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 J. R. Statist. Soc. B (1996)
 58, No. 1, pp. 267-288

 Regression Shrinkage and Selection via the Lasso

 By ROBERT TIBSHIRANIt

 University of Toronto, Canada

 [Received January 1994. Revised January 1995]

 SUMMARY

 We propose a new method for estimation in linear models. The 'lasso' minimizes the
 residual sum of squares subject to the sum of the absolute value of the coefficients being less
 than a constant. Because of the nature of this constraint it tends to produce some
 coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies
 suggest that the lasso enjoys some of the favourable properties of both subset selection and
 ridge regression. It produces interpretable models like subset selection and exhibits the
 stability of ridge regression. There is also an interesting relationship with recent work in
 adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and
 can be applied in a variety of statistical models: extensions to generalized regression models
 and tree-based models are briefly described.

 Keywords: QUADRATIC PROGRAMMING; REGRESSION; SHRINKAGE; SUBSET SELECTION

 1. INTRODUCTION

 Consider the usual regression situation: we have data (xi, yi), i = 1, 2, . . ., N, where
 x= (x,.. ., xP)T and yi are the regressors and response for the ith observation.
 The ordinary least squares (OLS) estimates are obtained by minimizing the residual
 squared error. There are two reasons why the data analyst is often not satisfied with
 the OLS estimates. The first is prediction accuracy: the OLS estimates often have low
 bias but large variance; prediction accuracy can sometimes be improved by shrinking
 or setting to 0 some coefficients. By doing so we sacrifice a little bias to reduce the
 variance of the predicted values and hence may improve the overall prediction
 accuracy. The second reason is interpretation. With a large number of predictors, we
 often would like to determine a smaller subset that exhibits the strongest effects.
 The two standard techniques for improving the OLS estimates, subset selection

 and ridge regression, both have drawbacks. Subset selection provides interpretable
 models but can be extremely variable because it is a discrete process - regressors are
 either retained or dropped from the model. Small changes in the data can result in
 very different models being selected and this can reduce its prediction accuracy.
 Ridge regression is a continuous process that shrinks coefficients and hence is more
 stable: however, it does not set any coefficients to 0 and hence does not give an easily
 interpretable model.
 We propose a new technique, called the lasso, for 'least absolute shrinkage and

 selection operator'. It shrinks some coefficients and sets others to 0, and hence tries to
 retain the good features of both subset selection and ridge regression.

 tAddress for correspondence: Department of Preventive Medicine and Biostatistics, and Department of Statistics,
 University of Toronto, 12 Queen's Park Crescent West, Toronto, Ontario, M5S 1A8, Canada.
 E-mail: tibs@utstat.toronto.edu
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 268 TIBSHIRANI [No. 1,

 In Section 2 we define the lasso and look at some special cases. A real data example is
 given in Section 3, while in Section 4 we discuss methods for estimation of prediction error
 and the lasso shrinkage parameter. A Bayes model for the lasso is briefly mentioned in
 Section 5. We describe the lasso algorithm in Section 6. Simulation studies are described in
 Section 7. Sections 8 and 9 discuss extensions to generalized regression models and other
 problems. Some results on soft thresholding and their relationship to the lasso are
 discussed in Section 10, while Section 11 contains a summary and some discussion.

 2. THE LASSO

 2.1. Definition
 Suppose that we have data (xi, yi), i = 1, 2, . . ., N, where xi = (xi, .. . X, )T are

 the predictor variables and yi are the responses. As in the usual regression set-up, we
 assume either that the observations are independent or that the yis are conditionally
 independent given the xys. We assume that the xy are standardized so that 2ixyl/N

 ?, Eix2/N =1.
 Letting ,3 = (PI, . . ., pp)T, the lasso estimate (&, /3) is defined by

 (&3)=argminf (Yi-a-L 5 1X)2)} subject toZlfBll t. (1)

 Here t > 0 is a tuning parameter. Now, for all t, the solution for a is & y. We can
 assume without loss of generality that j 0 0 and hence omit a.

 Computation of the solution to equation (1) is a quadratic programming problem
 with linear inequality constraints. We describe some efficient and stable algorithms
 for this problem in Section 6.

 The parameter t > 0 controls the amount of shrinkage that is a,pplied to the
 estimates. Let fl be the full least squares estimates and let to SIfl. Values of
 t < to will cause shrinkage of the solutions towards 0, and some coefficients may be
 exactly equal to 0. For example, if t = to/2, the effect will be roughly similar to
 finding the best subset of size p/2. Note also that the design matrix need not be of full
 rank. In Section 4 we give some data-based methods for estimation of t.

 The motivation for the lasso came from an interesting proposal of Breiman (1993).
 Breiman's non-negative garotte minimizes

 N 2

 E (Yi- -E x) subject to Cj > 0, E Cj s t. (2)

 The garotte starts with the OLS estimates and shrinks them by non-negative factors
 whose sum is constrained. In extensive simulation studies, Breiman showed that the
 garotte has consistently lower prediction error than subset selection and is
 competitive with ridge regression except when the true model has many small non-
 zero coefficients.

 A drawback of the garotte is that its solution depends on both the sign and the
 magnitude of the OLS estimates. In overfit or highly correlated settings where the
 OLS estimates behave poorly, the garotte may suffer as a result. In contrast, the lasso
 avoids the explicit use of the OLS estimates.

This content downloaded from 
�����������128.59.176.180 on Mon, 01 Jul 2024 19:58:39 +00:00����������� 

All use subject to https://about.jstor.org/terms



 1996] REGRESSION SHRINKAGE AND SELECTION 269

 Frank and Friedman (1993) proposed using a bound on the Lq-norm of the
 parameters, where q is some number greater than or equal to 0; the lasso corresponds
 to q = 1. We discuss this briefly in Section 10.

 2.2. Orthonormal Design Case
 Insight about the nature of the shrinkage can be gleaned from the orthonormal

 design case. Let X be the n x p design matrix with iUth entry xij, and suppose that
 XTX = I, the identity matrix.

 The solutions to equation (1) are easily shown to be

 pf = sign (1 ) (I6j -j y)I (3)

 where y is determined by the condition 2filjl = t. Interestingly, this has exactly the
 same form as the soft shrinkage proposals of Donoho and Johnstone (1994) and
 Donoho et al. (1995), applied to wavelet coefficients in the context of function
 estimation. The connection between soft shrinkage and a minimum LI-norm penalty
 was also pointed out by Donoho et al. (1992) for non-negative parameters in the
 context of signal or image recovery. We elaborate more on this connection in Section
 10.

 In the orthonormal design case, best subset selection of size k reduces to choosing
 the k largest coefficients in absolute value and setting the rest to 0. For some choice
 of X this is equivalent to setting fi, l if 1,871 > X and to 0 otherwise. Ridge
 regression minimizes

 N 2

 2 E Yi - flxyj +A P,2

 or, equivalently, minimizes

 ?E (Yi-4jx,) subject to fi) < t (4)

 The ridge solutions are

 1 ^

 where y depends on X or t. The garotte estimates are

 t P A2 ) t

 Fig. 1 shows the fonn of these functions. Ridge regression scales the coefficients by
 a constant factor, whereas the lasso translates by a constant factor, truncating at 0.
 The garotte function is very similar to the lasso, with less shrinkage for larger
 coefficients. As our simulations will show, the differences between the lasso and
 garotte can be large when the design is not orthogonal.
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 270 TIBSHIRANI [No. 1,

 2.3. Geometry of Lasso
 It is clear from Fig. 1 why the lasso will often produce coefficients that are exactly

 0. Why does this happen in the general (non-orthogonal) setting? And why does it
 not occur with ridge regression, which uses the constraint ? fl2 K t rather than
 Elpl < t? Fig. 2 provides some insight for the case p = 2.

 The criterion E1 (y,- 6jXij)2 equals the quadratic function

 (,3-p 0) X ( X- 0)

 (plus a constant). The elliptical contours of this function are shown by the full curves
 in Fig. 2(a); they are centred at the OLS estimates; the constraint region is the rotated
 square. The lasso solution is the first place that the contours touch the square, and
 this will sometimes occur at a corner, corresponding to a zero coefficient. The picture
 for ridge regression is shown in Fig. 2(b): there are no corners for the contours to hit
 and hence zero solutions will rarely result.

 An interesting question emerges from this picture: can the signs of the lasso
 estimates be different from those of the least squares estimates ,j?? Since the variables
 are standardized, when p = 2 the principal axes of the contours are at + 450 to the
 co-ordinate axes, and we can show that the contours must contact the square in the
 same quadrant that contains fi. However, when p > 2 and there is at least moderate
 correlation in the data, this need not be true. Fig. 3 shows an example in three
 dimensions. The view in Fig. 3(b) confirms that the ellipse touches the constraint
 region in an octant different from the octant in which its centre lies.

 N LN

 o 1 2 3 4 5 0 1 2 3 4 5

 beta beta

 (a) (b)

 N N

 0 1 2 3 4 5 0 1 2 3 4 5

 beta beta

 (c) (d)

 Fig. 1. (a) Subset regression, (b) ridge regression, (c) the lasso and (d) the garotte: , form of
 coefficient shrinkage in the orthonormal design case; ..........., 45?-line for reference
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 1996] REGRESSION SHRINKAGE AND SELECTION 271

 (a) (b)

 Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression

 (a) lb)

 Fig. 3. (a) Example in which the lasso estimate falls in an octant different from the overall least
 squares estimate; (b) overhead view

 Whereas the garotte retains the sign of each &, the lasso can change signs. Even in cases
 where the lasso estimate has the same sign vector as the garotte, the presence of the OLS

 estimates in the garotte can make it behave differently. The modjel E cj,fixy with con-
 straint E Cj ^S t can be written as E fi1xy with constraint I fij/j 0 t. it for example
 p = 2 and fil > 2 > 0 then the effect would be to stretch the square in Fig. 2(a)
 horizontally. As a result, larger values of PI and smaller values of P2 will be favoured
 by the garotte.

 2.4. More on Two-predictor Case
 SupposeX that p = 2, and assume without loss of generality that the least squares

 estimates P7 are both positive. Then we can show that the lasso estimates are
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 C%J)

 2 3 4 5 6

 betal

 Fig. 4. Lasso ( ) and ridge regression ----) for the two-predictor example: the curves show the
 (P1, P2) pairs as the bound on the lasso or ridge parameters is varied; starting with the bottom broken
 curve and moving upwards, the correlation p is 0, 0.23, 0.45, 0.68 and 0.90

 = (fO - Y) (5)

 where y is chosen so that ,81 + ,82 = t. This formula holds for t M l + 820 and is valid
 even if the predictors are correlated. Solving for y yields

 (2 2
 (6)

 In contrast, the form of ridge regression shrinkage depends on the correlation of
 the predictors. Fig. 4 shows an example. We generated 100 data points from the
 model y = 6x1 + 3x2 with no noise. Here xl and x2 are standard normal variates with
 correlation p. The curves in Fig. 4 show the ridge and lasso estimates as the bounds
 on 216 + ,22 and 1fl1 I + 1f821 are varied. For all values of p the lasso estimates follow the
 full curve. The ridge estimates (broken curves) depend on p. When p = 0 ridge
 regression does proportional shrinkage. However, for larger values of p the ridge
 estimates are shrunken differentially and can even increase a little as the bound is
 decreased. As pointed out by Jerome Friedman, this is due to the tendency of ridge
 regression to try to make the coefficients equal to minimize their squared norm.

 2.5. Standard Errors
 Since the lasso estimate is a non-linear and non-differentiable function of the

 response values even for a fixed value of t, it is difficult to obtain an accurate estimate
 of its standard error. One approach is via the bootstrap: either t can be fixed or we
 may optimize over t for each bootstrap sample. Fixing t is analogous to selecting a
 best subset, and then using the least squares standard error for that subset.

 An approximate closed form estimate may be derived by writing the penalty Elfilj
 as E ,6/lflfI. Hence, at the lasso estimate /, we may approximate the solution by a
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 1996] REGRESSION SHRINKAGE AND SELECTION 273

 ridge regression of the form /* = (XTX + W-)-lXTy where W is a diagonal matrix
 with diagonal elements lfiil, W- denotes the generalized inverse of W and X is chosen
 so that E lI* - t. The covariance matrix of the estimates may then be approximated
 by

 (XTX + XWT) lXTX(XTX + xX-)-152, (7)

 where a2 is an estimate of the error variance. A difficulty with this formula is that it
 gives an estimated variance of 0 for predictors with f31 = 0.
 This approximation also suggests an iterated ridge regression algorithm for

 computing the lasso estimate itself, but this turns out to be quite inefficient. However,
 it is useful for selection of the lasso parameter t (Section 4).

 3. EXAMPLE -PROSTATE CANCER DATA

 The prostate cancer data come from a study by Stamey et al. (1989) that examined
 the correlation between the level of prostate specific antigen and a number of clinical
 measures, in men who were about to receive a radical prostatectomy. The factors
 were log(cancer volume) (lcavol), log(prostate weight) (lweight), age, log(benign
 prostatic hyperplasia amount) (lbph), seminal vesicle invasion (svi), log(capsular
 penetration) (lcp), Gleason score (gleason) and percentage Gleason scores 4 or 5
 (pgg45). We fit a linear model to log(prostate specific antigen) (lpsa) after first
 standardizing the predictors.

 C;

 0

 7

 0.0 0.2 0.4 0.6 0.8 1.0 1.2

 e 3~~~~~~~~

 Fig. 5. Lasso shrinkage of coefficients in the prostate cancer example: each curve represents a
 coefficient (labelled on the right) as a function of the (scaled) lasso parameter s = tIE I &j (the intercept
 is not plotted); the broken line represents the model for s^ = 0.44, selected by generalized cross-validation
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 274 TIBSHIRANI [No. 1,

 Fig. 5 shows the lasso estimates as a function of standardized bound s = t/lEl ?I.
 Notice that the absolute value of each coefficient tends to 0 as s goes to 0. In t1is
 example, the curves decrease in a monotone fashion to 0, but this does not always
 happen in general. This lack of monotonicity is shared by ridge regression and subset
 regression, where for example the best subset of size 5 may not contain the best
 subset of size 4. The vertical broken line represents the model for s = 0.44, the
 optimal value selected by generalized cross-validation. Roughly, this corresponds to
 keeping just under half of the predictors.

 Table 1 shows the results for the full least squares, best subset and lasso
 procedures. Section 7.1 gives the details of the best subset procedure that was used.
 The lasso gave non-zero coefficients to lcavol, lweight and svi; subset selection chose
 the same three predictors. Notice that the coefficients and Z-scores for the selected
 predictors from subset selection tend to be larger than the full model values: this is
 common with positively correlated predictors. However, the lasso shows the opposite
 effect, as it shrinks the coefficients and Z-scores from their full model values.

 The standard errors in the penultimate column were estimated by bootstrap
 resampling of residuals from the full least squares fit. The standard errors were
 computed by fixing s at its optimal value 0.44 for the original data set. Table 2

 TABLE 1

 Results for the prostate cancer example

 Predictor Least squares results Subset selection results Lasso results

 Coefficient Standard Z-score Coefficient Standard Z-score Coefficient Standard Z-score
 error error error

 1 intcpt 2.48 0.07 34.46 2.48 0.07 34.05 2.48 0.07 35.43
 2 Icavol 0.69 0.10 6.68 0.65 0.09 7.39 0.56 0.09 6.22
 3 Iweight 0.23 0.08 2.67 0.25 0.07 3.39 0.10 0.07 1.43
 4 age -0.15 0.08 -1.76 0.00 0.00 0.00 0.01 0.00
 5 lbph 0.16 0.08 1.83 0.00 0.00 0.00 0.04 0.00
 6 svi 0.32 0.10 3.14 0.28 0.09 3.18 0.16 0.09 1.78
 7 lcp -0.15 0.13 -1.16 0.00 0.00 0.00 0.03 0.00
 8 gleason 0.03 0.11 0.29 0.00 0.00 0.00 0.02 0.00
 9 pgg45 0.13 0.12 1.02 0.00 0.00 0.00 0.03 0.00

 TABLE 2

 Standard error estimates for the prostate cancer example

 Predictor Coefficient Bootstrap standard error Standard error
 approxination (7)

 Fixed t Varying t

 1 intcpt 2.48 0.07 0.07 0.07
 2 Icavol 0.56 0.08 0.10 0.09
 3 Iweight 0.10 0.06 0.08 0.06
 4 age 0.00 0.04 0.05 0.00
 5 lbph 0.00 0.04 0.07 0.00
 6 svi 0.16 0.09 0.09 0.07
 7 lcp 0.00 0.03 0.07 0.00
 8 gleason 0.00 0.02 0.05 0.00
 9 pgg45 0.00 0.03 0.06 0.00
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 0 -

 Icavol lweight age Ibph svl Icp gleason pgg45

 Fig. 6. Box plots of 200 bootstrap values of the lasso coefficient estimates for the eight predictors in
 the prostate cancer example

 compares the ridge approximation formula (7) with the fixed t bootstrap, and the
 bootstrap in which t was re-estimated for each sample. The ridge formula gives a
 fairly good approximation to the fixed t bootstrap, except for the zero coefficients.
 Allowing t to vary incorporates an additional source of variation and hence gives
 larger standard error estimates. Fig. 6 shows box plots of 200 bootstrap replications
 of the lasso estimates, with s fixed at the estimated value 0.44. The predictors whose
 estimated coefficient is 0 exhibit skewed bootstrap distributions. The central 90%
 percentile intervals (fifth and 95th percentiles of the bootstrap distributions) all
 contained the value 0, with the exceptions of those for Icavol and svi.

 4. PREDICTION ERROR AND ESTIMATION OF t

 In this section we describe three methods for the estimation of the lasso parameter
 t: cross-validation, generalized cross-validation and an analytical unbiased estimate
 of risk. Strictly speaking the first two methods are applicable in the 'X-random' case,
 where it is assumed that the observations (X, Y) are drawn from some unknown
 distribution, and the third method applies to the X-fixed case. However, in real
 problems there is often no clear distinction between the two scenarios and we might
 simply choose the most convenient method.

 Suppose that

 Y= 1(X) +e

 where E(e) = 0 and var(E) = a2. The mean-squared error of an estimate '(X) is
 defined by

 ME = E{l,(X) -_X)2

 the expected value taken over the joint distribution of X and Y, with '(X) fixed. A
 similar measure is the prediction error of '(X) given by

 PE=E{Y- -(X)}2=ME+2. (8)

 We estimate the prediction error for the lasso procedure by fivefold cross-
 validation as described (for example) in chapter 17 of Efron and Tibshirani (1993).

 The lasso is indexed in terms of the normalized parameter s = t/l P,8, and the
 prediction error is estimated over a grid of values of s from 0 to 1 inclusive. The value
 s yielding the lowest estimated PE is selected.
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 276 TIBSHIRANI [No. 1,

 Simulation results are reported in terms of ME rather than PE. For the linear
 models i(X) = X/3 considered in this paper, the mean-squared error has the simple
 form

 ME-= (3/3)TV(,3 /3)

 where V is the population covariance matrix of X.
 A second method for estimating t may be derived from a linear approximation to

 the lasso estimate. We write the constraint Elpjl < t as I f8/lIlj8 < t. This constraint
 is equivalent to adding a Lagrangian penalty X E fl/l,ij to the residual sum of
 squares, with X depending on t. Thus we may write the constrained solution ,3 as the
 ridge regression estimator

 /3= (XTX + XW-)-lXTy

 where W = diag(jf31I) and W- denotes a generalized inverse. Therefore the number of
 effective parameters in the constrained fit ,3 may be approximated by

 p(t) = tr{X(XTX + XW-)-lXT}.

 Letting rss(t) be the residual sum of squares for the constrained fit with constraint
 t, we construct the generalized cross-validation style statistic

 GCV(t) N1 rss(t) (10)

 Finally, we outline a third method based on Stein's unbiased estimate of risk.
 Suppose that z is a multivariate normal random vector with mean it and variance the
 identity matrix. Let a be an estimator of ,i, and write f = z + g(z) where g is an
 almost differential function from RP to RP (see definition 1 of Stein (1981)). Then
 Stein (1981) showed that

 / ~~~p

 A ts Ipp1 I p+E lg(Z) 1 12 + 2 Edgildz,)(1

 We may apply this result to the lasso estimator (3). Denote the estimated standard
 error of f by T = a/VN, where &2 = E (yi - yi)2/(N - p). Then the f7/Ti are (condi-
 tionally on X) approximately independent standard normal variates, and from
 equation (11) we may derive the formula

 R{f(y)} p - 2 #(j; I7/TI <Y) + E max(I8/TI, Y)2}

 as an approximately unbiased estimate of the risk or mean-square error E{,3(y) -
 3}2, where P8(y) = sign(p,8)(fi/I- y)+ Donoho and Johnstone (1994) gave a
 similar formula in the function estimation setting. Hence an estimate of y can be
 obtained as the minimizer of R{/3(y)}:
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 19961 REGRESSION SHRINKAGE AND SELECTION 277

 y= arg miny>O[R {I6(y))].

 From this we obtain an estimate of the lasso parameter t:

 t -

 Although the derivation of t^ assumes an orthogonal design, we may still try to use
 it in the usual non-orthogonal setting. Since the predictors have been standardized,
 the optimal value of t is roughly a function of the overall signal-to-noise ratio in the
 data, and it should be relatively insensitive to the covariance of X. (In contrast, the
 form of the lasso estimator is sensitive to the covariance and we need to account for it
 properly.)

 The simulated examples in Section 7.2 suggest that this method gives a useful
 estimate of t. But we can offer only a heuristic argument in favour of it. Suppose that
 XTX = V and let Z = XV-1/2, 0 = 3V-1/2. Since the columns of X are standardized,
 the region ElfjI < t differs from the region E2f3jl <, t in shape but has roughly the
 same-sized marginal projections. Therefore the optimal value of t should be about
 the same in each instance.

 Finally, note that the Stein method enjoys a significant computational advantage
 over the cross-validation-based estimate of t. In our experiments we optimized over a
 grid of 15 values of the lasso parameter t and used fivefold cross-validation. As a
 result, the cross-validation approach required 75 applications of the model optim-
 ization procedure of Section 6 whereas the Stein method required only one. The
 requirements of the generalized cross-validation approach are intermediate between
 the two, requiring one application of the optimization procedure per grid point.

 5. LASSO AS BAYES ESTIMATE

 The lasso constraint EI6il < t is equivalent to the addition of a penalty term X Ib,I4
 to the residual sum of squares (see Murray et al. (1981), chapter 5). Now lfjl is
 proportional to the (minus) log-density of the double-exponential distribution. As a
 result we can derive the lasso estimate as the Bayes posterior mode under inde-

 pendent double-exponential priors for the f,js,

 f(,Bj)- exp -)

 with r= 1/X.
 Fig. 7 shows the double-exponential density (full curve) and the normal density

 (broken curve); the latter is the implicit prior used by ridge regression. Notice how
 the double-exponential density puts more mass near 0 and in the tails. This reflects
 the greater tendency of the lasso to produce estimates that are either large or 0.

 6. ALGORITHMS FOR FINDING LASSO SOLUTIONS

 We fix t > 0. Problem (1) can be expressed as a least squares problem with 2P
 inequality constraints, corresponding to the 2P different possible signs for the P,s.
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 -4 -2 0 2 4

 beta

 Fig. 7. Double-exponential density ( ~) and normnal density (-----:the fonmer is the iInplicit
 prior used by the lasso; the latter by ridge regression

 Lawson and Hansen (1974) provided the ingredients for a procedure which solves the
 linear least squares problem subject to a general linear inequality constraint G'3 <, h.
 Here G is an m x p matrix, corresponding to m linear inequality constraints on the p-
 vector ,3. For our problem, however, m = 2P may be very large so that direct
 application of this procedure is not practical. However, the problem can be solved by
 introducing the inequality constraints sequentially, seeking a feasible solution
 satisfying the so-called Kuhn-Tucker conditions (Lawson and Hansen, 1974). We
 outline the procedure below.

 Let g(,3) = v jN Y-ytl)2, and let 6s, i-=1, 2, . . ., 2P be the p-tuples of the
 form ( 1, I 1, ... ., ? 1). Then the condition Elpjl < t iS equivalent to jT,3 <, t
 for all i. For a given /3, let E ={iL 6iT,l = t} and 5 =i 5I T,X3 < t}. The set E iS the
 equality set, corresponding to those constraints which are exactly met, whereas S is
 the slack set, corresponding to those constraints for which equality does not hold.
 Denote by GE the matrix whose rows are 6i for i E E. Let 1 be a vector of Is of length
 equal to the number of rows of GE.^
 T'he following algorithm starts with E = {io} where 6i,, sign('3, ,l being the

 overall least squares estimate. It solves the least squares problem subject to 15,O,B <' t
 and then checks whether sIl8il <, t. If so, the computation is complete; if not, the
 violated constraint is added to E and the process is continued until Elpjl <, t.
 Here is an outline of the algorithm.

 001~~~~~~~A 1

 (a) Start with E= {io} where 6i= sign(W), T being the overall least squares
 estimate.

 (b) Find ,3 to minimize g(3) subject to GE/3 <, tl.
 (c) While {Elpjl > t},9
 (d) add i to the set E where bi = sign(,3. Find ,B to minimize g(,3 subject to

 GE/3 < t 1

 T'his procedure must always converge in a finite number of steps since one element
 is added to the set E at each step, and there is a total of 2P elements. The final iterate
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 19961 REGRESSION SHRINKAGE AND SELECTION 279

 TABLE 3

 Results for example It

 Method Median mean-squared Average no. of Average s

 error 0 coefficients

 Least squares 2.79 (0.12) 0.0
 Lasso (cross-validation) 2.43 (0.14) 3.3 0.63 (0.01)
 Lasso (Stein) 2.07 (0.10) 2.6 0.69 (0.02)
 Lasso (generalized cross-validation) 1.93 (0.09) 2.4 0.73 (0.01)
 Garotte 2.29 (0.16) 3.9
 Best subset selection 2.44 (0.16) 4.8
 Ridge regression 3.21 (0.12) 0.0

 tStandard errors are given in parentheses.

 is a solution to the original problem since the Kuhn-Tucker conditions are satisfied
 for the sets E and S at convergence.

 A modification of this procedure removes elements from E in step (d) for which the
 equality constraint is not satisfied. This is more efficient but it is not clear how to
 establish its convergence.

 The fact that the algorithm must stop after at most 2P iterations is of little comfort
 if p is large. In practice we have found that the average number of iterations required
 is in the range (0.5p, 0.75p) and is therefore quite acceptable for practical purposes.

 A completely different algorithm for this problem was suggested by David Gay.
 We write each Pj as fit - P-, where fit and P- are non-negative. Then we solve the
 least squares problem with the constraints fij > 0, P-8 > 0 and X P8+ + Ej fi<t. In
 this way we transform the original problem (p variables, 2P constraints) to a new
 problem with more variables (2p) but fewer constraints (2p + 1). One can show that
 this new problem has the same solution as the original problem.

 Standard quadratic programming techniques can be applied, with the convergence
 assured in 2p + 1 steps. We have not extensively compared these two algorithms but
 in examples have found that the second algorithm is usually (but not always) a little
 faster than the first.

 7. SIMULATIONS

 7.1. Outline
 In the following examples, we compare the full least squares estimates with the

 lasso, the non-negative garotte, best subset selection and ridge regression. We used
 fivefold cross-validation to estimate the regularization parameter in each case. For
 best subset selection, we used the 'leaps' procedure in the S language, with fivefold
 cross-validation to estimate the best subset size. This procedure is described and
 studied in Breiman and Spector (1992) who recommended fivefold or tenfold cross-
 validation for use in practice.

 For completeness, here are the details of the cross-validation procedure. The best
 subsets of each size are first found for the original data set: call these So, S1, . . ., Sp
 (S0 represents the null nodel; since - = 0 the fitted values are 0 for this model.)
 Denote the full training set by T, and the cross-validation training and test sets by
 T - T' and TI, for v = 1, 2, . . ., 5. For each cross-validation fold v, we find the best
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 TABLE 4

 Most frequent models selected by the lasso
 (generalized cross-validation) in example I

 Model Proportion

 1245678 0.055
 123456 0.050
 1258 0.045
 1245 0.045
 13 others
 125 (and 5 others) 0.025

 subsets of each size for the data T- Tv: call these So, S,. . ., Sp. Let PEv(J) be the
 prediction error when Sv is applied to the test data TV, and form the estimate

 PE(J) PE(J). (12)
 v=1

 We find the J that minimizes PE(J) and our selected model is SJ. This is not the same
 as estimating the prediction error of the fixed models So, Si, . . ., SP and then
 choosing the one with the smallest prediction error. This latter procedure is described
 in Zhang (1993) and Shao (1992), and can lead to inconsistent model selection unless
 the cross-validation test set Tv grows at an appropriate asymptotic rate.

 7.2. Example 1
 In this example we simulated 50 data sets consisting of 20 observations from the

 model

 y = 3TX + as,

 where ,3 = (3, 1.5, 0, 0, 2, 0, 0, o)T and e is standard normal. The correlation
 between xi and xj was plisl with p = 0.5. We set a = 3, and this gave a signal-to-noise
 ratio of approximately 5.7. Table 3 shows the mean-squared errors over 200
 simulations from this model. The lasso performs the best, followed by the garotte
 and ridge regression.

 Estimation of the lasso parameter by generalized cross-validation seems to per-
 form best, a trend that we find is consistent through all our examples. Subset

 TABLE 5

 Most frequent models selected by all-subsets
 regression in example I

 Model Proportion

 125 0.240
 15 0.200
 1 0.095
 1257 0.040
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 TABLE 6

 Results for example 2t

 Method Median mean-squared Average no. of Average s

 error 0 coefficients

 Least squares 6.50 (0.64) 0.0
 Lasso (cross-validation) 5.30 (0.45) 3.0 0.50 (0.03)
 Lasso (Stein) 5.85 (0.36) 2.7 0.55 (0.03)
 Lasso (generalized cross-validation) 4.87 (0.35) 2.3 0.69 (0.23)
 Garotte 7.40 (0.48) 4.3
 Subset selection 9.05 (0.78) 5.2
 Ridge regression 2.30 (0.22) 0.0

 tStandard errors are given in parentheses.

 selection picks approximately the correct number of zero coefficients (5), but suffers
 from too much variability as shown in the box plots of Fig. 8.

 Table 4 shows the five most frequent models (non-zero coefficients) selected by the
 lasso (with generalized cross-validation): although the correct model (1, 2, 5) was
 chosen only 2.5% of the time, the selected model contained (1, 2, 5) 95.5% of the
 time. The most frequent models selected by subset regression are shown in Table 5.
 The correct model is chosen more often (24% of the time), but subset selection can
 also underfit: the selected model contained (1, 2, 5) only 53.5% of the time.

 7.3. Example 2

 The second example is the same as example 1, but with Pj = 0.85, Vj and a = 3; the
 signal-to-noise ratio was approximately 1.8. The results in Table 6 show that ridge
 regression does the best by a good margin, with the lasso being the only other
 method to outperform the full least squares estimate.

 7.4. Example 3
 For example 3 we chose a set-up that should be well suited for subset selection.

 The model is the same as example 1, but with 3 =(5, 0, 0, 0, 0, 0, 0, 0) and a = 2 so
 that the signal-to-noise ratio was about 7.

 The results in Table 7 show that the garotte and subset selection perform the best,

 TABLE 7

 Results for example 3t

 Method Median mean-squared Average no. of Average s
 error 0 coefficients

 Least squares 2.89 (0.04) 0.0
 Lasso (cross-validation) 0.89 (0.01) 3.0 0.50 (0.03)
 Lasso (Stein) 1.26 (0.02) 2.6 0.70 (0.01)
 Lasso (generalized cross-validation) 1.02 (0.02) 3.9 0.63 (0.04)
 Garotte 0.52 (0.01) 5.5
 Subset selection 0.64 (0.02) 6.3
 Ridge regression 3.53 (0.05) 0.0

 tStandard errors are given in parentheses.
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 TABLE 8

 Results for example 4t

 Method Median mean-squared Average no. of Average s
 error 0 coefficients

 Least squares 137.3 (7.3) 0.0
 Lasso (Stein) 80.2 (4.9) 14.4 0.55 (0.02)
 Lasso (generalized cross-validation) 64.9 (2.3) 13.6 0.60 (0.88)
 Garotte 94.8 (3.2) 22.9
 Ridge regression 57.4 (1.4) 0.0

 tStandard errors are given in parentheses.

 followed closely by the lasso. Ridge regression does poorly and has a higher mean-
 squared error than do the full least squares estimates.

 7.5. Example 4
 In this example we examine the performance of the lasso in a bigger model. We

 simulated 50 data sets each having 100 observations and 40 variables (note that best
 subsets regression is generally considered impractical for p > 30). We defined
 predictors xy = zy + zi where zy and zi are independent standard normal variates.
 This induced a pairwise correlation of 0.5 among the predictors. The coefficient
 vector was /3 (0, 0, .. . ,0, 2,2 .. ., 2, 0, 0, ... ., 0, 2,2 .. ., 2), there being 10
 repeats in each block. Finally we defined y = l3Tx + 15E where E was standard
 normal. This produced a signal-to-noise ratio of roughly 9. The results in Table 8
 show that the ridge regression performs the best, with the lasso (generalized cross-
 validation) a close second.

 The average value of the lasso coefficients in each of the four blocks of 10 were
 0.50 (0.06), 0.92 (0.07), 1.56 (0.08) and 2.33 (0.09). Although the lasso only produced
 14.4 zero coefficients on average, the average value of s (0.55) was close to the true
 proportion of Os (0.5).

 8. APPLICATION TO GENERALIZED REGRESSION MODELS

 The lasso can be applied to many other models: for example Tibshirani (1994)
 described an application to the proportional hazards model. Here we briefly explore
 the application to generalized regression models.

 Consider any model indexed by a vector parameter /3, for which estimation is
 carried out by maximization of a function l(J3); this may be a log-likelihood function
 or some other measure of fit. To apply the lasso, we maximize 1(,3) under the
 constraint ZIIj Ij < t. It might be possible to carry out this maximization by a general
 (non-quadratic) programming procedure. Instead, we consider here models for which
 a quadratic approximation to 1(a3) leads to an iteratively reweighted least squares
 (IRLS) procedure for computation of ,3. Such a procedure is equivalent to a
 Newton-Raphson algorithm. Using this approach, we can solve the constrained
 problem by iterative application of the lasso algorithm, within an IRLS loop.
 Convergence of this procedure is not ensured in general, but in our limited experience
 it has behaved quite well.
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 8.1. Logistic Regression
 For illustration we applied the lasso to the logistic regression model for binary

 data. We used the kyphosis data, analysed in Hastie and Tibshirani (1990), chapter
 10. The response is kyphosis (0 _ absent, 1 _ present); the predictors xl = age, x2
 number of vertebrae levels and X3 starting vertebrae level. There are 83 obser-
 vations. Since the predictor effects are known to be non-linear, we included squared
 terms in the model after centring each of the variables. Finally, the columns of the
 data matrix were standardized.

 The linear logistic fitted model is

 -2.64 + 0.83x, + 0.77x2 - 2.28x3 - 1.55x2l + 0.03x22 - 1.17x2.

 Backward stepwise deletion, based on Akaike's information criterion, dropped the
 x2-term and produced the model

 -2.64 + 0.84x1 + 0.80x2 - 2.28x3 - 1.54x2 - 1.16x23.

 The lasso chose s= 0.33, giving the model

 -1.42 + 0.03x, + 0.31x2 - 0.48x3 - 0.28x2.

 Convergence, defined as the I 13new8 )30d1 2 < 10-6, was obtained in five iterations.

 9. SOME FURTHER EXTENSIONS

 We are currently exploring two quite different applications of the lasso idea. One
 application is to tree-based models, as reported in LeBlanc and Tibshirani (1994).
 Rather than prune a large tree as in the classification and regression tree approach of
 Breiman et al. (1984), we use the lasso idea to shrink it. This involves a constrained
 least squares operation much like that in this paper, with the parameters being the
 mean contrasts at each node. A further set of constraints is needed to ensure that the
 shrunken model is a tree. Results reported in LeBlanc and Tibshirani (1994) suggest
 that the shrinkage procedure gives more accurate trees than pruning, while still
 producing interpretable subtrees.

 A different application is to the multivariate adaptive regression splines (MARS)
 proposal of Friedman (1991). The MARS approach is an adaptive procedure that
 builds a regression surface by sum of products of piecewise linear basis functions of
 the individual regressors. The MARS algorithm builds a model that typically
 includes basis functions representing main effects and interactions of high order.
 Give the adaptively chosen bases, the MARS fit is simply a linear regression onto
 these bases. A backward stepwise procedure is then applied to eliminate less
 important terms.

 In on-going work with Trevor Hastie, we are developing a special lasso-type
 algorithm to grow and prune a MARS model dynamically. Hopefully this will
 produce more accurate MARS models which also are interpretable.

 The lasso idea can also be applied to ill-posed problems, in which the predictor
 matrix is not full rank. Chen and Donoho (1994) reported some encouraging results
 for the use of lasso-style constraints in the context of function estimation via
 wavelets.
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 10. RESULTS ON SOFT THRESHOLDING

 Consider the special case of an orthonormal design XTX = I. Then the lasso
 estimate has the form

 ,B = sign(f)(I6 Y-) (13)

 This is called a 'soft threshold' estimator by Donoho and Johnstone (1994); they
 applied this estimator to the coefficients of a wavelet transform of a function
 measured with noise. They then backtransformed to obtain a smooth estimate of the
 function. Donoho and Johnstone proved many optimality results for the soft
 threshold estimator and then translated these results into optimality results for
 function estimation.

 Our interest here is not in function estimation but in the coefficients themselves.
 We give one of Donoho and Johnstone's results here. It shows that asymptotically
 the soft threshold estimator (lasso) comes as close as subset selection to the
 performance of an ideal subset selector - one that uses information about the actual
 parameters.

 Suppose that

 Yi = ix' + Ei

 where Ei - N(0, a 2) and the design matrix is orthonormal. Then we can write

 p>? pj + azj (14)

 where zj - N(0, cr2).
 We consider estimation of ,B under squared error loss, with risk

 R(3 1 3) =EEl 1_- -32

 Consider the family of diagonal linear projections

 TDP(0, 3) = )y 1 fO, 1}. (15)

 This estimator either keeps or kills a parameter fl, i.e. it does subset selection. Now
 we incur a risk of a2 if we use flO, and f(j if we use an estimate of 0 instead. Hence the
 ideal choice of 3, is I(1flj1 > aT), i.e. we keep only those predictors whose true
 coefficient is larger than the noise level. Call the risk of this estimator RDP: of course

 this estimator cannot be constructed since the P,i are unknown. Hence RDP is a lower
 bound on the risk that we can hope to attain.

 Donoho and Johnstone (1994) proved that the hard threshold (subset selection)
 estimator f,B = I(,7(1?I > y) has risk

 R(/3, /3) s< (2 logp + 1) (a.2 + RDP). (16)

 Here y is chosen as a(2 log n)112, the choice giving smallest asymptotic risk. They also
 showed that the soft threshold estimator (13) with y = o(2 log n)112 achieves the same
 asymptotic rate.
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 These results lend some support to the potential utility of the lasso in linear
 models. However, the important differences between the various approaches tend to
 occur for correlated predictors, and theoretical results such as those given here seem
 to be more difficult to obtain in that case.

 1 1. DISCUSSION

 In this paper we have proposed a new method (the lasso) for shrinkage and
 selection for regression and generalized regression problems. The lasso does not
 focus on subsets but rather defines a continuous shrinking operation that can
 produce coefficients that are exactly 0. We have presented some evidence in this
 paper that suggests that the lasso is a worthy competitor to subset selection and ridge
 regression. We examined the relative merits of the methods in three different
 scenarios:

 (a) small number of large effects subset selection does best here, the lasso not
 quite as well and ridge regression does quite poorly;

 (b) small to moderate number of moderate-sized effects - the lasso does best,
 followed by ridge regression and then subset selection;

 (c) large number of small effects ridge regression does best by a good margin,
 followed by the lasso and then subset selection.

 Breiman's garotte does a little better than the lasso in the first scenario, and a little
 worse in the second two scenarios. These results refer to prediction accuracy. Subset
 selection, the lasso and the garotte have the further advantage (compared with ridge
 regression) of producing interpretable submodels.

 There are many other ways to carry out subset selection or regularization in least
 squares regression. The literature is increasing far too fast to attempt to summarize it
 in this short space so we mention only a few recent developments. Computational
 advances have led to some interesting proposals, such as the Gibbs sampling
 approach of George and McCulloch (1993). They set up a hierarchical Bayes model
 and then used the Gibbs sampler to simulate a large collection of subset models from
 the posterior distribution. This allows the data analyst to examine the subset models
 with highest posterior probability and can be carried out in large problems.

 Frank and Friedman (1993) discuss a generalization of ridge regression and subset
 selection, through the addition of a penalty of the form X YiflIq to the residual sum
 of squares. This is equivalent to a constraint of the form S2jl1q <, t; they called this
 the 'bridge'. The lasso corresponds to q = 1. They suggested that joint estimation of
 the Pjs and q might be an effective strategy but do not report any results.

 Fig. 9 depicts the situation in two dimensions. Subset selection corresponds to
 q -O 0. The value q = 1 has the advantage of being closer to subset selection than is
 ridge regression (q = 2) and is also the smallest value of q giving a convex region.
 Furthermore, the linear boundaries for q = 1 are convenient for optimization.

 The encouraging results reported here suggest that absolute value constraints
 might prove to be useful in a wide variety of statistical estimation problems. Further
 study is needed to investigate these possibilities.
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 (a) (b) (c) (d) (e)

 Fig. 9. Contours of constant value of jl2fi1q for given values of q: (a) q = 4; (b) q = 2; (c) q = 1;
 (d) q = 0.5; (e) q = 0.1

 12. SOFTWARE

 Public domain and S-PLUS language functions for the lasso are available at the
 Statlib archive at Carnegie Mellon University. There are functions for linear models,
 generalized linear models and the proportional hazards model. To obtain them, use
 file transfer protocol to lib.stat.cmu.edu and retrieve the file S/lasso, or send an
 electronic mail message to statlib@lib.stat.cmu.edu with the message send lasso from S.
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