
By: Samuel Deng

Math for Machine Learning
Week 1.1: Vectors, matrices, and least squares regression



Lesson Overview

Vectors and matrices (an ML view). A single datapoint/sample in ML is represented as a vector 
. A collection of samples is represented as a matrix . 

Regression (the basic ML problem). The basic problem in machine learning is regression: 
constructing a “best-fit” model from a collection of observed data  and labels : 

. 

Linear independence. Linearly independent vectors are vectors that are not redundant; 
linearly dependent vectors can be expressed as simple (linear) combinations of other vectors. 

Span. The span of a set of vectors includes all vectors we can form by simple (linear) 
combinations of the vectors in the set.

x ∈ ℝd X ∈ ℝn×d

x ∈ ℝd y ∈ ℝ
(x1, y1), …, (xn, yn)



Lesson Overview
Big Picture: Least Squares

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Lesson Overview
Big Picture: Gradient Descent
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Vectors & Matrices 



Vectors
Review from linear algebra

A vector is a list of numbers. We write  as: 

 or . 

By convention, our vectors will be column vectors. A row vector looks like: 

x ∈ ℝd

x :=
x1
⋮
xd

x := (x1, …, xd)

x⊤ = [x1 … xd]



Vectors
Review from linear algebra

In , a special set of vectors is the unit basis vectors: ℝn

e1 =

1
0
⋮
0

, …, en =

0
0
⋮
1



Vectors
Review from linear algebra

Vectors can interchangeably thought of as points: 

or “arrows”:



Matrices
Review from linear algebra

A matrix is a box of numbers, or a list of vectors. We write  as: 

 

X ∈ ℝn×d

X =
↑ ↑
x1 … xd

↓ ↓
or X =

← x⊤
1 →

⋮
← x⊤

n →
.



Matrices
Review from linear algebra

A matrix is a box of numbers, or a list of vectors. We write  as: 

 

Column definition: stack column vectors  side-by-side next to each other. 

Row definition: take (by convention, column) vectors , turn them into rows 
, and stack them on top of each other.

X ∈ ℝn×d

X =
↑ ↑
x1 … xd

↓ ↓
or X =

← x⊤
1 →

⋮
← x⊤

n →
.

x1, …, xd ∈ ℝn

x1, …, xn ∈ ℝd

x⊤
1 , …, x⊤

n ∈ ℝ1×d



Matrices
Transpose

For a matrix , its transpose is the matrix  obtained from swapping  
for all . 

 

 

X ∈ ℝn×d X⊤ ∈ ℝd×n X⊤
ij = Xji

i ∈ [d], j ∈ [n]

X =
↑ ↑
x1 … xd

↓ ↓
or X =

← x⊤
1 →

⋮
← x⊤

n →
.

X⊤ =
↑ ↑
x1 … xn

↓ ↓
or X⊤ =

← x⊤
1 →

⋮
← x⊤

d →
.



Multiplication
Vector-vector “multiplication”

Given two vectors , their dot product (Euclidean inner product) is: 

. 

More generally, an inner product between two vectors is written as . If not specified 
otherwise, we will use the dot product as default in this course. 

x, y ∈ ℝd

x⊤y := x1y1 + … + xdyd

⟨x, y⟩



Multiplication
Properties of the inner product

For any two vectors  the inner product obeys the following: 

1. Symmetry. . 

2. Positive definiteness. , and  if and only if . 

(note , the squared norm of any vector) 

3. Linearity. Let  be a scalar and  be another vector. Then: 

v, w ∈ ℝd

⟨v, w⟩ = ⟨w, v⟩

⟨v, v⟩ ≥ 0 ⟨v, v⟩ = 0 v = 0

⟨v, v⟩ = ∥v∥2

α ∈ ℝ u ∈ ℝd

⟨αu + v, w⟩ = α⟨u, w⟩ + ⟨v, w⟩ .



Multiplication
Vector-vector “multiplication”

Example. Compute the dot product between  and .x = (2,5,3) y = (−1,0,3)



Multiplication
Matrix-vector multiplication (column view)

To multiply a matrix  and a vector , we can think of the column view: 

 

The result is . 

Interpretation:  is a linear combination of the columns of .

X ∈ ℝn×d w ∈ ℝd

Xw =
↑ ↑
x1 … xd

↓ ↓

w1
⋮
wd

= w1

↑
x1
↓

+ … + wd

↑
xd

↓
.

Xw ∈ ℝn

Xw X



Multiplication
Matrix-vector multiplication (equation view)

To multiply a matrix  and a vector , we can think of the equation view: 

 

The result is . 

Interpretation:  compiles the “right-hand sides” of a system of linear equations.

X ∈ ℝn×d w ∈ ℝd

Xw =
← x⊤

1 →
⋮

← x⊤
n →

↑
w
↓

=
x⊤

1 w
⋮

x⊤
n w

Xw ∈ ℝn

Xw



Multiplication
Matrix-vector multiplication

Example. Compute the matrix-vector product: 

Xw = [
1 −1 2
0 2 3
1 0 1] [

2
1

−1]



Multiplication
Matrix-matrix multiplication (matrix-vector view)

To multiply two matrices  and , we just think of  different matrix-vector 
products: 

 

The result is .

U ∈ ℝn×r V ∈ ℝr×d d

UV = U
↑ ↑
v1 … vd

↓ ↓
=

↑ ↑
Uv1 … Uvd

↓ ↓

X = UV ∈ ℝn×d



Multiplication
Matrix-matrix multiplication (inner product/entry view)

To multiply two matrices  and , we just think of  different inner products: 

 

 for all . 

The result is .

U ∈ ℝn×r V ∈ ℝr×d nd

UV =
← u⊤

1 →
⋮

← u⊤
n →

↑ ↑
v1 … vd

↓ ↓
=

u⊤
1 v1 … u⊤

1 vd
⋮ ⋱ ⋮

u⊤
n v1 … u⊤

n vd

(UV)ij = u⊤
i vj i ∈ [n], j ∈ [d]

X = UV ∈ ℝn×d



Multiplication
Matrix-matrix multiplication (outer product view)

To multiply two matrices  and , we just think of summing  different outer 
products (  matrices): 

 

The result is .

U ∈ ℝn×r V ∈ ℝr×d r
n × d

UV =
↑ ↑
u1 … ur

↓ ↓

← v⊤
1 →

⋮
← v⊤

r →
=

↑
u1
↓

[ ← v1 → ] + … +
↑
ur

↓
[ ← vr → ]

X = UV ∈ ℝn×d



Matrices
Inverses and Identity Matrix

A square matrix  is invertible if there exists a matrix  (the inverse) such 
that: 

, 

where  is the identity matrix: 

.

X ∈ ℝd×d X−1 ∈ ℝd×d

X−1X = XX−1 = I

I ∈ ℝd×d

I :=

1 0 0 … 0
0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1



Regression 



Regression
The main problem of our course

Collect  measurements  for  students… 

where  denotes the test score of a student. 

Given the measurements for a new student, , what is their test score?

d x1, …, xn ∈ ℝd n

yi ∈ ℝ

x0 ∈ ℝd



Regression
The main problem of our course

We observe  samples of training (observed) features , with labels . 

 

Goal: Given a new unlabelled sample, , make a prediction  such that .

n x1, …, xn ∈ ℝd y1, …, yn ∈ ℝ

xi =
xi1
⋮
xid

x0 ̂y ̂y ≈ y0



Regression
The main problem of our course

Goal: Given a new unlabelled sample, , make a prediction  such that . 

To do this, we will construct a model for the observed data. 

A linear model is represented with a weight vector . To make a prediction with the 
weight vector, we take an inner product. 

. 

x0 ̂y ̂y ≈ y0

w ∈ ℝd

̂y = ⟨w, x0⟩ = w1x01 + …wdx0d



Regression
The main problem of our course

How do we construct the weight vector ? 

Learn it from the observed data . 

For some weight vector , its predictions on the observed data are: 

w ∈ ℝd

(x1, y1), …, (xn, yn)

w ∈ ℝd

̂y1
⋮
̂yn

= ŷ = Xw =
← x⊤

1 →
⋮

← x⊤
n →

↑
w
↓

=
x⊤

1 w
⋮

x⊤
n w

=
⟨x1, w⟩

⋮
⟨xn, w⟩



Regression
The main problem of our course

For some weight vector , its predictions on the observed data are: 

 

w ∈ ℝd

̂y1
⋮
̂yn

= ŷ = Xw =
← x⊤

1 →
⋮

← x⊤
n →

↑
w
↓

=
x⊤

1 w
⋮

x⊤
n w

=
⟨x1, w⟩

⋮
⟨xn, w⟩



Regression
The main problem of our course

Goal: Given a new unlabelled sample, , make a prediction  such that . 

If the new sample  is “distributed like” the training samples  and , then 
it’s not a bad idea to find  so: 

. 

This will be our new goal!

x0 ̂y ̂y ≈ y0

(x0, y0) X ∈ ℝn×d y ∈ ℝn

w ∈ ℝd

Xw = ŷ ≈ y



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Caveat

Choose a weight vector that “fits the training data”:  such that  for , or: 

 

In general, it may not be the case that  for any  (the labels  don’t have a perfect 
linear relationship with the ).

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

y = Xw w ∈ ℝd yi
xi



Regression
Example: d = 1

X =

⋮
14.07
17.51
22.42
26.88

⋮

y =

⋮
2.5
3

3.48
3.12

⋮

10 20 30 40 50

2

4

6

8

10



Regression
Example: d = 2

X =

⋮ ⋮
3.4 5.4
2.9 6.4
3.3 6.7
2.6 7.7
⋮ ⋮

y =

⋮
0.4
1.3
2.1
2.3
⋮

−0.5

0

0.5

1

1.5

2

2.5

3

https://samuel-deng.github.io/math4ml_su25/assets/figs/2d_regression.html


Least Squares 
A Solution to Regression



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Ordinary Least Squares
Notion of Error

In general, it may not be the case that  for any  (the labels  don’t have a perfect 
linear relationship with the ). 

The residual  of the th prediction with  is 

. 

We can write this as a vector . 

The sum of squared residuals is 

.

y = Xw w ∈ ℝd yi
xi

ri(w) i w ∈ ℝd

ri(w) := ̂yi − yi = ⟨w, xi⟩ − yi

r ∈ ℝn

SSR :=
n

∑
i=1

ri(w)2 = r1(w)2 + … + rn(w)2



Norms and Inner Products
Euclidean Norm

Recall the notion of “length” from . For a vector , 

. 

Generalizing this, for , the Euclidean norm ( -norm) is: 

. 

.

ℝ2 x = (x1, x2) ∈ ℝ2

∥x∥2 := x2
1 + x2

2

x ∈ ℝn ℓ2

∥x∥2 := x2
1 + … + x2

n = x⊤x

∥x∥2
2 = x⊤x



Ordinary Least Squares
Notion of Error

Residual: , or . 

The sum of squared residuals is 

 

.

ri(w) := ̂yi − yi = ⟨w, xi⟩ − yi r ∈ ℝn

SSR :=
n

∑
i=1

ri(w)2 = r1(w)2 + … + rn(w)2 .

SSR = ∥r∥2 = ∥ŷ − y∥2 = ∥Xw − y∥2



Ordinary Least Squares
Principle of Least Squares

Goal: Find the  that minimizes the sum of squared residuals: w ∈ ℝd

∥r∥2 = ∥ŷ − y∥2 = ∥Xw − y∥2.



Ordinary Least Squares
Sum of Squared Residuals

Example: If  and , what can  look like?X ∈ ℝn×2 y ∈ ℝn SSR(w) = ∥Xw − y∥2
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https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_quad.html


Ordinary Least Squares
Sum of Squared Residuals
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Ordinary Least Squares
Sum of Squared Residuals
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Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Ordinary Least Squares
Geometry of Least Squares

Let  and . In this case  is a linear combination of columns  and . 

 

n = 3 d = 2 ŷ ∈ ℝ3 x1 x2

ŷ = Xw = w1x1 + w2x2 ∈ ℝ3

x1 x2 ~y

x1 x2 ~y



Span
Idea

For a collection of vectors , the span is…  x1, …, xd ∈ ℝn

x1 x2 ~y



Span
Definition

For a collection of vectors , the span is the set of vectors we can attain through 
linear combinations of : 

. 

x1, …, xd ∈ ℝn

x1, …, xd

span(x1, …, xd) = {y ∈ ℝn : y =
d

∑
i=1

αixi, αi ∈ ℝ}



Span
Examples

 

 

 

span ([1
0])

span ([2
1], [ 0

−1])
span [

1
0
0], [

0
−2
0 ], [

1
0
1]



Ordinary Least Squares
Geometry of Least Squares

Let  and . In this case  is a linear combination of columns  and . 

 

Let  be the columnspace of . Then, 

. 

n = 3 d = 2 ŷ ∈ ℝ3 x1 x2

ŷ = Xw = w1x1 + w2x2 ∈ ℝ3

col(X) := {x1, …, xd} X ∈ ℝn×d

ŷ ∈ span(col(X))

x1 x2 ~y



Ordinary Least Squares
Geometry of Least Squares

So, , which we can write as: . 

The true labels  might not be in . 

Goal: Find  that minimizes .  

ŷ = Xw = w1x1 + w2x2 ∈ ℝ3 ŷ ∈ span(col(X))

y ∈ ℝn span(col(X))

w ∈ ℝd ∥Xw − y∥2

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

Goal: Find  that minimizes .  w ∈ ℝd ∥Xw − y∥2

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

Goal: Find  that minimizes .  

Which point on  minimizes the distance from  to ? 

w ∈ ℝd ∥Xw − y∥2

span(col(X)) y span(col(X))

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

Goal: Find  that minimizes .  

Which point on  minimizes the distance from  to ? 

The point a perpendicular line down to ! 

w ∈ ℝd ∥Xw − y∥2

span(col(X)) y span(col(X))

span(col(X))

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

A projection of  onto  gives us , and . 

Let  be any other vector in , written . 

y ∈ ℝn span(col(X)) ŷ ∈ ℝn Xŵ = ŷ

ỹ ∈ ℝn span(col(X)) Xw̃ = ỹ

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

Let  be the projection of . Let  be any other . 

The distances  and  are the lengths of the residuals  and . 

ŷ = Xŵ y ỹ = Xw̃ ỹ

∥y − ŷ∥ ∥y − ỹ∥ ∥ ̂r∥ ∥r̃∥

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

Let  be any other vector in . 

By the Pythagorean Theorem, 

. 

But , so: 

. 

By definition,  and . 

Therefore, 

. 

ỹ = Xw̃ span(col(X))

∥ ̂r∥2 + ∥ỹ − ŷ∥2 = ∥r̃∥2

∥ỹ − ŷ∥2 ≥ 0

∥ ̂r∥2 ≤ ∥r̃∥2

̂r = Xŵ − y r̃ = Xw̃ − y

∥Xŵ − y∥2 ≤ ∥Xw̃ − y∥2

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Ordinary Least Squares
Geometry of Least Squares

Therefore: 

, 

where  is obtained from the projection  
of  onto , and  is any 
other vector. 

But what is ?

∥Xŵ − y∥2 ≤ ∥Xw̃ − y∥2

ŵ ∈ ℝd ŷ
y ∈ ℝd span(col(X)) w̃ ∈ ℝd

ŵ

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Orthogonality
Definition

Two vectors  and  are orthogonal if 

. 

So, if a vector  is orthogonal to a whole set of vectors , we can write this in 
matrix form. 

 

.

x ∈ ℝn y ∈ ℝn

⟨x, y⟩ = x⊤y = 0

v ∈ ℝn {x1, …, xd}

X =
↑ ↑
x1 … xd

↓ ↓

X⊤v = 0



Ordinary Least Squares
The Normal Equations

From the picture,  is orthogonal to 
: 

 

This gives us the normal equations: 

.

̂r = Xŵ − y
span(col(X))

X⊤ ̂r = 0 ⟹ X⊤ (Xŵ − y) = 0 .

X⊤y = X⊤Xŵ

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Ordinary Least Squares
The Normal Equations

Finally, we need to solve the normal equations: 

.X⊤y
⏟

ℝd

= X⊤X
⏟

ℝd×d

ŵ⏟
ℝd



Linear Independence
Idea

A collection of vectors  is linearly independent if there are no redundancies — no 
vector  can be written as a linear combination of the others.

a1, …, ad ∈ ℝn

ai



Linear Independence
Definition

A collection of vectors  is linearly independent if  if and only 
if  for all . 

Equivalently, there does not exist  that can be written in terms of the others: 

. 

If there does exist  that can be written in terms of the others, the collection is linearly 
dependent.

a1, …, ad ∈ ℝn α1a1 + … + αdad = 0
αi = 0 i ∈ [d]

ai

ai = α1a1 + … + αi−1ai−1 + αi+1ai+1 + … + αdad

ai



Linear Independence
Definition

A collection of vectors  is linearly independent if  if and only 
if  for all . 

Equivalently, this matrix-vector product (column view)  

 

is  if and only if .

a1, …, ad ∈ ℝn α1a1 + … + αdad = 0
αi = 0 i ∈ [d]

Aα =
↑ … ↑
a1 … ad

↓ … ↓

α1
⋮
αd

= α1

↑
a1
↓

+ … + αd

↑
ad

↓

0 α = 0



Multiplication
Matrix-vector multiplication (column view)

To multiply a matrix  and a vector , we can think of the column view: 

 

The result is . 

Interpretation:  is a linear combination of the columns of .

X ∈ ℝn×d w ∈ ℝd

Xw =
↑ ↑
x1 … xd

↓ ↓

w1
⋮
wd

= w1

↑
x1
↓

+ … + wd

↑
xd

↓
.

Xw ∈ ℝn

Xw X



Linear Independence
Examples

 is not linearly independent. 

 is linearly independent. 

 is linearly independent. 

[
1
0
0], [

0
1
0], [

2
2
0]

[
1
0
0], [

1
1
0]

[
1
0
0], [

0
1
0], [

0
0
2]



Rank
Definition

Rank is the number of linearly independent columns in a matrix. This is always the same as the 
number of linearly independent rows in a matrix. 

For , it is always the case that: .  

If , then we say  is full rank. 

A ∈ ℝn×d rank(A) ≤ min{n, d}

rank(A) = min{n, d} A



Remember this?



Ordinary Least Squares
The Normal Equations

Finally, we need to solve the normal equations: 

. 

For , if  and , then:  has  linearly 
independent columns  exists.

X⊤y
⏟

ℝd

= X⊤X
⏟

ℝd×d

ŵ⏟
ℝd

X ∈ ℝn×d n ≥ d rank(X) = d rank(X⊤X) = d ⟺ X⊤X d
⟺ (X⊤X)−1



Ordinary Least Squares
The Normal Equations

. 

Finally, solving the normal equations: 

X⊤y
⏟

ℝd

= X⊤X
⏟

ℝd×d

ŵ⏟
ℝd

ŵ = (X⊤X)−1X⊤y



Ordinary Least Squares
Main Theorem

Let  with  and  (the columns of  are linearly independent).  

Then, the solution  that minimizes , i.e. 

 for all , 

is given by: 

.

X ∈ ℝn×d n ≥ d rank(X) = d X

ŵ ∈ ℝd ∥Xw − y∥

∥Xŵ − y∥ ≤ ∥Xw − y∥ w ∈ ℝd

ŵ = (X⊤X)−1X⊤y



Recap



Lesson Overview
Takeaways

Regression. The basic problem in machine learning is regression. We have training data in the 
form of a data matrix  and labels . We seek a model  such that . 

Least squares. One way to find a model for the data is through least squares: choose  that 
minimizes . 

Span and orthogonality. We can solve least squares by noticing that  is orthogonal to 
. This gives us the normal equations: . 

Linear independence. To solve the normal equations, we need  to be full rank (its  columns are 
linearly independent). Then, we can invert and solve the normal equations. 

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd Xŵ ≈ y

ŵ
∥Xw − y∥2

Xŵ − y
span(cols(X)) X⊤Xŵ = X⊤y

X d

ŵ = (X⊤X)−1X⊤y



Lesson Overview
Big Picture: Least Squares

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Lesson Overview
Big Picture: Gradient Descent
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https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html

