
By: Samuel Deng

Math for ML
Finale: Course Overview

Lesson Overview

Week 1.1
Vectors, matrices, and least squares regression

Vectors, matrices, and least squares regression
Big Picture: Least Squares

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

Click to

Through linear independence, span,
and rank, which allowed us to get

 from ,
we got our first OLS theorem:

Theorem (OLS solution). If and
, then:

.

(X⊤X)−1 rank(X⊤X) = rank(X)

n ≥ d
rank(X) = d

ŵ = (X⊤X)−1X⊤y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_1.html

Big Picture: Gradient Descent

descent start

0

50

100

150

200

Click to interact

Through using norm to rewrite the sum
of squared residual errors,

we got a function that measures how
“badly” each does:

.

f(w) =
n

∑
i=1

(w⊤xi − yi)2

w

f(w) = ∥Xw − y∥2

Vectors, matrices, and least squares regression

https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html

Week 1.2
Bases, subspaces, and orthogonality

Bases, subspaces, and orthogonality
Big Picture: Least Squares

We formally defined subspace, a basis, the
columnspace, and an orthogonal basis.
This filled in the gaps to get Theorem
(invertibility of) and Theorem
(Pythagorean Theorem).

Using our new notion of orthogonality, we
simplified the OLS solution.

Theorem (OLS solution with ONB). If
and and an ONB:

.

X⊤X

n ≥ d
rank(X) = d U ∈ ℝd×d

ŵ = U⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html

Big Picture: Gradient Descent

descent start

0

50

100

150

200

Click to interact

Through using norm to rewrite the sum
of squared residual errors,

we got a function that measures how
“badly” each does:

.

f(w) =
n

∑
i=1

(w⊤xi − yi)2

w

f(w) = ∥Xw − y∥2

Bases, subspaces, and orthogonality

https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html

Week 2.1
Singular Value Decomposition

Singular Value Decomposition
Big Picture: Least Squares

We formally defined orthogonal complements, and
projection matrices to solve the best-fitting 1D subspace
problem. This led to SVD, and the decomposition:

The SVD defined the pseudoinverse which gave us a unifying
solution for OLS when or .

Theorem (OLS solution with pseudoinverse). Let
have pseudoinverse . Then:

.

If , then minimizes .

If , then is the exact solution with min. norm.

X = UΣV⊤

n ≥ d d > n

X ∈ ℝn×d

X+ ∈ ℝd×n

ŵ = X+y

n ≥ d ŵ ∥Xw − y∥2

d > n ŵ Xŵ = y

x1 x2 u1 u2 y
x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

x1-axis
x2-axis
x3-axis
u1
u2
u3

https://samuel-deng.github.io/math4ml_su24/story_ls/ls2_1.html
https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3d_svd.html

Big Picture: Gradient Descent

descent start

0

50

100

150

200

Click to interact

Through using norm to rewrite the sum
of squared residual errors,

we got a function that measures how
“badly” each does:

.

f(w) =
n

∑
i=1

(w⊤xi − yi)2

w

f(w) = ∥Xw − y∥2

Singular Value Decomposition

https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html
https://samuel-deng.github.io/math4ml_su24/story_gd/gd1_1.html

Week 2.2
Eigendecomposition and PSD Matrices

Eigendecomposition and PSD Matrices
Big Picture: Least Squares

We defined eigenvectors and eigenvalues of
square matrices. When a square matrix is
diagonalizable, it has an eigendecomposition:

The spectral theorem tells us that symmetric
matrices are diagonalizable.

One example of a symmetric matrix is , so
we did a rudimentary eigenvector/eigenvalue
analysis of in the error model:

.

X = VΛV⊤

X⊤X

(X⊤X)−1X⊤y

y = Xw* + ϵ

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

https://samuel-deng.github.io/math4ml_su24/story_ls/ls1_2.html

Big Picture: Gradient Descent

We also defined an important class of
square, symmetric matrices, positive
semidefinite (PSD) matrices, with three
equivalent definitions.

PSD matrices are always associated with
functions called quadratic forms

,

which look “bowl” or “envelope” shaped.
Just graphically, these functions look ripe
for gradient descent.

f(x) := x⊤Ax

Eigendecomposition and PSD Matrices

x1-axis x2-axis f(x1, x2)-axis descent start
x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_gd.html

Week 3.1
Differentiation and vector calculus

Differentiation and vector calculus
Big Picture: Least Squares

We defined the directional, partial, and total
derivatives in multivariable calculus and established
that, for functions, it’s safe to assume these
coincide: the gradient and Jacobian tell us all
derivative information.

Using analogy to single variable calculus optimization,
we treated

as a function to optimize and proved the same
theorem, from a calculus/optimization perspective.

Theorem (OLS solution). If and ,
then:

.

𝒞1

f(w) = ∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html

Big Picture: Gradient Descent

The gradient points in the direction
of steepest ascent. This lets us write
out the algorithm for gradient
descent:

.
wt ← wt−1 − η∇f(wt−1)

Differentiation and vector calculus

x1-axis x2-axis f(x1, x2)-axis

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
trace 1
trace 2
trace 3
trace 4

https://samuel-deng.github.io/math4ml_su24/assets/figs/localglobal3d.html

Week 3.2
Linearization and Taylor series

Linearization and Taylor series
Big Picture: Least Squares

We discussed linearization, a main
motivation for the techniques of
multivariable calculus:

This is a “part” of the Taylor series of a
function. We quantified the approximation
error of a Taylor series through Taylor’s
Theorem(s).

The error term in the first-order Taylor
expansion was given by the Hessian, which
is always a symmetric matrix for
functions.

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

𝒞2

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su24/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html

Big Picture: Gradient Descent

The Taylor series, particularly Lagrange’s
form of Taylor’s Theorem and requiring
smoothness on the Hessian allowed us to
analyze the first-order Taylor
approximation go get our first GD theorem:

Theorem (GD makes the function value
smaller). For , -smooth functions, GD

with has the property:

.

𝒞2 β
η =

1
β

f(xt) ≤ f(xt−1) −
1

2β
∥∇f(xt−1)∥2

Linearization and Taylor series

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd2_etabig.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html

Week 4.1
Optimization and the Lagrangian

Optimization and the Lagrangian
Big Picture: Least Squares

Formally defined optimization problems:

Developed the necessary conditions for
unconstrained local minima, which filled in the gaps
with our optimization-based OLS proof in Week 3.1.

Defined the Lagrangian , which helped us solve
constrained optimization problems by
“unconstraining them.”

Two constrained problems related to OLS:

1. Least norm solution. .

2. Ridge regression.

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

L(x, λ)

ŵ = X+y

ŵ = (X⊤X + γI)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.

0

5

10

15

20

25

30

https://samuel-deng.github.io/math4ml_su24/story_ls/ls4_1.html

Big Picture: Gradient Descent

Classified the types of minima we
can hope for in an optimization
problem: unconstrained local
minima, constrained local minima,
and global minima.

We want global minima but GD can
only get us to local minima.

Optimization and the Lagrangian

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global min

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html

Week 4.2
Basics of convex optimization

Basics of convex optimization
Big Picture: Least Squares

We defined convexity of functions and sets. Convex
functions are defined by:

If the function is differentiable:

If the function is twice-differentiable:

 is positive semidefinite.

The key property we proved is that for convex
functions, all local minima are global minima.

We verified that the OLS objective is convex:

 is convex.

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .

∇2f(x)

f(w) = ∥Xw − y∥2

x1-axis x2-axis f(x1, x2)-axis (1, 1)

x1-axis x2-axis f(x1, x2)-axis

−3 −2 −1 0 1 2 3 4 5−3

−2

−1

0

1

2

3

4

5

−3 −2 −1 0 1 2 3 4 5−3

−2

−1

0

1

2

3

4

5

https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def2.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/convex3d_def1.html

Big Picture: Gradient Descent

Assured that for convex functions, all local
minima are global minima, we proved a global
convergence theorem for GD:

Theorem (GD for smooth, convex functions). For

, -smooth, convex functions, GD with

and initial point satisfies:

As a corollary, we were able to unite the two stories
of our course and apply GD to OLS to get:

𝒞2 β η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)

∥XwT − y∥2 − ∥Xw* − y∥2 ≤
β

2T (∥w0 − w*∥2 − ∥wT − w*∥2) .

Basics of convex optimization

x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html

Week 5.1
Probability Theory, Models, and Data

Probability Theory, Models, and Data
Big Picture: Least Squares

Defined the basic probability primitives: probability spaces
and random variables.

Random variables come with a CDF and a PMF/PDF. Two
important summary statistics are expectation and variance.

Random vectors are easy generalizations, but their “variance”
is a covariance matrix.

This framework allowed us to define the random error model:

, where and are independent of
each other and .

Under this framework, we get statistical properties for OLS.

 has the following statistical properties:

Expectation: .

Variance: .

y = Xw* + ϵ 𝔼[ϵ] = 0 ϵi
X

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2

−4

−3

−2

−1

0

1

2

3

4

5

−4 −2 0 2 4

−10

−5

0

5

10

https://samuel-deng.github.io/math4ml_su24/assets/figs/regression_noise.html

Big Picture: Gradient Descent

Random variables come with a CDF and a
PMF/PDF. Multiple random variables
come with joint, marginal, and
conditional distributions.

The conditional expectation of a random
variable can be thought of as a “best
guess” at a random variable given the
information of an event or another random
variable.

, for .

, for .

𝔼[X ∣ A] A ⊆ Ω

𝔼[X ∣ Y] Y : Ω → ℝ

Probability Theory, Models, and Data

x1-axis x2-axis f(x1, x2)-axis descent start

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su24/assets/figs/3.2/gd1_etasmall.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/nonconvex3d.html

Week 5.2
Law of large numbers and statistical estimators

Law of large numbers and statistical estimators
Big Picture: Least Squares

We established the aim of statistics as “inverse” probability theory. Of
central importance is the sample average of i.i.d. random variables:

Chebyshev’s inequality proved the (Weak) Law of Large Numbers:

,

which says that sample means approach true means.

The sample average is a statistical estimator of the mean. Statistical
estimators have bias and variance which are associated through the
bias-variance decomposition of mean-squared error:

The Gauss-Markov Theorem stated that OLS was the lowest variance,
unbiased linear estimator.

We finally got an expression for the risk of OLS:

Xn :=
1
n

n

∑
i=1

Xi

lim
n→∞

ℙ (|Xn − μ | < ϵ) = 1

𝔼[(̂θn − θ)2] = Bias2(̂θn) + Var(̂θn)

R(ŵ) = 𝔼[(ŵ⊤x0 − y0)2] = σ2 +
σ2d
n

−4 −2 0 2 4

−10

−5

0

5

10

−4

−3

−2

−1

0

1

2

3

4

5

https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html

Big Picture: Gradient Descent

We closed the story of gradient descent with
stochastic gradient descent (SGD) where,
instead of taking the gradient over all the
samples , we used an
unbiased statistical estimator of the
gradient:

Estimand: .

Estimator: Sample a single example
uniformly from and take the gradient:

.

(x1, y1), …, (xn, yn)

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2

i
1,…, n

̂∇f(w) = ∇w(w⊤xi − yi)2

Law of large numbers and statistical estimators

x1-axis x2-axis f(x1, x2)-axis descent start

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

descent start

0.5

1

1.5

2

2.5

3

3.5

x1-axis x2-axis f(x1, x2)-axis descent start

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

descent start

0.5

1

1.5

2

2.5

3

3.5

https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch10.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/sgd_batch1.html

Week 6.1
Central Limit Theorem, Distributions, and MLE

Central Limit Theorem, Distributions, and MLE
Big Picture: Least Squares

We introduced the Gaussian distribution, and we
motivated its importance by proving the Central
Limit Theorem. The Gaussian distribution is just
one of many “named distributions” that
conveniently model common phenomena well.

When we have a guess at a parametrized model or
statistical model generating our i.i.d. data

, an alternative perspective on
our problem of finding a good model is maximum
likelihood estimation (MLE).

This let us prove that, under the Gaussian error
model, maximizing the likelihood for the conditional
distribution again gives us back the OLS
estimator:

(x1, y1), …, (xn, yn)

y ∣ x

ŵMLE = arg max Ln(w) = (X⊤X)−1X⊤y

Week 6.2
Multivariate Gaussian Distribution

Multivariate Gaussian Distribution
Big Picture: Least Squares

We found that, under the Gaussian error
model, the distribution of the OLS estimator
itself is multivariate Normal/Gaussian.

This motivated our study for the MVN
distribution, which had a couple of key
properties:

1. Factorization under diagonal covariance.

2. Ellipsoidal geometry from
eigendecomposition.

3. Affine transformations bridge standard
MVN and general MVN.

ŵ ∼ N(w*, σ2(X⊤X)−1)

x1-axis x2-axis f(x1, x2)-axis

−4

−3

−2

−1

0

1

2

3

4

5

http://igs/ols_distribution_d2.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/regression_noise.html

What about the rest of ML?
OLS and GD as a “Home Base”

What about the rest of ML?
OLS and GD as a “Home Base”

ŵ = (X⊤X)−1X⊤y

wt ← wt−1 − η∇f(wt−1)

Extension 1: Nonlinear Models
Feature transformations

Nonlinear Models
Feature Transformations

Nonlinear Models
Neural Networks

Extension 2: Loss Functions
Beyond squared loss

Loss Functions
Beyond Squared Loss

Extension 3: Algorithms
Beyond gradient descent

Algorithms
Beyond Gradient Descent

Extension 4: Learning Theory
Other issues in generalization

Learning Theory
Other issues in generalization

Thank you for listening!
Hope you enjoyed the class :)

