
By: Samuel Deng

Math for ML
Week 6.1: Central Limit Theorem, Distributions, and the MLE
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Lesson Overview
Gaussian Distribution.  We define perhaps the most important “named” probability 
distribution, the Gaussian/“Normal” distribution, and go over some key properties.


Central Limit Theorem. We state and prove the central limit theorem, the statement 
that the sample average of many independent random variables converges in 
distribution to the Gaussian. It doesn’t matter what distribution those random variables 
take!


“Named” Distributions. We review other common “named” distributions for discrete 
and continuous random variables.


Maximum likelihood estimation. We define maximum likelihood estimation (MLE), a 
statistical/probabalistic perspective towards finding a well-generalizing model for data.


MLE and OLS. We explore the connection between MLE and OLS by defining the 
Gaussian error model. In this model, MLE and OLS correspond.



Lesson Overview
Big Picture: Least Squares



Lesson Overview
Big Picture: Gradient Descent
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https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html
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The Gaussian Distribution 
Definition and Properties



The Gaussian Distribution
Intuition and Shape

The Gaussian/Normal distribution with parameters  and  has a “bell-shaped” 
PDF centered at  and “spread” depending on the parameter .


μ σ
μ σ



The Gaussian Distribution
Standard Gaussian Definition

A random variable  has a standard Gaussian/Normal distribution denoted 
 if it has PDF:


, for all .


This random variable has mean  and variance .


(traditionally, standard Gaussians are denoted with , PDF , and CDF ).

Z
Z ∼ N(0,1)

pZ(z) =
1

2π
e−z2/2 z ∈ ℝ

𝔼[Z] = 0 Var(Z) = 1

Z ϕ(z) Φ(z)
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The Gaussian Distribution
General Definition

A random variable  has a Gaussian/Normal distribution with parameters  
and , denoted  if it has PDF:


, for all .


This random variable has mean  and variance .

X μ
σ X ∼ N(μ, σ2)

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2} x ∈ ℝ

𝔼[X] = μ Var(X) = σ2



The Gaussian Distribution
Properties of Gaussians

Standardization. If , then . As a result:
X ∼ N(μ, σ2) Z = (X − μ)/σ ∼ N(0,1)

ℙ(a < X < b) = ℙ ( a − μ
σ

< Z <
b − μ

σ )
= Φ ( b − μ

σ ) − Φ ( a − μ
σ )
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The Gaussian Distribution
Properties of Gaussians

Standardization. If , then . As a result:





Standard to general. If , then .

X ∼ N(μ, σ2) Z = (X − μ)/σ ∼ N(0,1)

ℙ(a < X < b) = ℙ ( a − μ
σ

< Z <
b − μ

σ )
= Φ ( b − μ

σ ) − Φ ( a − μ
σ )

Z ∼ N(0,1) X = μ + σZ ∼ N(μ, σ2)
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The Gaussian Distribution
Properties of Gaussians

Standardization. If , then . As a result:





Standard to general. If , then .


Sums of Gaussians. If  for  are independent, then


.

X ∼ N(μ, σ2) Z = (X − μ)/σ ∼ N(0,1)

ℙ(a < X < b) = ℙ ( a − μ
σ

< Z <
b − μ

σ )
= Φ ( b − μ

σ ) − Φ ( a − μ
σ )

Z ∼ N(0,1) X = μ + σZ ∼ N(μ, σ2)

Xi ∼ N(μi, σ2
i ) i = 1,…, n

n

∑
i=1

Xi ∼ N (
n

∑
i=1

μi,
n

∑
i=1

σ2
i )



Central Limit Theorem 
Intuition and Simulations



Statistical Estimation
Intuition

In probability theory, we assumed we knew some data generating process (as 
a distribution) , and we analyzed observed data under that process.


.


Statistics can be thought of as the “reverse process.” We see some data and 
we try to make inferences about the process that generated the data.


 

ℙx

ℙx ⟹ x1, …, xn

x1, …, xn ⟹ ℙx



Statistical Estimation
Intuition

In probability theory, we assumed we knew some data generating process (as 
a distribution) , and we analyzed observed data under that process.


.


Statistics can be thought of as the “reverse process.” We see some data and 
we try to make inferences about the process that generated the data.





In order to do so, we need to formalize the notion that “collecting a lot of data” 
gives us a peek at the underlying process!

ℙx

ℙx ⟹ x1, …, xn

x1, …, xn ⟹ ℙx



Law of Large Numbers
Theorem Statement

Theorem (Weak Law of Large Numbers). Let  be independent and identically 
distributed (i.i.d.) random variables with finite mean . Let their sample average 
be denoted as


.


Then, for any ,


.


This type of convergence is also called convergence in probability.

X1, …, Xn
μ := 𝔼[Xi]

Xn :=
1
n

n

∑
i=1

Xi

ϵ > 0

lim
n→∞

ℙ ( |Xn − μ | < ϵ) = 1
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Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable 
denoting the outcome of a single fair coin 
toss, with  for tails and  for 
heads. Clearly, .


Law of large numbers states that for any 
, no matter how small:


Xi

Xi = 0 Xi = 1
μ := 𝔼[Xi] = 1/2

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1
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Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the 
outcome of a single fair coin toss, with  for tails 
and  for heads. Clearly, .


Law of large numbers states that for any , no 
matter how small:





But can we say something more about the distribution 
of the random variable ?

Xi
Xi = 0

Xi = 1 μ := 𝔼[Xi] = 1/2

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1

Xn
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Central Limit Theorem
Intuition



Central Limit Theorem
Experiment: Coin Tosses
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Central Limit Theorem
Experiment: Coin Tosses
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Central Limit Theorem
Experiment: Coin Tosses



Central Limit Theorem
Experiment: Die Rolls



Central Limit Theorem
Experiment: Die Rolls
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Central Limit Theorem
Experiment: Die Rolls



Central Limit Theorem
Experiment: Drawing uniform real value
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Central Limit Theorem
Experiment: Drawing uniform real value
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Central Limit Theorem
Experiment: Drawing uniform real value



Convergence and MGFs 
Tools for CLT Proof



Convergence in Distribution
Intuition

A sequence of random variables  converges in distribution to 
another random variable  if:


For large enough , the distribution of  starts looking indistinguishable from 
the distribution of .

X1, X2, X3, …
X

n Xn
X



Convergence in Distribution
Definition

Let  be a sequence of random variables, and let  be another random 
variable. Let  be the CDF of  and let  be the CDF of , so:


 and .


Then the sequence  converges in distribution to , written  if


 for all  for which  is continuous.

X1, X2, … X
Fn Xn FX X

Fn(x) = ℙ[Xn ≤ x] FX(x) = ℙ[X ≤ x]

(Xn) X Xn →D X

lim
n→∞

Fn(t) = FX(t) t FX
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Convergence in Distribution
Definition

Let  be a sequence of random 
variables, and let  be another random 
variable. Let  be the CDF of  and let  
be the CDF of , so:


 and .


Then the sequence  converges in 
distribution to , written  if


 for all  for which  is 
continuous.

X1, X2, …
X

Fn Xn FX
X

Fn(x) = ℙ[Xn ≤ x] FX(x) = ℙ[X ≤ x]

(Xn)
X Xn →D X

lim
n→∞

Fn(t) = FX(t) t FX

Deng, Samuel



Moment Generating Function
Intuition

The moment generating function (MGF) packs all the “moment” information 
of a random variable  into the Taylor-expandable function .








X etX

eX = 1 + X +
X2

2
+

X3

3!
+ …

etX = 1 + tX +
t2X2

2
+

t3X3

3!
+ …

𝔼[etX] = 1 + t𝔼[X] + t2 𝔼[X2]
2

+ t3 𝔼[X3]
3!

+ …
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Moment Generating Function
Intuition

The moment generating function (MGF) 
packs all the “moment” information of a 
random variable  into the Taylor-expandable 
function .








X
etX

eX = 1 + X +
X2

2
+

X3

3!
+ …

etX = 1 + tX +
t2X2

2
+

t3X3

3!
+ …

𝔼[etX] = 1 + t𝔼[X] + t2 𝔼[X2]
2

+ t3 𝔼[X3]
3!

+ …
−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4
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Moment Generating Function
Definition

The moment generating function (MGF) of a random variable  is the function  
defined by:


.


If  is well-defined in an interval around ,


.


Generally, the th derivative at  gives the th moment of : 


.

X MX : ℝ → ℝ

MX(t) := 𝔼[etX] = ∫ etxdFX(x)

MX t = 0

M′ X(0) = [ d
dt

𝔼[etX]]
t=0

= 𝔼 [ d
dt

etX]
t=0

= 𝔼[XetX]t=0 = 𝔼[X]

k t = 0 k X

M(k)(0) = 𝔼[Xk]
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Moment Generating Function
MGF characterizes the distribution

Theorem (MGF characterizes distributions). Let  and  be random 
variables. If there exists some  where  for all  in a 
neighborhood  around , then  and  have the same distribution:


 and  for their CDFs  and .


X Y
δ ∈ ℝ MX(t) = MY(t) t

Bδ(0) 0 X Y

ℙX = ℙY FX(t) = FY(t) FX FY
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Moment Generating Function
MGF of Standard Normal

Theorem (MGF characterizes distributions). Let  and  be random 
variables. If there exists some  where  for all  in a 
neighborhood  around , then  and  have the same distribution:


 and  for their CDFs  and .


Theorem (MGF of Standard Normal). Let . The MGF of  exists 
and is given by:


.

X Y
δ ∈ ℝ MX(t) = MY(t) t

Bδ(0) 0 X Y

ℙX = ℙY FX(t) = FY(t) FX FY

Z ∼ N(0,1) Z

MZ(t) = et2/2
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Moment Generating Function
MGF of Standard Normal

Theorem (MGF characterizes distributions). Let  and  be random variables. If there exists some 
 where  for all  in a neighborhood  around , then  and  have the same 

distribution:


 and  for their CDFs  and .


Theorem (MGF of Standard Normal). Let . The MGF of  exists and is given by:


.


Theorem (Sums of independent RVs). If  are independent random variables and , 

then  where  is the MGF of .

X Y
δ ∈ ℝ MX(t) = MY(t) t Bδ(0) 0 X Y

ℙX = ℙY FX(t) = FY(t) FX FY

Z ∼ N(0,1) Z

MZ(t) = et2/2

X1, …, Xn S =
n

∑
i=1

Xi

MS(t) =
n

∏
i=1

MXi
(t) MXi

(t) Xi
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Central Limit Theorem 
Proof and Implications



Central Limit Theorem
Theorem Statement

Theorem (Central Limit Theorem). Let  be independent and identically distributed (i.i.d.) 
random variables with finite mean  and finite variance . Let their sample 

average be denoted as  and let their “standardized” average be:





Then,  converge to  in distribution. That is, :


.

X1, …, Xn
μ := 𝔼[Xi] σ2 := Var(Xi)

Xn :=
1
n

n

∑
i=1

Xi

Zn :=
Xn − μ

Var(Xn)
=

n(Xn − μ)
σ

Zn Z ∼ N(0,1) Zn →D Z

lim
n→∞

ℙ(Zn ≤ z) = Φ(z) := ∫
z

−∞

1

2π
e−x2/2dx = ℙ(Z ≤ z)
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Central Limit Theorem
Theorem Statement

Theorem (Central Limit Theorem). Let  be independent and identically distributed (i.i.d.) random 
variables with finite mean  and finite variance . Let their sample average be denoted as 

 and let their “standardized” average be:





Then,  converge to  in distribution. That is, :


.


Probability statements about  can be approximated using a Gaussian distribution!

X1, …, Xn
μ := 𝔼[Xi] σ2 := Var(Xi)

Xn :=
1
n

n

∑
i=1

Xi

Zn :=
Xn − μ

Var(Xn)
=

n(Xn − μ)
σ

Zn Z ∼ N(0,1) Zn →D Z

lim
n→∞

ℙ(Zn ≤ z) = Φ(z) := ∫
z

−∞

1

2π
e−x2/2dx = ℙ(Z ≤ z)

Xn



Central Limit Theorem
Proof of CLT

Without loss of generality, assume .


Goal: Show the MGF of  approaches .

μ = 0

Zn := nXn/σ MZ(t) = et2/2



Central Limit Theorem
Proof of CLT

Without loss of generality, assume .


Goal: Show the MGF of  approaches . 


Step 1: Use MGF property on sums of independent random variables.


Let , so . Because  are independent, the MGF follows:


, where  is the MGF of any .


Therefore,


.

μ = 0

Zn := nXn/σ MZ(t) = et2/2

Sn :=
n

∑
i=1

Xi Zn =
Sn

σ n
X1, …, Xn

MSn
(t) = (MX(t))n MX Xi

MZn
(t) = (MX ( t

σ n ))
n
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Central Limit Theorem
Proof of CLT

Without loss of generality, assume .


Goal: Show the MGF of  approaches . 


Step 2: Use Taylor expansion and (Peano’s) Taylor’s Theorem on  for some .


From Step 1,


.


Now, expand the Taylor series of  around :


, where  is a remainder.


By Peano’s form of Taylor’s Theorem,  as .

μ = 0

Zn := nXn/σ MZ(t) = et2/2

MX(s) s

MZn
(t) = (MX ( t

σ n ))
n

MX(s) s = 0

MX(s) = MX(0) + sM′ X(0) +
1
2

s2M′ ′ X(0) + R(s) R(s)

R(s)/s2 → 0 s → 0
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Central Limit Theorem
Proof of CLT

Without loss of generality, assume .


Goal: Show the MGF of  approaches . 


Step 3: Plug in the moments ,  and .


We know that  (from def of MGF),  (from assumption), and  
(from definition of ). Plug these in:





 .

μ = 0

Zn := nXn/σ MZ(t) = et2/2

MX(0) M′ X(0) M′ ′ X(0)

MX(0) = 1 M′ X(0) = μ = 0 M′ ′ X(0) = σ2

Var(X)

MX(s) = MX(0) + sM′ X(0) +
1
2

s2M′ ′ X(0) + R(s)

⟹ MX(s) = 1 +
σ2

2
s2 + R(s)
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Central Limit Theorem
Proof of CLT

Without loss of generality, assume .


Goal: Show the MGF of  approaches . 


Step 4: Replace  and get back to the MGF of interest, .


Let , so . From Step 3,





 .


From Step 1, we have found:


.

μ = 0

Zn := nXn/σ MZ(t) = et2/2

s = t/σ n MZn
(t)

s =
t

σ n
s2 =

t2

σ2n

MX(s) = 1 +
σ2

2
s2 + R(s)

⟹ MX ( t

σ n ) = 1 +
t2

2n
+ R(s)

MZn
(t) = (1 +

t2

2n
+ R(s))

n
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Central Limit Theorem
Proof of CLT

Without loss of generality, assume .


Goal: Show the MGF of  approaches . 


Step 5: Send  and exploit Peano’s form of Taylor’s Theorem to conclude. 


Let , so . From Step 4,


.


As ,  and . By definition of  for some ,


 if   .

μ = 0

Zn := nXn/σ MZ(t) = et2/2

n → ∞

s =
t

σ n
s2 =

t2

σ2n

MZn
(t) = (1 +

t2

2n
+ R(s))

n

n → ∞ s2 → 0 R(s)/s2 → 0 ea a ∈ ℝ

lim
n→∞ (1 +

an

n )
n

= ea an → a ⟹ lim
n→∞

MZn
(t) = et2/2 = MZ(t)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



The Gaussian Distribution
Properties of Gaussians

Standardization. If , then . As a result:





Standard to general. If , then .


Sums of Gaussians. If  for  are independent, then


.

X ∼ N(μ, σ2) Z = (X − μ)/σ ∼ N(0,1)

ℙ(a < X < b) = ℙ ( a − μ
σ

< Z <
b − μ

σ )
= Φ ( b − μ

σ ) − Φ ( a − μ
σ )

Z ∼ N(0,1) X = μ + σZ ∼ N(μ, σ2)

Xi ∼ N(μi, σ2
i ) i = 1,…, n

n

∑
i=1

Xi ∼ N (
n

∑
i=1

μi,
n

∑
i=1

σ2
i )



Central Limit Theorem
Equivalent Approximations

For i.i.d. random variables 
, let:





X1, …, Xn

Xn :=
1
n

n

∑
i=1

Xi

Zn :=
Xn − μ

Var(Xn)
=

n(Xn − μ)
σ

For large enough , the CLT statement allows the 
equivalent approximations…














n

Zn ≈ N(0,1)

Xn ≈ N (μ,
σ2

n )
Xn − μ ≈ N (μ,

σ2

n )
n(Xn − μ) ≈ N(0,σ2)

n(Xn − μ)
σ

≈ N(0,1)

⟹
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Central Limit Theorem
Equivalent Approximations

For i.i.d. random variables 
, let:





X1, …, Xn

Xn :=
1
n

n

∑
i=1

Xi

Zn :=
Xn − μ

Var(Xn)
=

n(Xn − μ)
σ

For large enough , the CLT statement allows the 
equivalent approximations…














n

Zn ≈ N(0,1)

Xn ≈ N (μ,
σ2

n )
Xn − μ ≈ N (μ,

σ2

n )
n(Xn − μ) ≈ N(0,σ2)

n(Xn − μ)
σ

≈ N(0,1)

⟹
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Central Limit Theorem
Two Implications

 for large enough .


This says two things:


1. The mass of  centers to , the true mean of the i.i.d. random variables. 


2. The spread of draws from  gets smaller and smaller as  grows.

Xn ≈ N (μ,
σ2

n ) n

Xn μ

Xn n
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Central Limit Theorem
Two Implications

 for large enough .


This says two things:


1. The mass of  centers to , the 
true mean of the i.i.d. random 
variables. 


2. The spread of draws from  gets 
smaller and smaller as  grows.

Xn ≈ N (μ,
σ2

n ) n

Xn μ

Xn
n
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Central Limit Theorem
Two Implications

 for large enough .


This says two things:


1. The mass of  centers to , the 
true mean of the i.i.d. random 
variables. 


2. The spread of draws from  gets 
smaller and smaller as  grows.

Xn ≈ N (μ,
σ2

n ) n

Xn μ

Xn
n
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Central Limit Theorem
Two Implications

 for large enough .


This says two things:


1. The mass of  centers to , the 
true mean of the i.i.d. random 
variables. 


2. The spread of draws from  gets 
smaller and smaller as  grows.

Xn ≈ N (μ,
σ2

n ) n

Xn μ

Xn
n
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“Named” Distributions 
Discrete Examples



Discrete Distributions
Discrete Random Variables

A discrete random variable  takes on a finite or countably 
infinite number of values.


CDF. . 

PMF.  and .


PMF is the height of the “jump” of  at .


PMF is nonnegative.


PMF sums to .


Expectation. .


X

FX(x) := ℙ(X ≤ x)

pX(x) = ℙ(X = x) ℙ(X ∈ A) = ∑
x∈A

ℙ(X = x)

FX x

1

𝔼(X) = ∑
x

xpX(x) = ∑
x

xℙ(X = x)
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The Point Mass Distribution
“Story” of the Distribution

A single point  has all the probability mass, every other point has zero 
mass. 

Example. Let  be a random variable putting all its mass on .

a ∈ ℝ

X a = 1



The Point Mass Distribution
Properties




Parameters: , the point mass.


CDF:  

PMF:  

Mean: .


Variance: . 

MGF: .

X ∼ δa

a ∈ ℝ

FX(x) = {0 x < a
1 x ≥ a

pX(x) = {1 x = a
0 x ≠ a

𝔼[X] = a

Var(X) = 0

MX(t) = eta
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The Discrete Uniform Distribution
“Story” of the Distribution

Randomly choose an element in a finite set , with equal probability for each 
element. 

Example. Let  be the number on the roll of a fair, six-sided die.

S

X



The Discrete Uniform Distribution
Properties




Parameters: , the number of possible states, denoted 
.


CDF:  

PMF:  

Mean: .


Variance: . 

MGF: .

X ∼ DUnif(k)

k ∈ ℕ
{1,2,…, k}

FX(x) =
⌊k⌋
n

pX(x) = {1/k x = 1,…, k
0 otherwise

𝔼[X] =
k + 1

2

Var(X) =
k2 − 1

12

MX(t) =
et(1 − ekt)
k(1 − et)
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The Bernoulli Distribution
“Story” of the Distribution

Flip a coin that lands heads with probability  and tails with probability . 

Example. Let  denote the outcome of a presidential election with two 
candidates and a tie-breaking mechanism, with  indicating Candidate A and  
indicating Candidate B.

p 1 − p

X
1 0



The Bernoulli Distribution
Properties




Parameters: , the success probability.


CDF:  

PMF:  

Mean: .


Variance: . 

MGF: .

X ∼ Ber(p)

p ∈ [0,1]

FX(x) =
0 x < 0
1 − p 0 ≤ x < 1
1 x ≥ 1

pX(x) =
1 − p x = 0
p x = 1
0 otherwise

𝔼[X] = p

Var(X) = p(1 − p)

MX(t) = 1 − p + pet
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The Binomial Distribution
“Story” of the Distribution

Flip  independent coins, each landing heads with probability  and tails with 
probability , and count the number of heads. 

Example. Consider an urn with  orange balls and  green balls. Let  count 
the total number of orange balls drawn after drawing  balls with 
replacement from the urn.

n p
1 − p

7 3 X
n = 10
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The Binomial Distribution
Properties




Parameters: , the number of trials. 
, the success probability.


CDF:  

PMF:  

Mean: .


Variance: . 

MGF: .

X ∼ Bin(n, p)

n ∈ {0,1,2,…}
p ∈ [0,1]

FX(x) =
⌊x⌋

∑
i=0

(n
i ) pi(1 − p)n−i

pX(x) = (n
x) pk(1 − p)n−x

𝔼[X] = np

Var(X) = np(1 − p)

MX(t) = (1 − p + pet)n

Deng, Samuel
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The Geometric Distribution
“Story” of the Distribution

Flip coins, each landing heads with probability  and tails with probability , 
until you see your first head. How many trials occurred? 

Example. Let  be the number of rolls needed from repeatedly rolling a fair, six-
sided die until  shows up.

p 1 − p

X
3



The Geometric Distribution
Properties




Parameters: , the success probability.


CDF:  if ,  otherwise 

PMF:  

Mean: .


Variance: . 

MGF:  for .

X ∼ Geom(p)

p ∈ [0,1]

FX(x) = 1 − (1 − p)⌊x⌋ x ≥ 1 0

pX(x) = {(1 − p)x−1p x ∈ {1,2,3,…, }
0 otherwise

𝔼[X] = 1/p

Var(X) =
1 − p

p2

MX(t) =
pet

1 − (1 − p)e2
t < − ln(1 − p)

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



The Poisson Distribution
“Story” of the Distribution

Count the number of rare events in a fixed time interval, if the average number of 
events in that interval is . 

Example. Let  be the number of text messages you receive in a given hour if 
you receive an average of  messages per hour.

λ

X
λ = 3

Deng, Samuel



The Poisson Distribution
“Story” of the Distribution

Count the number of rare events in a fixed time interval, if the average number of 
events in that interval is . 

Example. Let  be the number of text messages you receive in a given hour, if 
you receive an average of  messages per hour.


Example. Let  count the number of times a raindrop hits a specific square inch 
in a minute, if that square inch receives an average of  drops per minute.

λ

X
λ = 3

X
λ = 10



The Poisson Distribution
Properties




Parameters: , the success rate.


CDF:  

PMF:  

Mean: .


Variance: . 

MGF: .

X ∼ Pois(λ)

λ ∈ (0,∞)

FX(x) = e−λ
⌊x⌋

∑
j=0

λj

j!

pX(x) =
λke−λ

k!
𝔼[X] = λ

Var(X) = λ

MX(t) = exp(λ(et − 1))

Deng, Samuel

Deng, Samuel



“Named” Distributions 
Continuous Examples



Continuous Distributions
Continuous Random Variables

A continuous random variable  takes on an uncountably infinite 
number of values. The probability at any point  is .


CDF. . 

PDF.  and .


PDF is the derivative of .


PDF is nonnegative and integrates to .


PDF does not give probabilities at points.


Expectation. .


X
x 0

FX(x) := ℙ(X ≤ x)

pX(x) = F′ (x) ℙ(X ∈ A) = ∫A
pX(x)dx

F

1

𝔼(X) = ∫
∞

−∞
xpX(x)dx



The Uniform Distribution
“Story” of the Distribution

Draw a completely random number in the continuous interval from  to . 

Example. Let  be where you randomly break a stick of length  inches.

a b

X b = 20

Deng, Samuel



The Uniform Distribution
Properties




Parameters: , the interval boundaries.


CDF:  

PDF:  

Mean: .


Variance: . 

MGF:  for  and .

X ∼ Unif(a, b)

−∞ < a < b < ∞

FX(x) =
0 x < a
x − a
b − a x ∈ [a, b]
1 x > b

pX(x) = {
1

b − a x ∈ [a, b]
0 otherwise

𝔼[X] =
1
2

(a + b)

Var(X) =
1
12

(b − a)2

MX(t) =
etb − eta

t(b − a)
t ≠ 0 MX(0) = 1



The Gaussian Distribution
“Story” of the Distribution

Draw a random number with probability distributed according to a “bell-shaped” 
curve. 

Example. Let  be the height of a human male.X



The Gaussian Distribution
Properties




Parameters: , the mean and , 
the variance.


CDF:  

(no closed form) 

PDF:  

Mean: .


Variance: . 

MGF: .

X ∼ N(μ, σ2)

μ ∈ ℝ σ2 ∈ ℝ>0

FX(x) = ∫
x

−∞
pX(x)dx = Φ ( x − μ

σ )
pX(x) =

1

2πσ2
e− (x − μ)2

2σ2

𝔼[X] = μ

Var(X) = σ2

MX(t) = exp(μt + σ2t2/2)

Deng, Samuel
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The Chi-squared Distribution
“Story” of the Distribution

Add up  independent, squared standard Gaussian random variables. 

Example. Let  be a random vector with independent entries 
 and . Then,  is a Chi-squared random 

variable with .

k

z = (z1, z2)
z1 ∼ N(0,1) z2 ∼ N(0,1) X = ∥z∥2

k = 2

Deng, Samuel



The Chi-squared Distribution
Properties




Parameters: , the “degrees of freedom.”


CDF:  (more 
complicated for ) 

PDF:  

Mean: .


Variance: . 

MGF:  for .

X ∼ χ2(k)

k

FX(x; 2) = 1 − e−x/2

k ≠ 2

pX(x) = {
xk/2−1e−x/2

2k/2 ∫∞
0 tk−1e−tdt

x > 0

0 otherwise

𝔼[X] = k

Var(X) = 2k

MX(t) = (1 − 2t)−k/2 t < 1/2



The Exponential Distribution
“Story” of the Distribution

The waiting time for a success in continuous time, where  is the rate at which 
successes arrive. 

Example. Let  be the time between receiving one text message and the next, 
where  is the rate of text messages per unit time.

λ

X
λ



The Exponential Distribution
PDF, CDF, and MGF




Parameters: , the success rate.


CDF:  

PDF:  

Mean: .


Variance: . 

MGF:  for .

X ∼ Expo(λ)

λ > 0

FX(x) = 1 − e−λx

pX(x) = λe−λx

𝔼[X] = 1/λ

Var(X) = 1/λ2

MX(t) =
λ

λ − t
t < λ

Deng, Samuel



Maximum Likelihood Estimation 
Intuition and Definition



Statistical Estimator
Intuition

A (statistical) estimator is a “best guess” at some (unknown) quantity of 
interest (the estimand) using observed data.


We will only concern ourselves with point estimation, where we want to 
estimate a single, fixed quantity of interest (as opposed to, say, an interval).


The quantity doesn’t have to be a single number; it could be, for example, a 
fixed vector, matrix, or function.

Deng, Samuel



Statistical Estimator
Definition

Let  be  i.i.d. random variables drawn from some distribution . An 
estimator  of some fixed, unknown parameter  is some function of 

:


.


Defined similarly for random vectors.


X1, …, Xn n ℙX̂θn θ
X1, …, Xn

̂θn = g(X1, …, Xn)



Empirical Risk Minimization (ERM)
What we’ve been doing

Each row  for  is a random vector. Each  is a random variable. There exists an unknown joint 
distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well to a newly drawn .


To choose the model , we attempt to minimize the expected squared loss, or the risk:





As a substitute, we can minimize the empirical risk:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ
ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ (x0, y0) ∼ ℙx,y

f

𝔼x,y[(y − f(x))2] = ∫ (y − f(x))2dℙ(x, y)

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Parametric Estimation vs. ERM
A different approach

Each row  for  is a random vector. Each  is a random variable. 
There exists an unknown joint distribution  over , where we draw:


.


We then went on to minimize the empirical risk to get our model .


.


This uses no information about the distribution of the data!

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ

ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2



Parametric Estimation
Intuition

Suppose we have a good guess at the underlying distribution generating some 
i.i.d. data .


“My data is probably generated from a Poisson distribution.”


Then, we can restrict our attention to estimating a parametric model, a function 
 that depends on parameters  belonging to some 

parameter space .


“Let’s estimate  in the PMF .”

X1, …, Xn

p(x; θ) θ = (θ1, …, θk)
Θ ⊆ ℝk

λ ∈ ℝ p(x; λ) =
λke−λ

k!



Parametric Estimation
Intuition

Suppose we have a good guess at the underlying distribution generating some i.i.d. data 
.


“My data is probably generated from a Poisson distribution.”


Then, we can restrict our attention to estimating a parametric model, a function  
that depends on parameters  belonging to some parameter space .


“Let’s estimate  in the PMF .” 

If our assumption is good, then a good estimate  of  might tell us everything we need to 
know about our data!

X1, …, Xn

p(x; θ)
θ = (θ1, …, θk) Θ ⊆ ℝk

λ ∈ ℝ p(x; λ) =
λke−λ

k!
̂θn θ



Parametric Estimation
Definition

A parametric model is a class of functions of the form:


,


where  is the parameter space and  are the model parameters.  


Example. The parameter space for the Gaussian distribution  is


.


Example. The parameter space for the Bernoulli distribution  is 


.

ℱ := {f(x; θ) : θ ∈ Θ}
Θ ⊆ ℝk θ = (θ1, …, θk)

N(μ, σ2)

Θ = {(μ, σ) : μ ∈ ℝ, σ > 0}

Ber(p)

Θ = {p : 0 ≤ p ≤ 1}



Maximum Likelihood Estimation
Intuition

A common way to do parametric estimation given i.i.d. data  is maximum 
likelihood estimation.


We assume that  came from a distribution with PDF  and parameter 
space .


“Assume that the data come from a Gaussian with 

” 

We consider the likelihood function which maps from parameters  to some positive 
number: the “likelihood” of those parameters explaining the data.

X1, …, Xn

X1, …, Xn p(x; θ)
Θ ⊆ ℝk

p(x; μ, σ) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}
Θ



Maximum Likelihood Estimation
Intuition

A common way to do parametric estimation given 
i.i.d. data  is maximum likelihood 
estimation.


We assume that  came from a distribution 
with PDF  and parameter space .


“Assume that the data come from a Gaussian with 

” 

We consider the likelihood function which maps 
from parameters  to some positive number: the 
“likelihood” of those parameters explaining the data.

X1, …, Xn

X1, …, Xn
p(x; θ) Θ ⊆ ℝk

p(x; μ, σ) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}
Θ



Maximum Likelihood Estimation
Intuition

A common way to do parametric estimation given i.i.d. data  is 
maximum likelihood estimation.


We assume that  came from a distribution with PDF  and 
parameter space .


“Assume that the data come are Poisson with ” 

We consider the likelihood function which maps from parameters  to some 
positive number: the “likelihood” of those parameters explaining the data.

X1, …, Xn

X1, …, Xn p(x; θ)
Θ ⊆ ℝk

pX(x) =
λke−λ

k!
Θ



Maximum Likelihood Estimation
Definition

Consider the parametric model


.


Let  be i.i.d. random variables (or random vectors ). The likelihood function 
is the function  defined by:


.


Note that  are fixed here, so this is just a function of .


“How well does  describe my data ?”

ℱ := {f(x; θ) : θ ∈ Θ}
X1, …, Xn x1, …, xn

Ln : Θ → [0,∞)

Ln(θ) :=
n

∏
i=1

f(Xi; θ)

X1, …, Xn θ

θ X1, …, Xn

Deng, Samuel

Deng, Samuel

Deng, Samuel

Deng, Samuel



Maximum Likelihood Estimation
The Log-Likelihood

Consider the parametric model


.


Let  be i.i.d. random variables (or random vectors ). The likelihood 
function is the function  defined by:


.


The log-likelihood function is the function defined by:


.

ℱ := {f(x; θ) : θ ∈ Θ}
X1, …, Xn x1, …, xn

Ln : Θ → [0,∞)

Ln(θ) :=
n

∏
i=1

f(Xi; θ)

ℒn(θ) := log Ln(θ)

Deng, Samuel

Deng, Samuel



Maximum Likelihood Estimation
The Maximum Likelihood Estimator

Consider the parametric model


.


Let  be i.i.d. random variables (or random vectors ). The likelihood function is the 
function  defined by:


.


The log-likelihood function is the function defined by:


.


The maximum likelihood estimator  is the value of  that maximizes .

ℱ := {f(x; θ) : θ ∈ Θ}
X1, …, Xn x1, …, xn

Ln : Θ → [0,∞)

Ln(θ) :=
n

∏
i=1

f(Xi; θ)

ℒn(θ) := log Ln(θ)
̂θMLE θ Ln(θ)

Deng, Samuel



Maximum Likelihood Estimation
Why log-likelihood?

The log-likelihood function is the function defined by:


.


The maximum likelihood estimator  is the value of  that maximizes . 


.


 is a monotonic function, so the maximizer of  corresponds to the 
maximizer of .

ℒn(θ) := log Ln(θ) =
n

∑
i=1

log f(Xi; θ)

̂θMLE θ Ln(θ)
̂θMLE = arg max

θ
Ln(θ) = arg max

θ
ℒn(θ)

log( ⋅ ) log f
f



Maximum Likelihood Estimation
Why log-likelihood?

The log-likelihood function is the function defined by:


.


The maximum likelihood estimator  is the value of  that minimizes . 


.


 is a monotonic function, so the maximizer of  corresponds to the 
maximizer of .

ℒn(θ) := log Ln(θ) =
n

∑
i=1

log f(Xi; θ)

̂θMLE θ −Ln(θ)
̂θMLE = arg min

θ
− Ln(θ) = arg min

θ
− ℒn(θ)

log( ⋅ ) log f
f



Maximum Likelihood Estimation
Example: Bernoulli

Example. Suppose , so our parametric model is:








The unknown parameter  is .


X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1}

θ p

Deng, Samuel
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Maximum Likelihood Estimation
Example: Bernoulli

Example. Suppose , so our parametric model is:








The unknown parameter  is .


Likelihood function. The likelihood function is


.


Denote , and the likelihood function is:


X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1}

θ p

Ln(θ) = Ln(p) =
n

∏
i=1

f(Xi; p) =
n

∏
i=1

pXi(1 − p)1−Xi = p ∑n
i=1 Xi(1 − p)n−∑n

i=1 Xi

S :=
n

∑
i=1

Xi

Ln(p) = pS(1 − p)n−S

Deng, Samuel

Deng, Samuel
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Maximum Likelihood Estimation
Example: Bernoulli

Example. Suppose , so our parametric model is:








The unknown parameter  is .


Likelihood function. The likelihood function is


.


Denote , and the likelihood function is:





Log-likelihood function. The log-likelihood is


. Now optimize this with respect to !

X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1}

θ p

Ln(θ) = Ln(p) =
n

∏
i=1

f(Xi; p) =
n

∏
i=1

pXi(1 − p)1−Xi = p ∑n
i=1 Xi(1 − p)n−∑n

i=1 Xi

S :=
n

∑
i=1

Xi

Ln(p) = pS(1 − p)n−S

ℒn(p) = S log p + (n − S)log(1 − p) p

Deng, Samuel
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Maximum Likelihood Estimation
Example: Bernoulli

Example. Suppose , so our parametric model is:








The unknown parameter  is .


Optimizing the negative log-likelihood. We need to solve the optimization problem:


. 


Through first-order condition:


.


Solving for , we get:


.

X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1}

θ p

minimize
p∈[0,1]

− ℒn(p) = − S log p + (S − n)log(1 − p)

∇pℒn(p) = −
S
p

−
S − n
1 − p

= 0

p

̂pMLE =
S
n

=
1
n

n

∑
i=1

Xi

Deng, Samuel
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Maximum Likelihood Estimation
Example: Bernoulli

Example. Suppose , so our parametric 
model is:








The unknown parameter  is .


The likelihood function is:





The maximum likelihood estimator of the estimand  is:


.

X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1}

θ p

Ln(p) = p ∑n
i=1 Xi(1 − p)n−∑n

i=1 Xi

p

̂pMLE =
S
n

=
1
n

n

∑
i=1

Xi

Deng, Samuel

Deng, Samuel

Deng, Samuel
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Maximum Likelihood Estimation
Properties of the MLE

Under conditions on the statistical model with true parameter , the MLE is…


Consistent. As , the MLE  satisfies .


Equivariant. If  is the MLE of , then  is the MLE of .


Asymptotically Normal. The random variable , where 
 is an estimate of the standard error.


Asymptotically optimal. Among all well-behaved estimators, the MLE has the 
smallest variance when . 

θ

n → ∞ ̂θMLE ℙ[ | ̂θMLE − θ | > ϵ] → 0
̂θMLE θ g( ̂θMLE) g(θ)

( ̂θ − θ)/ ̂SE →D N(0,1)
̂SE

n → ∞

Deng, Samuel



Gaussian Error Model 
Further assumption on regression model



Regression
Setup
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Deng, Samuel



Regression with randomness
Setup

Each row  for  is a random vector. Each  is a random variable. There exists a joint distribution  over , where we draw:


.


We want to find a model of the data, a function  that generalizes well to a newly drawn .


Our notion of error is the squared loss:


.


To choose the model , make the assumption that it is linear: , for some .


To choose the model , we attempt to minimize the expected squared loss, or the risk:





As a substitute, we can minimize the empirical risk:


.

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ (x0, y0) ∼ ℙx,y

ℓ( f(x), y) := (y − f(x))2

f f(x) = w⊤x w

f

𝔼x,y[(y − f(x))2] = ∫ (y − f(x))2dℙ(x, y)

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2

Deng, Samuel



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  and , independent of . 
Suppose we construct a random matrix  and random vector  by drawing  
random examples  from . Then, the OLS estimator  has the 
following statistical properties: 

Expectation: .


Variance: .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n

(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2

Deng, Samuel
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Error Model
Statement of Error Model

Let  be a joint distribution  defined by the error model:


,


where  and  is a random variable with  and , 
independent of . 


In matrix-vector form:


,


where  is a random vector with covariance matrix .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2

x

y = Xw* + ϵ

ϵ ∈ ℝd Var(ϵ) = σ2I



Gaussian Error Model
Motivation

 

 is a random variable with  and , independent of . 


We can think of  as the randomness from the “unexplained” errors in modeling 
the relationship of  to  with a linear model . Possibly very complex!


 

y = x⊤w* + ϵ

ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x

ϵ
y x w* ∈ ℝd

Deng, Samuel



Gaussian Error Model
Motivation

 

 is a random variable with  and , independent of . 


We can think of  as the randomness from the “unexplained” errors in modeling 
the relationship of  to  with a linear model . Possibly very complex!


 From CLT: The distribution of the average of many random variables 
eventually looks Gaussian. Observable processes in Nature often arise from 

the sum of many “small contributions.”

y = x⊤w* + ϵ

ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x

ϵ
y x w* ∈ ℝd



Gaussian Error Model
Definition

 

 with  and , independent of .


For realizations , each  is i.i.d.


The constant variance assumption is known as homoskedasticity.


y = x⊤w* + ϵ

ϵ ∼ N(0,σ2) 𝔼[ϵ] = 0 Var(ϵ) = σ2 x

yi = x⊤
i w* + ϵi ϵi

Deng, Samuel
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Gaussian Error Model
Definition

 

 with  and , 
independent of .


For realizations , each  is 
i.i.d.


The constant variance assumption is known 
as homoskedasticity.


y = x⊤w* + ϵ

ϵ ∼ N(0,σ2) 𝔼[ϵ] = 0 Var(ϵ) = σ2

x

yi = x⊤
i w* + ϵi ϵi
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Gaussian Error Model
Definition

 

 with  and , 
independent of .


For realizations , each  is 
i.i.d.


The constant variance assumption is known 
as homoskedasticity.


y = x⊤w* + ϵ

ϵ ∼ N(0,σ2) 𝔼[ϵ] = 0 Var(ϵ) = σ2

x

yi = x⊤
i w* + ϵi ϵi
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OLS and MLE  
Equivalence under Gaussian errors



Problem Setup
Parametric Model

Assume we are in the Gaussian error model:


 

 with  and , independent of .


For realizations , each  is i.i.d.

y = x⊤w* + ϵ

ϵ ∼ N(0,σ2) 𝔼[ϵ] = 0 Var(ϵ) = σ2 x

yi = x⊤
i w* + ϵi ϵi



Problem Setup
Parametric Model

Assume we are in the Gaussian error model:


 

 with  and , independent of .


For realizations , each  is i.i.d.


This defines a parametric model on the conditional distribution , with parameters 
, with PDF:


.

y = x⊤w* + ϵ

ϵ ∼ N(0,σ2) 𝔼[ϵ] = 0 Var(ϵ) = σ2 x

yi = x⊤
i w* + ϵi ϵi

ℙy∣x
θ = (w*, σ)

p(y ∣ x; w*, σ) =
1

σ 2π
exp {−(y − x⊤w*)2/2σ2}

Deng, Samuel
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Problem Setup
Log-Likelihood Function
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Let’s optimize and solve this for !

w* σ
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σ 2π
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∏
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p(yi ∣ xi; w*, σ) = ( 1

σ 2π )
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∏
i=1

exp {−(yi − x⊤
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ℒn(w*, σ) = log Ln(w*, σ) = n log ( 1

σ 2π ) −
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∑
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(yi − x⊤
i w*)2

2σ2
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Finding the MLE
Solving the MLE Optimization Problem

The log-likelihood function is given by:





We want to optimize and solve this for the estimand  (we don’t care about 
estimating ). To get , we solve the optimization problem:
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w
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The log-likelihood function is given by:
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Finding the MLE
Solving the MLE Optimization Problem

.


In matrix-vector form, this is the same as the optimization problem:


.

minimize
w∈ℝd

n

∑
i=1

(yi − x⊤
i w)2

2σ2
=

1
2σ2

n

∑
i=1

(yi − x⊤
i w)2

minimize
w∈ℝd

1
2σ2

∥Xw − y∥2
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Finding the MLE
Solving the MLE Optimization Problem

.


In matrix-vector form, this is the same as the optimization problem:


.


But  is just a constant, so this is equivalent to OLS!


minimize
w∈ℝd

n

∑
i=1

(yi − x⊤
i w)2

2σ2
=

1
2σ2

n

∑
i=1

(yi − x⊤
i w)2

minimize
w∈ℝd

1
2σ2

∥Xw − y∥2

1/2σ2

minimize
w∈ℝd

∥Xw − y∥2



OLS and MLE
Theorem Statement

Theorem (OLS and MLE). Suppose that  are i.i.d. samples 
in  with conditional distribution  defined by:


,


where  and each  is independent. Let  and  
contain all the i.i.d. samples. Then, the maximum likelihood estimate (MLE) 

 of the parameter  is given by the OLS estimator:


.

(x1, y1), …, (xn, yn)
ℝd × ℝ ℙy∣x

yi = x⊤
i w* + ϵ

ϵi ∼ N(0,σ2) ϵi X ∈ ℝn×d y ∈ ℝn
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Recap 



Lesson Overview
Gaussian Distribution.  We define perhaps the most important “named” probability 
distribution, the Gaussian/“Normal” distribution, and go over some key properties.


Central Limit Theorem. We state and prove the central limit theorem, the statement 
that the sample average of many independent random variables converges in 
distribution to the Gaussian. It doesn’t matter what distribution those random variables 
take!


“Named” Distributions. We review other common “named” distributions for discrete 
and continuous random variables.


Maximum likelihood estimation. We define maximum likelihood estimation (MLE), a 
statistical/probabalistic perspective towards finding a well-generalizing model for data.


MLE and OLS. We explore the connection between MLE and OLS by defining the 
Gaussian error model. In this model, MLE and OLS correspond.



Lesson Overview
Big Picture: Least Squares



Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html
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