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Abstract

The “double descent” risk curve was proposed to qualitatively describe the out-of-sample prediction
accuracy of variably-parameterized machine learning models. This article provides a precise mathematical
analysis for the shape of this curve in two simple data models with the least squares/least norm predictor.
Specifically, it is shown that the risk peaks when the number of features p is close to the sample size n,
but also that the risk decreases towards its minimum as p increases beyond n. This behavior is contrasted
with that of “prescient” models that select features in an a priori optimal order.

1 Introduction

The “double descent” risk curve was proposed by Belkin, Hsu, Ma, and Mandal [Bel+19] as a general way to
qualitatively describe the out-of-sample prediction performance of variably-parameterized machine learning
models. This risk curve reconciles the classical bias-variance trade-off with the behavior of predictive models
that interpolate training data, as observed for several model families (including neural networks) in a wide
variety of applications (see Section 1.1 for references). In these studies, a predictive model with p parameters
is fit to a training sample of size n, and the test risk (i.e., out-of-sample error) is examined as a function of
p. When p is below the sample size n (for regression or binary classification), the test risk is governed by
the usual bias-variance decomposition. As p is increased towards n, the training risk (i.e., in-sample error)
is driven to zero, but the test risk shoots up, sometimes toward infinity. The classical bias-variance analysis
identifies a “sweet spot” value of p ∈ [0, n] at which the bias and variance are balanced to achieve low test
risk. However, in the “modern regime”, as p grows beyond n, the training risk remains zero, but the test
risk decreases again, even when fitting noisy data, provided that the model is fit using a suitable inductive
bias (e.g., least norm solution). In many (but not all) cases from [Bel+19], the limiting risk as p → ∞ is
lower than what is achieved at the “sweet spot” value of p.

In this article, we show that key aspects of the “double descent” risk curve can be observed with the least
squares/least norm predictor in two simple random features models. The first is a Gaussian model studied
by Breiman and Freedman [BF83] in the classical p ≤ n regime, while the second is a Fourier series model
for functions on the circle. In both cases, we prove that the risk is infinite around p = n, and decreases again
as p increases beyond n. When the signal-to-noise ratio is high, the minimum risk is, in fact, achieved in the
modern regime, when p > n. Our results provide a precise mathematical analysis in a simple and tractable
setting of the mechanism that was qualitatively described by Belkin et al. [Bel+19]. In particular, it captures
a key aspect of many practical over-parameterized models: that increasing the number of parameters to the
maximum can lead to better performance. We also establish some non-asymptotic concentration phenomena
in the Gaussian model.

We note that in both of the models, the features are selected randomly, which makes them useful for
studying scenarios where features are plentiful but individually too “weak” to be selected in an informed
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manner. Such scenarios are commonplace in machine learning practice, and they should be contrasted
with “scientific” scenarios where features are carefully designed or curated, as is often the case in scientific
applications. For comparison, we give an example of “prescient” feature selection, where the p features a
priori known to be most useful are included in the model. In this case, the optimal test risk is achieved at
some p ≤ n, which is consistent with the classical analysis of Breiman and Freedman [BF83].

1.1 Related and concurrent works

The “double descent” risk curve was posited by Belkin et al. [Bel+19] to connect the classical bias-variance
trade-off to behaviors observed in over-parameterized regimes for a variety of machine learning models. The
shape and features of the risk curve itself appear throughout in the literature in a number of contexts [e.g.,
VCR89; Opp+90; LKS91; KH92; BO98; WRB93; AS17]; see also [Loo+20] for a “brief prehistory” that
focuses on the curious peak in the curve. These prior works analyze the risk of linear classification and
regression models and neural networks in high-dimensional asymptotic regimes. Our analysis in the Gaussian
model gives an exact expression for the risk for any finite sample size and number of parameters.

More recently, Neal et al. [Nea+18] observe that similar phenomena in neural networks can be explained
by a variance reduction effect of increasing network width. The transition from under- to over-parametrized
regimes was recently analyzed by Spigler, Geiger, d’Ascoli, Sagun, Biroli, and Wyart [Spi+18] by drawing a
connection to the physical phenomenon of “jamming” in a class of glassy systems. Our analysis makes these
ideas concrete and explicit in the context of simple regression models. For instance, our analysis captures the
transition from under- to over-parameterized regimes at a point where an inverse Wishart random matrix
has no finite expectation. It also allows us to compare the risks at any points in the curve and explain how
the risk in the over-parameterized regime can be lower than any risk in the under-parameterized regime.

The initial version of this article [BHX19] appeared concurrently with the works of Hastie et al. [Has+19],
Muthukumar et al. [Mut+20], and Bartlett et al. [Bar+20], all of which also study the behavior of the least
squares/least norm predictor in over-parameterized linear regression. Muthukumar et al. [Mut+20] focus
on the well-specified scenario (essentially, p = D) and provide upper-bounds on the risk that go to zero as
p→∞. (A related variance analysis was carried out by Neal et al. [Nea+18].) Hastie et al. [Has+19] provide
a much broader range of analyses in the high-dimensional asymptotic regime, including a “misspecified”
setup that is related to ours. Their analyses require weaker distributional assumptions than ours, owing
to their reliance on asymptotic analysis. (A special case of the results in the follow-up work by Xu and
Hsu [XH19] further broadens the range of analyses to allow highly non-isotropic designs, but again only
in the high-dimensional asymptotic regime.) The analysis of Hastie et al. also considers the effect of ridge
regularization; in particular, they show that when the optimal level of regularization is used, the risk curve
no longer shows the “double descent” shape. Finally, Bartlett et al. [Bar+20] study non-asymptotic upper
and lower bounds on the risk in the over-parameterized regime, and provide a characterization in terms of
certain “effective dimensions” based on the tail of the eigenvalue sequence of the covariance operator.

2 Gaussian model

We consider a regression problem where the response y is equal to a linear function β = (β1, . . . , βD) ∈ RD
of D real-valued variables x = (x1, . . . , xD) plus noise σε:

y = x∗β + σε =

D∑
j=1

xjβj + σε.

Given n iid copies ((x(i), y(i)))ni=1 of (x, y), we fit a linear model to the data only using a subset T ⊆ [D] :=
{1, . . . , D} of p := |T | variables.

Let X := [x(1)| · · · |x(n)]∗ be the n × D design matrix, and let y := (y(1), . . . , y(n)) be the vector of
responses. For a subset A ⊆ [D] and a D-dimensional vector v, we use vA := (vj : j ∈ A) to denote its

|A|-dimensional subvector of entries from A; we also use XA := [x
(1)
A | · · · |x

(n)
A ]∗ to denote the n× |A| design

matrix with variables from A. For A ⊆ [D], we denote its complement by Ac := [D]\A. Finally, ‖ ·‖ denotes
the Euclidean norm.
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We fit regression coefficients β̂ = (β̂1, . . . , β̂D) with

β̂T := X†Ty, β̂T c := 0.

Above, the symbol † denotes the Moore-Penrose pseudoinverse. In other words, we use the solution to the
normal equations X∗TXTv = X∗Ty of least norm for β̂T and force β̂T c to all-zeros.

In this section, our analysis assumes a model in which (x, ε) follows a standard multivariate Gaussian
distribution. This Gaussian model was also studied by Breiman and Freedman [BF83], although their
analysis is restricted to the case where the number of variables used p is always at most n; our analysis will
also consider the p ≥ n regime.

2.1 Prediction risk

We derive a formula for the (prediction) risk of β̂ for an arbitrary choice of p features T ⊆ [D], and then
examine this risk under particular selection models for T .

Theorem 1. Assume the distribution of x is the standard normal in RD, ε is a standard normal random
variable independent of x, and y = x∗β + σε for some β ∈ RD and σ > 0. Pick any p ∈ {0, . . . , D} and

T ⊆ [D] of cardinality p. The risk of β̂, where β̂T = X†Ty and β̂T c = 0, is

E[(y − x∗β̂)2] =


(‖βT c‖2 + σ2) ·

(
1 + p

n−p−1

)
if p ≤ n− 2;

+∞ if n− 1 ≤ p ≤ n+ 1;

‖βT ‖2 ·
(

1− n
p

)
+ (‖βT c‖2 + σ2) ·

(
1 + n

p−n−1

)
if p ≥ n+ 2.

The proof of Theorem 1 is not hard, we give the details in Section 2.2. We now turn to the risk of β̂
under a random selection model for T .

Corollary 1. Let T be a uniformly random subset of [D] of cardinality p. In the setting of Theorem 1, the

risk of β̂ (taking expectation with respect to the random choice of T in addition to the random design matrix
and response vector) satisfies

E[(y − x∗β̂)2] =


((

1− p
D

)
· ‖β‖2 + σ2

)
·
(

1 + p
n−p−1

)
if p ≤ n− 2;

‖β‖2 ·
(

1− n
D ·
(

2− D−n−1
p−n−1

))
+ σ2 ·

(
1 + n

p−n−1

)
if p ≥ n+ 2.

Proof. Since T is a uniformly random subset of [D] of cardinality p,

E[‖βT ‖2] =
p

D
· ‖β‖2, E[‖βT c‖2] =

(
1− p

D

)
· ‖β‖2.

Plugging into Theorem 1 completes the proof.

Thus, assuming D > n + 1, we observe that the risk first increases with p up to the “interpolation
threshold” (p = n), after which the risk decreases with p. Moreover, when the signal-to-noise ratio ‖β‖2/σ2

is larger than D/(D − n− 1), the risk is smallest at p = D; in particular, it is smaller than the risk at any
p ≤ n. This is the “double descent” risk curve where the first “descent” is degenerate (i.e., the “sweet spot”
that balances bias and variance is at p = 0). See Figure 1 for an illustration.

It is worth pointing out that the behavior under the random selection model of T can be very different
from that under a deterministic model of T . Consider including variables in T by decreasing order of β2

j—a
kind of “prescient” selection model studied by Breiman and Freedman [BF83]. The behavior of the risk as
a function of p, illustrated in Figure 2, reveals a striking difference between the random selection model and
the “prescient” selection model.

3



0 20 40 60 80 100

p

0

2

4

6

8

10

R
is

k

Figure 1: Plot of risk E[(y − x∗β̂)2] as a function of p, under the random selection model of T . Here,
‖β‖2 = 1, σ2 = 1/25, D = 100, and n = 40.
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Figure 2: Plot of risk E[(y − x∗β̂)2] as a function of p, under the “prescient” selection model of T . Here,
‖β‖2 = 1, β2

j ∝ 1/j2, σ2 = 1/25, D = 100, and n = 40.

2.2 Proof of Theorem 1

Recall that x is assumed to follow a standard normal distribution in RD. Since x is isotropic (i.e., zero mean
and identity covariance), the mean squared prediction error of any β′ ∈ RD can be written as

E[(y − x∗β̂)2] = σ2 + ‖β − β̂‖2 = σ2 + ‖βT c − β̂T c‖2 + ‖βT − β̂T ‖2.

Since β̂T c = 0, it follows that the risk of β̂ is

E[(y − x∗β̂)2] = σ2 + ‖βT c‖2 + E[‖βT − β̂T ‖2].

Classical regime. The risk of β̂ was computed by Breiman and Freedman [BF83] in the regime where
p ≤ n:

E[(y − x∗β̂)2] =

{
(‖βT c‖2 + σ2) ·

(
1 + p

n−p−1

)
if p ≤ n− 2;

+∞ if p ∈ {n− 1, n}.

Interpolating regime. We consider the regime where p ≥ n. Recall that the pseudoinverse of XT can
be written as X†T = X∗T (XTX

∗
T )†. Thus, letting η := y −XTβT ,

βT − β̂T = βT −X
∗
T (XTX

∗
T )†y

= βT −X
∗
T (XTX

∗
T )†(XTβT + η)

= (I −X∗T (XTX
∗
T )†XT )βT −X

∗
T (XTX

∗
T )†η.

On the right hand side, the first term (I −X∗T (XTX
∗
T )†XT )βT is the orthogonal projection of βT onto

the null space of XT , while the second term −X∗T (XTX
∗
T )†η is a vector in the row space of XT . By the
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Pythagorean theorem, the squared norm of their sum is equal to the sum of their squared norms, so

‖βT − β̂T ‖2 = ‖(I −X∗T (XTX
∗
T )†XT )βT ‖2 + ‖X∗T (XTX

∗
T )†η‖2.

We analyze the expected values of these two terms by exploiting properties of the standard normal distri-
bution.

First term. Note that ΠT := X∗T (XTX
∗
T )†XT is the orthogonal projection matrix for the row space of

XT . So, by the Pythagorean theorem, we have

‖(I −X∗T (XTX
∗
T )†XT )βT ‖2 = ‖βT ‖2 − ‖ΠTβT ‖2.

By rotational symmetry of the standard normal distribution, it follows that

E[‖ΠTβT ‖2] = ‖βT ‖2 ·
n

p
.

Therefore

E[‖(I −X∗T (XTX
∗
T )†XT )βT ‖2] = ‖βT ‖2 ·

(
1− n

p

)
.

Second term. We use the “trace trick” to write

‖X∗T (XTX
∗
T )†η‖2 = tr((XTX

∗
T )†(XTX

∗
T )(XTX

∗
T )†ηη∗) = tr((XTX

∗
T )†ηη∗)

where the second equality holds almost surely because XTX
∗
T is almost surely invertible. Since x∗TβT

and x∗T cβT c + σε are uncorrelated, it follows that

E[‖X∗T (XTX
∗
T )†η‖2] = tr(E[(XTX

∗
T )†]E[ηη∗]).

The distribution of η is normal with mean zero and covariance (‖βT c‖2 + σ2) · I ∈ Rn×n, so

E[ηη∗] = (‖βT c‖2 + σ2) · I.

The distribution of P := (XTX
∗
T )† is inverse-Wishart with identity scale matrix I ∈ Rn×n and p

degrees-of-freedom. Each diagonal entry Pi,i of P , for i = 1, . . . , n, has a reciprocal that follows the
χ2 distribution with p − n + 1 degrees-of-freedom. Hence E[Pi,i] = 1/(p − n − 1) if p ≥ n + 2 and
E[Pi,i] = +∞ if p ∈ {n, n+ 1}. Therefore

tr(E[(XTX
∗
T )†]) =

{
n

p−n−1 if p ≥ n+ 2;

+∞ if p ∈ {n, n+ 1}.

We conclude that

E[‖X∗T (XTX
∗
T )†η‖2] =

{
(‖βT c‖2 + σ2) · n

p−n−1 if p ≥ n+ 2;

+∞ if p ∈ {n, n+ 1}.

Combining the first and second terms gives the claimed expression for the risk.

2.3 Concentration

We briefly consider the measure concentration of ‖β − β̂‖2.

Theorem 2. Consider the setting from Theorem 1, and fix any ε ∈ (0, 1). If α := p/n < 1, then

‖β − β̂‖2 ∈ (‖βT c‖2 + σ2)

(
1 +

(
1± ε
1∓ ε

)
p

n− p+ 1

)
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with probability at least

1− 2 exp

(
− pε4(

√
α−1 − 1)2

24((2− ε)
√
α−1 + ε)2

)
− 2 exp

(
−p(1− ε)

2(
√
α−1 − 1)2

2

)
− 2p exp

(
−p(α

−1 − 1)ε2

24

)
.

If α > 1, then

‖β − β̂‖2 ∈ ‖βT ‖2
(

1− (1± ε)n
p

)
+ (‖βT c‖2 + σ2)

(
1 +

(
1± ε
1∓ ε

)
n

p− n+ 1

)
with probability at least

1−2 exp

(
−nε

2

12

)
−2 exp

(
− nε4(

√
α− 1)2

24((2− ε)
√
α+ ε)2

)
−2 exp

(
−n(1− ε)2(

√
α− 1)2

2

)
−2n exp

(
−n(α− 1)ε2

24

)
.

The proof is given in Appendix A. The main idea for the p > n case is as follows. From the proof of
Theorem 1, we have the decomposition

‖βT − β̂T ‖2 = ‖(I −ΠT )βT ‖2 + ‖X∗T (XTX
∗
T )†η‖2.

The first term ‖(I−ΠT )βT ‖2 is the squared distance from βT to a uniformly random n-dimensional subspace
of Rp. This squared distance has the same distribution as the squared distance from a uniformly random
vector of length ‖βT ‖ to a fixed n-dimensional subspace of Rp. Thus measure concentration on the unit
sphere can be used here. The second term ‖X∗T (XTX

∗
T )†η‖2 is a (random) quadratic form in the Gaussian

random vector η. Gaussian concentration is readily applied after controlling the spectral properties of the
Wishart random matrix XTX

∗
T . (The p < n case is similar to the analysis of this second term.)

The same arguments can be used to give fixed-level confidence bounds; see Proposition 2 in Appendix B.
Finally, it is also possible to compare ‖βT ‖2 to (p/D)‖β‖2 (and ‖βT c‖2 to (1−p/D)‖β‖2) under the ran-

dom selection model of T from Corollary 1 using concentration inequalities for sampling without replacement
[see, e.g., BM15, for a discussion]. The following is a simple consequence of Proposition 1.4 of [BM15].

Proposition 1. For any t > 0, with probability at least 1− 2e−t,

∣∣∣‖βT ‖2 − p

D
‖β‖2

∣∣∣ =
∣∣∣‖βT c‖2 −

(
1− p

D

)
‖β‖2

∣∣∣ ≤ ‖β‖2(√2

(
µ2 − 1

D

)
min

{ p
D
, 1− p

D

}
t+

2µ2t

3

)
.

where µ := maxi∈[D] |βi|/‖β‖.

The proof is in Appendix C. The crucial parameter µ has range [1/
√
D, 1]. It is small when there are

many relevant “weak” features, each with a relatively small coefficient in β; conversely, it is large when β is
concentrated on a sparse subset of features.

3 Fourier series model

In this section, we consider a noise-free Fourier series model, which can be regarded as a one-dimensional
version of the random Fourier features model studied by Rahimi and Recht [RR08] for functions defined on
the unit circle.

Let F ∈ CD×D denote the D ×D discrete Fourier transform matrix: its (i, j)-th entry is

Fi,j =
1√
D
ω(i−1)(j−1),

where ω := exp(−2πi/D) is a primitive root of unity. Let µ := Fβ for some β ∈ CD. Consider the following
observation model:

1. S and T are independent random subsets of [D]. For any i ∈ [D], the membership of i in S (respectively,
T ) is determined by an independent Bernoulli variable with mean ρn := n/D (respectively, ρp := p/D).

6



2. We observe the n× p design matrix F S,T and n-dimensional vector of responses µS . Here, F S,T is the
submatrix of F with rows from S and columns from T , and µS is the subvector of µ of entries from S.

We fit regression coefficients β̂ = (β̂1, . . . , β̂D) with

β̂S := F †S,TµS , β̂Sc := 0.

One important property of the discrete Fourier transform matrix that we use is that the matrix FA,B
has rank min{|A|, |B|} for any A,B ⊆ [D]. This is a consequence of the fact that F is Vandermonde. Thus,
we have

F †S,T =

{
F ∗S,T (F S,TF

∗
S,T )−1, |T | ≥ |S|

(F ∗S,TF S,T )−1F ∗S,T , |T | ≤ |S|
.

In the remainder of this section, we analyze the risk of β̂ under a random model for β, where

E[ββ∗] =
1

D
· I

(which implies E[‖β‖2] = 1). The random choice of β is independent of S and T . Considering the risk under
this random model for β is a form of average-case analysis. For simplicity, we only consider the regime where
ρp > ρn.

Following the arguments from Section 2.1, we have

‖β − β̂‖2 = ‖βSc‖2 + ‖(I − F †S,TF S,T )βS‖2 + ‖F †S,TF S,T cβSc‖2

= ‖β‖2 − ‖F †S,TF S,TβS‖
2 + ‖F †S,TF S,T cβSc‖2.

Now we take (conditional) expectations with respect to β, given S and T :

E[‖β − β̂‖2 | S, T ] = 1− 1

D
· tr((F †S,TF S,T )∗(F †S,TF S,T )) +

1

D
· tr((F †S,TF S,T c)∗(F †S,TF S,T c)). (1)

Since F S,T has rank min{|S|, |T |}, the first trace expression is equal to

tr((F †S,TF S,T )∗(F †S,TF S,T )) = min{|S|, |T |}.

For the second trace expression, we use the explicit formula for F †S,T and the fact that F S,TF
∗
S,T +

F S,T cF ∗S,T c = I to obtain

tr((F †S,TF S,T c)∗(F †S,TF S,T c)) = tr(F ∗S,T c(F S,TF
∗
S,T )−1F S,T c)

= tr(F ∗S,T c(I − F S,T cF ∗S,T c)−1F S,T c)

= tr((I − F S,T cF ∗S,T c)−1F S,T cF ∗S,T c)

=

min{|S|,|T |}∑
i=1

λi
1− λi

= −min{|S|, |T |}+

min{|S|,|T |}∑
i=1

1

1− λi
,

where the λi ∈ [0, 1] are the eigenvalues of F S,T cF ∗S,T c . Therefore, from Equation (1), we have

E[‖β − β̂‖2] = 1− 2Emin

{
|S|
D
,
|T |
D

}
+
n

D
· E

 1

n

min{|S|,|T |}∑
i=1

1

1− λi


︸ ︷︷ ︸

(∗)

.
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Figure 3: Plot of risk as a function of p in the Fourier series model. Here, β was chosen uniformly at random
(once) from the unit sphere in RD for D = 1024. We then computed β̂ from 10 independent random choices

of S (with n = 256) and T and plotted the average value of ‖β − β̂‖2.

To determine the asymptotic behavior of (∗), we use a recent result of Farrell [Far11]:

(∗)→ ρp · (1− ρn)

ρp − ρn
as D,n, p→∞ with ρn = n/D and ρp = p/D held fixed. Further, under this limit, we have

Emin

{
|S|
D
,
|T |
D

}
→ ρn

since ρp ≥ ρn. Hence we have the following:

Theorem 3. Assume the setting as above, with D,n, p→∞ and ρn = n/D and ρp = p/D held fixed. Then

lim E
[
‖β − β̂‖2

]
= 1− n

D

(
2− p(1− n/D)

p− n

)
.

Note that the right-hand side in the equation from Theorem 3 is well-defined in the limit because the
ratios ρn, ρp are fixed. It diverges to +∞ when ρp is close to ρn, and decreases as ρp approaches 1. This
is the same behavior as in the Gaussian model from Section 2 with random feature selection; we depict a
non-asymptotic instantiation of it in Figure 3.

4 Discussion

Our analysis shows that when features are chosen in an uninformed manner, it may be optimal to choose
as many as possible—even more than the number of data—rather than limit the number to that which
balances bias and variance as suggested by classical analyses. This choice is simple, both conceptually and
algorithmically (although it may incur a computational penalty for processing large numbers of parameters),
and avoids the need for precise control of regularization parameters. It is reflective of the practice in modern
machine learning applications like image and speech recognition, where signal processing-based features are
individually weak but in great abundance, and models that use all of the features, notably neural networks,
are highly successful. This stands in contrast to the “scientific” scenarios with informed selection of features;
for example, in many science and medical applications, features are purposefully chosen based on the detailed
understanding of the underlying phenomena. As illustrated by the “prescient” model that selects the best
features, in that case choosing the number of features to balance bias and variance can be better than
incurring the costs that come with using all of the features.

Finally we remark, that there appears to be a sharp divide between the classical analyses of statistics
and machine learning in p < n regimes and the modern “weak but plentiful features” interpolating settings.
While the former are deeply explored, an understanding of the latter is only starting to emerge. It is clear
that the best practices for model and feature selection depend crucially on the regime of the application.
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[Bar+20] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. “Benign overfitting in
linear regression”. In: Proceedings of the National Academy of Sciences (2020).

[Bel+19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. “Reconciling modern machine
learning practice and the bias-variance trade-off”. In: Proceedings of the National Academy of
Sciences 116.32 (2019), pp. 15849–15854.

[BF83] Leo Breiman and David Freedman. “How many variables should be entered in a regression
equation?” In: Journal of the American Statistical Association 78.381 (1983), pp. 131–136.

[BHX19] Mikhail Belkin, Daniel Hsu, and Ji Xu. “Two models of double descent for weak features”. In:
arXiv preprint arXiv:1903.07571v1 (2019).
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A Proof of Theorem 2

We first consider p > n (i.e., α > 1). From the proof of Theorem 1, we have the decomposition

‖βT − β̂T ‖2 = ‖(I −ΠT )βT ‖2 + ‖X∗T (XTX
∗
T )†η‖2,

where ΠT is the orthogonal projection matrix for the row space of XT , and η is normal with mean zero and
covariance (‖βT c‖2 + σ2)I and independent of XT . By symmetry of the standard normal distribution, the
first term ‖(I −ΠT )βT ‖2 is the squared distance from βT to a uniformly random n-dimensional subspace
of Rp. This squared distance has the same distribution as the squared distance from a uniformly random
vector of length ‖βT ‖ to a fixed n-dimensional subspace of Rp. This argument was also used by Dasgupta
and Gupta [DG03] in their proof of the Johnson-Lindenstrauss lemma. By Lemma 2.2 from [DG03], we have
for any ε ∈ (0, 1),

Pr

[
‖(I −ΠT )βT ‖2 6∈

(
1− (1± ε)n

p

)
‖βT ‖2

]
≤ 2 exp

(
−nε

2

12

)
.

The second term ‖X∗T (XTX
∗
T )†η‖2 is a (random) quadratic form in η. Let KT := XTX

∗
T , which is

non-singular almost surely. By Lemma 4 from [Das00], we have for any ε ∈ (0, 1),

Pr
[
‖X∗T (XTX

∗
T )†η‖2 6∈ (1± ε)(‖βT c‖2 + σ2)tr(K−1T ) |KT non-singular

]
≤ 2 exp

(
− nε2

24κ(XT )2

)
,

where κ(XT ) = σmax(XT )/σmin(XT ) is the ratio of the largest singular value of XT to the smallest singular
value of XT . For any t > 0,

Pr
[
σmax(XT ) ≥ √p+ (1 + t)

√
n
]
≤ exp(−nt2/2),

Pr
[
σmin(XT ) ≤ √p− (1 + t)

√
n
]
≤ exp(−nt2/2).

These inequalities follow from Gaussian comparison inequalities and concentration of measure on the sphere
and in Gaussian space [see, e.g., RV09; Ver18]. Therefore, for p > (1 + t)2n,

Pr

[
κ(XT )2 ≥

(√
p+ (1 + t)

√
n

√
p− (1 + t)

√
n

)2
]
≤ 2 exp

(
−nt

2

2

)
.

Finally, observe that 1/(K−1T )i,i has a χ2-distribution with p − n + 1 degrees of freedom. Therefore, again
using Lemma 4 from [Das00] and a union bound, we have for any ε ∈ (0, 1),

Pr

[
tr(K−1T ) /∈ n

p− n+ 1
· 1

1∓ ε

]
≤ 2n exp

(
− (p− n+ 1)ε2

24

)
.
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Putting these probability inequalities together (with t = (1− ε)(
√
α− 1)) completes the proof for p > n.

Now we consider p < n (i.e., α < 1). We have

β̂T = (X∗TXT )†X∗T (XTβT + η).

The matrix X∗TXT is non-singular almost surely, so ‖β̂T − β‖2 = η∗(XTX
∗
T )†η = η∗K†Tη also holds

almost surely. Note that KT has the same eigenvalues as X∗TXT , and hence K†T has the same eigenvalues
as (X∗TXT )−1. Therefore, following essentially the same arguments as above for handling ‖X∗T (XTX

∗
T )†η‖2

(but switching the roles of p and n, and hence replacing α with α−1) completes the proof for p < n.

B Confidence bounds

Fixed-level confidence bounds can be immediately derived from the probability inequalities in Appendix A.

Proposition 2. Consider the setting from Theorem 1 and fix any δ ∈ (0, 1). If p < n, then with probability
at least 1− δ,

‖βT − β̂T ‖2 ∈

1±
1 +

√
p
n +

√
2 ln(8/δ)

n

1−
√

p
n −

√
2 ln(8/δ)

n

·

√
48 ln(256/δ)

p

 (‖βT c‖2 +σ2) · p

n− p+ 1
· 1

1∓
√

24 ln(8p/δ)
n−p+1

.

If p > n, then with probability at least 1− δ,

‖βT − β̂T ‖2 ∈

(
1−

(
1±

√
12 ln(8/δ)

n

)
n

p

)
‖βT ‖2

+

1±
1 +

√
n
p +

√
2 ln(8/δ)

p

1−
√

n
p −

√
2 ln(8/δ)

p

·
√

48 ln(256/δ)

n

 (‖βT c‖2 + σ2) · n

p− n+ 1
· 1

1∓
√

24 ln(8n/δ)
p−n+1

.

In the expressions above, we assume n and p are large enough (perhaps in relation to each other) so that all
denominators are positive.

C Proof of Proposition 1

Let X1, . . . , Xp denote a random sample of cardinality p from the finite population (β2
1 , . . . , β

2
D), drawn

without replacement, so that ‖βT ‖2 =
∑p
j=1Xj . Since ‖βT c‖2 = ‖β‖2 − ‖βT ‖2, we have∣∣∣‖βT ‖2 − p

D
‖β‖2

∣∣∣ =
∣∣∣‖βT c‖2 −

(
1− p

D

)
‖β‖2

∣∣∣ .
Observe that the finite population (β2

1 , . . . , β
2
D) has mean 1

D‖β‖
2, variance 1

D

∑D
j=1 β

4
j − ( 1

D

∑D
j=1 β

2
j )2 ≤

1
D‖β‖

4µ2 − ( 1
D‖β‖

2)2 = 1
D‖β‖

4(µ2 − 1
D ), and range maxj∈[D] β

2
j = ‖β‖2µ2. Therefore, Proposition 1.4 of

[BM15] and a union bound implies, with probability at least 1− 2e−t,

∣∣∣‖βT ‖2 − p

D
‖β‖2

∣∣∣ =
∣∣∣‖βT c‖2 −

(
1− p

D

)
‖β‖2

∣∣∣ ≤ ‖β‖2(√2

(
µ2 − 1

D

)
pt

D
+

2µ2t

3

)
.

If p/D is more than 1/2, then we can replace p/D by 1−p/D on the right-hand side by analogously applying
the previous argument to the random sample of cardinality D − p that determines βT c .
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