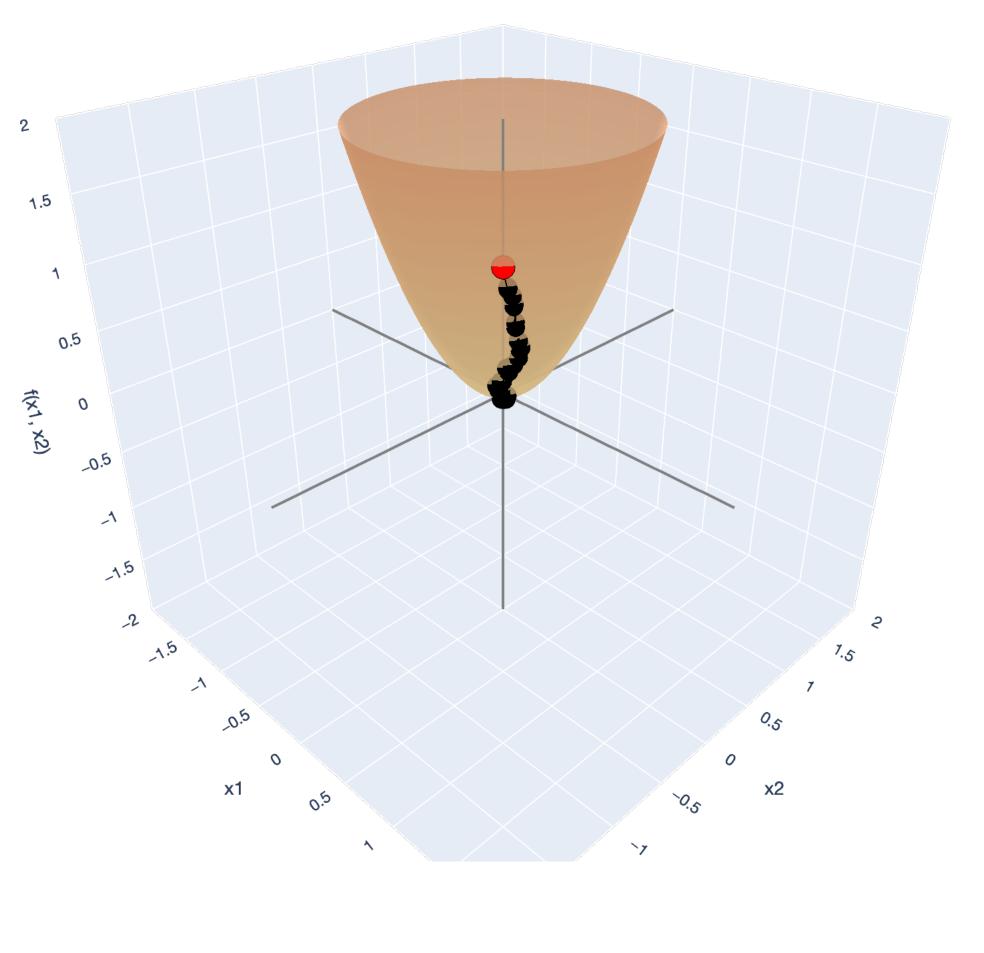
Sample $B = \{i_1, ..., i_k\}$ uniformly from all k-subsets of $\{1,...,n\}.$

Compute:

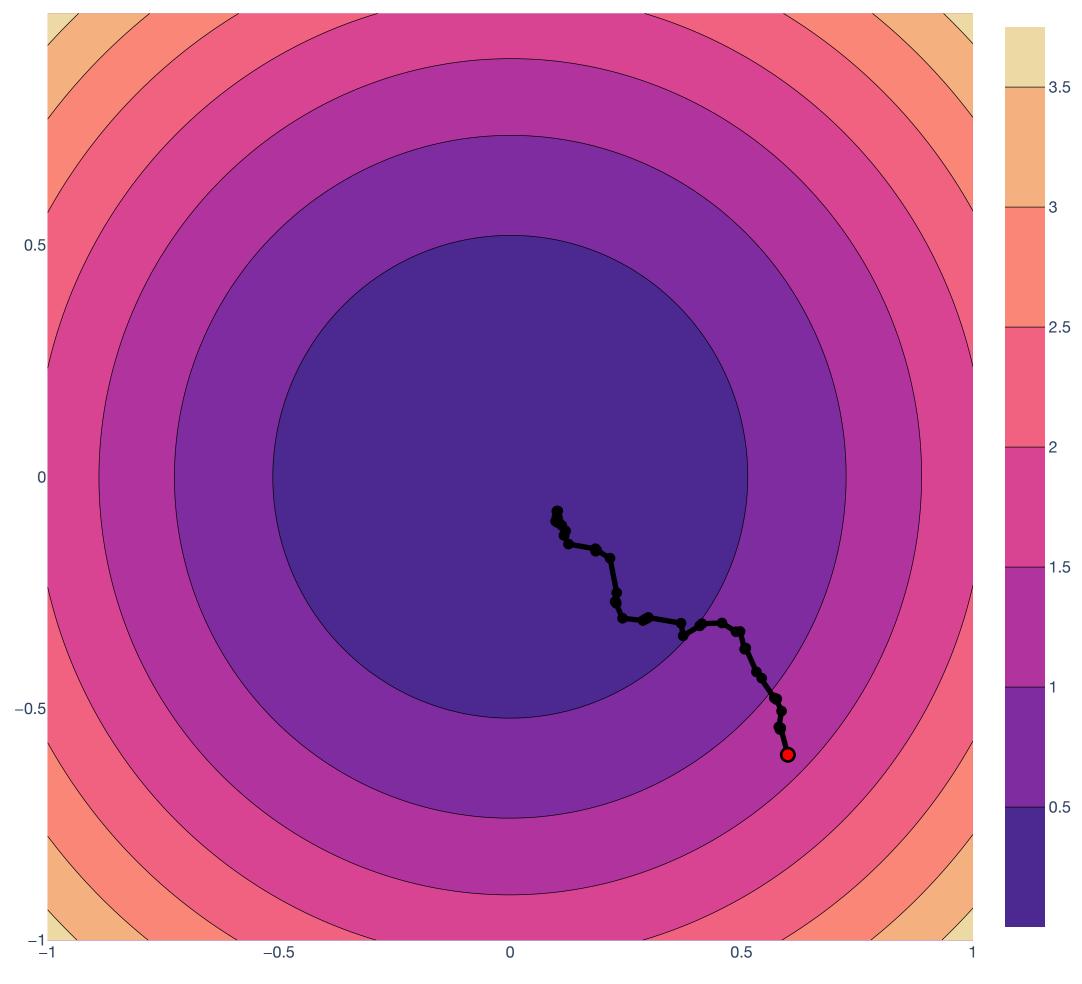
$$\mathbf{w}_{t} \leftarrow \mathbf{w}_{t-1} - \eta \,\widehat{\nabla f(\mathbf{w})} = \mathbf{w}_{t-1} - \frac{\eta}{k} \sum_{j=1}^{k} \nabla_{\mathbf{w}}(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i_{j}})$$

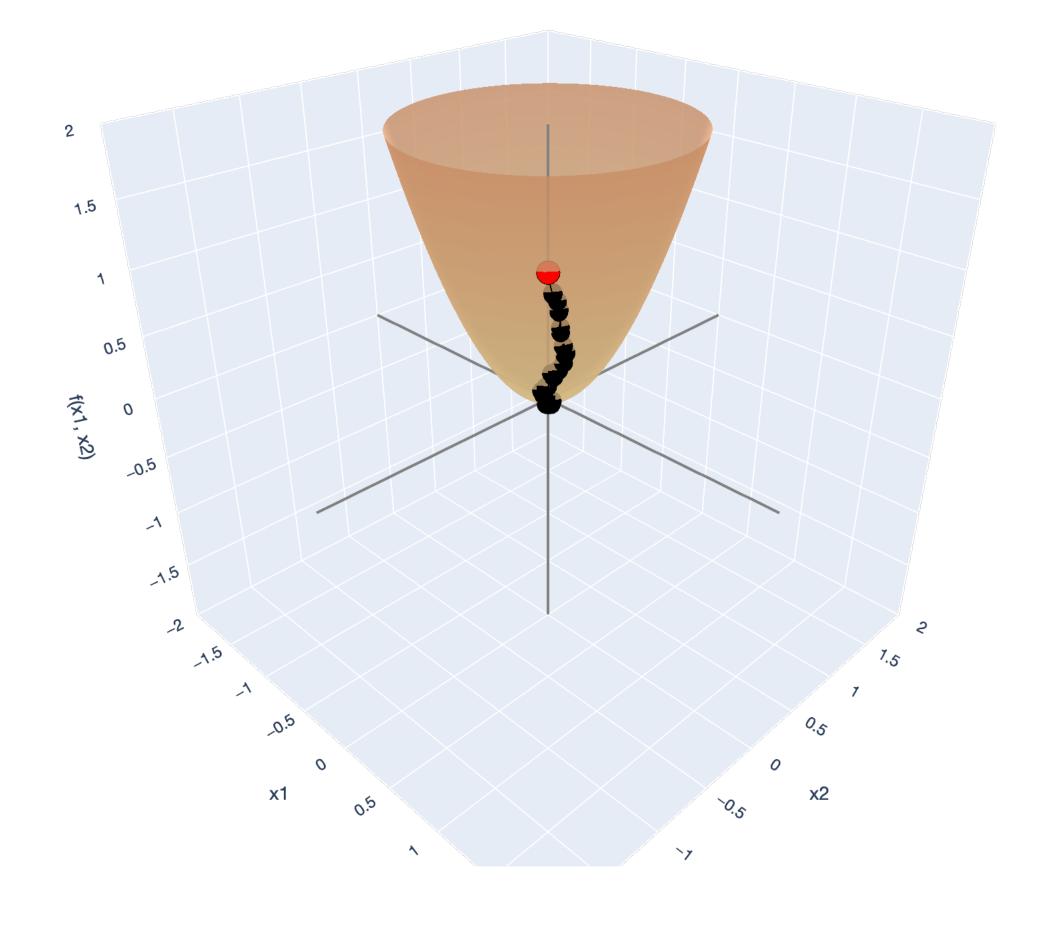
If $\mathbf{w}_t - \mathbf{w}_{t-1}$ is sufficiently small, then **return** $\frac{\mathbf{I}}{\mathbf{I}} \|\mathbf{X}\mathbf{w}_t - \mathbf{y}\|^2.$ n





Stochastic Gradient Descent Minibatch SGD

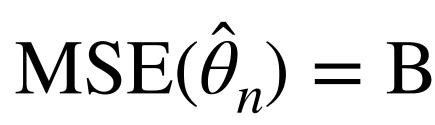




Gauss-Markov Theorem OLS as "optimal"

"Optimality" of OLS Intuition

We evaluate statistical estimators $\hat{\theta}_n$ through their bias and variance, which make up their mean squared error:



In what sense is OLS optimal (compared to other possible estimators), with respect to bias and variance?

$$\operatorname{Sias}(\hat{\theta}_n)^2 + \operatorname{Var}(\hat{\theta}_n).$$

Gauss-Markov Theorem Intuition

Recall our model of errors:

We will claim that the OLS estimator

has the lowest variance within the class of linear, unbiased estimators.

 $-ii = (w^*)^{\tau} + i + \epsilon i$

 $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$, where $\mathbb{E}[\epsilon] = \mathbf{0}$ and $\operatorname{Var}(\epsilon_i) = \sigma^2 < \infty$.

$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

Gauss-Markov Theorem Fixed Design Assumption

Recall our model of errors:

We will assume that $\mathbf{X} \in \mathbb{R}^{n \times d}$ is *fixed* to make our derivation easier (we can

Note: This still means that y is random because ϵ is random.

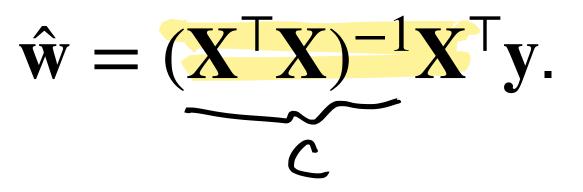
- $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$, where $\mathbb{E}[\epsilon] = \mathbf{0}$ and $\operatorname{Var}(\epsilon_i) = \sigma^2 < \infty$.
- also avoid this by taking conditional expectations/variances with respect to \mathbf{X}).

Gauss-Markov Theorem Linear Estimator

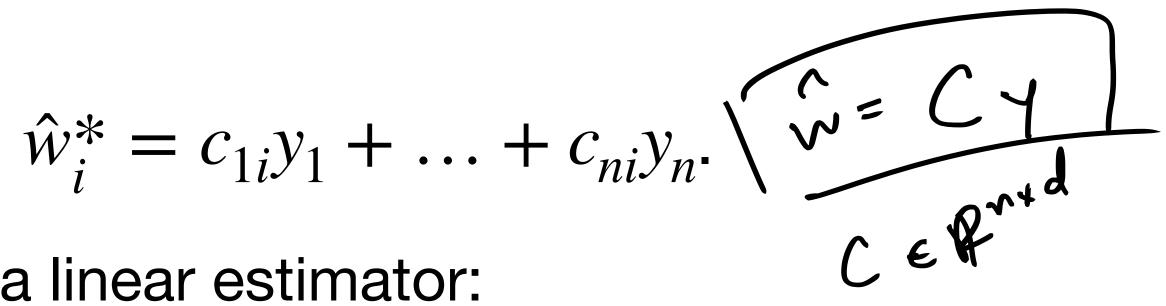
Recall our model of errors:

combination of y_1, \ldots, y_n :

The OLS estimator is clearly a linear estimator:



- $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$, where $\mathbb{E}[\epsilon] = \mathbf{0}$ and $\operatorname{Var}(\epsilon_i) = \sigma^2 < \infty$.
- We want to estimate \mathbf{w}^* , using X and y. A <u>linear estimator</u> of entry w_i^* is a linear



Gauss-Markov Theorem "Greater Than" for Matrices

Recall that, for random vectors, Var(w) is given by a positive semidefinite covariance matrix. For PSD matrices, the <u>Loewner order</u> imposes an ordering: a∠b⇒ b-a≥o a∠b⇒ b-a≥o $A \leq B$ means that A - B is PSD. A < B means that A - B is positive definite.

They are ordered in the sense that their quadratic forms obey the ordering:

We need to compare the variances of random vectors, Var(w), where $w \in \mathbb{R}^d$.

 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \leq \mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{x}.$

Gauss-Markov Theorem Theorem Statement

by the linear error model:

where $\epsilon \in \mathbb{R}^n$ is a random vector with $\mathbb{E}[\epsilon_i] = 0$, $Var(\epsilon_i) = \sigma^2 < \infty$ and each ϵ_i is independent. Let $\tilde{\mathbf{w}} \in \mathbb{R}^d$ be any linear estimator of \mathbf{w}^* , with entries: $\tilde{w}_i = c_{1i}y_1 + \ldots + c_{ni}y_n$, $\rightarrow \tilde{w} = C\gamma$ for some $C \in \mathbb{R}^{d \times n}$

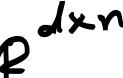
such that \tilde{w} is unbiased, i.e. $\mathbb{E}[\tilde{w}] = w^*$. Then, the OLS estimator $\hat{w} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ has variance (and, thus, mean squared error) no larger than $\tilde{\mathbf{w}}$:

 $\mathbf{y} =$

 $Var(\hat{\mathbf{w}}) = Var(\tilde{\mathbf{w}}) + \mathbf{A}$, where $\mathbf{A} \in \mathbb{R}^{d \times d}$ is some PSD matrix. Var(w) < Var (w) in perver order

Theorem (Gauss-Markov Theorem). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be fixed and let $\mathbf{y} \in \mathbb{R}^n$ be given entry-wise

$$Xw^* + \epsilon$$
,



Gauss-Markov Theorem Proof

Step 1: Formally state the "other" linear estimator. Suppose that $\tilde{\mathbf{w}} \in \mathbb{R}^d$ is another linear estimator of \mathbf{w}^* . We can write it as: $\tilde{\mathbf{w}} = \mathbf{C}\mathbf{y}$, where $\mathbf{C} \in \mathbb{R}^{\texttt{M} \times d}$.

Without loss of generality, let:

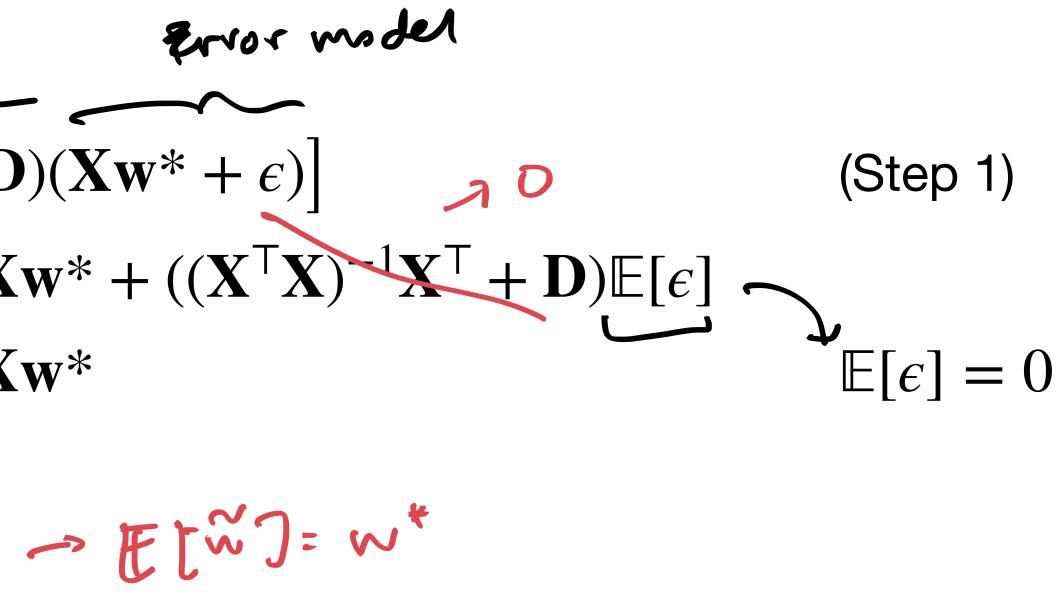
 $\mathbf{C} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}} + \mathbf{D}$ where $\mathbf{D} \in \mathbb{R}^{d \times n}$.

Gauss-Markov Theorem Proof

Step 2: We know that $\tilde{\mathbf{w}}$ is an unbiased estimator, so enforce $\mathbb{E}[\tilde{\mathbf{w}}] = \mathbf{w}^*$.

Calculate the expectation of $\tilde{\mathbf{W}}$.

$$\mathbb{E}[\tilde{\mathbf{W}}] = \mathbb{E}[\mathbf{C}\mathbf{y}]$$
$$= \mathbb{E}\left[((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} + \mathbf{D})(\mathbf{X}^{\top}\right]$$
$$= ((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} + \mathbf{D})\mathbf{X}\mathbf{w}^{*}$$
$$= ((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} + \mathbf{D})\mathbf{X}\mathbf{w}^{*}$$
$$= \mathbf{w}^{*} + \mathbf{D}\mathbf{X}\mathbf{w}^{*}$$
But because we assumed $\tilde{\mathbf{W}}$ is unbiased,



 $w^* + DXw^* = w^* \implies DX = 0.$

Gauss-Markov TheoremProof
$$\forall or (\forall) = \forall or (\forall w^* \in e)$$
Step 3: Using the fact that $DX = 0$ from Step 2, show $Var(\hat{w}) \leq Var(\hat{w})$.Finally, let's analyze the variance of \tilde{w} : $Var(\tilde{w}) = Var(Cy)$ $\forall det \cdot$ $= CVar(y)C^T \rightarrow Variance of f (and an $Veator : f(x \times ^T)$). $= \sigma^2 CI_{nxy}C^T$ $= \sigma^2(X^TX)^{-1}X^T + D)(X(X^TX)^{-1} + D^T)$ $= \sigma^2((X^TX)^{-1}X^T + D)(X(X^TX)^{-1} + D^T)$ $= \sigma^2((X^TX)^{-1} + \sigma^2(X^TX)^{-1} + (X^TX)^{-1}X^TD^T + DX(X^TX)^{-1} + DD^T)$ $= \sigma^2(X^TX)^{-1} + \sigma^2(X^TX)^{-1} + \sigma^2DX(X^TX)^{-1} + \sigma^2DD^T$ $= \sigma^2(X^TX)^{-1} + \sigma^2DD^T$ $= Var(\hat{w}) + \sigma^2DD^T$ $= Var(\hat{w}) + \sigma^2DD^T$ $Var(\hat{w}) + \sigma^2DT$ $Var(\hat{w}) + \sigma^2DT$$

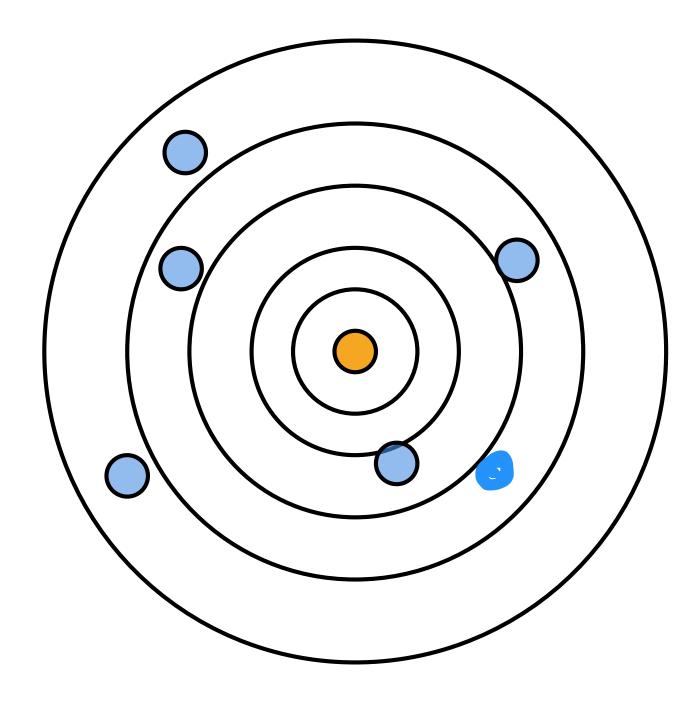
Mean Squared Error **Trading bias for reduction in variance**

The Gauss-Markov Theorem states that $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has the smallest variance out of all linear estimators with no bias.

Recall the MSE is how we evaluate an estimator:

 $MSE(\hat{w}) = Bias(\hat{w})^2 + Var(\hat{w}).$

But unbiasedness might not always be a good thing if the variance is high!



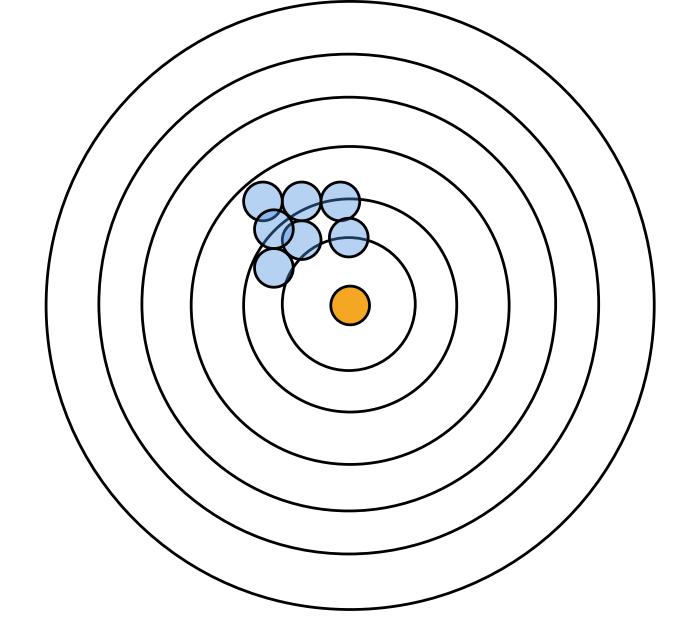
Mean Squared Error **Trading bias for reduction in variance**

The Gauss-Markov Theorem states that $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has the smallest variance out of all linear estimators with no bias.

Recall the MSE is how we evaluate an estimator:

 $MSE(\hat{w}) = Bias(\hat{w})^2 + Var(\hat{w}).$

Can we trade a bit of bias for a reduction in variance?



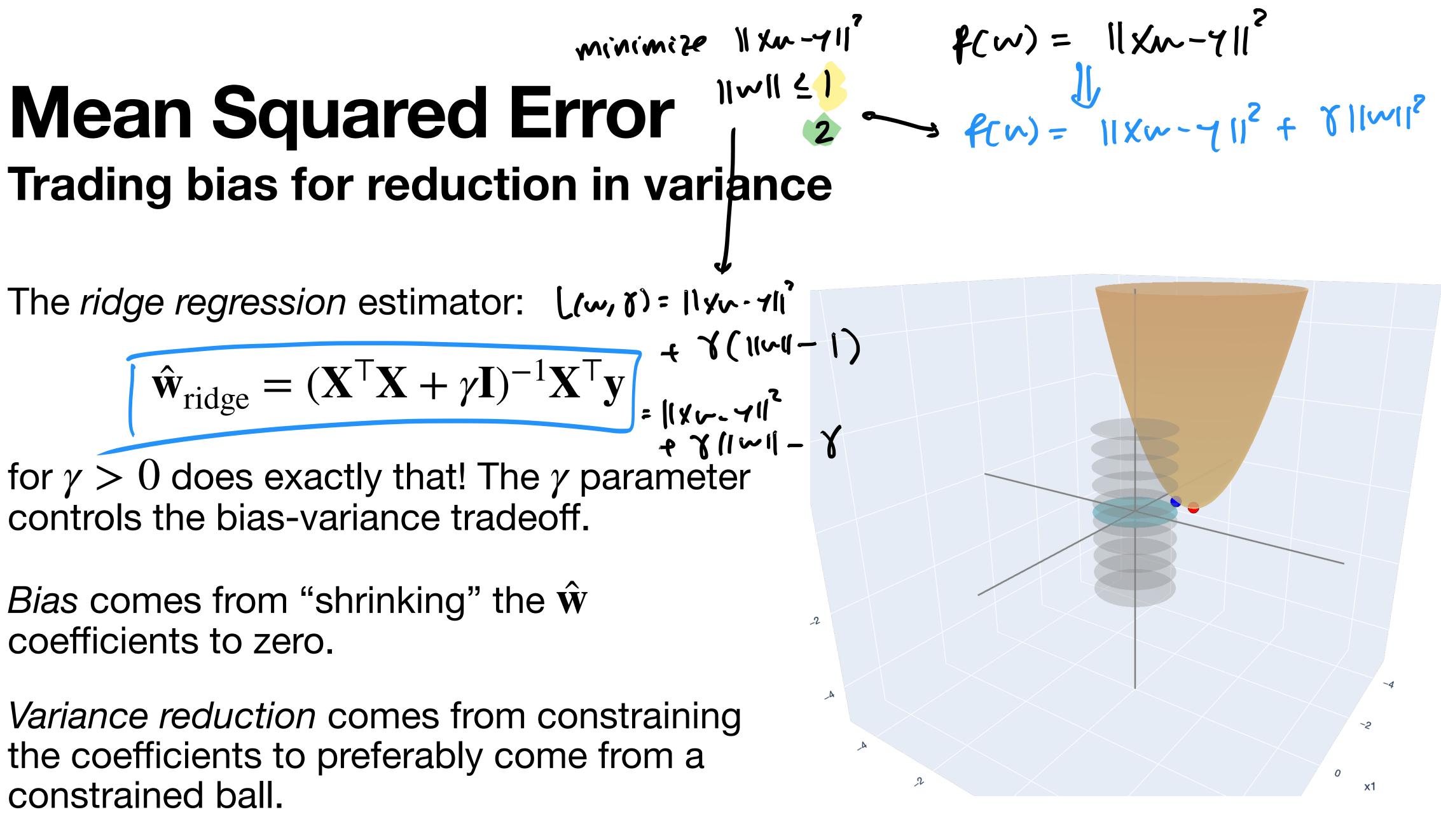
Trading bias for reduction in variance

The ridge regression estimator: ((w, v) = 1) + 1

for $\gamma > 0$ does exactly that! The γ parameter controls the bias-variance tradeoff.

Bias comes from "shrinking" the $\hat{\mathbf{W}}$ coefficients to zero.

Variance reduction comes from constraining the coefficients to preferably come from a constrained ball.



Regression Statistical analysis of risk

Statistics of OLS Theorem

the error model:

where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\operatorname{Var}(\epsilon) = \sigma^2$, independent of **x**. Suppose we construct a random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $\mathbf{y} \in \mathbb{R}^{n}$ by drawing nrandom examples (\mathbf{x}_i, y_i) from $\mathbb{P}_{\mathbf{x}, y}$. Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$ has the following statistical properties:

Theorem (Statistical properties of OLS). Let $\mathbb{P}_{\mathbf{x},v}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by

 $\mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{w}^* + \boldsymbol{\epsilon},$

- **Expectation:** $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$.
- Variance: Var $[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\top}\mathbf{X})^{-1}\sigma^2$.

Bias and Variance of OLS Corollaries from Theorem

Under the error model:

y =

OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has the following statistical properties:

This implies that, as an estimator of \mathbf{w}^* ,

 $Var(\hat{\mathbf{w}}) =$

$$= \mathbf{x}^{\mathsf{T}}\mathbf{w}^* + \epsilon$$

Expectation: $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$.

Variance: Var $[\hat{\mathbf{w}} \mid \mathbf{X}] = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^2$, where Var $(\epsilon) = \sigma^2$.

 $Bias(\hat{\mathbf{w}}) = 0$

$$= \sigma^2 \mathbb{E}[(\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1}]$$

Regression Setup, with randomness

y =

where ϵ is a *random variable* with $\mathbb{E}[\epsilon] = 0$ and ϵ is independent of **x**. Draw *n* examples: random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $y \in \mathbb{R}^{n}$. <u>Ultimate goal</u>: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}$ that generalizes on a new $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$:

Intermediary goal: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\top} \mathbf{x}$ that does well on the training samples:

$$\hat{R}(\hat{f}) := \frac{1}{n} \sum_{i=1}^{n} (\hat{f}(\mathbf{x}_{i}) - y_{i})^{2} = \frac{1}{n} ||\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}||^{2}$$

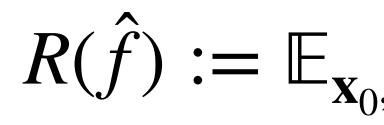
This is what we've been doing!

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^* + \epsilon$$
,

- $R(\hat{f}) := \mathbb{E}_{\mathbf{x}_0, y_0}[(\hat{f}(\mathbf{x}_0) y_0)^2]$

Statistical Analysis of Risk **Breaking down generalization error**

<u>Ultimate goal</u>: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}$ that *generalizes* on a new $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$:



$$\int_{y_0} [(\hat{f}(\mathbf{x}_0) - y_0)^2].$$

Statistical Analysis of Risk **Breaking down generalization error**

<u>Ultimate goal</u>: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}$ that generalizes on a new $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$: $R(\hat{f}) := \mathbb{E}_{\mathbf{x}_0}$

This was the notion of <u>risk</u> or <u>generalization error</u> — how well we do on a new, randomly drawn example.

$$\int_{y_0} [(\hat{f}(\mathbf{x}_0) - y_0)^2].$$

Can we analyze this in terms of OLS?

Statistical Analysis of Risk **Breaking down generalization error**

<u>Ultimate goal</u>: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\top} \mathbf{x}$ that generalizes on a new $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$: $R(\hat{f}) := \mathbb{E}_{\mathbf{x}_0, y_0}[(\hat{f}(\mathbf{x}_0) - y_0)^2].$ $\implies R(\hat{\mathbf{w}}) = \mathbb{E}[(\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_0 - y_0)^2]$ What is random in the above expectation?

 \mathbf{X}_{0} is random because it's a new examp

 y_0 is random because it's a new label y_0

 $\hat{\mathbf{w}}$ is random because it depends on the training data \mathbf{X} and \mathbf{y} .

$$e^{\mathbf{x}_0} \sim \mathbb{P}_{\mathbf{x}}.$$

Statistical Analysis of Risk Law of Total Expectation

<u>Ultimate goal</u>: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\top} \mathbf{x}$ that generalizes on a new $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$: $R(\hat{\mathbf{w}}) = \mathbb{E}$

By the tower rule/law of total expectation:

$$R(\hat{\mathbf{w}}) = \mathbb{E}_{\mathbf{x}_0} \left[\mathbb{E}_{y_0} \left[\mathbb{E}_{\mathbf{X}, \mathbf{y}} \left[\left(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_0 - y_0 \right)^2 \mid y_0 \right] \mid \mathbf{x}_0 \right] \right]$$

$$[(\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_0 - y_0)^2].$$

Let X, y be randomly drawn training data, which the estimator \hat{w} depends on.

Statistical Analysis of Risk Law of Total Expectation

 $R(\hat{\mathbf{w}}) = \mathbb{E}$

Let X, y be randomly drawn training data, which the estimator \hat{w} depends on. > Training Porta randomess (4,7) By the tower rule/law of total expectation:

$$R(\hat{\mathbf{w}}) = \mathbb{E}_{\mathbf{x}_0} \left[\mathbb{E}_{\mathbf{y}_0} \right] \mathbb{E}_{\mathbf{x},\mathbf{y}_0} \left[\mathbb{E}_{\mathbf{x},\mathbf{y}_0} \right]$$
Let's analy

<u>Ultimate goal</u>: Find $f(\mathbf{x}) := \hat{\mathbf{w}}^{\top} \mathbf{x}$ that generalizes on a new $(\mathbf{x}_0, y_0) \sim \mathbb{P}_{\mathbf{x}, y}$:

$$[(\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_0 - y_0)^2].$$

$$\left[\left(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_0 - y_0 \right)^2 | y_0 \right] \left[\mathbf{x}_0 \right] \left[\mathbf{x}$$

yze this quantity!

Statistical Analysis of Risk Analyzing the risk

$$R(\hat{\mathbf{w}}) = \mathbb{E}_{\mathbf{x}_0} \left[\mathbb{E}_{y_0} \left[\mathbb{E}_{\mathbf{X}, \mathbf{y}} \left[\left(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_0 - y_0 \right)^2 \mid y_0 \right] \mid \mathbf{x}_0 \right] \right]$$

note:
$$R(\hat{\mathbf{w}} \mid \mathbf{x}_0) := \mathbb{E}_{y_0} \left[\mathbb{E}_{\mathbf{X}, \mathbf{y}} \left[\left(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_0 - y_0 \right)^2 \mid y_0 \right] \mid \mathbf{x}_0 \right]$$

Der

Statistical Analysis of Risk Analyzing the risk

$$R(\hat{\mathbf{w}} \mid \mathbf{x}_{0}) \coloneqq \mathbb{E}_{y_{0}} \left[\mathbb{E}_{\mathbf{X}, \mathbf{y}} \left[(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_{0} - y_{0})^{2} \right] \right]$$
$$= \operatorname{Var}(y_{0} \mid x_{0}) + \mathbb{E} \left[(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_{0} - y_{0})^{2} \right]$$
$$= \operatorname{Var}(y_{0} \mid x_{0}) + \operatorname{Var}(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_{0})$$
$$= \sigma^{2} + \mathbb{E} \left[\mathbf{x}_{0}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_{0} \sigma^{2} \right]$$

 $|y_0| |\mathbf{x}_0|$ $-\mathbb{E}[\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_{0}])^{2} + \left(\mathbb{E}[\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_{0}] - \mathbf{x}_{0}^{\mathsf{T}}\mathbf{w}^{*}\right)^{2}$ + Bias $(\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_0)^2$

Note: We are conditioning on \mathbf{X}_0 , so the only random quantity in the last term is $\mathbf{X}^\top \mathbf{X}$.

Statistical Analysis of Risk Analyzing the risk

$$R(\hat{\mathbf{w}} \mid \mathbf{x}_{0}) \coloneqq \mathbb{E}_{y_{0}} \left[\mathbb{E}_{\mathbf{X}, \mathbf{y}} \left[(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_{0} - y_{0})^{2} \right] \right]$$
$$= \operatorname{Var}(y_{0} \mid x_{0}) + \mathbb{E} \left[(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_{0} - y_{0})^{2} \right]$$
$$= \operatorname{Var}(y_{0} \mid x_{0}) + \operatorname{Var}(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_{0})$$
$$= \sigma^{2} + \mathbb{E} \left[\mathbf{x}_{0}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_{0} \sigma^{2} \right]$$

 $|y_0| |\mathbf{x}_0|$ $-\mathbb{E}[\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_{0}])^{2} + \left(\mathbb{E}[\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_{0}] - \mathbf{x}_{0}^{\mathsf{T}}\mathbf{w}^{*}\right)^{2}$ + Bias $(\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}_0)^2$

Note: We are conditioning on \mathbf{X}_0 , so the only random quantity in the last term is $\mathbf{X}^\top \mathbf{X}$.

Statistical Analysis of Risk Analyzing the risk

 $R(\hat{\mathbf{w}} \mid \mathbf{x}_0) = \sigma^2 + \mathbb{E} \left[\mathbf{x}_0^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_0 \sigma^2 \right]$ from the previous slide.

 $\Sigma := \operatorname{Var}(\mathbf{x}) \in \mathbb{R}^{d \times d}$ is the covariance matrix of the features.

$$R(\hat{\mathbf{w}} \mid \mathbf{x}_0) = \sigma^2 + \mathbb{E}\left[\mathbf{x}_0^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_0 \sigma^2\right] = \sigma^2 + \frac{\sigma^2}{n} \mathbf{x}_0^{\mathsf{T}} \Sigma^{-1} \mathbf{x}_0$$

Now, take the expectation over all $\mathbf{x}_0 \sim \mathbb{P}_{\mathbf{x}}$:

$$\mathbb{E}_{\mathbf{x}_0}[R(\hat{\mathbf{w}} \mid \mathbf{x}_0)] = \sigma^2 + \frac{\sigma^2}{n} \mathbb{E}_{\mathbf{x}_0}\left[\mathbf{x}_0^{\mathsf{T}} \Sigma^{-1} \mathbf{x}_0\right]$$

Consider the <u>empirical covariance matrix</u> $\frac{1}{n}(\mathbf{X}^{\mathsf{T}}\mathbf{X})$. If *n* is large and $\mathbb{E}[\mathbf{x}] = \mathbf{0}$, then $\mathbf{X}^{\mathsf{T}}\mathbf{X} \to n\Sigma$, where

Trace **Definition and the "trace trick"**

diagonal entries:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{d} a_{i=1}^{d}$$

For a $d \times d$ square matrix A, the <u>trace</u> of A, denoted tr(A), is the sum of its

$a_{ii} = a_{11} + \ldots + a_{dd}$

"**Trace trick:**" For any quadratic form $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$, $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \operatorname{tr}(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = \operatorname{tr}(\mathbf{x}\mathbf{x}^{\mathsf{T}}\mathbf{A}) = \operatorname{tr}(\mathbf{A}\mathbf{x}\mathbf{x}^{\mathsf{T}})$

Statistical Analysis of Risk Analyzing the risk

 $R(\hat{\mathbf{w}} \mid \mathbf{x}_0) = \sigma^2 + \mathbb{E} \left[\mathbf{x}_0^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_0 \sigma^2 \right]$ from the previous slide. Consider the <u>empirical covariance matrix</u> $\frac{1}{n}(\mathbf{X}^{\mathsf{T}}\mathbf{X})$. If *n* is large and $\mathbb{E}[\mathbf{x}] = \mathbf{0}$, then $\mathbf{X}^{\mathsf{T}}\mathbf{X} \to n\Sigma$, where $\Sigma := \operatorname{Var}(\mathbf{x}) \in \mathbb{R}^{d \times d}$ is the covariance matrix of the features.

$$R(\hat{\mathbf{w}} \mid \mathbf{x}_0) = \sigma^2 + \mathbb{E}\left[\mathbf{x}_0^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_0 \sigma^2\right] = \sigma^2 + \frac{\sigma^2}{n} \mathbf{x}_0^{\mathsf{T}} \Sigma^{-1} \mathbf{x}_0$$

Now, take the expectation over all $\mathbf{x}_0 \sim \mathbb{P}_{\mathbf{x}}$:

 $R(\hat{\mathbf{w}}) = \mathbb{E}_{\mathbf{x}_0}[R(\hat{\mathbf{w}} \mid \mathbf{x}_0)]$

Using the "trace trick,"

$$R(\hat{\mathbf{w}}) = \sigma^2 + \frac{\sigma^2}{n} \mathbf{E}_{\mathbf{x}_0} \left[\operatorname{tr} \left(\Sigma^{-1} \mathbf{x}_0 \mathbf{x}_0^{\mathsf{T}} \right) \right] = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \mathbb{E}[\mathbf{x}_0 \mathbf{x}_0^{\mathsf{T}}] \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname{tr} \left(\Sigma^{-1} \Sigma \right) = \sigma^2 + \frac{\sigma^2}{n} \operatorname$$

$$\mathbf{x}_{0})] = \sigma^{2} + \frac{\sigma^{2}}{n} \mathbb{E}_{\mathbf{x}_{0}} \left[\mathbf{x}_{0}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{0} \right]$$

Statistical Analysis of Risk **Theorem Statement**

y = z

drawing *n* random examples (\mathbf{x}_i, y_i) from $\mathbb{P}_{\mathbf{x}, y_i}$.

Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has risk:

 $R(\hat{\mathbf{w}}) = \mathbb{E}[(\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x})]$

Theorem (Risk of OLS). Let $\mathbb{P}_{\mathbf{X},v}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the error model:

$$\mathbf{x}^{\mathsf{T}}\mathbf{w}^* + \epsilon$$
,

- where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $Var(\epsilon) = \sigma^2$, independent of **x**. Suppose we construct a random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $\mathbf{y} \in \mathbb{R}^{n}$ by

$$(x_0 - y_0)^2] = \sigma^2 + \frac{\sigma^2 d}{n}.$$

Risk and MSE Theorem Statement

error model:

where $f : \mathbb{R}^d \to \mathbb{R}$ and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $Var(\epsilon) = \sigma^2$, predictor $\tilde{f}(\mathbf{x}_0)$ is an estimator of $f(\mathbf{x}_0)$, and its risk is:

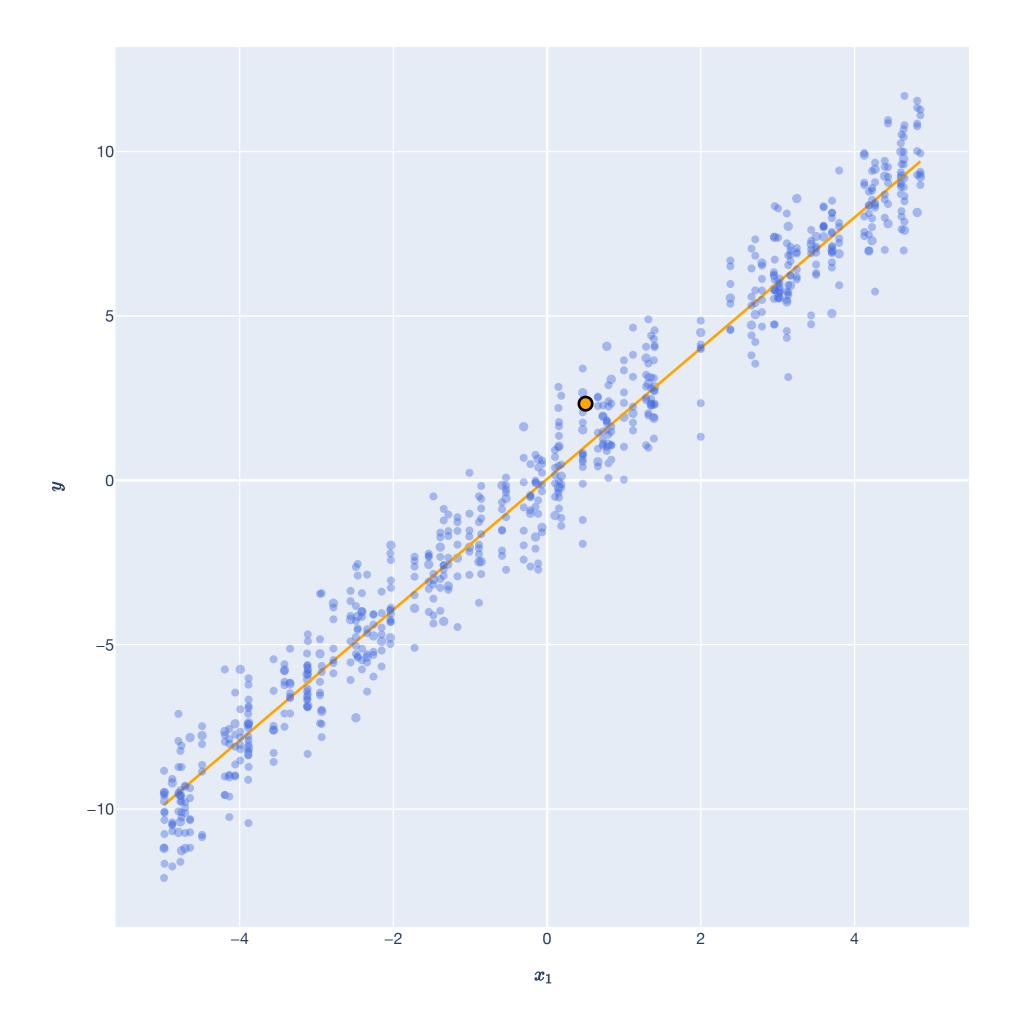
Theorem (Risk and MSE). Let $\mathbb{P}_{\mathbf{x},v}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the

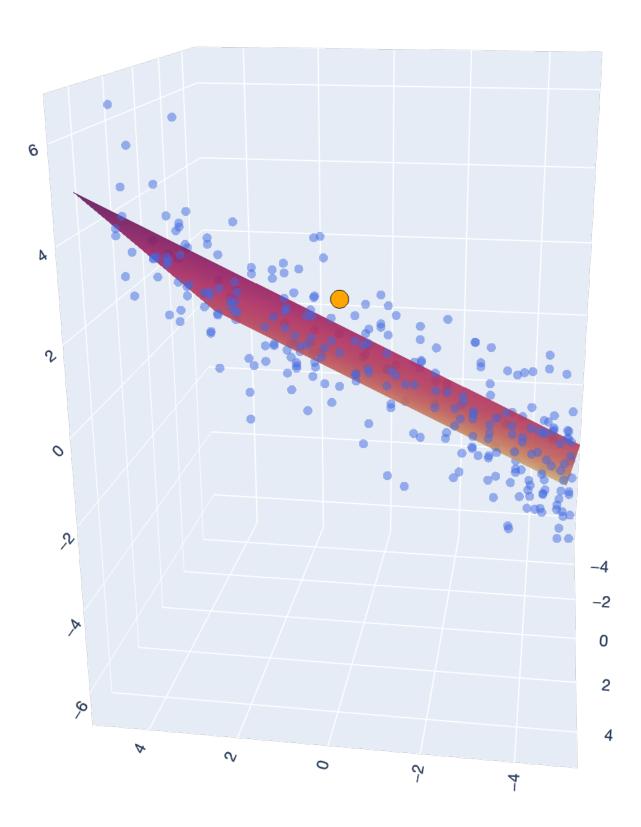
$$f(\mathbf{x}) + \epsilon$$
,

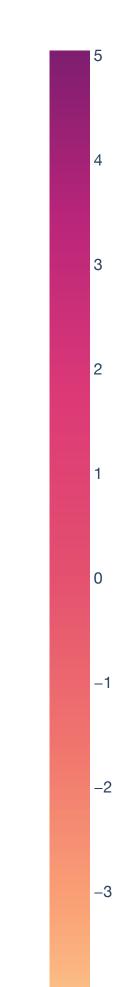
y =

- independent of **x**. Consider any linear predictor, $\tilde{f}(\mathbf{x}) = \tilde{\mathbf{w}}^{\mathsf{T}}\mathbf{x}$, where $\tilde{\mathbf{w}}$ depends on random training data $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$. Then, for a random \mathbf{x}_{0} , the
 - $R(\tilde{\mathbf{w}}) = \sigma^2 + \text{MSE}(\tilde{f}(\mathbf{x}_0)).$

Risk of OLS d = 1 and d = 2







Recap

Lesson Overview

Law of Large Numbers. The LLN allows us to move from probability to statistics (reasoning about an *unknown* data generating process using data from that process).

Statistical estimators. We define a *statistical estimator*, which is a function of a collection of random variables (data) aimed at giving a "best guess" at some unknown quantity from some probability distribution.

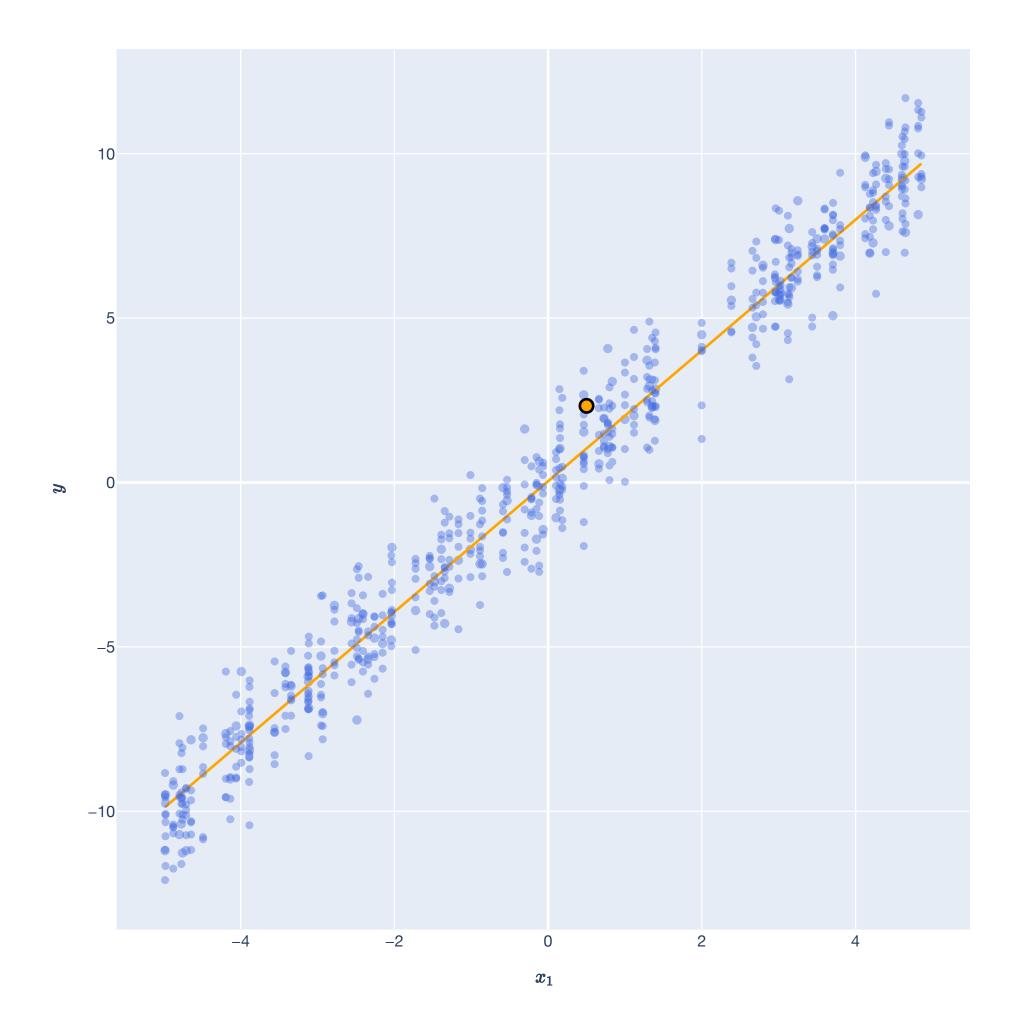
Bias, variance, and MSE. Two important properties of statistical estimators are their *bias* and *variance*, which are measures of how good the estimator is at guessing the target. These form the estimator's MSE.

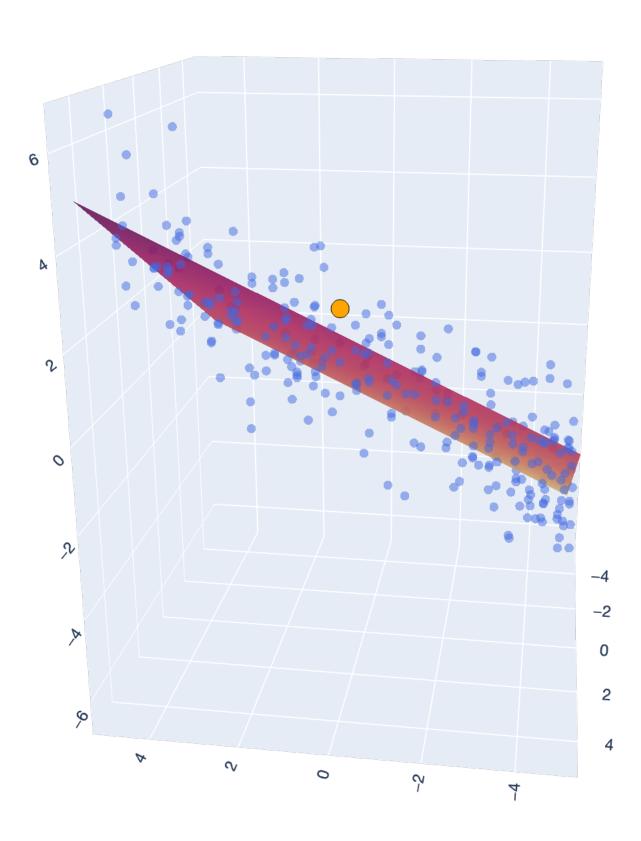
Stochastic gradient descent (SGD). Gradient descent needs to take a gradient over all *n* training examples, which may be large; SGD *estimates* the gradient to speed up the process.

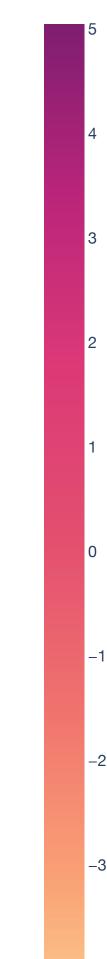
Gauss-Markov Theorem. We show that OLS is the minimum variance estimator in the class of all unbiased, linear estimators.

Statistical analysis of OLS risk. We analyze the *risk* of OLS — how well it's expected to do on future examples drawn from the same distribution it was trained on.

Lesson Overview Big Picture: Least Squares

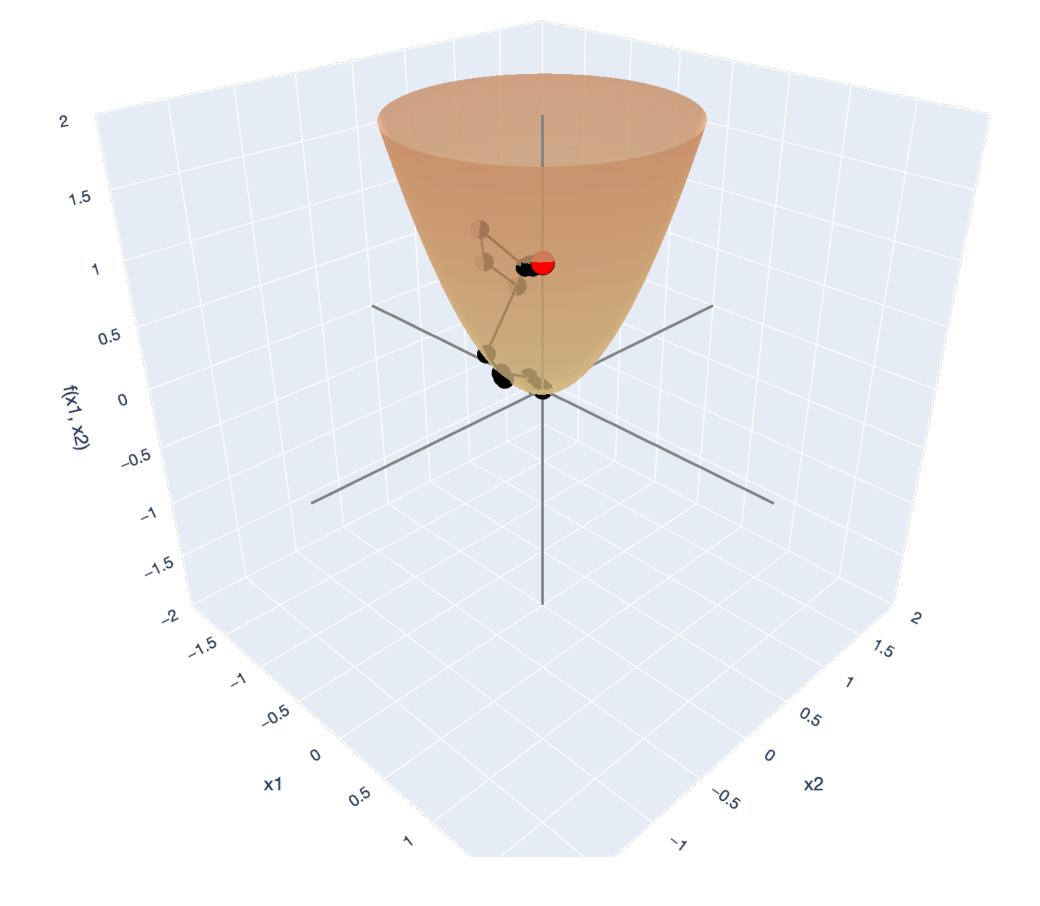


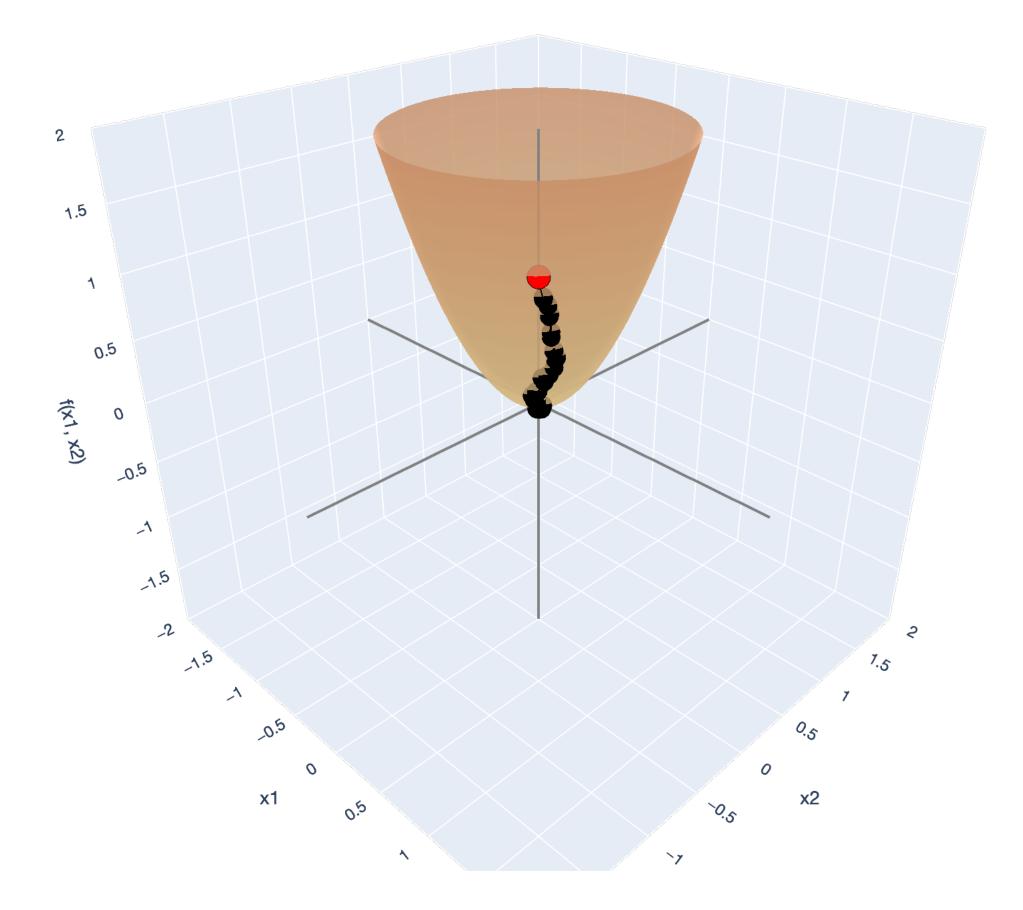




-4

Lesson Overview Big Picture: Gradient Descent





References

Mathematics for Machine Learning. Marc Pieter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.

Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman.