
By: Samuel Deng

Math for Machine Learning
Week 1.2: Subspaces, Bases, and Orthogonality



Logistics and Announcements



Lesson Overview

Regression. Fill in gaps from last time: invertibility and Pythagorean theorem. 

Subspaces. Subsets of  where we “stay inside” when performing linear combinations of 
vectors. 

Bases. A “language” to describe all vectors in a subspace. 

Orthogonality. Orthonormal bases are “good” bases to work with. 

Projection. Formal definition of projection and the relationship between projection and least squares. 

Least squares with orthonormal bases. If we have an orthonormal basis for , least squares 
becomes much simpler.

𝒮 ⊆ ℝn

span(col(X))



Lesson Overview
Big Picture: Least Squares

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


Lesson Overview
Big Picture: Gradient Descent
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Least Squares 
A Quick Review



Matrices
Review from linear algebra

A matrix is a box of numbers, or a list of vectors. We write  as: 

 

Column definition: stack column vectors  side-by-side next to each other. 

Row definition: take (by convention, column) vectors , turn them into rows 
, and stack them on top of each other.

X ∈ ℝn×d

X =
↑ ↑
x1 … xd

↓ ↓
or X =

← x⊤
1 →

⋮
← x⊤

n →
.

x1, …, xd ∈ ℝn

x1, …, xn ∈ ℝd

x⊤
1 , …, x⊤

n ∈ ℝ1×d



Multiplication
Matrix-vector multiplication (column view)

To multiply a matrix  and a vector , we can think of the column view: 

 

The result is . 

Interpretation:  is a linear combination of the columns of .

X ∈ ℝn×d w ∈ ℝd

Xw =
↑ ↑
x1 … xd

↓ ↓

w1
⋮
wd

= w1

↑
x1
↓

+ … + wd

↑
xd

↓
.

Xw ∈ ℝn

Xw X



Multiplication
Matrix-vector multiplication (equation view)

To multiply a matrix  and a vector , we can think of the equation view: 

 

The result is . 

Interpretation:  compiles the “right-hand sides” of a system of linear equations.

X ∈ ℝn×d w ∈ ℝd

Xw =
← x⊤

1 →
⋮

← x⊤
n →

↑
w
↓

=
x⊤

1 w
⋮

x⊤
n w

Xw ∈ ℝn

Xw



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
A note on intercepts

Goal: For each , what if we want to predict: ? 

Solution: We modify add a “dummy”  to each example: 

. 

Same as transforming the data matrix  into : 

  

Choose a weight vector that fits :  such that  for , or: 

The last ( ) entry of  is the intercept, . 

We can always do this WLOG, so we’ll focus on the “homogeneous” case.

i ∈ [n] ̂yi = w⊤xi + w0 = w1xi1 + … + wdxid + w0

1

x⊤
i = [xi1 … xid 1]

X ∈ ℝn×d X′￼∈ ℝn×(d+1)

X =
← x⊤

1 →
⋮

← x⊤
n →

⟹ X′￼=
← x⊤

1 → 1
⋮ ⋮

← x⊤
n → 1

X′￼ w ∈ ℝd+1 yi ≈ ̂yi i ∈ [n]

X′￼w = ŷ ≈ y . d + 1 w w0



Least Squares
Summary
Use the principle of least squares to find the  that minimizes 

. 

Using geometric intuition:  is the vector for which  is perpendicular to 
. 

By Pythagorean Theorem, any other vector  gives a larger 
error: 

 

Because  is perpendicular to , we obtain the normal 
equations: 

. 

If  and , then  is invertible, and 

 .

ŵ ∈ ℝd

∥ŷ − y∥2 = ∥Xw − y∥2

ŷ ŷ − y
span(col(X))

ỹ ∈ span(col(X))

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

ŷ − y span(col(X))

X⊤Xŵ = X⊤y

n ≥ d rank(X) = d X⊤X

ŵ = (X⊤X)−1X⊤y

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Least Squares
First missing item: invertibility of X⊤X

If  and , then  is invertible. 

“If there are no redundant features, then we can invert the normal equations”

n ≥ d rank(X) = d X⊤X



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Subspaces



Subspaces
Idea

A subspace is a set of vectors that “stays within” the set under all linear combinations of the 
vectors.



Subspaces
Definition

A subspace  is a subset of vectors that satisfies the property: if , then 
 for any . 

Any subspace  contains the zero vector: .

𝒮 ⊆ ℝn v, w ∈ 𝒮
αv + βw ∈ 𝒮 α, β ∈ ℝ

𝒮 0 ∈ 𝒮



Subspaces
Examples

Example:  𝒮0 := ℝ2



Subspaces
Examples

Example:  𝒮1 := {v ∈ ℝ2 : v1 = 0}



Subspaces
Examples

Example:  𝒮2 := {v ∈ ℝ3 : v1 = v2}



Span
Review

For a collection of vectors , the span is the set of vectors we can attain through linear 
combinations of : 

. 

Recall that this is equivalent to all the  we obtain from matrix vector multiplication! 

, i.e. 

a1, …, ad ∈ ℝn

a1, …, ad

span(a1, …, ad) = {y ∈ ℝn : y =
d

∑
i=1

αiai, αi ∈ ℝ}

y ∈ ℝn×d

y = Aα
y1
⋮
yn

=
↑ ↑ ↑
a1 … ad

↓ ↓ ↓

α1
⋮
αd



Subspaces
Examples

Example: 𝒮3 := span ([
1
1
0], [

0
0
1])



Subspaces
Examples

(Non)Example: 𝒮4 := {v ∈ ℝ3 : v3 = 5}



Subspaces
Specific example: span(col(X))

Let  with columns . 

 

We will refer to this, later, as , the columnspace of .

X ∈ ℝn×d x1, …, xd ∈ ℝn

span(col(X)) = {y ∈ ℝn : y = w1x1 + … + wdxd}

CS(X) X



Bases & Dimension



Basis
Idea

For a subspace , a basis is a minimal set of vectors that can “linearly describe” any vector in 
. A “language” for vectors in .

𝒮
𝒮 𝒮



Basis
Linear Independence and Span

Recall the following two notions. 

A collection of vectors  is linearly independent if  if and only 
if  for all . 

For a collection of vectors , the span is the set of vectors we can attain through 
linear combinations of : 

.

a1, …, ad ∈ ℝn α1a1 + … + αdad = 0
αi = 0 i ∈ [d]

a1, …, ad ∈ ℝn

a1, …, ad

span(a1, …, ad) = {y ∈ ℝn : y =
d

∑
i=1

αiai, αi ∈ ℝ}



Basis
Definition

For a subspace , a set of vectors  is a basis for  if: 

 and  are linearly independent. 

Bases are not unique — there are infinitely many bases for any subspace. 

However, all bases have the same number of elements.

𝒮 ⊆ ℝn a1, …, ad ∈ 𝒮 𝒮

𝒮 = span(a1, …, ad) a1, …, ad



Basis
Examples

Example:  𝒮0 := ℝ2



Basis
Examples

Example:  𝒮1 := {v ∈ ℝ2 : v1 = 0}



Basis
Examples

Example:  𝒮2 := {v ∈ ℝ3 : v1 = v2}



Dimension of a Subspace
Definition

The dimension of a subspace is the size of any of its bases.  

For a subspace , write this as .𝒮 dim(𝒮)



Matrices & Subspaces
Every matrix comes with four subspaces

Let  be a matrix.  

Its columnspace is  (this was ). 

Its nullspace/kernel is . 

Its rowspace is . 

Its left nullspace is . 

Rank-nullity theorem: .

X ∈ ℝn×d

CS(X) = {y ∈ ℝn : y = Xw,  for any w ∈ ℝd} span(col(X))

NS(X) := {w ∈ ℝd : Xw = 0}

CS(X⊤) = {y ∈ ℝd : y = X⊤v,  for any v ∈ ℝn}

NS(X⊤) := {v ∈ ℝn : X⊤v = 0}

d = dim(CS(X)) + dim(NS(X))



Matrices & Subspaces
Columnspace of a matrix

Let  be a matrix, with columns . 

We can think of its columnspace as: 

 

This is a subspace that “comes with” any matrix.

X ∈ ℝn×d x1, …, xd ∈ ℝn

CS(X):= {y ∈ ℝn : y = Xw,  for any w ∈ ℝd}
= {y ∈ ℝn : y = w1x1 + … + wdxd,  for any wi ∈ ℝ}
= span(x1, …, xd) = span(col(x1, …, xd))



Matrices & Subspaces
Rank of a matrix

Let  be a matrix, with columns . 

The rank of  is the number of linearly independent columns (which is the same as the 
number of linearly independent rows). 

It is always the case that: . If , then we say  is full rank.

X ∈ ℝn×d x1, …, xd ∈ ℝn

X

rank(X) ≤ min{n, d} rank(X) = min{n, d} X



Matrices & Subspaces
Rank & Invertibility

Let  be a square matrix. 

It is always the case that: . If , then we say  is full rank. 

Basic fact from linear algebra: 

 is invertible if and only if it is full rank.

X ∈ ℝd×d

rank(X) ≤ d rank(X) = d X

X



Matrices & Subspaces
Dimension of the columnspace

Let  be a matrix, with columns . 

 

 = how many of  are linearly independent 

So, if , then  form a basis for the columnspace!

X ∈ ℝn×d x1, …, xd ∈ ℝn

CS(X) = span(x1, …, xd)

rank(X) x1, …, xd

rank(X) = d x1, …, xd



Least Squares
First missing item: invertibility of X⊤X

If  and , then  is invertible. 

“If there are no redundant features, then we can invert the normal equations”

n ≥ d rank(X) = d X⊤X



Least Squares
First missing item: invertibility of X⊤X

Theorem (Invertibility of ). Let  be a matrix, with columns . If  
and , then  is invertible. 

Proof. To show that  is invertible, show . 

X⊤X X ∈ ℝn×d x1, …, xd ∈ ℝn n ≥ d
rank(X) = d X⊤X

X⊤X rank(X⊤X) = d



Least Squares
First missing item: invertibility of X⊤X

Theorem (Invertibility of ). Let  be a matrix, with columns . If  
and , then  is invertible. 

Proof. To show that  is invertible, show  has  linearly independent columns. 

.

X⊤X X ∈ ℝn×d x1, …, xd ∈ ℝn n ≥ d
rank(X) = d X⊤X

X⊤X X⊤X d

X⊤Xw = 0 ⟺ w = 0



Least Squares
First missing item: invertibility of X⊤X

Theorem (Invertibility of ). Let  be a matrix, with columns . If  
and , then  is invertible. 

Proof. To show that  is invertible, show  has  linearly independent columns. 

. 

Suppose . Let  be any vector.

X⊤X X ∈ ℝn×d x1, …, xd ∈ ℝn n ≥ d
rank(X) = d X⊤X

X⊤X X⊤X d

X⊤Xw = 0 ⟹ w = 0

X⊤Xw = 0 w ∈ ℝd



Least Squares
First missing item: invertibility of X⊤X

Theorem (Invertibility of ). Let  be a matrix, with columns . If  
and , then  is invertible. 

Proof. To show that  is invertible, show  has  linearly independent columns. 

. 

Suppose . Let  be any vector. Take a dot product of both sides with : 

 

X⊤X X ∈ ℝn×d x1, …, xd ∈ ℝn n ≥ d
rank(X) = d X⊤X

X⊤X X⊤X d

X⊤Xw = 0 ⟹ w = 0

X⊤Xw = 0 w ∈ ℝd w

w⊤X⊤Xw = w⊤0 = 0.

w⊤X⊤Xw = ∥Xw∥2 = 0



Least Squares
First missing item: invertibility of X⊤X

Theorem (Invertibility of ). Let  be a matrix, with columns . If  and 
, then  is invertible. 

Proof. To show that  is invertible, show  has  linearly independent columns. 

. 

Suppose . Let  be any vector. Take a dot product of both sides with : 

 

  

But , so  has  linearly independent columns. Therefore, .

X⊤X X ∈ ℝn×d x1, …, xd ∈ ℝn n ≥ d
rank(X) = d X⊤X

X⊤X X⊤X d

X⊤Xw = 0 ⟹ w = 0

X⊤Xw = 0 w ∈ ℝd w

w⊤X⊤Xw = w⊤0 = 0.

w⊤X⊤Xw = ∥Xw∥2 = 0 ⟹ Xw = 0 .

rank(X) = d X d w = 0



Least Squares
First missing item: invertibility of X⊤X

Theorem (Invertibility of ). Let  be a matrix, with columns . If  
and , then  is invertible.

X⊤X X ∈ ℝn×d x1, …, xd ∈ ℝn n ≥ d
rank(X) = d X⊤X



Least Squares
Summary
Use the principle of least squares to find the  that minimizes 

. 

Using geometric intuition:  is the vector for which  is perpendicular to 
. 

By Pythagorean Theorem, any other vector  gives a larger 
error: 

 

Because  is perpendicular to , we obtain the normal 
equations: 

. 

If  and , then  is invertible, and 

 .

ŵ ∈ ℝd

∥ŷ − y∥2 = ∥Xw − y∥2

ŷ ŷ − y
span(col(X))

ỹ ∈ span(col(X))

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

ŷ − y span(col(X))

X⊤Xŵ = X⊤y

n ≥ d rank(X) = d X⊤X

ŵ = (X⊤X)−1X⊤y

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Least Squares
Summary
Use the principle of least squares to find the  that minimizes 

. 

Using geometric intuition:  is the vector for which  is perpendicular 
to . 

By Pythagorean Theorem, any other vector  gives a larger error: 

 

Because  is perpendicular to , we obtain the normal equations: 

. 

If  and , then  is invertible, and 

 .

ŵ ∈ ℝd

∥ŷ − y∥2 = ∥Xw − y∥2

ŷ ŷ − y
CS(X)

ỹ ∈ CS(X)

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

ŷ − y CS(X)

X⊤Xŵ = X⊤y

n ≥ d rank(X) = d X⊤X

ŵ = (X⊤X)−1X⊤y

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Least Squares
Second missing item: Pythagorean Theorem

By Pythagorean Theorem, any other vector  gives a larger error: 

 

“The vector closest to  in the subspace is perpendicular.”

ỹ ∈ CS(X)

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

y



Orthogonality 
Definition and Orthonormal Bases



Norms and Inner Products
Euclidean Norm

Recall the notion of “length” from . For a vector , 

. 

Generalizing this, for , the Euclidean norm ( -norm) is: 

. 

. 

In this course, dropping the “ ” and just writing  denotes the Euclidean norm.

ℝ2 x = (x1, x2) ∈ ℝ2

∥x∥2 := x2
1 + x2

2

x ∈ ℝn ℓ2

∥x∥2 := x2
1 + … + x2

n = x⊤x

∥x∥2
2 = x⊤x

2 ∥x∥



Orthogonality
Definition

Two vectors  are orthogonal if . In  and , this corresponds to our 
geometric notion of “perpendicular.” 

A set of vectors is orthogonal if every pair of distinct vectors in the set is orthogonal.

v, w ∈ ℝn ⟨v, w⟩ = v⊤w = 0 ℝ2 ℝ3



Orthogonality
Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors  are orthogonal, then 

. 

Proof. Let  be orthogonal vectors. Expand the square . 

 

v, w ∈ ℝn

∥v + w∥2 = ∥v∥2 + ∥w∥2

v, w ∈ ℝn ∥v + w∥2

∥v + w∥2 = ⟨v + w, v + w⟩
= ⟨v, v⟩ + ⟨v, w⟩ + ⟨w, v⟩ + ⟨w, w⟩
= ⟨v, v⟩ + 2⟨v, w⟩ + ⟨w, w⟩
= ∥v∥2 + ∥w∥2



Least Squares
Second missing item: Pythagorean Theorem

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

By Pythagorean Theorem, any other vector  gives a larger error: ỹ ∈ CS(X)

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Least Squares
Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let  be the vector where  is 
orthogonal to any vector in  and let  be any other vector. Then 

 

ŷ ∈ CS(X) ŷ − y
CS(X) ỹ ∈ CS(X)

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Least Squares
Second missing item: Pythagorean Theorem
Theorem (Projection minimizes distance). Let  be the vector 
where  is orthogonal to any vector in  and let  be 
any other vector. Then  

Proof. Because  and  and  is a subspace, 
.  

The vector  is orthogonal to any vector in , so  is 
orthogonal to .  

By the Pythagorean Theorem: 

 

But because norms are always nonnegative,  

.

ŷ ∈ CS(X)
ŷ − y CS(X) ỹ ∈ CS(X)

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

ŷ ∈ CS(X) ỹ ∈ CS(X) CS(X)
ỹ − ŷ ∈ CS(X)

ŷ − y span(col(X)) ŷ − y
ỹ − ŷ

∥ŷ − y∥2 + ∥ỹ − ŷ∥2 = ∥ŷ − y + ỹ − ŷ∥2 = ∥ỹ − y∥2

∥ŷ − y∥2 ≤ ∥ỹ − y∥2

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Least Squares
Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let  be the vector where  is 
orthogonal to any vector in  and let  be any other vector. Then 

 

ŷ ∈ CS(X) ŷ − y
CS(X) ỹ ∈ CS(X)
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Least Squares
Summary
Use the principle of least squares to find the  that minimizes 

. 

Using geometric intuition:  is the vector for which  is perpendicular 
to . 

By Pythagorean Theorem, any other vector  gives a larger error: 

 

Because  is perpendicular to , we obtain the normal equations: 

. 

If  and , then  is invertible, and 

 .

ŵ ∈ ℝd

∥ŷ − y∥2 = ∥Xw − y∥2

ŷ ŷ − y
CS(X)

ỹ ∈ CS(X)

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

ŷ − y CS(X)

X⊤Xŵ = X⊤y

n ≥ d rank(X) = d X⊤X

ŵ = (X⊤X)−1X⊤y

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Least Squares
Summary

Goal: Find the  that minimizes 

. 

Theorem (OLS). If  and , then: 

 . 

To get predictions : 

.

ŵ ∈ ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Orthogonality 
Projections



Projection
Idea: A vector’s “shadow” on another set

For an arbitrary set , the projection of a vector  onto the set  is the closest vector 
 in  to . 

Denote this vector .

S ⊆ ℝn y ∈ ℝn S
ŷ S y

ΠS(y) := ŷ

y - proj_y y proj_y origin

https://samuel-deng.github.io/math4ml_su25/assets/figs/projection.html


Projection
Projection of a vector onto an arbitrary set

For an arbitrary set , the projection of a vector  onto the set  is the closest vector 
 in  to . 

Denote this vector . 

“Closest” in a Euclidean (“least squares”) distance sense: 

 

S ⊆ ℝn y ∈ ℝn S
ŷ S y

ΠS(y) := ŷ

ΠS(y) = arg min
ŷ∈S

∥ŷ − y∥ = ∥ŷ − y∥2.



Projection
Projection of a vector onto a subspace

Let  be a subspace, with the basis . Let  be the matrix with 
 as its columns. Any point  is a linear combination: 

 

The projection of  onto  is: 

𝒳 ⊆ ℝn x1, …, xd ∈ ℝn X ∈ ℝn×d

x1, …, xd ŷ ∈ 𝒳

ŷ = w1x1 + … + wdxd

= Xw

y 𝒳

Π𝒳(y) = arg min
ŷ∈𝒳

∥ŷ − y∥2



Projection
Projection of a vector onto a subspace

Let  be a subspace, with the basis . Let  be the matrix with 
 as its columns. Any point  is a linear combination: 

 

This is equivalent to finding: 

𝒳 ⊆ ℝn x1, …, xd ∈ ℝn X ∈ ℝn×d

x1, …, xd ŷ ∈ 𝒳

ŷ = w1x1 + … + wdxd

= Xw

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2



Least Squares as Projection
Projection Matrix

 

This is just least squares! By what we’ve learned… 

 

 

Let  be the projection 
matrix for .

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2

ŵ = (X⊤X)−1X⊤y

Π𝒳(y) = ŷ = X(X⊤X)−1X⊤y

PX := X(X⊤X)−1X⊤ ∈ ℝn×n

span(col(X))
x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Linearity
Review from linear algebra

Linearity is the central property in linear algebra. Cooking is typically linear. 
Bacon, egg, cheese (on roll) 

1 egg 

1 slice of cheese 

1 slice bacon 

1 Kaiser roll 

0 cream cheese 

0 slices of lox 

0 bagel

Lox sandwich 

0 egg 

0 slice of cheese 

0 slice bacon 

0 Kaiser roll 

1 cream cheese 

2 slices of lox 

1 bagel

Bacon, egg, cheese (on bagel) 

1 egg 

1 slice of cheese 

1 slice bacon 

0 Kaiser roll 

0 cream cheese 

0 slices of lox 

1 bagel



Linearity
Review from linear algebra

Linearity is the central property in linear algebra.  

A function (“transformation”)  is linear if  satisfies these two properties for any two 
vectors : 

 

 for any .

T : ℝd → ℝn T
a, b ∈ ℝd

T(a + b) = T(a) + T(b)

T(ca) = cT(a) c ∈ ℝ



Linearity
Review from linear algebra

Example. Consider the function , defined by: 

.

T : ℝ3 → ℝ

T(x) = 2x1 + 3x3



Linearity
Review from linear algebra

Matrices also play by these rules. Let  be a matrix and let  be vectors. 

 

 for any .

X ∈ ℝn×d w, v ∈ ℝd

X(w + v) = Xw + Xv

X(cw) = c(Xw) c ∈ ℝ



Linearity
Review from linear algebra

Theorem (Equivalence of linear transformations and matrices).   

Any linear transformation  has a corresponding matrix  such that: 

. 

Any matrix  has a corresponding linear transformation  such that: 

.

T : ℝd → ℝn AT ∈ ℝn×d

T(x) = ATx

A ∈ ℝn×d TA : ℝd → ℝn

TA(x) = Ax



Linearity
Review from linear algebra

 and  

This means that matrix-vector multiplication is the same as applying a linear transformation.  

So one way of thinking of a matrix is an “action” applied to vectors.

T(x) = ATx TA(x) = Ax



Least Squares as Projection
Projection Matrix

Let  be a subspace with basis . If  are linearly independent, 
making up the matrix , 

 

is the projection matrix onto .  

To project a vector  onto , compute: 

.

𝒳 ⊆ ℝd x1, …, xd ∈ ℝn x1, …, xd
X ∈ ℝn×d

PX := X(X⊤X)−1X⊤ ∈ ℝn×n

𝒳

y ∈ ℝn 𝒳

Π𝒳(y) = ŷ = PXy = X(X⊤X)−1X⊤y

Encodes an action on vectors!



Least Squares 
Orthonormal Bases and Projection



Norms and Inner Products
Unit Vectors

A vector  is a unit vector if . 

We can convert any vector into a unit vector by dividing itself by its norm: 

v ∈ ℝd ∥v∥ = 1

v
∥v∥



Orthonormal Basis
“Good” Bases

How should we represent a subspace? 

Take, for example, the subspace .𝒮 = {v ∈ ℝ3 : v3 = 0}



Orthonormal Basis
“Good” Bases

 

Attempt 1: Use the span of a set of vectors:  

Attempt 2: Use the span of a set of linearly independent vectors (a basis): 

 

Attempt 3: Use the span of an orthonormal set of vectors (an orthonormal basis): 

𝒮 = {v ∈ ℝ3 : v3 = 0}

span ([
2
1
0], [

0
1
0], [

2
3
0]) .

span ([
2
1
0], [

0
1
0]) .

span ([
1
0
0], [

0
1
0]) .



Orthonormal Basis
“Good” Bases

 

                    

𝒮 = {v ∈ ℝ3 : v3 = 0}

span [
2
1
0], [

0
1
0], [

2
3
0] span [

2
1
0], [

0
1
0] span [

1
0
0], [

0
1
0]



Orthonormal Basis
Definition

A set of vectors  is an orthonormal basis for the subspace  if they are a basis for 
 and, additionally: 

 for . 

 for .

u1, …, un ∈ 𝒮 𝒮
𝒮

⟨ui, uj⟩ = 0 i ≠ j

∥ui∥ = 1 i ∈ [n]



Orthonormal Basis
Orthogonal Matrices

A square matrix  is an orthogonal matrix if its columns  are orthogonal 
unit vectors: 

 for . 

 for . 

These form an orthonormal basis for . 

Its rows are also orthogonal.

U ∈ ℝd×d u1, …, ud ∈ ℝd

⟨ui, uj⟩ = 0 i ≠ j

∥ui∥ = 1 i ∈ [d]

span(col(U))



Orthonormal Basis
Orthogonal Matrices

A matrix  is an semi-orthogonal matrix if its columns  are orthogonal 
unit vectors: 

 for . 

 for . 

These form an orthonormal basis for .

U ∈ ℝn×d u1, …, ud ∈ ℝn

⟨ui, uj⟩ = 0 i ≠ j

∥ui∥ = 1 i ∈ [d]

span(col(U))



Orthonormal Basis
Properties of Orthogonal Matrices

Let a square matrix  be an orthogonal matrix. Then: 

 is its own inverse: . 

 is length-preserving: .

U ∈ ℝd×d

U U⊤U = UU⊤ = I

U ∥Uv∥ = ∥v∥



Orthonormal Basis
Properties of Orthogonal Matrices

Let matrix  be an semi-orthogonal matrix. Then: 

 is its own left inverse: . 

 is length-preserving: .

U ∈ ℝn×d

U U⊤U = I

U ∥Uv∥ = ∥v∥



Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

A basis is just a “language” for representing vectors in a subspace. For example, consider the 
subspace  and the vector 

 

Basis 1: 

𝒮 = {v ∈ ℝ3 : v3 = 0}

ŷ = [
1
1
0]

{[
2
1
0], [

0
1
0]}



Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

A basis is just a “language” for representing vectors in a subspace. For example, consider the 
subspace  and the vector 

 

Basis 2: 

𝒮 = {v ∈ ℝ3 : v3 = 0}

ŷ = [
1
1
0]

[
1
0
0], [

0
1
0]



Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

Every subspace  has many choices of bases.  

Some are better than others.

𝒳 ⊆ ℝn

x1 x2 u1 u2 ~y x1 x2 u1 u2 ~y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

Let  be a subspace, with . 

One basis: , with matrix .  

Another basis: , with matrix . 

Then, 

.

𝒳 ⊆ ℝn dim(𝒳) = d

x1, …, xd ∈ ℝn X ∈ ℝn×d

u1, …, ud ∈ ℝn U ∈ ℝn×d

𝒳 = CS(U) = CS(X)
x1 x2 u1 u2 ~y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

Let  be a subspace, with . 

. 

Therefore, for any , we can write: 

. 

Both  are valid ways to “represent” .

𝒳 ⊆ ℝn dim(𝒳) = d

𝒳 = CS(U) = CS(X)

ŷ ∈ 𝒳

ŷ = Xŵ = Uŵonb

ŵ, ŵonb ∈ ℝd ŷ
x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


Orthogonal Bases in Least Squares
What if we had an orthogonal basis?

How do we find  in   

Least squares! 

 

The columns of  give an ONB for … 

  

ŵonb ∈ ℝd ŷ = Uŵonb?

ŵonb = arg min
ŵonb∈ℝd

∥y − Uŵonb∥2

U 𝒳

ŵonb = (U⊤U)−1U⊤y

= U⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


Orthonormal Basis
Why do we like an orthogonal basis?

Let  be a subspace. Let  be the projection of  onto . 

For an arbitrary matrix  with , 

 and . 

For a semi-orthogonal matrix  with , 

 and . 

Much simpler — no inverse operations!

𝒳 Π𝒳(y) = arg min
ŷ∈𝒳

∥ŷ − y∥2 y 𝒳

X ∈ ℝn×d CS(X) = 𝒳

ŵ = (X⊤X)−1X⊤y ŷ = X(X⊤X)−1X⊤y

U ∈ ℝn×d CS(U) = 𝒳

ŵonb = U⊤y ŷ = UU⊤y



Orthonormal Basis
Why do we like an orthogonal basis?

Theorem (Projection with orthogonal matrices). Let  be a subspace and let 
 be an orthonormal basis for , with semi-orthogonal matrix . For any 

, the projection of  onto , i.e. 

 

is given by 

.

𝒳 ⊆ ℝn

u1, …, ud ∈ ℝn 𝒳 U ∈ ℝn×d

y ∈ ℝn y 𝒳

Π𝒳(y) = arg min
ŷ∈𝒳

∥ŷ − y∥2

Π𝒳(y) = UU⊤y



Recap



Lesson Overview

Regression. Fill in gaps from last time: invertibility and Pythagorean theorem. 

Subspaces. Subsets of  where we “stay inside” when performing linear combinations of 
vectors. 

Bases. A “language” to describe all vectors in a subspace. 

Orthogonality. Orthonormal bases are “good” bases to work with. 

Projection. Formal definition of projection and the relationship between projection and least squares. 

Least squares with orthonormal bases. If we have an orthonormal basis for , least squares 
becomes much simpler.

𝒮 ⊆ ℝn

CS(X)



Lesson Overview
Big Picture: Least Squares

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


Lesson Overview
Big Picture: Gradient Descent

descent start
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https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html

