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Lesson Overview



Week 1.1 
Vectors, matrices, and least squares regression



Vectors, matrices, and least squares regression
Big Picture: Least Squares

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

Click to 

Through linear independence, span, 
and rank, which allowed us to get 

 from , 
we got our first OLS theorem:


Theorem (OLS solution). If  and 
, then:


.

(X⊤X)−1 rank(X⊤X) = rank(X)

n ≥ d
rank(X) = d

ŵ = (X⊤X)−1X⊤y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html


Big Picture: Gradient Descent
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Through using norm to rewrite the sum 
of squared residual errors,





we got a function that measures how 
“badly” each  does:


.

f(w) =
n

∑
i=1

(w⊤xi − yi)2

w

f(w) = ∥Xw − y∥2

Vectors, matrices, and least squares regression

https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html


Week 1.2 
Bases, subspaces, and orthogonality



Bases, subspaces, and orthogonality
Big Picture: Least Squares

We formally defined subspace, a basis, the 
columnspace, and an orthogonal basis. 
This filled in the gaps to get Theorem 
(invertibility of ) and Theorem 
(Pythagorean Theorem).


Using our new notion of orthogonality, we 
simplified the OLS solution.


Theorem (OLS solution with ONB). If  
and  and  an ONB:


.

X⊤X

n ≥ d
rank(X) = d U ∈ ℝd×d

ŵ = U⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html


Big Picture: Gradient Descent
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Through using norm to rewrite the sum 
of squared residual errors,





we got a function that measures how 
“badly” each  does:


.

f(w) =
n

∑
i=1

(w⊤xi − yi)2

w

f(w) = ∥Xw − y∥2

Bases, subspaces, and orthogonality

https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html


Week 2.1 
Singular Value Decomposition



Singular Value Decomposition
Big Picture: Least Squares

We formally defined orthogonal complements, and 
projection matrices to solve the best-fitting 1D subspace 
problem. This led to SVD, and the decomposition:





The SVD defined the pseudoinverse which gave us a unifying 
solution for OLS when  or .


Theorem (OLS solution with pseudoinverse). Let  
have pseudoinverse . Then:


.


If , then  minimizes .


If , then  is the exact solution  with min. norm.

X = UΣV⊤

n ≥ d d > n

X ∈ ℝn×d

X+ ∈ ℝd×n

ŵ = X+y

n ≥ d ŵ ∥Xw − y∥2

d > n ŵ Xŵ = y

x1 x2 u1 u2 y
x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

x1-axis
x2-axis
x3-axis
u1
u2
u3

https://samuel-deng.github.io/math4ml_su24/story_ls/ls2_1.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3d_svd.html


Big Picture: Gradient Descent
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Through using norm to rewrite the sum 
of squared residual errors,





we got a function that measures how 
“badly” each  does:


.

f(w) =
n

∑
i=1

(w⊤xi − yi)2

w

f(w) = ∥Xw − y∥2

Singular Value Decomposition

https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html


Week 2.2 
Eigendecomposition and PSD Matrices



Eigendecomposition and PSD Matrices
Big Picture: Least Squares

We defined eigenvectors and eigenvalues of 
square matrices. When a square matrix is 
diagonalizable, it has an eigendecomposition:





The spectral theorem tells us that symmetric 
matrices are diagonalizable.


One example of a symmetric matrix is , so 
we did a rudimentary eigenvector/eigenvalue 
analysis of  in the error model:


.

X = VΛV⊤

X⊤X

(X⊤X)−1X⊤y

y = Xw* + ϵ

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y
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https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html


Big Picture: Gradient Descent

We also defined an important class of 
square, symmetric matrices, positive 
semidefinite (PSD) matrices, with three 
equivalent definitions.


PSD matrices are always associated with 
functions called quadratic forms


,


which look “bowl” or “envelope” shaped. 
Just graphically, these functions look ripe 
for gradient descent.

f(x) := x⊤Ax

Eigendecomposition and PSD Matrices

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html


Week 3.1 
Differentiation and vector calculus



Differentiation and vector calculus
Big Picture: Least Squares

We defined the directional, partial, and total 
derivatives in multivariable calculus and established 
that, for  functions, it’s safe to assume these 
coincide: the gradient and Jacobian tell us all 
derivative information.


Using analogy to single variable calculus optimization, 
we treated





as a function to optimize and proved the same 
theorem, from a calculus/optimization perspective.


Theorem (OLS solution). If  and , 
then:


.

𝒞1

f(w) = ∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Big Picture: Gradient Descent

The gradient points in the direction 
of steepest ascent. This lets us write 
out the algorithm for gradient 
descent:


.
wt ← wt−1 − η∇f(wt−1)

Differentiation and vector calculus

x1-axis x2-axis f(x1, x2)-axis
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https://samuel-deng.github.io/math4ml_su24/assets/figs/localglobal3d.html


Week 3.2 
Linearization and Taylor series



Linearization and Taylor series
Big Picture: Least Squares

We discussed linearization, a main 
motivation for the techniques of 
multivariable calculus:





This is a “part” of the Taylor series of a 
function. We quantified the approximation 
error of a Taylor series through Taylor’s 
Theorem(s).


The error term in the first-order Taylor 
expansion was given by the Hessian, which 
is always a symmetric matrix for  
functions.

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

𝒞2

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Big Picture: Gradient Descent

The Taylor series, particularly Lagrange’s 
form of Taylor’s Theorem and requiring 
smoothness on the Hessian allowed us to 
analyze the first-order Taylor 
approximation go get our first GD theorem:


Theorem (GD makes the function value 
smaller). For , -smooth functions, GD 

with   has the property:


.

𝒞2 β
η =

1
β

f(xt) ≤ f(xt−1) −
1

2β
∥∇f(xt−1)∥2

Linearization and Taylor series

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etabig.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html


Week 4.1 
Optimization and the Lagrangian



Optimization and the Lagrangian
Big Picture: Least Squares

Formally defined optimization problems:





Developed the necessary conditions for 
unconstrained local minima, which filled in the gaps 
with our optimization-based OLS proof in Week 3.1.


Defined the Lagrangian , which helped us solve 
constrained optimization problems by 
“unconstraining them.”


Two constrained problems related to OLS:


1. Least norm solution. . 

2. Ridge regression. 

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

L(x, λ)

ŵ = X+y

ŵ = (X⊤X + γI)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.
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https://samuel-deng.github.io/math4ml_su24/story_ls/ls4_1.html


Big Picture: Gradient Descent

Classified the types of minima we 
can hope for in an optimization 
problem: unconstrained local 
minima, constrained local minima, 
and global minima.


We want global minima but GD can 
only get us to local minima.


Optimization and the Lagrangian

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start
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https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html


Week 4.2 
Basics of convex optimization



Basics of convex optimization
Big Picture: Least Squares

We defined convexity of functions and sets. Convex 
functions are defined by:





If the function is differentiable:





If the function is twice-differentiable:


 is positive semidefinite.


The key property we proved is that for convex 
functions, all local minima are global minima. 


We verified that the OLS objective is convex:


 is convex.

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .

∇2f(x)

f(w) = ∥Xw − y∥2

x1-axis x2-axis f(x1, x2)-axis (1, 1)

x1-axis x2-axis f(x1, x2)-axis
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https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def2.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def1.html


Big Picture: Gradient Descent

Assured that for convex functions, all local 
minima are global minima, we proved a global 
convergence theorem for GD:


Theorem (GD for smooth, convex functions). For 

, -smooth, convex functions, GD with   

and initial point  satisfies:





As a corollary, we were able to unite the two stories 
of our course and apply GD to OLS to get:


𝒞2 β η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)

∥XwT − y∥2 − ∥Xw* − y∥2 ≤
β

2T (∥w0 − w*∥2 − ∥wT − w*∥2) .

Basics of convex optimization

x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html


Week 5.1 
Probability Theory, Models, and Data



Probability Theory, Models, and Data
Big Picture: Least Squares

Defined the basic probability primitives: probability spaces 
and random variables. 

Random variables come with a CDF and a PMF/PDF. Two 
important summary statistics are expectation and variance. 

Random vectors are easy generalizations, but their “variance” 
is a covariance matrix.


This framework allowed us to define the random error model:


, where  and  are independent of 
each other and .


Under this framework, we get statistical properties for OLS.


 has the following statistical properties:


Expectation: .


Variance: .

y = Xw* + ϵ 𝔼[ϵ] = 0 ϵi
X

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2
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https://samuel-deng.github.io/math4ml_su24/assets/figs/regression_noise.html


Big Picture: Gradient Descent

Random variables come with a CDF and a 
PMF/PDF. Multiple random variables 
come with joint, marginal, and 
conditional distributions.


The conditional expectation of a random 
variable can be thought of as a “best 
guess” at a random variable given the 
information of an event or another random 
variable.


, for .


, for .

𝔼[X ∣ A] A ⊆ Ω

𝔼[X ∣ Y] Y : Ω → ℝ

Probability Theory, Models, and Data

x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html


Week 5.2 
Law of large numbers and statistical estimators



Law of large numbers and statistical estimators
Big Picture: Least Squares

We established the aim of statistics as “inverse” probability theory. Of 
central importance is the sample average of i.i.d. random variables:





Chebyshev’s inequality proved the (Weak) Law of Large Numbers: 

,


which says that sample means approach true means.


The sample average is a statistical estimator of the  mean. Statistical 
estimators have bias and variance which are associated through the 
bias-variance decomposition of mean-squared error:





The Gauss-Markov Theorem stated that OLS was the lowest variance, 
unbiased linear estimator.


We finally got an expression for the risk of OLS: 

Xn :=
1
n

n

∑
i=1

Xi

lim
n→∞

ℙ ( |Xn − μ | < ϵ) = 1

𝔼[( ̂θn − θ)2] = Bias2( ̂θn) + Var( ̂θn)

R(ŵ) = 𝔼[(ŵ⊤x0 − y0)2] = σ2 +
σ2d
n
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https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html


Big Picture: Gradient Descent

We closed the story of gradient descent with 
stochastic gradient descent (SGD) where, 
instead of taking the gradient over all the 
samples , we used an 
unbiased statistical estimator of the 
gradient:


Estimand: . 

Estimator: Sample a single example  
uniformly from  and take the gradient: 


.

(x1, y1), …, (xn, yn)

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2

i
1,…, n

̂∇f(w) = ∇w(w⊤xi − yi)2

Law of large numbers and statistical estimators

x1-axis x2-axis f(x1, x2)-axis descent start
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https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html


Week 6.1 
Central Limit Theorem, Distributions, and MLE



Central Limit Theorem, Distributions, and MLE
Big Picture: Least Squares

We introduced the Gaussian distribution, and we 
motivated its importance by proving the Central 
Limit Theorem. The Gaussian distribution is just 
one of many “named distributions” that 
conveniently model common phenomena well.


When we have a guess at a parametrized model or 
statistical model generating our i.i.d. data 

, an alternative perspective on 
our problem of finding a good model is maximum 
likelihood estimation (MLE).


This let us prove that, under the Gaussian error 
model, maximizing the likelihood for the conditional 
distribution  again gives us back the OLS 
estimator: 

 

(x1, y1), …, (xn, yn)

y ∣ x

ŵMLE = arg max Ln(w) = (X⊤X)−1X⊤y



Week 6.2 
Multivariate Gaussian Distribution



Multivariate Gaussian Distribution
Big Picture: Least Squares

We found that, under the Gaussian error 
model, the distribution of the OLS estimator 
itself is multivariate Normal/Gaussian. 




This motivated our study for the MVN 
distribution, which had a couple of key 
properties:


1. Factorization under diagonal covariance.


2. Ellipsoidal geometry from 
eigendecomposition.


3. Affine transformations bridge standard 
MVN and general MVN.

ŵ ∼ N(w*, σ2(X⊤X)−1)

x1-axis x2-axis f(x1, x2)-axis
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http://igs/ols_distribution_d2.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/regression_noise.html


What about the rest of ML? 
OLS and GD as a “Home Base”



What about the rest of ML?
OLS and GD as a “Home Base”

ŵ = (X⊤X)−1X⊤y

wt ← wt−1 − η∇f(wt−1)



Extension 1: Nonlinear Models 
Feature transformations



Nonlinear Models
Feature Transformations



Nonlinear Models
Neural Networks



Extension 2: Loss Functions 
Beyond squared loss



Loss Functions
Beyond Squared Loss



Extension 3: Algorithms 
Beyond gradient descent



Algorithms
Beyond Gradient Descent



Extension 4: Learning Theory 
Other issues in generalization



Learning Theory
Other issues in generalization



Thank you for listening! 
Hope you enjoyed the class :)


