Math for Machine Learning Week 1.1: Vectors, matrices, and least squares regression

By: Samuel Deng

Lesson Overview

 $\mathbf{x} \in \mathbb{R}^d$. A collection of samples is represented as a <u>matrix</u> $\mathbf{X} \in \mathbb{R}^{n \times d}$.

 $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n).$

Linear independence. Linearly independent vectors are vectors that are not redundant; linearly dependent vectors can be expressed as simple (linear) combinations of other vectors.

Span. The <u>span</u> of a set of vectors includes all vectors we can form by simple (linear) combinations of the vectors in the set.

Vectors and matrices (an ML view). A single datapoint/sample in ML is represented as a vector

Regression (the basic ML problem). The basic problem in machine learning is <u>regression</u>: constructing a "best-fit" model from a collection of observed data $\mathbf{x} \in \mathbb{R}^d$ and labels $y \in \mathbb{R}$:

Lesson Overview

Big Picture: Least Squares

Lesson Overview

Big Picture: Gradient Descent

 $f(w)=w^2$

Vectors & Matrices

Vectors Review from linear algebra

A <u>vector</u> is a list of numbers. We write $\mathbf{x} \in \mathbb{R}^d$ as:

By convention, our vectors will be column vectors. A row vector looks like:

- $\mathbf{x}^{\mathsf{T}} = \begin{bmatrix} x_1 & \dots & x_d \end{bmatrix}$

Vectors Review from linear algebra

In \mathbb{R}^n , a special set of vectors is the <u>unit basis vectors</u>:

Vectors Review from linear algebra

Vectors can interchangeably thought of as points:

or "arrows":

Matrices Review from linear algebra

A <u>matrix</u> is a box of numbers, or a list of vectors. We write $\mathbf{X} \in \mathbb{R}^{n \times d}$ as:

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix}$$

Matrices Review from linear algebra

A <u>matrix</u> is a box of numbers, or a list of vectors. We write $\mathbf{X} \in \mathbb{R}^{n \times d}$ as:

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix}$$

Column definition: stack column vectors $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$ side-by-side next to each other. **Row definition:** take (by convention, column) vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, turn them into rows $\mathbf{x}_1^{\mathsf{T}}, \dots, \mathbf{x}_n^{\mathsf{T}} \in \mathbb{R}^{1 \times d}$, and stack them on top of each other.

or
$$\mathbf{X} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \rightarrow \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \rightarrow \end{bmatrix}$$

Matrices Transpose

for all $i \in [d], j \in [n]$.

For a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, its <u>transpose</u> is the matrix $\mathbf{X}^{\top} \in \mathbb{R}^{d \times n}$ obtained from swapping $X_{ii}^{\top} = X_{ii}$

Multiplication Vector-vector "multiplication"

Given two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, their <u>dot product (Euclidean inner product)</u> is:

More generally, an inner product between two vectors is written as $\langle x, y \rangle$. If not specified otherwise, we will use the dot product as default in this course.

 $\mathbf{x}^{\mathsf{T}}\mathbf{y} := x_1y_1 + \ldots + x_dy_d.$

Multiplication Properties of the inner product

For any two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ the inner product obeys the following:

1. Symmetry. $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$.

2. Positive definiteness. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$, and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

3. Linearity. Let $\alpha \in \mathbb{R}$ be a scalar and $\mathbf{u} \in \mathbb{R}^d$ be another vector. Then:

 $\langle \alpha \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle.$

- (note $\langle \mathbf{v}, \mathbf{v} \rangle = \|\mathbf{v}\|^2$, the squared norm of any vector)

Multiplication Vector-vector "multiplication"

Example. Compute the dot product between $\mathbf{x} = (2,5,3)$ and $\mathbf{y} = (-1,0,3)$.

Multiplication Matrix-vector multiplication (column view)

To multiply a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and a vector $\mathbf{w} \in \mathbb{R}^d$, we can think of the column view:

$$\mathbf{X}\mathbf{w} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix} = w_1 \begin{bmatrix} \uparrow \\ \mathbf{x}_1 \\ \downarrow \end{bmatrix} + \dots + w_d \begin{bmatrix} \uparrow \\ \mathbf{x}_d \\ \downarrow \end{bmatrix}.$$

The result is $\mathbf{X}\mathbf{w} \in \mathbb{R}^n$.

Interpretation: Xw is a *linear combination* of the columns of X.

Multiplication Matrix-vector multiplication (equation view)

To multiply a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and a vector $\mathbf{w} \in \mathbb{R}^d$, we can think of the equation view:

The result is $\mathbf{X}\mathbf{w} \in \mathbb{R}^n$.

Interpretation: Xw compiles the "right-hand sides" of a system of linear equations.

$$\rightarrow \left[\begin{array}{c} \uparrow \\ \mathbf{w} \\ \downarrow \end{array} \right] = \left[\begin{array}{c} \mathbf{x}_1^{\mathsf{T}} \mathbf{w} \\ \vdots \\ \mathbf{x}_n^{\mathsf{T}} \mathbf{w} \end{array} \right]$$

Multiplication Matrix-vector multiplication

Example. Compute the matrix-vector product:

$\mathbf{X}\mathbf{w} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$

Multiplication Matrix-matrix multiplication (matrix-vector view)

To multiply two matrices $\mathbf{U} \in \mathbb{R}^{n \times r}$ and $\mathbf{V} \in \mathbb{R}^{r \times d}$, we just think of *d* different matrix-vector products:

$$\mathbf{UV} = \mathbf{U} \begin{bmatrix} \uparrow & & \\ \mathbf{v}_1 & \cdots \\ \downarrow & & \end{bmatrix}$$

The result is $\mathbf{X} = \mathbf{U}\mathbf{V} \in \mathbb{R}^{n \times d}$.

$$\begin{array}{c} \uparrow \\ \mathbf{v}_d \\ \downarrow \end{array} \right] = \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{U}\mathbf{v}_1 & \dots & \mathbf{U}\mathbf{v}_d \\ \downarrow & & \downarrow \end{array} \right]$$

Multiplication Matrix-matrix multiplication (inner product/entry view)

U

$$\mathbf{V} = \begin{bmatrix} \leftarrow \mathbf{u}_{1}^{\mathsf{T}} \rightarrow \\ \vdots \\ \leftarrow \mathbf{u}_{n}^{\mathsf{T}} \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow \\ \mathbf{v}_{1} \\ \downarrow \end{bmatrix}$$
$$(\mathbf{U}\mathbf{V})_{ij} = \mathbf{u}_{i}^{\mathsf{T}}\mathbf{v}_{j}$$

The result is $\mathbf{X} = \mathbf{U}\mathbf{V} \in \mathbb{R}^{n \times d}$.

To multiply two matrices $\mathbf{U} \in \mathbb{R}^{n \times r}$ and $\mathbf{V} \in \mathbb{R}^{r \times d}$, we just think of *nd* different inner products:

$$\begin{array}{c} \uparrow \\ \cdots \\ \mathbf{v}_{d} \\ \downarrow \end{array} \right] = \begin{bmatrix} \mathbf{u}_{1}^{\mathsf{T}} \mathbf{v}_{1} & \cdots & \mathbf{u}_{1}^{\mathsf{T}} \mathbf{v}_{d} \\ \vdots \\ \mathbf{u}_{n}^{\mathsf{T}} \mathbf{v}_{1} & \cdots & \mathbf{u}_{n}^{\mathsf{T}} \mathbf{v}_{d} \end{bmatrix}$$

for all $i \in [n], j \in [d]$.

Multiplication Matrix-matrix multiplication (outer product view)

To multiply two matrices $\mathbf{U} \in \mathbb{R}^{n \times r}$ and $\mathbf{V} \in \mathbb{R}^{r \times d}$, we just think of summing *r* different outer products ($n \times d$ matrices):

$$\mathbf{U}\mathbf{V} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{u}_1 & \dots & \mathbf{u}_r \\ \downarrow & & \downarrow \end{bmatrix} \begin{bmatrix} \leftarrow & \mathbf{v}_1^\top \to \\ \vdots & \\ \leftarrow & \mathbf{v}_r^\top \to \end{bmatrix} =$$

The result is
$$\mathbf{X} = \mathbf{U}\mathbf{V} \in \mathbb{R}^{n \times d}$$
.

Matrices Inverses and Identity Matrix

that:

where $\mathbf{I} \in \mathbb{R}^{d \times d}$ is the <u>identity matrix</u>:

A square matrix $\mathbf{X} \in \mathbb{R}^{d \times d}$ is <u>invertible</u> if there exists a matrix $\mathbf{X}^{-1} \in \mathbb{R}^{d \times d}$ (the <u>inverse</u>) such

$\mathbf{X}^{-1}\mathbf{X} = \mathbf{X}\mathbf{X}^{-1} = \mathbf{I},$

Regression

Collect *d* measurements $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ for *n* students...

where $y_i \in \mathbb{R}$ denotes the test score of a student.

Given the measurements for a new student, $\mathbf{x}_0 \in \mathbb{R}^d$, what is their test score?

<u>Goal</u>: Given a new unlabelled sample, \mathbf{x}_0 , make a prediction \hat{y} such that $\hat{y} \approx y_0$.

We observe *n* samples of training (observed) features $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$, with labels $y_1, ..., y_n \in \mathbb{R}$.

<u>Goal</u>: Given a new unlabelled sample, \mathbf{x}_0 , make a prediction \hat{y} such that $\hat{y} \approx y_0$. To do this, we will construct a *model* for the observed data.

A *linear model* is represented with a <u>weight vector</u> $\mathbf{w} \in \mathbb{R}^d$. To make a prediction with the weight vector, we take an inner product.

$$\hat{y} = \langle \mathbf{w}, \mathbf{x}_0 \rangle$$

 $= w_1 x_{01} + \dots w_d x_{0d}.$

How do we construct the weight vector $\mathbf{w} \in$ Learn it from the observed data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$.

For some weight vector $\mathbf{w} \in \mathbb{R}^d$, its predictions on the observed data are:

$$\begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \hat{\mathbf{y}} = \mathbf{X}\mathbf{w} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \to \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \to \end{bmatrix} \begin{bmatrix} \uparrow \\ \mathbf{w} \\ \downarrow \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^\top \mathbf{w} \\ \vdots \\ \mathbf{x}_n^\top \mathbf{w} \end{bmatrix} = \begin{bmatrix} \langle \mathbf{x}_1, \mathbf{w} \rangle \\ \vdots \\ \langle \mathbf{x}_n, \mathbf{w} \rangle \end{bmatrix}$$

$$\mathbb{R}^{d}$$
?

For some weight vector $\mathbf{w} \in \mathbb{R}^d$, its predictions on the observed data are:

$$\begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \hat{\mathbf{y}} = \mathbf{X}\mathbf{w} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \to \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \to \end{bmatrix} \begin{bmatrix} \uparrow \\ \mathbf{w} \\ \downarrow \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^\top \mathbf{w} \\ \vdots \\ \mathbf{x}_n^\top \mathbf{w} \end{bmatrix} = \begin{bmatrix} \langle \mathbf{x}_1, \mathbf{w} \rangle \\ \vdots \\ \langle \mathbf{x}_n, \mathbf{w} \rangle \end{bmatrix}$$

<u>Goal</u>: Given a new unlabelled sample, \mathbf{x}_0 , make a prediction \hat{y} such that $\hat{y} \approx y_0$.

it's not a bad idea to find $\mathbf{w} \in \mathbb{R}^d$ so:

This will be our new goal!

- If the new sample (\mathbf{x}_0, y_0) is "distributed like" the training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$, then

Regression Setup (Example View)

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$.

$$\mathbf{X} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \rightarrow \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \rightarrow \end{bmatrix} \mathbf{y}$$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

<u>Goal</u>: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$= \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d.$$

Regression Setup (Feature View)

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \mathbf{y} = \mathbf{y}$$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$= \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n.$$

Regression Caveat

linear relationship with the \mathbf{x}_i).

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or: $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

In general, it may not be the case that y = Xw for any $w \in \mathbb{R}^d$ (the labels y_i don't have a perfect

Regression Example: d = 1

$$\mathbf{X} = \begin{bmatrix} \vdots \\ 14.07 \\ 17.51 \\ 22.42 \\ 26.88 \\ \vdots \end{bmatrix} \mathbf{y} = \begin{bmatrix} \vdots \\ 2.5 \\ 3 \\ 3.48 \\ 3.12 \\ \vdots \end{bmatrix}$$

 x_1

Regression Example: d = 2

Least Squares A Solution to Regression

Regression Setup (Example View)

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$.

$$\mathbf{X} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \rightarrow \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \rightarrow \end{bmatrix} \mathbf{y}$$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

<u>Goal</u>: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$= \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d.$$

Ordinary Least Squares Notion of Error

linear relationship with the \mathbf{x}_i).

The <u>residual</u> $r_i(\mathbf{w})$ of the *i*th prediction with $\mathbf{w} \in \mathbb{R}^d$ is

$$r_i(\mathbf{w}) := \hat{y}_i - y_i = \langle \mathbf{w}, \mathbf{x}_i \rangle - y_i.$$

We can write this as a vector $\mathbf{r} \in \mathbb{R}^n$.

The sum of squared residuals is

$$SSR := \sum_{i=1}^{n} r_i(\mathbf{w})^2 = r_1(\mathbf{w})^2 + \dots + r_n(\mathbf{w})^2.$$

In general, it may not be the case that $\mathbf{y} = \mathbf{X}\mathbf{w}$ for any $\mathbf{w} \in \mathbb{R}^d$ (the labels y_i don't have a perfect
Norms and Inner Products **Euclidean Norm**

Recall the notion of "length" from \mathbb{R}^2 . For a ve

Generalizing this, for $\mathbf{x} \in \mathbb{R}^n$, the <u>Euclidean norm (ℓ_2 -norm</u>) is:

$$\|\mathbf{x}\|_2 := \sqrt{x_1^2 + \ldots + x_n^2} = \sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{x}}.$$

For a vector
$$\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$$
,
 $\|\mathbf{x}\|_2 := \sqrt{x_1^2 + x_2^2}$.

$$\|_2^2 = \mathbf{x}^\mathsf{T} \mathbf{x}.$$

Ordinary Least Squares Notion of Error

Residual: $r_i(\mathbf{w}) := \hat{y}_i - y_i = \langle \mathbf{w}, \mathbf{x}_i \rangle - y_i$, or $\mathbf{r} \in \mathbb{R}^n$.

The sum of squared residuals is

$$SSR := \sum_{i=1}^{n} r_i(\mathbf{w})^2$$

 $= r_1(\mathbf{w})^2 + \ldots + r_n(\mathbf{w})^2$. $SSR = ||\mathbf{r}||^2 = ||\hat{\mathbf{y}} - \mathbf{y}||^2 = ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2.$

Ordinary Least Squares Principle of Least Squares

<u>**Goal:**</u> Find the $\mathbf{w} \in \mathbb{R}^d$ that minimizes the sum of squared residuals:

 $\|\mathbf{r}\|^2 = \|\hat{\mathbf{y}} - \mathbf{y}\|^2 = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$

Ordinary Least Squares Sum of Squared Residuals

Example: If $\mathbf{X} \in \mathbb{R}^{n \times 2}$ and $\mathbf{y} \in \mathbb{R}^n$, what can $SSR(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$ look like?

Ordinary Least Squares Sum of Squared Residuals

Ordinary Least Squares Sum of Squared Residuals

Regression Setup (Feature View)

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \mathbf{y} = \mathbf{y}$$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$= \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n.$$

 $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

Let n = 3 and d = 2. In this case $\hat{\mathbf{y}} \in \mathbb{R}^3$ is a *linear combination* of columns \mathbf{x}_1 and \mathbf{x}_2 .

_____ x1 _____ x2 ○ ~y

 $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w} = w_1\mathbf{x}_1 + w_2\mathbf{x}_2 \in \mathbb{R}^3$

Span Idea

For a collection of vectors $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$, the <u>span</u> is...

 \sim 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 Ŷ

Span Definition

For a collection of vectors $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$, the linear combinations of $\mathbf{x}_1, ..., \mathbf{x}_d$:

 $\operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_d) = \begin{cases} \mathbf{y} \\ \mathbf{y} \end{cases}$

For a collection of vectors $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$, the <u>span</u> is the set of vectors we can attain through

$$\in \mathbb{R}^n : \mathbf{y} = \sum_{i=1}^d \alpha_i \mathbf{x}_i, \alpha_i \in \mathbb{R} \right\}.$$

Span Examples

span
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

span $\begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{bmatrix} 0 \\ -1 \end{pmatrix}$
span $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

Let n = 3 and d = 2. In this case $\hat{\mathbf{y}} \in \mathbb{R}^3$ is a *linear combination* of columns \mathbf{x}_1 and \mathbf{x}_2 . Let $col(\mathbf{X}) := {\mathbf{x}_1, ..., \mathbf{x}_d}$ be the columnspace of $\mathbf{X} \in \mathbb{R}^{n \times d}$. Then,

- $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w} = w_1\mathbf{x}_1 + w_2\mathbf{x}_2 \in \mathbb{R}^3$

 - $\hat{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X})).$

So, $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w} = w_1\mathbf{x}_1 + w_2\mathbf{x}_2 \in \mathbb{R}^3$, which we can write as: $\hat{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$.

The true labels $\mathbf{y} \in \mathbb{R}^n$ might not be in span(col(X)).

<u>Goal</u>: Find $\mathbf{w} \in \mathbb{R}^d$ that minimizes $\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$.

<u>Goal</u>: Find $\mathbf{w} \in \mathbb{R}^d$ that minimizes $\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$.

<u>Goal</u>: Find $\mathbf{w} \in \mathbb{R}^d$ that minimizes $\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$.

Which point on span(col(X)) minimizes the distance from y to span(col(X))?

<u>Goal</u>: Find $\mathbf{w} \in \mathbb{R}^d$ that minimizes $\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$.

The point a perpendicular line down to span(col(X))!

Which point on span(col(X)) minimizes the distance from y to span(col(X))?

A projection of $\mathbf{y} \in \mathbb{R}^n$ onto $\operatorname{span}(\operatorname{col}(\mathbf{X}))$ gives us $\hat{\mathbf{y}} \in \mathbb{R}^n$, and $\mathbf{X}\hat{\mathbf{w}} = \hat{\mathbf{y}}$.

Let $\tilde{\mathbf{y}} \in \mathbb{R}^n$ be any other vector in span(col(X)), written $\mathbf{X}\tilde{\mathbf{w}} = \tilde{\mathbf{y}}$.

Let $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}}$ be the projection of \mathbf{y} . Let $\tilde{\mathbf{y}} = \mathbf{X}\tilde{\mathbf{w}}$ be any other $\tilde{\mathbf{y}}$.

The distances $\|\mathbf{y} - \hat{\mathbf{y}}\|$ and $\|\mathbf{y} - \tilde{\mathbf{y}}\|$ are the lengths of the residuals $\|\hat{\mathbf{r}}\|$ and $\|\tilde{\mathbf{r}}\|$.

Let $\tilde{\mathbf{y}} = \mathbf{X}\tilde{\mathbf{w}}$ be any other vector in span(col(\mathbf{X})).

By the Pythagorean Theorem,

 $\|\hat{\mathbf{r}}\|^2 + \|\tilde{\mathbf{y}} - \hat{\mathbf{y}}\|^2 = \|\tilde{\mathbf{r}}\|^2.$

But $\|\tilde{\mathbf{y}} - \hat{\mathbf{y}}\|^2 \ge 0$, so:

 $\|\hat{\mathbf{r}}\|^2 \le \|\tilde{\mathbf{r}}\|^2.$

By definition, $\hat{\mathbf{r}} = \mathbf{X}\hat{\mathbf{w}} - \mathbf{y}$ and $\tilde{\mathbf{r}} = \mathbf{X}\tilde{\mathbf{w}} - \mathbf{y}$.

Therefore,

 $\|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2 \le \|\mathbf{X}\tilde{\mathbf{w}} - \mathbf{y}\|^2.$

Therefore:

 $\|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2 \le \|\mathbf{X}\tilde{\mathbf{w}} - \mathbf{y}\|^2,$

where $\hat{\mathbf{w}} \in \mathbb{R}^d$ is obtained from the projection $\hat{\mathbf{y}}$ of $\mathbf{y} \in \mathbb{R}^d$ onto $\operatorname{span}(\operatorname{col}(\mathbf{X}))$, and $\tilde{\mathbf{w}} \in \mathbb{R}^d$ is any other vector.

But what is $\hat{\mathbf{w}}$?

Orthogonality Definition

Two vectors $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$ are <u>orthogonal</u> if

matrix form.

- $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathsf{T}} \mathbf{y} = 0.$
- So, if a vector $\mathbf{v} \in \mathbb{R}^n$ is orthogonal to a whole set of vectors $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$, we can write this in

Ordinary Least Squares The Normal Equations

From the picture, $\hat{\mathbf{r}} = \mathbf{X}\hat{\mathbf{w}} - \mathbf{y}$ is orthogonal to span(col(\mathbf{X})):

$$\mathbf{X}^{ op} \hat{\mathbf{r}} = \mathbf{0} \implies \mathbf{X}^{ op} \left(\mathbf{X} \hat{\mathbf{w}} - \mathbf{y}
ight) = \mathbf{0}$$
.

This gives us the <u>normal equations</u>:

$$\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}}.$$

Ordinary Least Squares The Normal Equations

Finally, we need to solve the normal equations:

 \mathbb{R}^{d}

$\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{X} \mathbf{\hat{w}}.$ $\mathbb{R}^{d \times d} \mathbb{R}^{d}$

Linear Independence Idea

A collection of vectors $\mathbf{a}_1, ..., \mathbf{a}_d \in \mathbb{R}^n$ is <u>linearly independent</u> if there are no redundancies – no vector \mathbf{a}_i can be written as a linear combination of the others.

Linear Independence Definition

A collection of vectors $\mathbf{a}_1, ..., \mathbf{a}_d \in \mathbb{R}^n$ is <u>linearly independent</u> if $\alpha_1 \mathbf{a}_1 + ... + \alpha_d \mathbf{a}_d = \mathbf{0}$ if and only if $\alpha_i = 0$ for all $i \in [d]$.

Equivalently, there does not exist \mathbf{a}_i that can be written in terms of the others:

$$\mathbf{a}_i = \alpha_1 \mathbf{a}_1 + \ldots + \alpha_{i-1}$$

If there does exist \mathbf{a}_i that can be written in terms of the others, the collection is *linearly* dependent.

 $\mathbf{a}_{i-1} + \alpha_{i+1} \mathbf{a}_{i+1} + \ldots + \alpha_d \mathbf{a}_d.$

Linear Independence Definition

if $\alpha_i = 0$ for all $i \in [d]$.

Equivalently, this matrix-vector product (column view)

$$\mathbf{A}\boldsymbol{\alpha} = \begin{bmatrix} \uparrow & \dots & \uparrow \\ \mathbf{a}_1 & \dots & \mathbf{a}_d \\ \downarrow & \dots & \downarrow \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_d \end{bmatrix} = \alpha_1 \begin{bmatrix} \uparrow \\ \mathbf{a}_1 \\ \downarrow \end{bmatrix} + \dots + \alpha_d \begin{bmatrix} \uparrow \\ \mathbf{a}_d \\ \downarrow \end{bmatrix}$$

is **0** if and only if $\alpha = \mathbf{0}$.

A collection of vectors $\mathbf{a}_1, \dots, \mathbf{a}_d \in \mathbb{R}^n$ is <u>linearly independent</u> if $\alpha_1 \mathbf{a}_1 + \dots + \alpha_d \mathbf{a}_d = \mathbf{0}$ if and only

Multiplication Matrix-vector multiplication (column view)

To multiply a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and a vector $\mathbf{w} \in \mathbb{R}^d$, we can think of the column view:

$$\mathbf{X}\mathbf{w} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix} = w_1 \begin{bmatrix} \uparrow \\ \mathbf{x}_1 \\ \downarrow \end{bmatrix} + \dots + w_d \begin{bmatrix} \uparrow \\ \mathbf{x}_d \\ \downarrow \end{bmatrix}.$$

The result is $\mathbf{X}\mathbf{w} \in \mathbb{R}^n$.

Interpretation: Xw is a *linear combination* of the columns of X.

Linear Independence Examples

 $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\0 \end{bmatrix} \right\} \text{ is } \frac{not}{not} \text{ linearly independent.} \right\}$ $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$ is linearly independent. $\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \right\}$ is linearly independent.

Rank Definition

Rank is the number of linearly independent columns in a matrix. This is always the same as the number of linearly independent rows in a matrix.

For $\mathbf{A} \in \mathbb{R}^{n \times d}$, it is always the case that: $\operatorname{rank}(\mathbf{A}) \leq \min\{n, d\}$.

If $rank(\mathbf{A}) = min\{n, d\}$, then we say **A** is full rank.

Remember this?

Ordinary Least Squares The Normal Equations

Finally, we need to solve the normal equations:

For $\mathbf{X} \in \mathbb{R}^{n \times d}$, if $n \ge d$ and $rank(\mathbf{X}) = d$, then: $rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \iff \mathbf{X}^{\mathsf{T}}\mathbf{X}$ has d linearly independent columns $\iff (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ exists.

 $\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{X} \hat{\mathbf{W}}.$ $\mathbb{R}^{d \times d} \mathbb{R}^{d}$

Ordinary Least Squares The Normal Equations

Finally, solving the normal equations:

 \mathbb{R}^{d}

Ordinary Least Squares Main Theorem

Let $X \in \mathbb{R}^{n \times d}$ with $n \ge d$ and rank(X) = d (the columns of X are linearly independent). Then, the solution $\hat{\mathbf{w}} \in \mathbb{R}^d$ that minimizes $\|\mathbf{X}\mathbf{w} - \mathbf{y}\|$, i.e.

is given by:

- $\|\mathbf{X}\hat{\mathbf{w}} \mathbf{y}\| \le \|\mathbf{X}\mathbf{w} \mathbf{y}\|$ for all $\mathbf{w} \in \mathbb{R}^d$,

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$

Recap

Lesson Overview Takeaways

minimizes $\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$.

span(cols(X)). This gives us the normal equations: $\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$.

Linear independence. To solve the normal equations, we need **X** to be full *rank* (its *d* columns are *linearly independent*). Then, we can invert and solve the normal equations.

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$

Regression. The basic problem in machine learning is regression. We have training data in the form of a data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and labels $\mathbf{y} \in \mathbb{R}^n$. We seek a model $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $\mathbf{X}\hat{\mathbf{w}} \approx \mathbf{y}$.

Least squares. One way to find a model for the data is through *least squares*: choose \hat{w} that

Span and orthogonality. We can solve least squares by noticing that $X\hat{w} - y$ is orthogonal to

Lesson Overview

Big Picture: Least Squares

Lesson Overview

Big Picture: Gradient Descent

 $f(w)=w^2$

