Math for Machine Learning



Logistics and Announcements



Lesson Overview

Regression. Fill in gaps from last time: invertibility and Pythagorean theorem.

Subspaces. Subsets of & C R" where we “stay inside” when performing linear combinations of
vectors.

Bases. A “language” to describe all vectors in a subspace.
Orthogonality. Orthonormal bases are “good” bases to work with.

Projection. Formal definition of projection and the relationship between projection and least squares.

Least squares with orthonormal bases. It we have an orthonormal basis for span(col(X)), least squares
becomes much simpler.



Lesson Overview

Big Picture: Least Squares
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Lesson Overview
Big Picture: Gradient Descent

f(w) = w?
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| east Squares
A Quick Review



Matrices

Review from linear algebra

A is a box of numbers, or a list of vectors. We write X € R gs:
1 1 - x| —
X = | X X or X = :
! ! JE

Column definition: stack column vectors x,, ..

Row definition: take (
X,....X, € R™ anc

oy convention, column) vectors X, ..., X

stack them on top of each other.

n

&

., X; € R" side-by-side next to each other.

R? turn them into rows



Multiplication

Matrix-vector multiplication (column view)

To multiply a matrix X € R™“ and a vector w € R¢, we can think of the column view:

T T | ™ T ]
Xw=|X; ... Xy cl=w [ X+ w, | X
} V| | Wd } }

The result is Xw € R”.

Interpretation: Xw is a linear combination of the columns of X.



Multiplication

Matrix-vector multiplication (equation view)

To multiply a matrix X € R™“ and a vector w € R¢ we can think of the equation view:

- X — 1 X{ W
Xw = : w | = ;
T T

xS L] xw

The resultis Xw € R”,

Interpretation: Xw compiles the “right-hand sides” of a system of linear equations.



Regression
Setup (Example View)

Observed: Matrix of training samples X € R™? and vector of training labels y € R".

‘_XlT_’ Y1

X = : y=|: ,Wherexl,...,anIRd.
T
n

«— X - In

Unknown: Weight vector w € R? with weights wy, ..., w,,

T

Goal: Foreachi € [n], we predict: y. = w' X, =wx;; + ... + wix, € R.

Choose a weight vector that “fits the training data”: w € R? such that y, ~ $; fori € [n], or:

Xw=y~rYy.



Regression
Setup (Feature View)

Observed: Matrix of training samples X € R™“ and vector of training labels y € R".

) ) Y1
X=X ... Xy y=1: |, wherex,,...,x, € R".
i} ! Vn

Unknown: Weight vector w € RY with weights wy, ..., w,.
Choose a weight vector that “fits the training data”: w € R such that y; x~ 9, fori € [n], or:

XwW=yRrRY.



Regression

A note on intercepts

T

Goal: For eachi € [n], what if we want to predict: y, = W' X, + wy = wiX;; + ... + WX, ; + wy?

Solution: We modity add a “dummy” | to each example:

X;r — ['xil coe Xig ]

Same as transforming the data matrix X € R into X’ € R™@+D):

— XI — — XI — 1
X = : — X'= :
«— X;lr — «— X}I — ]
Choose a weight vector that fits X" such thaty, = y, fori € [n], or:

X'w =y ~ry.Thelast(d + 1) entry of wis the intercept, w,



Least Squares

Summary

Use the principle of least squares to find the w € R that minimizes

1y —ylI* = [ Xw - y]||*.

Using geometric intuition: Yy is the vector for which'y —y is perpendicular to
span(col(X)).

By Pythagorean Theorem, any other vector ¥ € span(col(X)) gives a larger
error:

Iy —yll* < 11y = ylI*

Because y —y is perpendicular to span(col(X)), we obtain the normal
equations:

X'Xw=X'y.
if n > d and rank(X) = d, then X' X is invertible, and

w=X"X)" Xy,

e | — ) y_/\y —Ny_/\y — -y o y (o) /\y (0] ~y
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Least Squares
First missing item: invertibility of X'X

if n > d and rank(X) = d, then X' X is invertible.



Regression
Setup (Feature View)

Observed: Matrix of training samples X € R™“ and vector of training labels y € R".

) ) Y1
X=X ... Xy y=1: |, wherex,,...,x, € R".
i} ! Vn

Unknown: Weight vector w € RY with weights wy, ..., w,.
Choose a weight vector that “fits the training data”: w € R such that y; x~ 9, fori € [n], or:

XwW=yRrRY.



Subspaces



Subspaces
ldea

A is a set of vectors that “stays within” the set under all linear combinations of the
vectors.



Subspaces

Definition

A & C R"is a subset of vectors that satisfies the property: it v,w € &, then
av + fw € & torany a, f € R.

Any subspace & contains the zero vector: ) € &.



Subspaces

Examples

Example: &, := R*




Subspaces

Examples

Example: &, := {ve R?: v, =0}




Subspaces

Examples

Example: &, := {ve R’ : v, =v,}




Span

Review
For a collection of vectors a;,...,a; € R”, the is the set of vectors we can attain through linear
combinations of a,, ..., a,:

span(a,...,a;) =< YyER" :y = Za-a- a; € R

Rnxd

Recall that this is equivalent to all the y € we obtain from matrix vector multiplication!

Vi T 1T T @

y — Aa/ |e E — al ad

wl e o1 1| e



Subspaces

Examples

11 [0
Example: &5 :=span{ [1], |0
0 1



Subspaces

Examples

cS’4:={VEIR3:v3=5}



Subspaces
Specific example: span(col(X))

Let X € R™ with columns X, ..., X; € R"

span(col(X)) ={yeR":y=wx;+ ... + w,x,}

We will refer to this, later, as CS(X), the of X.



Bases & Dimension



Basis
ldea

For a subspace &, a is a minimal set of vectors that can “linearly describe” any vector in
&. A"language” tor vectorsin &



Basis

Linear Independence and Span

Recall the tollowing two notions.

A collection of vectors a,, ...,a; € R" is ifa,a,+ ... +aa;,=0it and only
it a. = Oftoralli € [d].

-or a collection of vectorsa;,...,a;, € R", the is the set of vectors we can attain through
inear combinations ofa;,...,a;:

1“1
=1

d
span(a,...,a;) =4 yER" :y = Za-a- a, € R



Basis

Definition

For a subspace & C R”, asetof vectorsa,,...,a, € & is a for & if:

& = span(a,,...,a;) and a,,...,a,are linearly independent.

Bases are not unigue — there are infinitely many bases for any subspace.

However, all bases have the same number of elements.



Basis

Examples

Example: &, := R*



Basis

Examples

Example: &, := {ve R?: v, =0}




Basis

Examples

Example: &, := {ve R’ : v, =v,}



Dimension of a Subspace

Definition

The of a subspace is the size of any of its bases.

For a subspace &, write this as dim(&).



Matrices & Subspaces

Every matrix comes with four subspaces

Let X € R™“ be a matrix.
Its is CS(X) = {y € R": y = Xw, for any w € R?} (this was span(col(X))).

Its is NS(X) ;= {we RY: Xw=0).

ts rowspace is CS(X') = {y € R:y=X"v, for any v € R"}.

ts left nullspace is NS(X") ;= {ve R": X'v = 0)}.

Rank-nullity theorem: d = dim(CS(X)) + dim(NS(X)).



Matrices & Subspaces

Columnspace of a matrix

Let X € R™ be a matrix, with columns X, ..., X; € R"

We can think of its columnspace as:

CS(X):={ye R":y=Xw, foranyw & R4
={yeR":y=wx;+... +w,X, foranyw; € R}

= span(Xy, ..., X;) = span(col(x,, ..., X))

his is a subspace that “comes with” any matrix.



Matrices & Subspaces

Rank of a matrix

Let X € R™ be a matrix, with columns X, ..., X; € R"

The of X is the number of linearly independent columns (which is the same as the
number of linearly independent rows).

't is always the case that: rank(X) < min{n, d}. If rank(X) = min{n, d}, then we say X is full rank.



Matrices & Subspaces
Rank & Invertibility

Let X € R%“ be a square matrix.

't is always the case that: rank(X) < d. It rank(X) = d, then we say X is full rank.

Basic fact from linear algebra:

X is invertible if and only it it is full rank.



Matrices & Subspaces

Dimension of the columnspace

Let X € R™ be a matrix, with columns X, ..., X; € R"
CS(X) = span(xy, ..., X,)
rank(X) = how many of X, ..., X, are linearly independent

So, it rank(X) = d, then Xy, ..., X, form a basis for the columnspace!



Least Squares
First missing item: invertibility of X'X

if n > d and rank(X) = d, then X' X is invertible.



Least Squares
First missing item: invertibility of X'X

Theorem (Invertibility of X 'X). Let X € R™4 be a matrix, with columns X,...X;, €ER" . ltn>d
and rank(X) = d, then X' X is invertible.

Proof. To show that X' X is invertible, show rank(X'X) = d.



Least Squares
First missing item: invertibility of X'X

Theorem (Invertibility of X 'X). Let X € R™ be a matrix, with columns X,...X;, ER" . Itn>d
and rank(X) = d, then X' X is invertible.

Proof. To show that X' X is invertible, show X'X has d linearly independent columns.

X'Xw=0 < w=0.



Least Squares
First missing item: invertibility of X'X

Theorem (Invertibility of X 'X). Let X € R™ be a matrix, with columns X,...X;, ER" . Itn>d
and rank(X) = d, then X' X is invertible.

Proof. To show that X' X is invertible, show X'X has d linearly independent columns.

X'Xw=0 —= w=0.

Suppose X'Xw = 0. Let w € R? be any vector.



Least Squares
First missing item: invertibility of X'X

Theorem (Invertibility of X 'X). Let X € R™ be a matrix, with columns X,...X;, ER" . Itn>d
and rank(X) = d, then X' X is invertible.

Proof. To show that X' X is invertible, show X'X has d linearly independent columns.
X'Xw=0 = w=0.
Suppose X'Xw = 0. Let w € R? be any vector. Take a dot product of both sides with w:
w'X'Xw=w'0=0.

w' X Xw = || Xw]|* =0



Least Squares
First missing item: invertibility of X'X

Theorem (Invertibility of X 'X). Let X € R™“ be a matrix, with columns X(,....X; €ER". Ifn>dand
rank(X) = d, then X' X is invertible.
Proof. To show that X' X is invertible, show XX has d linearly independent columns.
X'Xw=0 = w=0.
Suppose X'Xw = 0. Let w € R? be any vector. Take a dot product of both sides with w:
w'X'Xw=w'0=0.

w X Xw=|Xw|[|’=0 = Xw=0.

But rank(X) = d, so X has d linearly independent columns. Therefore, w = 0.



Least Squares
First missing item: invertibility of X'X

Theorem (Invertibility of X 'X). Let X € R™4 be a matrix, with columns X,...X;, €ER" . ltn>d
and rank(X) = d, then X' X is invertible.



Least Squares

Summary

Use the principle of least squares to find the w € R that minimizes

1y —ylI* = [ Xw - y]||*.

Using geometric intuition: Yy is the vector for which'y —y is perpendicular to
span(col(X)).

By Pythagorean Theorem, any other vector ¥ € span(col(X)) gives a larger
error:

Iy —yll* < 11y = ylI*

Because y —y is perpendicular to span(col(X)), we obtain the normal
equations:

X'Xw=X'y.
if n > d and rank(X) = d, then X' X is invertible, and

w=X"X)" Xy,

e | — ) y_/\y —Ny_/\y — -y o y (o) /\y (0] ~y
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Least Squares

Summary

Use the principle of least squares to find the W € R that minimizes

15 —ylI* = IXw - y|I*.

Using geometric intuition: y is the vector for which 'y —y is perpendicular
to CS(X).

By Pythagorean Theorem, any other vector § € CS(X) gives a larger error:
Iy —ylI* < Iy —ylI*
Because y — y is perpendicular to CS(X), we obtain the normal equations:
X'Xw =X'y.
if n > d and rank(X) = d, then X' X is invertible, and

w=X"X)"XTy.

e | — ) y_/\y —Ny_/\y — -y o y (o) /\y (0] ~y
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Least Squares

Second missing item: Pythagorean Theorem

By Pythagorean Theorem, any other vector y € CS(X) gives a larger error:

1y —vylI* < Iy - ylI*~



Orthogonality

Definition and Orthonormal Bases



Norms and Inner Products

Euclidean Norm

Recall the notion of “length” from R?. For a vector x = (x;,x,) € R,

. 2, 2
|1x][, := \/xl + x5

Generalizing this, for x € R”, the IS:

|1x]], := \/xf + ... +x,f =1/x'x.

2 T
x5 = x'x.

In this course, dropping the “2" and just writing ||x|| denotes the Euclidean norm.



Orthogonality

Definition

T

Two vectors v,w € R" are if (v,w) =v'w =0.In R?and R?, this corresponds to our

geometric notion of “perpendicular.”

A set of vectors is it every pair of distinct vectors in the set is orthogonal.



Orthogonality

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors v, w € R" are orthogonal, then

2 2 2
IV + Wi = [[v][* + [[w]]~

Proof. Let v, w € R" be orthogonal vectors. Expand the square ||v + w||*.

lV+w|[|?=(v+W,v+W)
=(V,V) +(V, W) + (W, V) + (W, W)
=(V,V) + 2(V, W) + (W, W)

2 2
= [[v]l* + [[wll



Least Squares

Second missing item: Pythagorean Theorem

By Pythagorean Theorem, any other vector y € CS(X) gives a larger error:

1y —vylI* < II¥ - ylI*~
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Least Squares

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Lety € CS(X) be the vector wherey —y is
orthogonal to any vector in CS(X) and let § € CS(X) be any other vector. Then

1y —vylI* < Iy - ylI*~
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Least Squares

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Lety € CS(X) be the vector
where y — y is orthogonal to any vector in CS(X) and let y € CS(X) be
any other vector. Then ||¥ = y|I” < |I¥ — ¥]|*.

Proof. Because y € CS(X) and § € CS(X) and CS(X) is a subspace, \ &
y -9 € CS(X). | e
The vector ¥ — y is orthogonal to any vector in span(col(X)),soy — y is > !

orthogonalto ¥ — ¥. N

By the Pythagorean Theorem:

o 2 < o2 o < o2 < 2
ly=yll-+ly=-¥llI"=ly-y+y-YylI-= [y -yl ] 2y ——yy —yy @y © Ay @ oy

But because norms are always nonnegative,

1§ —yll* <11y - yll*
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Least Squares

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Lety € CS(X) be the vector wherey —y is
orthogonal to any vector in CS(X) and let § € CS(X) be any other vector. Then

1y —vylI* < Iy — ylI*
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Least Squares

Summary

Use the principle of least squares to find the W € R that minimizes

15 —ylI* = IXw - y|I*.

Using geometric intuition: y is the vector for which 'y —y is perpendicular
to CS(X).

By Pythagorean Theorem, any other vector § € CS(X) gives a larger error:
Iy —ylI* < Iy —ylI*
Because y — y is perpendicular to CS(X), we obtain the normal equations:
X'Xw =X'y.
if n > d and rank(X) = d, then X' X is invertible, and

w=X"X)"XTy.

| — ) y_/\y —Ny_/\y — -y o y (o) /\y (0] ~y
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Least Squares

Summary

Goal: Find the w € R that minimizes
1 Xw — y]|*.

Theorem (OLS). If n > d and rank(X) = d, then:

w=(X"X)"XTy. 3

To get predictionsy € R™:

¥ =Xw=XX"X)"X'y.

| — )

y -y m—— Ny ——y-y @y O Ay @~y
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Orthogonality

Projections



Projection

ldea: A vector’s “shadow” on another set

For an arbitrary set § C R”, the of a vectory € R" onto the set § is the closest vector
yinStoy.

Denote this vector I1((y) :=y.

m—\ - PrOj_Y y w— ro) y ® origin
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Projection

Projection of a vector onto an arbitrary set

For an arbitrary set § C R”, the of a vectory € R" onto the set § is the closest vector
yinStoy.

Denote this vector [1(y) :=y.

"Closest” in a Euclidean ("least squares”) distance sense:

[I((y) = arg min ||[§ —y| = |y — ylI*.
yeSs



Projection

Projection of a vector onto a subspace

Let X C R" be a subspace, with the basis x;,..., X, € R". Let X € R™4 he the matrix with
X{,..., X as its columns. Any pointy € X is a linear combination:

A\

= XW

The projection of y onto X is:

[Mg(y) = arg min ||y —y||?
yed



Projection

Projection of a vector onto a subspace

Let X C R" be a subspace, with the basis x;,..., X, € R". Let X € R™4 he the matrix with
X{,..., X as its columns. Any pointy € X is a linear combination:

A\

= XW

This is equivalent to finding:

A\

W = arg min || XW — y||?
weR?



Least Squares as Projection

Projection Matrix

A\

W = arg min || XW — y||?

weR?
This is just least squares! By what we've learned... l
w=X"X)"XTy p—
My (y) = § = X(XTX) !XTy Eran o
Let Py = X(X'X)" !XT € R"™" be the e e e

for span(col(X)).
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Linearity

Review from linear algebra

is the central property in linear algebra. Cooking is typically linear.

Bacon, egg, cheese (on roll)  Bacon, egg, cheese (on bagel) Lox sandwich

1 egg 1 egg 0 egg

1 slice of cheese 1 slice of cheese 0 slice of cheese
1 slice bacon 1 slice bacon 0 slice bacon

1 Kaiser roll 0 Kaiser roll 0 Kaiser roll

0 cream cheese 0 cream cheese 1 cream cheese
0 slices of lox 0 slices of lox 2 slices of lox

0 bagel 1 bagel 1 bagel



Linearity

Review from linear algebra

is the central property in linear algebra.

A function (“transformation”) T : RY —» R" is it T satisties these two properties for any two
vectors a,b € R¥:

T(a+b)=T(@)+ T(b)

T(ca) = cT(a) for any c € R.



Linearity

Review from linear algebra

Example. Consider the tunction T': R3 - R defined by:

T(x) = 2x; + 3x;.



Linearity

Review from linear algebra

Matrices also play by these rules. Let X € R™? be a matrix and let w, v € R be vectors.

X(wW+v)=Xw+ Xv

X(cw) = c(Xw) for any ¢ € R.



Linearity

Review from linear algebra

Theorem (Equivalence of linear transformations and matrices).

Any linear transformation T': R? — R" has a corresponding matrix A, € R™“ such that:
T(x) = A;x.
Any matrix A € R™? has a corresponding linear transformation T, : R = R" such that:

T\ (x) = Ax.



Linearity

Review from linear algebra

T(x) = A;x and T, (X) = AX

This means that matrix-vector multiplication is the same as applying a linear transformation.

So one way of thinking of a matrix is an “action” applied to vectors.



Least Squares as Projection

Projection Matrix

Let  C R% be a subspace with basis Xy, ...,x;, € R". If x{, ...,X  are linearly independent,
Rnxd’

making up the matrix X &

Py = X(X'X)"IXT € R™"
EhCOdeS an action on vectors!

Is the onto X .

To project a vectory € R” onto X', compute:

Mo(y) = § = Pxy = X(X™X)"'XTy.



| east Squares
Orthonormal Bases and Projection



Norms and Inner Products

Unit Vectors

Avectorv € R%is a it ||v|| = 1.

We can convert any vector into a unit vector by dividing itself by its norm:

A\

[V}




Orthonormal Basis

"Good"” Bases

How should we represent a subspace?

Take, for example, the subspace & = {v € R* : v, = 0}.



Orthonormal Basis

"Good"” Bases

S ={veR:v,=0)

21 [O] [2°
Attempt 1: Use the span of a set of vectors: span ( [1] : 1] : [3 ) .

01 LOJ LO

Attempt 2: Use the span of a set of linearly independent vectors (a basis):

(1)

Attempt 3: Use the span of an orthonormal set of vectors (an

= (l13)




Orthonormal Basis

"Good"” Bases

(Rt

|




Orthonormal Basis

Definition

A set of vectorsuy, ...,u, € & is an for the subspace & if they are a basis for
& and, additionally:
(u;u;) =0fori#j.

|lu|| = 1fori € [n].



Orthonormal Basis
Orthogonal Matrices

A square matrix U € R s an if its columns uy, ...,u, € R? are orthogonal

unit vectors:

|lu|| = 1fori € [d].

These form an orthonormal basis tfor span(col(U)).

lts rows are also orthogonal.



Orthonormal Basis
Orthogonal Matrices

A matrix U € R™4 is an if its columnsuy, ...,u; € R" are orthogonal

unit vectors:

|lu|| = 1fori € [d].

These form an orthonormal basis tfor span(col(U)).



Orthonormal Basis
Properties of Orthogonal Matrices

Let a square matrix U € R be an Then:
Uis its own inverse: U'U =UU' = L

U is length-preserving: ||Uv|| = ||v]].



Orthonormal Basis
Properties of Orthogonal Matrices

Let matrix U € R™4 be an Then:
U is its own left inverse: U'U = L.

U is length-preserving: ||Uv|| = [|v]].



Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

A basis is just a “language” tor representing vectors in a subspace. For example, consider the
subspace & = {ve R’ : vy = 0} and the vector

fl
e )



Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

A basis is just a “language” tor representing vectors in a subspace. For example, consider the
subspace & = {ve R’ : vy = 0} and the vector

fl
{1



Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

Every subspace & C R" has many choices of bases.

Some are better than others.

\ ///—:—...
m
\ 2 \
1.5
1
N 0.5 ©
N 0
. Q
/0 RO-S
g “ ‘1 e S
& \e)
Q.
g Q 1.5 Q
S2 e
© 2

] ) ] ) (o] ~y x1 X2 uf u2 o ~y
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Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

Let Z C R" be a subspace, with dim(2) = d.

One basis: Xy, ..., X; € R", with matrix X & R

Another basis: uy, ...,u,; €

hen,

R"™ with matrix U €

2 = CS(U) = CS(X).

Rnxd

——
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Orthogonal Bases in Least Squares

What if we had an orthogonal basis?

Let Z C R" be a subspace, with dim(2) = d.

2 = CS(U) = CS(X).

herefore, forany y € &, we can write:

Both w,w, , € R are valid ways to “represent” §.

—— | — ) —u’l _U2
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Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

How do we find W, , € RYiny = UW,_ ,?

Least squares!

Va\

: A 2
Wonp = alg i Hy o Uwonb”
w, . ER?

The columns of U give an ONB for &X...
w,., = (U'U)"'U'y

p— UTy

—— | — ) —u’l _U2

~-0.5
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Orthonormal Basis
Why do we like an orthogonal basis?

Let 2 be a subspace. Let I1o(y) = arg min ||§ — y||* be the projection of y onto X
yed

For an arbitrary matrix X € R™“ with CS(X) =
w=X"X)"X"'yand § = XX'X)" Xy
For a semi-orthogonal matrix U € R™4 with CS(U) = &

=U'yand y =UU'y.

Onb —

Much simpler — no inverse operations!



Orthonormal Basis
Why do we like an orthogonal basis?

Theorem (Projection with orthogonal matrices). Let ' C R" be a su
nonormal basis for 2, with semi-orthogona
fyonto X, i.e.

up,...,u,; €
y € R" the

is given by

R™" be an ort

O

[1,(y) = arg min ||y —y||*

yed

MMy (y) =UU'y.

ospace and let

matrix U &

R™4 For any



Recap



Lesson Overview

Regression. Fill in gaps from last time: invertibility and Pythagorean theorem.

Subspaces. Subsets of & C R" where we “stay inside” when performing linear combinations of
vectors.

Bases. A “language” to describe all vectors in a subspace.
Orthogonality. Orthonormal bases are “good” bases to work with.

Projection. Formal definition of projection and the relationship between projection and least squares.

Least squares with orthonormal bases. If we have an orthonormal basis for CS(X), least squares
becomes much simpler.



Lesson Overview

Big Picture: Least Squares



https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html

Lesson Overview
Big Picture: Gradient Descent

f(w) = w?
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