
By: Samuel Deng

Math for ML
Week 6.2: Multivariate Gaussian Distribution



Logistics & Announcements



Lesson Overview
OLS under Gaussian Error Model. The distribution of  under the 
Gaussian error model is multivariate normal.


Multivariate Gaussian/Normal (MVN) Distribution PDF. We define the multivariate 
Gaussian distribution and study some simple examples.


Factorization of the Multivariate Gaussian. We see that a multivariate Gaussian with a 
diagonal covariance matrix factors into independent Gaussians.


Geometry of the Multivariate Gaussian. We study the geometry of the multivariate 
Gaussian through its level curves and discover the it is ellipsoidal, with axes determined by 
the eigenvectors/eigenvalues of the covariance matrix.


Affine Transformations of the Multivariate Gaussian. We establish that any multivariate 
Gaussian is just an affine transformation away from the standard multivariate Gaussian.


Other properties of the Multivariate Gaussian. We establish some other useful properties.

ŵ = (X⊤X)−1X⊤y



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis

http://igs/ols_distribution_d2.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html


OLS under Gaussian Errors 
Intuition and Definition



Gaussian Error Model
Definition

 

 with  and , 
independent of .


For realizations , each  is 
i.i.d.


The constant variance assumption is known 
as homoskedasticity.


y = x⊤w* + ϵ

ϵ ∼ N(0,σ2) 𝔼[ϵ] = 0 Var(ϵ) = σ2

x

yi = x⊤
i w* + ϵi ϵi
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OLS and MLE
Theorem Statement

Theorem (OLS and MLE). Suppose that 
 are i.i.d. samples in  

with conditional distribution  defined by:


,


where  and each  is independent. 
Let  and  contain all the i.i.d. 
samples. Then, the maximum likelihood 
estimate (MLE)  of the parameter  is 
given by the OLS estimator:


.

(x1, y1), …, (xn, yn) ℝd × ℝ
ℙy∣x

yi = x⊤
i w* + ϵ

ϵi ∼ N(0,σ2) ϵi
X ∈ ℝn×d y ∈ ℝn

ŵMLE w*

ŵMLE = (X⊤X)−1X⊤y



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  and , independent of . 
Suppose we construct a random matrix  and random vector  by drawing  
random examples  from . Then, the OLS estimator  has the 
following statistical properties: 

Expectation: .


Variance: .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n

(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  defined by the error 
model:


,


where  and  is a random variable with  and , independent of . Suppose 
we construct a random matrix  and random vector  by drawing  random examples 

 from . Then, the OLS estimator  has the following statistical properties: 

Expectation: .


Variance: .


What happens when we assume the Gaussian error model?

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n

(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2



Statistics of OLS
Under Gaussian Error Model

Let  be a joint distribution  defined by the error model:


,


where  and  is a random variable with  and , 
independent of .


Also: assume that .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2

x

ϵ ∼ N(0,σ2)



Statistics of OLS
Under Gaussian Error Model

Let  be a joint distribution  defined by the error model:


,


where  and  is a random variable with  and , 
independent of .


Also: assume that .


Question: What is the distribution of ?

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2

x

ϵ ∼ N(0,σ2)

ŵ = (X⊤X)−1X⊤y



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ?


In matrix-vector form, our Gaussian error model looks like:


,


where , , and  where .

ŵ = (X⊤X)−1X⊤y

y = Xw* + ϵ

y ∈ ℝn X ∈ ℝn×d ϵ ∈ ℝn ϵi ∼ N(0,σ2)



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ?


In matrix-vector form, our Gaussian error model looks like:


,


where , , and  where .


Let us condition . We can rewrite  as:


ŵ = (X⊤X)−1X⊤y

y = Xw* + ϵ

y ∈ ℝn X ∈ ℝn×d ϵ ∈ ℝn ϵi ∼ N(0,σ2)

X ŵ

ŵ = (X⊤X)−1X⊤ (Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ?


Therefore,  can be expressed as:


.


With  fixed, this is a function of the random vector .


We will show: If  is a Gaussian random vector, then all affine 
transformations  (where  and ) of  are also Gaussian 
random vectors.

ŵ = (X⊤X)−1X⊤y

ŵ

ŵ = w* + (X⊤X)−1X⊤ϵ

X ϵ ∈ ℝn

x ∈ ℝn

Ax + b A ∈ ℝd×n b ∈ ℝd x



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ?


Therefore,  can be expressed as:


.


With  fixed, this is a function of the random vector .


We will show: If  is a Gaussian random vector, then all affine transformations 
 (where  and ) of  are also Gaussian random vectors. 

Therefore: .

ŵ = (X⊤X)−1X⊤y

ŵ

ŵ = w* + (X⊤X)−1X⊤ϵ

X ϵ ∈ ℝn

x ∈ ℝn

Ax + b A ∈ ℝd×n b ∈ ℝd x

ŵ ∼ N(𝔼[ŵ ∣ X], Var(ŵ ∣ X))



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ?


Therefore,  can be expressed as:


. 

So  is multivariate Gaussian: . 

What’s ? Because  and  is fixed, .


ŵ = (X⊤X)−1X⊤y

ŵ

ŵ = w* + (X⊤X)−1X⊤ϵ

ŵ ŵ ∼ N(𝔼[ŵ ∣ X], Var(ŵ ∣ X))

𝔼[ŵ ∣ X] 𝔼[ϵ ∣ X] = 0 w* 𝔼[ŵ ∣ X] = w*



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ?


Therefore,  can be expressed as:


. 

So  is multivariate Gaussian: . 

What’s ? Because  and  is fixed, .


What’s , the covariance matrix? Already showed: . 

ŵ = (X⊤X)−1X⊤y

ŵ

ŵ = w* + (X⊤X)−1X⊤ϵ

ŵ ŵ ∼ N(𝔼[ŵ ∣ X], Var(ŵ ∣ X))

𝔼[ŵ ∣ X] 𝔼[ϵ ∣ X] = 0 w* 𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] Var[ŵ ∣ X] = (X⊤X)−1σ2



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ?


Therefore,  can be expressed as:


. 

So  is multivariate Gaussian: . 

What’s ? Because  and  is fixed, .


What’s , the covariance matrix? Already showed: . 

Therefore, .

ŵ = (X⊤X)−1X⊤y

ŵ

ŵ = w* + (X⊤X)−1X⊤ϵ

ŵ ŵ ∼ N(𝔼[ŵ ∣ X], Var(ŵ ∣ X))

𝔼[ŵ ∣ X] 𝔼[ϵ ∣ X] = 0 w* 𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] Var[ŵ ∣ X] = (X⊤X)−1σ2

ŵ ∼ N(w*, (X⊤X)−1σ2)



Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under Gaussian errors). Let  be a joint 
distribution  defined by the error model:


,


where  and  is a random variable with  and , independent of , 
with each .


Suppose we construct a random matrix  and random vector  by drawing  
random examples  from . Then, the OLS estimator  has a 
multivariate Gaussian distribution:


.

ℙx,y
ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
ϵ ∼ N(0,σ2)

X ∈ ℝn×d y ∈ ℝn n
(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)



Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under Gaussian 
errors). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  
and , independent of , with each 

.


Suppose we construct a random matrix  and 
random vector  by drawing  random examples 

 from . Then, the OLS estimator 
 has a multivariate Gaussian distribution:


.

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0
Var(ϵ) = σ2 x

ϵ ∼ N(0,σ2)

X ∈ ℝn×d

y ∈ ℝn n
(xi, yi) ℙx,y
ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)
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Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under Gaussian 
errors). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  
and , independent of , with each 

.


Suppose we construct a random matrix  and 
random vector  by drawing  random examples 

 from . Then, the OLS estimator 
 has a multivariate Gaussian distribution:


.

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0
Var(ϵ) = σ2 x

ϵ ∼ N(0,σ2)

X ∈ ℝn×d

y ∈ ℝn n
(xi, yi) ℙx,y
ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)



Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under Gaussian 
errors). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  
and , independent of , with each 

.


Suppose we construct a random matrix  and 
random vector  by drawing  random examples 

 from . Then, the OLS estimator 
 has a multivariate Gaussian distribution:


.

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0
Var(ϵ) = σ2 x

ϵ ∼ N(0,σ2)

X ∈ ℝn×d

y ∈ ℝn n
(xi, yi) ℙx,y
ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1) −4
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https://samuel-deng.github.io/math4ml_su24/assets/figs/regression_noise.html


Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under Gaussian 
errors). Let  be a joint distribution  defined by 
the error model:


,


where  and  is a random variable with  
and , independent of , with each 

.


Suppose we construct a random matrix  and 
random vector  by drawing  random examples 

 from . Then, the OLS estimator 
 has a multivariate Gaussian distribution:


.

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0
Var(ϵ) = σ2 x

ϵ ∼ N(0,σ2)

X ∈ ℝn×d

y ∈ ℝn n
(xi, yi) ℙx,y
ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)

x1-axis x2-axis f(x1, x2)-axis

http://igs/ols_distribution_d2.html


Single-variable Gaussian 
Review and Intuition



The Gaussian Distribution
Intuition and Shape

The Gaussian/Normal distribution with parameters  and  has a “bell-shaped” 
PDF centered at  and “spread” depending on the parameter .


μ σ
μ σ



The Gaussian Distribution
Standard Gaussian Definition

A random variable  has a standard Gaussian/Normal distribution denoted 
 if it has PDF:


, for all .


This random variable has mean  and variance .


(traditionally, standard Gaussians are denoted with , PDF , and CDF ).

Z
Z ∼ N(0,1)

pZ(z) =
1

2π
e−z2/2 z ∈ ℝ

𝔼[Z] = 0 Var(Z) = 1

Z ϕ(z) Φ(z)



The Gaussian Distribution
General Definition

A random variable  has a Gaussian/Normal distribution with parameters  
and , denoted  if it has PDF:


, for all .


This random variable has mean  and variance .

X μ
σ X ∼ N(μ, σ2)

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2} x ∈ ℝ

𝔼[X] = μ Var(X) = σ2



PDF of the Gaussian
Intuition

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}



PDF of the Gaussian
Intuition


pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}



PDF of the Gaussian
Intuition




The argument of  is a 
quadratic function:


.

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}
exp( ⋅ )

−
1

2σ2
(x − μ)2



PDF of the Gaussian
Intuition




The argument of  is a quadratic 
function:


.


The coefficient doesn’t depend on ; it’s a 
normalizing constant:


.

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}
exp( ⋅ )

−
1

2σ2
(x − μ)2

x

1

σ 2π



Multivariate Gaussian 
Intuition and Definition



Single-variable to Multivariable
Comparison




 is a quadratic function. 

 is a normalizing constant.


pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}
−

1
2σ2

(x − μ)2

1

σ 2π



Single-variable to Multivariable
Comparison




 is a quadratic 
function. 

 is a normalizing 

constant.


pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}
−

1
2σ2

(x − μ)2

1

σ 2π




 is a quadratic form. 

 is a normalizing constant.


p(x) =
1

det(Σ)1/2(2π)n/2
exp {−

1
2

(x − μ)⊤Σ−1(x − μ)}
1
2

(x − μ)⊤Σ−1(x − μ)

1
det(Σ)1/2(2π)n/2



Single-variable to Multivariable
Comparison




 is a quadratic form. 

 is positive definite, so  is also positive 
definite.


Therefore, .


Therefore, .

p(x) =
1

det(Σ)1/2(2π)n/2
exp {−

1
2

(x − μ)⊤Σ−1(x − μ)}
1
2

(x − μ)⊤Σ−1(x − μ)

Σ Σ−1

(x − μ)⊤Σ−1(x − μ) > 0
1
2

(x − μ)⊤Σ−1(x − μ) < 0
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Multivariate Gaussian
Definition

A random vector  has the multivariate Gaussian/Normal 
distribution, denoted  if it has the density:





where  is the determinant of , a positive definite matrix 
covariance matrix, and  is the mean .

x = (x1, …, xd) ∈ ℝd

x ∼ N(μ, Σ)

p(x) =
1

det(Σ)1/2(2π)n/2
exp {−

1
2

(x − μ)⊤Σ−1(x − μ)}
det(Σ) Σ ∈ ℝd×d

μ ∈ ℝd 𝔼[x]



Standard Multivariate Gaussian
Definition

A random vector  has the standard multivariate 
Gaussian/Normal distribution, denoted  if it has the density:


.

x = (z1, …, zd) ∈ ℝd

x ∼ N(0, I)

p(z) =
1

(2π)n/2
exp {−

1
2

z⊤z}



Standard Multivariate Gaussian
Definition

A random vector  
has the standard multivariate 
Gaussian/Normal distribution, 
denoted  if it has the 
density:


.

x = (z1, …, zd) ∈ ℝd

x ∼ N(0, I)

p(z) =
1

(2π)n/2
exp {−

1
2

z⊤z}
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_I.html


Multivariate Gaussian
Example: N(0, I)

x1-axis x2-axis f(x1, x2)-axis
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Multivariate Gaussian
Example: N(0, I)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_I.html


Multivariate Gaussian
Example: N(0, Σ)

x1-axis x2-axis f(x1, x2)-axis
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https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_Diag.html


Multivariate Gaussian
Example: N(0, Σ)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_Diag.html


Multivariate Gaussian
Example: N(μ, Σ)

x1-axis x2-axis f(x1, x2)-axis
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https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_Sig_mu.html


Multivariate Gaussian
Example: N(μ, Σ)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_Sig_mu.html


Multivariate Gaussian 
Diagonal Covariance and Factorization



Covariance of the MVN
Simple  Cased = 2

Consider the  case where  is diagonal:


.


What does the MVN density look like?

d = 2 Σ ∈ ℝ2×2

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]



Covariance of the MVN
Simple  Cased = 2

.


What does the MVN density look like? 

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]

p(x) =
1

2πdet(Σ)1/2
exp −

1
2 [x1 − μ1

x2 − μ2]
⊤

[σ2
1 0

0 σ2
2]

−1

[x1 − μ1
x2 − μ2]



Determinant of  Matrix2 × 2
Quick Definition

For a matrix  written as


,


the determinant of  is the scalar quantity:


.

A ∈ ℝ2×2

A = [a11 a12
a21 a22]

A

det(A) = a11a22 − a12a21



Determinant of Covariance Matrix
Applied to MVN

For a covariance matrix  written as


,


the determinant of  is the scalar quantity:


.

Σ ∈ ℝ2×2

Σ = [σ2
1 0

0 σ2
2]

Σ

det(Σ) = σ2
1σ2

2



Covariance of the MVN
Simple  Cased = 2

.


What does the MVN density look like? 

 

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]

p(x) =
1

2πdet(Σ)1/2
exp −

1
2 [x1 − μ1

x2 − μ2]
⊤

[σ2
1 0

0 σ2
2]

−1

[x1 − μ1
x2 − μ2]

⟹ p(x) =
1

2πσ1σ2
exp (−

1
2 [x1 − μ1

x2 − μ2]
⊤

[1/σ2
1 0

0 1/σ2
2] [x1 − μ1

x2 − μ2])



Covariance of the MVN
Simple  Cased = 2




Multiplying out the quadratic form… 

⟹ p(x) =
1

2πσ1σ2
exp (−

1
2 [x1 − μ1

x2 − μ2]
⊤

[1/σ2
1 0

0 1/σ2
2] [x1 − μ1

x2 − μ2])

⟹ p(x) =
1

2πσ1σ2
exp (−

1
2σ2

1
(x1 − μ1)2 −

1
2σ2

2
(x2 − μ2)2)

=
1

σ1 2π
exp (−

1
2σ2

1
(x1 − μ1)2) ⋅

1

σ2 2π
exp (−

1
2σ2

2
(x2 − μ2)2)



Covariance of the MVN
Simple  Cased = 2




But this is just the product of two independent Gaussians!


, where  and .

⟹ p(x) =
1

2πσ1σ2
exp (−

1
2σ2

1
(x1 − μ1)2 −

1
2σ2

2
(x2 − μ2)2)

=
1

σ1 2π
exp (−

1
2σ2

1
(x1 − μ1)2) ⋅

1

σ2 2π
exp (−

1
2σ2

2
(x2 − μ2)2)

p(x) = p(x1) ⋅ p(x2) x1 ∼ N(μ1, σ2
1) x2 ∼ N(μ2, σ2

2)



Factorization of the MVN
Theorem Statement

Theorem (Factorization of MVN). Let  be a multivariate 
Gaussian random vector, where  is a diagonal matrix and 

. Then, each coordinate  of  is an independent single-variable 
Gaussian random variable, with:


,


and the PDF of  factorizes into  marginal single-variable Gaussian PDFs:


.

x = (x1, …, xd) ∼ N(μ, Σ)
Σ = diag(σ2

1 , …, σ2
d)

μ = (μ1, …, μd) xi x

xi ∼ N(μi, σ2
i )

x d

p(x) =
d

∏
i=1

1

σi 2π
exp (−

1
2σ2

i
(xi − μi)2)



Factorization of the MVN
Theorem Statement

Theorem (Factorization of MVN). Let 
 be a multivariate Gaussian 

random vector, where  is a diagonal 
matrix and . Then, each coordinate  of 

 is an independent single-variable Gaussian random 
variable, with:


,


and the PDF of  factorizes into  marginal single-
variable Gaussian PDFs:


.

x = (x1, …, xd) ∼ N(μ, Σ)
Σ = diag(σ2

1 , …, σ2
d)

μ = (μ1, …, μd) xi
x

xi ∼ N(μi, σ2
i )

x d

p(x) =
d

∏
i=1

1

σi 2π
exp (−

1
2σ2

i
(xi − μi)2) x1

−3 −2 −1 0 1 2 3
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Multivariate Gaussian 
Contours and Geometry



Level Curves
Intuition and Definition

For a function , the level curves or isocontours of  at  is the 
set of the form:


.


f : ℝd → ℝ f c ∈ ℝ

Lf(c) := {x ∈ ℝd : f(x) = c}
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Geometry of MVN
Simple  Cased = 2







What are the level curves at some ?  

Solve for: .

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]

p(x) =
1

2πσ1σ2
exp (−

1
2σ2

1
(x1 − μ1)2 −

1
2σ2

2
(x2 − μ2)2)

c

p(x) = c



Geometry of MVN
Simple  Cased = 2







Using some algebra, we can show that  when… 

, where .

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]

p(x) =
1

2πσ1σ2
exp (−

1
2σ2

1
(x1 − μ1)2 −

1
2σ2

2
(x2 − μ2)2)

p(x) = c

1 = ( x1 − μ1

r1 )
2

+ ( x2 − μ2

r2 )
2

ri = 2σ2
i log ( 1

2πcσ1σ2 )



Geometry of MVN
Simple  Cased = 2

Therefore, for , the simple bivariate MVN has ellipse-shaped level curves:


, where .


c ∈ ℝ

1 = ( x1 − μ1

r1 )
2

+ ( x2 − μ2

r2 )
2

ri = σi 2 log ( 1
2πcσ1σ2 )
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Geometry of MVN
Simple  Cased = 2

Therefore, for , the simple bivariate MVN has ellipse-shaped level curves:


, where .


For a diagonal matrix , the eigenvalues are just  and  and 
the standard basis vectors  and  are eigenvectors!

c ∈ ℝ

1 = ( x1 − μ1

r1 )
2

+ ( x2 − μ2

r2 )
2

ri = σi 2 log ( 1
2πcσ1σ2 )

Σ = diag(σ2
1 , σ2

2) σ1 σ2
e1 e2



Geometry of MVN
General Case

Recall: For positive definite , the associated quadratic form  looks like a 
bowl/ellipsoid with:


Axes in the direction of the eigenvectors of .


Axis lengths proportional to the inverse square roots of the eigenvalues of :





A x⊤Ax

Σ

A

r1 ∝
1
λ1

, …, rd ∝
1
λd



Geometry of MVN
General Case

The quadratic form in the MVN exponent:


.


Center of the ellipsoid is at . 

Axes in the direction of the eigenvectors of .


Axis lengths proportional to inverse square roots of 
the eigenvalues of , or the square roots of the 
eigenvalues of .


, where  are the 
eigenvalues of .

−
1
2

(x − μ)⊤Σ−1(x − μ)

μ

Σ−1

Σ−1

Σ

r1 ∝ λ1, …, rd ∝ λd λ1, …, λd
Σ

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_Sig_mu.html


Geometry of MVN
General Case

The quadratic form in the MVN exponent:


.


Center of the ellipsoid is at . 

Axes in the direction of the eigenvectors of .


Axis lengths proportional to inverse square roots of 
the eigenvalues of , or the square roots of the 
eigenvalues of .


, where  are the 
eigenvalues of .

−
1
2

(x − μ)⊤Σ−1(x − μ)

μ

Σ−1

Σ−1

Σ

r1 ∝ λ1, …, rd ∝ λd λ1, …, λd
Σ
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Geometry of MVN
General Case

The quadratic form in the MVN exponent:


.


Center of the ellipsoid is at . 

Axes in the direction of the eigenvectors of .


Axis lengths proportional to inverse square roots of 
the eigenvalues of , or the square roots of the 
eigenvalues of .


, where  are the 
eigenvalues of .

−
1
2

(x − μ)⊤Σ−1(x − μ)

μ

Σ−1

Σ−1

Σ

r1 ∝ λ1, …, rd ∝ λd λ1, …, λd
Σ



Multivariate Gaussian 
Linear Transformations



Diagonal Covariance Matrices
Why they’re nice

If  is MVN with diagonal covariance matrix


,


the eigenvectors are  (the principal axes of the ellipsoid),


the eigenvalues are  (the squared axes lengths),


the PDF factorizes:  where  is the PDF of .

x ∼ N(μ, Σ)

Σ =
σ2

1 … 0
0 ⋱ 0
0 … σ2

d

e1, …, ed

σ2
1 , …, σ2

d

p(x) = pxi
(s) pxi

(s) xi ∼ N(μi, σ2
i )



Diagonal Covariance Matrices
Why they’re nice

If  is MVN with diagonal covariance matrix


,


the eigenvectors are  (the principal axes of 
the ellipsoid),


the eigenvalues are  (the squared axes 
lengths),


the PDF factorizes:  where  is the 
PDF of .

x ∼ N(μ, Σ)

Σ =
σ2

1 … 0
0 ⋱ 0
0 … σ2

d

e1, …, ed

σ2
1 , …, σ2

d

p(x) = pxi
(s) pxi

(s)
xi ∼ N(μi, σ2

i )

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_Diag.html


Diagonal Covariance Matrices
Why they’re nice

If  is MVN with diagonal covariance matrix


,


the eigenvectors are  (the principal axes of 
the ellipsoid),


the eigenvalues are  (the squared axes 
lengths),


the PDF factorizes:  where  is the 
PDF of .

x ∼ N(μ, Σ)

Σ =
σ2

1 … 0
0 ⋱ 0
0 … σ2

d

e1, …, ed

σ2
1 , …, σ2

d

p(x) = pxi
(s) pxi

(s)
xi ∼ N(μi, σ2

i )
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Covariance Matrix
Review

The variance of a random vector generalizes to the covariance matrix





In general, .

Σ = 𝔼[(X − 𝔼[X])(X − 𝔼[X])⊤] =

Var(X1) Cov(X1, X2) … Cov(X1, Xn)
Cov(X2, X1) Var(X2) … Cov(X2, Xn)

⋮ ⋮ ⋱ ⋮
Cov(Xn, X1) Cov(Xn, X2) … Var(Xn)

Σi,j = Cov(Xi, Xj)



Nondiagonal MVN Covariance
Connection to Diagonal Covariance MVNs

Theorem (Nondiagonal MVNs). Let  for  and positive 
definite matrix . Then, there exists a matrix  such that 

, and if 


,


then .

x ∼ N(μ, Σ) μ ∈ ℝd

Σ ∈ ℝd×d A ∈ ℝd×d

AA⊤ = Σ

z = A−1 (x − μ)
z ∼ N(0,I)



Nondiagonal MVN Covariance
Connection to Diagonal Covariance MVNs

Theorem (Nondiagonal MVNs). Let  for  and positive 
definite matrix . Then, matrix  such that , and if 


,


then .


Analogue of single-variable fact: 

 gets “standardized” by taking 

x ∼ N(μ, Σ) μ ∈ ℝd

Σ ∈ ℝd×d A ∈ ℝd×d AA⊤ = Σ

z = A−1 (x − μ)
z ∼ N(0,I)

X ∼ N(μ, σ2) Z =
X − μ

σ



Nondiagonal MVN Covariance
Connection to Diagonal Covariance MVNs

Theorem (Nondiagonal MVNs). Let  for  and positive definite matrix 
. Then, matrix  such that , and if 


,


then .


Interpretation: Any multivariate Gaussian random vector  is the result of applying a linear 
transformation and translation (affine transformation):





to a collection of  independent standard normal random variables .

x ∼ N(μ, Σ) μ ∈ ℝd

Σ ∈ ℝd×d A ∈ ℝd×d AA⊤ = Σ

z = A−1 (x − μ)
z ∼ N(0,I)

x

X = Az

d z = (z1, …, zd)



Nondiagonal MVN Covariance
Connection to Diagonal Covariance MVNs

Theorem (Nondiagonal MVNs). Let  
for  and positive definite matrix . 
Then, matrix  such that , and if 


,


then .


Interpretation: Any multivariate Gaussian random 
vector  is the result of applying a linear 
transformation and translation (affine 
transformation):





to a collection of  independent standard normal 
random variables .

x ∼ N(μ, Σ)
μ ∈ ℝd Σ ∈ ℝd×d

A ∈ ℝd×d AA⊤ = Σ

z = A−1 (x − μ)
z ∼ N(0,I)

x

X = Az

d
z = (z1, …, zd)

x1-axis x2-axis f(x1, x2)-axis
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https://samuel-deng.github.io/math4ml_su24/assets/figs/mvn_I.html
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Multivariate Gaussian 
Other Basic Properties



Other Properties of MVN
Linear Combinations

Theorem (Linear Combinations of MVNs). Let  be an MVN 
random vector.


Let .  if and only if any linear combination  has a 
single-variable Gaussian distribution, .


Let . The affine transformation is distributed as MVN: 
.


x ∼ N(μ, Σ)

b ∈ ℝd x ∼ N(μ, Σ) b⊤x
b⊤x ∼ N(b⊤μ, b⊤Σb)

A ∈ ℝn×d

Ax + b ∼ N(Aμ + b, AΣA⊤)



Other Properties of MVN
Linear Combinations

Theorem (Independence). Let  be an MVN random vector, written:


.


Then,  and  are independent if and only if . 


Also, if  and  are all pairwise independent for , the set of random 
variables  are completely independent.

x ∼ N(μ, Σ)

x = (x1, …, xd)

xi xj Σij = 0

xi xj i ≠ j
x1, …, xd



Other Properties of MVN
Marginal and Conditional Distributions

Let  be multivariate normal, partitioned into parts:


, where  and .


Also partition  into


, where  and ,


and  into


, where , , etc.

x ∼ N(μ, Σ)

x = (x1, x2) x1 ∈ ℝk x2 ∈ ℝd−k

μ

μ = (μ1, μ2) μ1 ∈ ℝk μ2 ∈ ℝd−k

Σ ∈ ℝd×d

Σ = [Σ11 Σ12
Σ21 Σ22] Σ11 ∈ ℝk×k Σ21 ∈ ℝ(d−k)×k



Other Properties of MVN
Marginal Distributions

Theorem (Marginal Distributions). Let  
be an MVN random vector, partitioned:


, where  and .


, where  and ,


, where , , 

etc.


Then,  and  are 
multivariate Gaussians.

x ∼ N(μ, Σ)

x = (x1, x2) x1 ∈ ℝk x2 ∈ ℝd−k

μ = (μ1, μ2) μ1 ∈ ℝk μ2 ∈ ℝd−k

Σ = [Σ11 Σ12
Σ21 Σ22] Σ11 ∈ ℝk×k Σ21 ∈ ℝ(d−k)×k

x1 ∼ N(μ1, Σ11) x2 ∼ N(μ2, Σ22)
x1
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Other Properties of MVN
Conditional Distributions

Theorem (Conditional Distributions). Let  be 
an MVN random vector, partitioned:


, where  and .


, where  and ,


, where , , etc.


Then, the conditional distribution of  is multivariate 
Gaussian with:


 .

x ∼ N(μ, Σ)

x = (x1, x2) x1 ∈ ℝk x2 ∈ ℝd−k

μ = (μ1, μ2) μ1 ∈ ℝk μ2 ∈ ℝd−k

Σ = [Σ11 Σ12
Σ21 Σ22] Σ11 ∈ ℝk×k Σ21 ∈ ℝ(d−k)×k

x1 ∣ x2

x1 ∣ x2 ∼ N(μ1 + Σ12Σ−1
22 (x2 − μ2), Σ11 − Σ12Σ−1

22 Σ21)
x1
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Recap 



Lesson Overview
OLS under Gaussian Error Model. The distribution of  under the 
Gaussian error model is multivariate normal.


Multivariate Gaussian/Normal (MVN) Distribution PDF. We define the multivariate 
Gaussian distribution and study some simple examples.


Factorization of the Multivariate Gaussian. We see that a multivariate Gaussian with a 
diagonal covariance matrix factors into independent Gaussians.


Geometry of the Multivariate Gaussian. We study the geometry of the multivariate 
Gaussian through its level curves and discover the it is ellipsoidal, with axes determined by 
the eigenvectors/eigenvalues of the covariance matrix.


Affine Transformations of the Multivariate Gaussian. We establish that any multivariate 
Gaussian is just an affine transformation away from the standard multivariate Gaussian.


Other properties of the Multivariate Gaussian. We establish some other useful properties.

ŵ = (X⊤X)−1X⊤y



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis

http://igs/ols_distribution_d2.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html

