Math for Machine Learning



Lesson Overview

Vectors and matrices (an ML view). A single datapoint/sample in ML is represented as a
x € R? A collection of samples is represented as a X € R

Regression (the basic ML problem). The basic problem in machine learning is
constructing a “best-fit” model from a collection of observed data x € R? and labels y € R:

(X19 yl)a P (Xn’ yn)

Linear independence. vectors are vectors that are not redundant;
inearly dependent vectors can be expressed as simple (linear) combinations of other vectors.

Span. The of a set of vectors includes all vectors we can form by simple (linear)
combinations of the vectors in the set.



Lesson Overview

Big Picture: Least Squares



https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Lesson Overview
Big Picture: Gradient Descent

f(w) = w?
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Vectors & Matrices



Vectors

Review from linear algebra

A is a list of numbers. We write x € R as:
A1
X (= or X := (xy, ..., X))
Ad

By convention, our vectors will be column vectors. A row vector looks like:

XT — [xl P Xd]



Vectors

Review from linear algebra

In R”, a special set of vectors is the



Vectors

Review from linear algebra

Vectors can interchangeably thought of as points:

or "arrows”:



Matrices

Review from linear algebra

A is a box of numbers, or a list of vectors. We write X € R gs:
1 1 - x| —
X = X1 ... Xy or X =

! ! - x7 -



Matrices

Review from linear algebra

A is a box of numbers, or a list of vectors. We write X € R gs:
1 1 - x| —
X = | X X or X = :
! ! JE

Column definition: stack column vectors x,, ..

Row definition: take (
X,....X, € R™ anc

oy convention, column) vectors X, ..., X

stack them on top of each other.

n

&

., X; € R" side-by-side next to each other.

R? turn them into rows



Matrices

Transpose

For a matrix X € R™4 its is the matrix X' € R¥" gbtained from swapping Xl;.r = X]
toralli € [d],] € [n].

T ) < X —
X = | Xy X or X =

! l — XZ —

T ) < X —



Multiplication

Vector-vector “multiplication”

Given two vectors X,y € R? their IS:

Ty - —
XYy =Xy T+ ... T XV,

More generally, an between two vectors is written as (X, y). If not specified
otherwise, we will use the dot product as default in this course.



Multiplication

Properties of the inner product

For any two vectors v, w € R the inner product obeys the following:

1. Symmetry. (v,w) = (W, V).

2. Positive definiteness. (v,v) > 0, and (v,v) = 0if and only if v = 0.
(note (v, v) = ||v||?, the squared norm of any vector)

3. Linearity. Let & € R be a scalar and u € R be another vector. Then:

(cu+v,w) =a(u,w) + (V,w).



Multiplication

Vector-vector “multiplication”

Example. Compute the dot product between x = (2,5,3) andy = (—1,0,3).




Multiplication

Matrix-vector multiplication (column view)

To multiply a matrix X € R™“ and a vector w € R¢, we can think of the column view:

T T | ™ T ]
Xw=|X; ... Xy cl=w [ X+ w, | X
} V| | Wd } }

The result is Xw € R”.

Interpretation: Xw is a linear combination of the columns of X.



Multiplication

Matrix-vector multiplication (equation view)

To multiply a matrix X € R™“ and a vector w € R¢ we can think of the equation view:

- X — 1 X{ W
Xw = : w | = ;
T T

xS L] xw

The resultis Xw € R”,

Interpretation: Xw compiles the “right-hand sides” of a system of linear equations.



Multiplication

Matrix-vector multiplication

Example. Compute the matrix-vector product:

1 -1 2 2
Xw=1|0 2 3 1
1 0 1 —1



Multiplication

Matrix-matrix multiplication (matrix-vector view)

To multiply two matrices U € R™ and V € R™¢, we just think of

T ) T )
uv=U0|VvV: ... V4] =[Uyv; ... Uy,
| | | !

The resultis X = UV € R™4



Multiplication

Matrix-matrix multiplication (inner product/entry view)

To multiply two matrices U € R™ and V € R™¢, we just think of

T T T
UV = Vi ... V| = :
T T T

—u - ! ! wv, .. uv,

(UV)U- = ul.TVj tforalli € [n],] € [d].

The resultis X = UV € R™4



Multiplication

Matrix-matrix multiplication (outer product view)

To multiply two matrices U € R™ and V € R™¢, we just think of

1 tl < vi - 1
UV=|u ... u, : =|wml[< Vi 2 ]+...+
| L] <« v o |

The resultis X = UV € R™4



Matrices

Inverses and ldentity Matrix

A square matrix X € R4 s if there exists a matrix X! € R%4 (the ) such
that:

X X=XX!=1

where I € R4 is the

1 O O 0
O 1 O 0
I =10

O
R S—Y
-



Regression



Regression

The main problem of our course

Collect d measurements Xy, ..., X, € R4 for n students...
where y. € R denotes the test score of a student.

Given the measurements for a new student, x, € R? what is their test score?



Regression

The main problem of our course

We observe n samples of Xi,...,X, € R4 with

Goal: Given a new unlabelled sample, x,, make a prediction y such thaty = y,.




Regression

The main problem of our course

Goal: Given a new unlabelled sample, X, make a prediction y such thaty = y,.

To do this, we will construct a model tor the observed data.

A linear model is represented with a w € RY To make a prediction with the
weight vector, we take an inner product.

5\7 — <W, X0> — Wlel —+ "‘Wd’x()d’



Regression

The main problem of our course

How do we construct the weight vector w € R9?

Learn it from the observed data (X,¥;), ..., (X, V).

For some weight vector w € R?, its predictions on the observed data are:

Vi < X1T — ) X1TW (Xq, W)
Vi «x - | LY X, W (X, W)

>
S



Regression

The main problem of our course

For some weight vector w € RY, its predictions on the observed data are:

Vi - x| — 1 X| W (X1, W)
Vi «x - | L[} X W (X, W)



Regression

The main problem of our course

Goal: Given a new unlabelled sample, X, make a prediction y such thaty = y,.

f the new sample (x,, y,) is “distributed like” the training samples X € R™“ and y € R", then
it's not a bad idea to find w € R so:

XwW =y ~Y.



Regression
Setup (Example View)

Observed: Matrix of training samples X € R™? and vector of training labels y € R".

‘_XlT_’ Y1

X = : y=|: ,Wherexl,...,anIRd.
T
n

«— X - In

Unknown: Weight vector w € R? with weights wy, ..., w,,

T

Goal: Foreachi € [n], we predict: y. = w' X, =wx;; + ... + wix, € R.

Choose a weight vector that “fits the training data”: w € R? such that y, ~ $; fori € [n], or:

Xw=y~rYy.



Regression
Setup (Feature View)

Observed: Matrix of training samples X € R™“ and vector of training labels y € R".

) ) Y1
X=X ... Xy y=1: |, wherex,,...,x, € R".
i} ! Vn

Unknown: Weight vector w € RY with weights wy, ..., w,.
Choose a weight vector that “fits the training data”: w € R such that y; x~ 9, fori € [n], or:

XwW=yRrRY.



Regression

Caveat

Choose a weight vector that “fits the training data”: w € R such that y, ~ 9, fori € [n], or:

Xw=y~rYy.

n general, it may not be the case thaty = Xw for any w € R (the labels y; don't have a perfect
inear relationship with the x.).




Regression

10

Example: d = 1
14.07 05 B
A I
A= 1|V = [543
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Regression
Example: d =2

34 54 0.4

09 6.4 1.3
X= p—

33 6717 T |21
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https://samuel-deng.github.io/math4ml_su25/assets/figs/2d_regression.html

| east Squares
A Solution to Regression



Regression
Setup (Example View)

Observed: Matrix of training samples X € R™? and vector of training labels y € R".

‘_XlT_’ Y1

X = : y=|: ,Wherexl,...,anIRd.
T
n

«— X - In

Unknown: Weight vector w € R? with weights wy, ..., w,,

T

Goal: Foreachi € [n], we predict: y. = w' X, =wx;; + ... + wix, € R.

Choose a weight vector that “fits the training data”: w € R? such that y, ~ $; fori € [n], or:

Xw=y~rYy.



Ordinary Least Squares

Notion of Error

n general, it may not be the case that y = Xw for any w € R (the labels y, don’t have a perfect
inear relationship with the x;).

The r(w) ot the ith prediction with w & R% s

ri (W) = j}i — Y, = (W, Xi> — Vi
We can write this as a vectorr € R”.

The sum of squared residuals is

SSR := ) ri(w)? = ri(W)* + ...+ 1,(W)*.
=1



Norms and Inner Products

Euclidean Norm

Recall the notion of “length” from R?. For a vector x = (x;,x,) € R,

. 2, 2
|1x][, := \/xl + x5

Generalizing this, for x € R”, the IS:

|1x]], := \/xf + ... +x,f =1/x'x.

2 T
x5 = x"x.



Ordinary Least Squares

Notion of Error

Residual: r(w) :=39.—y. = (W,X;) —y,, orr € R".

The sum of squared residuals is

SSR := ) ri(w)? = ri(W)* + ...+ 1,(W)?.
=1

SSR = |Ir|I* = I§ — yII* = I Xw — y|I*.



Ordinary Least Squares

Principle of Least Squares

Goal: Find the w € R? that minimizes the sum of squared residuals:

Irll? =119 = ylI* = IXw - ||



Ordinary Least Squares

Sum of Squared Residuals

Example: If X € R™? and y € R", what can SSR(w) = || Xw — y||* look like?



https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_quad.html

Ordinary Least Squares

Sum of Squared Residuals



https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_quad.html

Ordinary Least Squares

Sum of Squared Residuals



https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_quad_gd.html

Regression
Setup (Feature View)

Observed: Matrix of training samples X € R™“ and vector of training labels y € R".

) ) Y1
X=X ... Xy y=1: |, wherex,,...,x, € R".
i} ! Vn

Unknown: Weight vector w € RY with weights wy, ..., w,.
Choose a weight vector that “fits the training data”: w € R such that y; x~ 9, fori € [n], or:

XwW=yRrRY.



Ordinary Least Squares

Geometry of Least Squares

Letn =3 and d = 2. In this case § € R’ is a linear combination of columns x; and x,.

¥ =Xw=wXx, +wXx, € R



Span

ldea

For a collection of vectors X, ..., x, € R", the span is...




Span

Definition

-or a collection of vectors X, ..., X, € R", the is the set of vectors we can attain through
inear combinations of Xy, ..., X

d
span(X,...,X;)) = YER" : y = Za-x- a; € R

ik
=1



Span

Examples



Ordinary Least Squares

Geometry of Least Squares

Letn =3 and d = 2. In this case § € R’ is a linear combination of columns x; and x..
¥ = Xw = w;x; + WX, € R’
Let col(X) := {X;, ..., X} be the columnspace of X € R™4 Then,

y € span(col(X)).



Ordinary Least Squares

Geometry of Least Squares

So, § = Xw = w,X, + w,X, € R>, which we can write as: § € span(col(X)).
The true labels y € R" might not be in span(col(X)).

Goal: Find w € R? that minimizes || Xw — y||*.

E—— | — )

y_/\y —~y_/\y —~y_y o y (o] /\y (5] ~y


https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Ordinary Least Squares

Geometry of Least Squares

Goal: Find w € R that minimizes ||Xw — y||*.



https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Ordinary Least Squares

Geometry of Least Squares

Goal: Find w € R? that minimizes || Xw — y||*.

Which point on span(col(X)) minimizes the distance fromy to span(col(X))?

— ] — ) y_/\y —~y_/\y — -y () y (o] /\y (5] ~y
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Ordinary Least Squares

Geometry of Least Squares

Goal: Find w € R that minimizes || Xw — y||°.
Which point on span(col(X)) minimizes the distance from 'y to span(col(X))?

The point a perpendicular line down to span(col(X))!


https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Ordinary Least Squares

Geometry of Least Squares

A projection of y € R” onto span(col(X)) givesusy € R”, and Xw =.

Let§ € R" be any other vector in span(col(X)), written Xw = ¥.


https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Ordinary Least Squares

Geometry of Least Squares

Let y = XW be the projection of y. Let y = XW be any othery.

The distances ||y — ¥|| and ||y — ¥|| are the lengths of the residuals ||F|| and ||F]|.


https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Ordinary Least Squares

Geometry of Least Squares

Let Y = XW be any other vector in span(col(X)).
By the Pythagorean Theorem,

1#]1* + Iy = §1I> = [IF]I>

But ||¥ — §||*> > 0, so:

IE]1> < [IF]]>.

By definition, ¥ = Xw —y and F = Xw —.
Therefore,

IXW —y||* < [IXW - y]|°.

] — ) y_/\y —Ny_/\y — -y o y (o) /\y o ~y


https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Ordinary Least Squares

Geometry of Least Squares

Theretore:
IXW —y||* < [|IXW -yl

where W € R is obtained from the projection §
of y € R? onto span(col(X)), and w € R% s any
other vector.

But what is w?

] — )

y_/\y —Ny_/\y —Ny_y o y (o) /\y o ~y
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Orthogonality

Definition
Two vectorsx € R"andy € R" are it
(x,y) =x'y=0.
So, it a vector v € R" is orthogonal to a whole set of vectors {x, ...,X;}, we can write this in
matrix form.
T T
X = X1 ... Xy
} l

X'v=0.



Ordinary Least Squares

The Normal Equations
From the picture, r = Xw —y is orthogonal to
span(col(X)):

X't=0 = X' (Xw-y)=0.
This gives us the

X'y = X'Xw.

] — ) y_/\y —Ny_/\y — -y o y (o) /\y o ~y
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Ordinary Least Squares

The Normal Equations

Finally, we need to solve the normal equations:
X'y = X'X w

R d Rdxd Rd




Linear Independence
ldea

A collection of vectors ay, ...,a; € R" is It there are no redundancies — no
vector a; can be written as a linear combination of the others.



Linear Independence

Definition

A collection of vectors a,,...,a;, € R"is ita,a,+ ... +aa;, =0if and only
ifa. = 0toralli € [d].

Equivalently, there does not exist a; that can be written in terms of the others:

f there does exist a; that can be written in terms of the others, the collection is linearly
dependent.



Linear Independence

Definition

A collection of vectors ay, ...,a; € R" is ifa,a, + ... +aa,=0if and only
ifa. = O0toralli € [d].

Equivalently, this matrix-vector product (column view)

T ... T |% T T
Aa = al ad = a al +---+0‘d ad
Vo b e | !

isQifand onlyita = 0.



Multiplication

Matrix-vector multiplication (column view)

To multiply a matrix X € R™“ and a vector w € R¢, we can think of the column view:

T T | ™ T ]
Xw=|X; ... Xy cl=w [ X+ w, | X
} V| | Wd } }

The result is Xw € R”.

Interpretation: Xw is a linear combination of the columns of X.



Linear Independence

Examples

1 O] [2

O, |1],]2 is not linearly independent.
01 LOJ LO

1 1

O, |1 is linearly independent.

01 LO

1 O] [0

O, 111,10 is linearly independent.

01 LOJ L2



Rank

Definition

is the number of linearly independent columns in a matrix. This is always the same as the
number of linearly independent rows in a matrix.

For A € R™“ it is always the case that: rank(A) < min{n, d}.

It rank(A) = min{n, d}, then we say A is full rank.



Remember this?

—

\‘ L columns K(A)= ’ji
form rank(A)=n No N
basis free AN

det(A)#0 variables
(A) L e
/J

AX=D A 0 not an

unique eigenvalue

solution invertible




Ordinary Least Squares

The Normal Equations

Finally, we need to solve the normal equations:

Xy = X'X W

Rd
or X € R™4 if n > d and rank(X) = d, then: rank(X
independent columns < (X'X)™! exists.

Rdxd Rd

X)=d &< X

X has d linearly



Ordinary Least Squares

The Normal Equations

Xy = X'X W

R d Rdxd Rd

Finally, solving the normal equations:

w=X"X)" X"y



Ordinary Least Squares

Main Theorem

Let X € R™“ with n > d and rank(X) = d (the columns of X are linearly independent).

Then, the solution W € R? that minimizes || Xw —y||, i.e.

IXW —y|| < [|Xw —y]| forall w € R,
is given by:

w=(X"X)"'XTy.



Recap



Lesson Overview

Takeaways
Regression. The basic problem in machine learning is regression. We have training data in the
form of a data matrix X € R™? and labels y € R". We seek a model W € R? such that Xw ~ y.

Least squares. One way to find a model for the data is through least squares: choose w that
minimizes||Xw — y||%.

Span and orthogonality. We can solve least squares by noticing that Xw — y is orthogonal to
span(cols(X)). This gives us the normal equations: X'Xw = X'y.

Linear independence. To solve the normal equations, we need X to be full rank (its d columns are
linearly independent). Then, we can invert and solve the normal equations.

w=(X"X)"'XTy.



Lesson Overview

Big Picture: Least Squares
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Lesson Overview
Big Picture: Gradient Descent

f(w) = w?
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