
By: Samuel Deng

Math for Machine Learning
Week 2.1: Singular Value Decomposition

Logistics & Announcements

Lesson Overview

Orthogonal complement and properties of projection. We go over several useful properties of the
projection operation.

Derivation of the singular value decomposition (SVD). We derive the SVD from the “best-fitting
subspace” problem using all the properties of projection.

SVD Definition. We go over the definition of SVD and the geometric intuition as the factorization of a
data matrix.

Application of SVD: rank-k approximation. We state and give an example of rank-k approximation, a
common data compression technique using SVD.

Pseudoinverse. We unify our OLS solution from the perspective of SVD and the notion of the
pseudoinverse, a generalization of inverses to rectangular matrices.

Lesson Overview
Big Picture: Least Squares

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y
x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Lesson Overview
Big Picture: Gradient Descent

descent start
−10 −5 0 5 10

0

20

40

60

80

100

https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html

Lesson Overview
Big Picture: Singular Value Decomposition (SVD)

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6
x1-axis
x2-axis
x3-axis
u1
u2
u3

https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd.html

Least Squares
A Quick Review

Regression
Setup (Example View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Goal: For each , we predict: .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Regression
Setup (Feature View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Regression
Setup

To find , we follow the principle of least squares.

This gives the predictions that are close in a
least squares sense:

 such that

(for from any other).

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

ŷ ∈ ℝn

ŷ = Xŵ ∥ŷ − y∥2 ≤ ∥ỹ − y∥2

ỹ = Xw w ∈ ℝd

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and . Let be the least squares
minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y

Least Squares
OLS with Orthogonal Basis

Theorem (OLS with orthogonal basis). Let be a subspace and let be an
orthonormal basis for , with semi-orthogonal matrix . Let and let be the least
squares minimizer:

which is solved by:

Additionally, the projection is given by :

.

𝒳 ⊆ ℝn u1, …, ud ∈ ℝn

𝒳 U ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Uw − y∥2,

ŵ = U⊤y .

ŷ ∈ ℝn Π𝒳(y) = arg min
ŷ∈𝒳

∥ŷ − y∥2

ŷ = Π𝒳(y) = UU⊤y

Least Squares
OLS with Orthogonal Basis

 ŵonb = U⊤y

ŷ = Π𝒳(y) = UU⊤y

 ŵ = (X⊤X)−1X⊤y

ŷ = Π𝒳(y) = X(X⊤X)−1X⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html

How to find a good orthogonal basis?

x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Properties of Projections
Projection Matrices and
Orthogonal Complement

Projection
Projection of a vector onto a subspace

For a subspace , the projection of a vector onto is the closest vector in to
, in a Euclidean distance sense:

Let . Any point is a linear combination , with:

.

𝒳 ⊆ ℝn y ∈ ℝn 𝒳 ŷ 𝒳
y

ŷ = arg min
ŷ∈𝒳

∥ŷ − y∥ = ∥ŷ − y∥2.

𝒳 = CS(X) ŷ ∈ 𝒳 ŷ = Xŵ

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2

Least Squares as Projection
Projection Matrix

This is just least squares! By what we’ve learned…

The projection matrix is:

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2

ŵ = (X⊤X)−1X⊤y

ŷ = X(X⊤X)−1X⊤y

P𝒳 = X(X⊤X)−1X⊤ ∈ ℝn×n .

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

y - proj_y y proj_y origin

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/projection.html

Least Squares as Projection
Projection Matrix

Any matrix has a subspace .

If the columns are linearly independent, then:

,

where is a projection matrix.

What else can we say about projections?

X ∈ ℝn×d 𝒳 = CS(X)

x1, …, xd

Π𝒳(y) = P𝒳y = X(X⊤X)−1X⊤y

P𝒳 ∈ ℝn×n

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Orthogonal Complement
Intuition

Any subspace has an orthogonal
complement .

All vectors in are orthogonal to all the vectors in
, and vice versa.

Any vector can be constructed by adding
a vector from to a vector from .

A ⊆ ℝn

A⊥

A
A⊥

y ∈ ℝn

A A⊥

u1 u2 v1 z-axis y

https://samuel-deng.github.io/math4ml_su25/assets/figs/ortho_comp.html

Orthogonal Complement
Definition

Let be a subspace. The orthogonal complement of , written , is the set of vectors

.

A ⊆ ℝn A A⊥

A⊥ := {v ∈ ℝn : ⟨v, u⟩ = 0 for all u ∈ A}

u1 u2 v1 z-axis y

https://samuel-deng.github.io/math4ml_su25/assets/figs/ortho_comp.html

Orthogonal Complement
Dimension

For any subspace with , orthogonal complement has . A ⊆ ℝn dim(A) = d A⊥ dim(A⊥) = n − d

u1 u2 v1 z-axis y

https://samuel-deng.github.io/math4ml_su25/assets/figs/ortho_comp.html

Orthogonal Complement
Orthogonal Complement and Matrices

Let be a basis for the subspace .

Let be a basis for the orthogonal complement, .

Let have columns . Let have columns . Then:

 and .

We can break down any vector into two projections:

.

a1, …, ad ∈ ℝn A ⊆ ℝn

b1, …, bn−d A⊥

A ∈ ℝn×d a1, …, ad B ∈ ℝn×(n−d) b1, …, bn−d

A⊤B = 0 B⊤A = 0

x ∈ ℝn

x = PAx + PBx

Orthogonal Complement
Orthogonal Complement and Projections

We can break down any vector into two
projections:

.

Additionally, .

x ∈ ℝn

x = PAx + PBx

I = PA + PB

u1 u2 v1 z-axis y

https://samuel-deng.github.io/math4ml_su25/assets/figs/ortho_comp.html

Projection Matrices
Properties

 has columnspace ; has columns , a basis for .

Prop (Orthogonal Decomposition). For any vector , .

Prop (Projection and Orthogonal Complement Matrices). .

Prop (Projecting twice doesn’t do anything). .

Prop (Projections are symmetric). .

Prop (1D projection formula). For the 1D subspace associated with : .

A ∈ ℝn×d CS(A) B ∈ ℝn×(n−d) b1, …, bn−d CS(A)⊥

x ∈ ℝn x = PAx + PBx

PA + PB = I

PA = PAPA = P2
A

PA = P⊤
A

a ∈ ℝn Pa =
aa⊤

a⊤a

Singular Value Decomposition
1D Intuition and Derivation

Singular Value Decomposition (SVD)
1D Picture

Observed: Matrix of training samples (forget about training labels for now).

, where .

Goal: Find the best one-dimensional subspace that fits the points.

A one-dimensional subspace is determined by a single vector :

.

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
x1, …, xd ∈ ℝn

𝒰 ⊆ ℝn

u ∈ ℝn

𝒰 = {cu : c ∈ ℝ}

Singular Value Decomposition (SVD)
1D Picture

Observe data .

Goal: Find the best one-dimensional subspace
 that fits the points.

How? Find that minimizes the sum of
squared projection distances:

.

x1, …, xd ∈ ℝn

𝒰 ⊆ ℝn

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Comparison with OLS
1D Pictures

OLS: Find best linear combination of
 such that

ŵ ∈ ℝd

x1, …, xd

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2

BFS: Find one-dimensional subspace
determined by such that u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2
Important: there is no in

our BFS problem!
y

Comparison with OLS
1D Pictures

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2 arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Best-fitting 1D Subspace
Step 1: Expand out squared projection distance

Find that minimizes the sum of squared projection distances:

.

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2 =
d

∑
i=1

∥xi − Puxi∥2

∥xi − Puxi∥2 = xi − (uu⊤

u⊤u) xi

2

= (I −
uu⊤

u⊤u) xi

2

= x⊤
i (I −

uu⊤

u⊤u)
⊤

(I −
uu⊤

u⊤u) xi

= x⊤
i (I −

uu⊤

u⊤u)
2

xi = x⊤
i (I −

uu⊤

u⊤u) xi

1D projection
Orthogonal comp. to subspace!u

Projections are symmetric Projecting twice doesn’t do anything

Best-fitting 1D Subspace
Step 2: Simplify minimization problem into maximization

Find that minimizes the sum of squared projection distances:

.

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2 =
d

∑
i=1

∥xi − Puxi∥2 =
d

∑
i=1

x⊤
i (I −

uu⊤

u⊤u) xi

=
d

∑
i=1

x⊤
i xi − x⊤

i (uu⊤

u⊤u) xi

u = arg min
u∈ℝn

d

∑
i=1

x⊤
i xi − x⊤

i (uu⊤

u⊤u) xi ⟺ arg max
u∈ℝn

d

∑
i=1

x⊤
i (uu⊤

u⊤u) xi

Best-fitting 1D Subspace
Step 3: Derive “operator norm” from matrix outer products

Find that minimizes the sum of squared projection distances:

.

squared operator norm of , i.e.

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2 =
d

∑
i=1

∥xi − Puxi∥2 =
d

∑
i=1

x⊤
i (I −

uu⊤

u⊤u) xi

⟺ arg max
u∈ℝn

d

∑
i=1

x⊤
i (uu⊤

u⊤u) xi

= arg max
u∈ℝn

u⊤XX⊤u
u⊤u

X ∥X∥2
op

Singular Value Decomposition (SVD)
1D Picture

Observe data .

Goal: Find the best one-dimensional subspace
 that fits the points.

How? Find that minimizes the sum of
squared projection distances:

.

 is the 1st left singular vector with 1st

(squared) singular value

x1, …, xd ∈ ℝn

𝒰 ⊆ ℝn

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2 = arg max
u∈ℝn

u⊤XX⊤u
u⊤u

u ∈ ℝn

σ2
1 =

u⊤XX⊤u
u⊤u

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Singular Value Decomposition
Definition of Full SVD and Compact SVD

Singular Value Decomposition (SVD)
Building up the SVD

Observe data . Consider the following procedure…

For :

1. Find , the best one-dimensional subspace fit to .

Let .

2. Find , the best one-dimensional subspace fit to .

Let .

3. Find , the best one-dimensional subspace fit to …

x1, …, xd ∈ ℝn

t = 1,2,…, n

u1 ∈ ℝn x1, …, xd

x(1)
i = xi − Πu1

(xi)

u2 ∈ ℝn x(1)
1 , …, x(1)

d

x(2)
i = x(1)

i − Πu2
(xi) = xi − Πu1

(xi) − Πu2
(xi)

u3 ∈ ℝn x(2)
1 , …, x(2)

d

Singular Value Decomposition (SVD)
Building up the SVD

Observe data .

1. Find , the best one-dimensional subspace
fit to .

Let .

2. Find , the best one-dimensional subspace
fit to .

x1, …, xd ∈ ℝ2

u1 ∈ ℝ2

x1, …, xd

x(1)
i = xi − Πu1

(xi)

u2 ∈ ℝn

x(1)
1 , …, x(1)

d

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Singular Value Decomposition (SVD)
Building up the SVD

is the best one-dimensional subspace fit to:

.

These are the left singular vectors of .

Orthogonal, by construction (left singular vector is
in the orthogonal complement of).

ut ∈ ℝn

xi −
t−1

∑
k=1

Πuk
(xi)

n X ∈ ℝn×d

uk
u1, …, uk−1

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Singular Value Decomposition (SVD)
Definition of the Full SVD

Consider any matrix . The full singular value decomposition (SVD) is

.

The columns of are the left singular vectors and is orthogonal: .

The columns of are the right singular vectors and is orthogonal: .

 is a diagonal matrix with singular values on the diagonal.

The rank of is equal to the number of .

X ∈ ℝn×d

X⏟
n×d

= U⏟
n×n

Σ
⏟

n×d

V⊤
⏟
d×d

U ∈ ℝn×n U U⊤U = UU⊤ = I

V ∈ ℝd×d V V⊤V = VV⊤ = I

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σd ≥ 0

X σi > 0

Singular Value Decomposition (SVD)
Shape of the MatrixΣ

 is a diagonal matrix with singular values on the diagonal.

or or

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σmin{n,d} ≥ 0

Σ =

σ1 0 … 0
0 σ2 … 0
0 0 ⋱ ⋮
0 0 … σd

n=d

Σ =

σ1 0 … 0
0 σ2 … 0
0 0 ⋱ ⋮
0 0 … σd

0 0 … 0
0 0 … 0
⋮ ⋮ ⋮ ⋮

n>d

Σ =

σ1 0 … 0 0 0 …
0 σ2 … 0 0 0 …
0 0 ⋱ ⋮ ⋮ ⋮ …
0 0 … σn 0 0 …

d>n

Interpreting the SVD
Example in ℝ2

Let . The SVD is given by:

x1, …, x212 ∈ ℝ2

X⏟
2×212

= U⏟
2×2

Σ
⏟

2×212

V⊤
⏟

212×212

Left Singular Vectors
Interpreting the matrixU

The columns of are an orthonormal
basis for .

X⏟
2×212

= U⏟
2×2

Σ
⏟

2×212

V⊤
⏟

212×212

u1, u2 ∈ ℝ2 U
CS(X)

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Singular Values
Interpreting the matrixΣ

The singular values represent how to
scale and to “fit” all the data.

They represent the relative “strength” of and
 in explaining the data.

X⏟
2×212

= U⏟
2×2

Σ
⏟

2×212

V⊤
⏟

212×212

σ1, σ2 > 0
u1 u2

u1
u2

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Right Singular Vectors
Interpreting the matrixV

The rows of give the coordinates for each
point under the basis .

Specifically, for

.

X⏟
2×212

= U⏟
2×2

Σ
⏟

2×212

V⊤
⏟

212×212

V⊤

σ1u1, σ2u2

j ∈ [d],

xj = v1jσ1u1 + v2jσ2u2

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Right Singular Vectors
Interpreting the matrixV

Specifically, for

.

j ∈ [d],

xj = v1jσ1u1 + v2jσ2u2

↑ ↑ ↑ ↑ ↑
x1 x2 x3 … x212
↓ ↓ ↓ ↓ ↓

=
↑ ↑
u1 u2
↓ ↓

[σ1 0 0 … 0
0 σ2 0 … 0]

← v⊤
1 →

← v⊤
2 →

⋮ ⋮ ⋮
← v⊤

212 →

Interpretation of the SVD
Full Interpretation of the SVD

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Singular Value Decomposition (SVD)
Example of SVD

X =
1 0 0
0 5 0
0 0 10

Singular Value Decomposition (SVD)
Example in ℝ3

x1-axis
x2-axis
x3-axis
u1
u2
u3

x1-axis
x2-axis
x3-axis
u1
u2
u3

x1-axis
x2-axis
x3-axis
u1
u2
u3

https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd_proju1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd_proju1u2.html

Singular Value Decomposition (SVD)
Definition of the Compact SVD

 with rank has compact singular value decomposition (SVD):

.

Columns of are the left singular vectors and , o.n.b. for .

Columns of are the right singular vectors and , o.n.b. for .

 is a square diagonal matrix with singular values on diagonal.

X ∈ ℝn×d r ≤ min{n, d}

X⏟
n×d

= U⏟
n×r

Σ
⏟
r×r

V⊤
⏟
r×d

U ∈ ℝn×r U⊤U = I CS(X)

V ∈ ℝr×d V⊤V = I CS(X⊤)

Σ ∈ ℝr×r σ1 ≥ σ2 ≥ … ≥ σr > 0

How to find a good orthogonal basis?

x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Least Squares
OLS with Orthogonal Basis

 ŵonb = U⊤y

ŷ = Π𝒳(y) = UU⊤y

 ŵ = (X⊤X)−1X⊤y

ŷ = Π𝒳(y) = X(X⊤X)−1X⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html

Least Squares
OLS with Orthogonal Basis

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

 ŵonb = U⊤y

ŷ = Π𝒳(y) = UU⊤y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html

Singular Value Decomposition
Application: Low-rank Approximation

Rank-k Approximation
Idea

In many applications, it is useful to approximate a matrix.

The rank of a matrix represents how many linearly independent columns (or rows) make up a
matrix (i.e. how much “novel information” the matrix contains).

We might approximate a matrix with by asking:

What’s the closest rank- matrix (with) to ?

One notion of “close” for matrices is the Frobenius norm: .

X r = rank(X)

k k ≪ r X

∥X∥F :=
n

∑
i=1

d

∑
j=1

X2
ij

Rank-k Approximation
Theorem

Theorem (Rank- Approximation). Let . If is the compact SVD of with
, , and as truncated matrices of , , and , respectively, then

 and .

Then, is the rank- approximation of in Frobenius norm:

, such that .

k X ∈ ℝn×d X = UΣV⊤ X
Uk ∈ ℝn×k Σk ∈ ℝk×k Vk ∈ ℝd×k U Σ V

X̂k = UkΣkV⊤
k ∥X − X̂k∥2 =

r

∑
i=k+1

σ2
i

X̂k ∈ ℝn×d k X

X̂k = arg min
X̂∈ℝn×d

∥X − X̂∥F rank(X̂) = k

Rank-k Approximation
Outer Product Interpretation

The (compact) SVD of a matrix can also be written as a sum of rank-1 matrices.

.

In this way, the rank- approximation can be written as truncating this sum at :

X = σ1u1v⊤
1

n×d

+ σ2u2v⊤
2 + … + σrurv⊤

r

k X̂k k

X̂k = σ1u1v⊤
1 + … + σkukv⊤

k .

Rank-k Approximation
Example

Consider the matrix: 4 × 4

X =

100 0 0 0
0 90 0 0
0 0 8 0
0 0 0 2

Rank-k Approximation
Application in Image Processing

Rank-k Approximation
Application in Image Processing

0 500 1000 1500 2000 2500 3000

0

50k

100k

150k

200k

250k

300k

350k

ith singular value

sin
gu

lar
 va

lu
e

Rank-k Approximation
Application in Image Processing (k = 500)

0 100 200 300 400 500

0

50k

100k

150k

200k

250k

300k

350k

ith singular value

sin
gu

lar
 va

lu
e

Rank-k Approximation
Application in Image Processing (k = 100)

0 20 40 60 80 100

0

50k

100k

150k

200k

250k

300k

350k

ith singular value

sin
gu

lar
 va

lu
e

Rank-k Approximation
Application in Image Processing (k = 20)

0 5 10 15
0

50k

100k

150k

200k

250k

300k

350k

ith singular value

sin
gu

lar
 va

lu
e

Rank-k Approximation
Application in Image Processing (k = 5)

0 5 10 15
0

50k

100k

150k

200k

250k

300k

350k

ith singular value

sin
gu

lar
 va

lu
e

Least Squares
SVD and the Pseudoinverse

Regression
Setup (Example View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Goal: For each , we predict: .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Regression
Setup (Feature View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and . Let be the least squares
minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y

Least Squares: SVD Perspective
Plugging in the SVD

By the full SVD, we can represent . How can we interpret the least squares solution
now that we know the SVD?

X = UΣV⊤

ŵ = (X⊤X)−1X⊤y

Least Squares: SVD Perspective
Plugging in the SVD

By the full SVD, we can represent . How can we interpret the least squares solution
now that we know the SVD?

 because

 because

 because

 because

 because

X = UΣV⊤

ŵ = (X⊤X)−1X⊤y = (VΣ⊤U⊤UΣV⊤)−1(VΣU⊤)y X⊤ = VΣ⊤U⊤

= (VΣ⊤ΣV⊤)−1VΣ⊤U⊤y U⊤U = I

= (Σ⊤ΣV⊤)−1V⊤VΣ⊤U⊤y (AB)−1 = B−1A−1

= (Σ⊤ΣV⊤)−1Σ⊤U⊤y V⊤V = I

= V(Σ⊤Σ)−1Σ⊤U⊤y (AB)−1 = B−1A−1

Pseudoinverse
Idea

Therefore, we derived:

 (when and).

Taking a closer look at the matrix , we have:

.

In this way, acts “like an inverse” to , though may not be square.

ŵ = V(Σ⊤Σ)−1Σ⊤U⊤y n ≥ d rank(X) = d

(Σ⊤Σ)−1Σ⊤ ∈ ℝd×n

(Σ⊤Σ)−1Σ⊤Σ = Id×d

(Σ⊤Σ)−1Σ⊤ Σ Σ

Pseudoinverse
Definition

Let be a matrix, and let be its full SVD.

If , the matrix is the pseudoinverse of the matrix .

If , the matrix is the pseudoinverse.

More generally, the matrix with full SVD has the pseudoinverse:

.

Note: If using the notation of the compact SVD, this is written differently (see PS2).

X ∈ ℝn×d X = UΣV⊤

n ≥ d Σ+ := (Σ⊤Σ)−1Σ⊤ ∈ ℝd×n Σ

d > n Σ+ := Σ⊤(ΣΣ⊤)−1

X ∈ ℝn×d X = UΣV⊤

X+ := VΣ+U⊤

Pseudoinverse
Main Property

Prop (Pseudoinverse as left/right inverse). For any matrix with full SVD
and , the pseudo inverse

has the following properties:

If , then is the inverse: and .

If , then is a left inverse: .

If , then is a right inverse: .

A ∈ ℝn×d A = UΣV⊤

rank(A) = min{n, d}

A+ = VΣ+U⊤

n = d A+ A+ = A−1 A+A = AA+ = I

n > d A+ A+A = Id×d

d > n A+ AA+ = In×n

Pseudoinverse
Shape of Σ+

 is a diagonal matrix with singular values , with .

or or

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σr ≥ 0 r ≤ min{n, d}

Σ =

σ1 0 … 0
0 σ2 … 0
0 0 ⋱ ⋮
0 0 … σd

n=d

Σ =

σ1 0 … 0
0 σ2 … 0
0 0 ⋱ ⋮
0 0 … σd

0 0 … 0
0 0 … 0
⋮ ⋮ ⋮ ⋮

n>d

Σ =

σ1 0 … 0 0 0 …
0 σ2 … 0 0 0 …
0 0 ⋱ ⋮ ⋮ ⋮ …
0 0 … σn 0 0 …

d>n

Pseudoinverse
Shape of Σ+

 is a diagonal matrix with singular values , with .

or or

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σr ≥ 0 r ≤ min{n, d}

Σ+ =

1/σ1 0 … 0
0 1/σ2 … 0
0 0 ⋱ ⋮
0 0 … 1/σd

n=d

Σ+ =

1/σ1 0 … 0 0 0 …
0 1/σ2 … 0 0 0 …
0 0 ⋱ ⋮ ⋮ ⋮ …
0 0 … 1/σd 0 0 …

n>d

Σ+ =

1/σ1 0 … 0
0 1/σ2 … 0
0 0 ⋱ ⋮
0 0 … 1/σn

0 0 … 0
0 0 … 0
⋮ ⋮ ⋮ ⋮

d>n

Least Squares: SVD Perspective
Using the pseudoinverse

Let and . Let be the least
squares minimizer:

Theorem (Ordinary Least Squares).

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html

Least Squares: SVD Perspective
Using the pseudoinverse

Let and . Let be the least squares minimizer:

If and , then we are just solving the system , and:

.

We solved this by the principle of least squares because, when , we don’t have an inverse.
We are solving for an approximation:

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n = d rank(X) = d Xw = y

ŵ = X−1y

n > d

Xw ≈ y

Least Squares: SVD Perspective
Using the pseudoinverse

We solved this by the principle of least squares because, when , we don’t have an inverse.
We are solving for an approximation:

.

We don’t have an inverse — but now we have a pseudoinverse:

.

n > d

Xw ≈ y

X+Xw ≈ X+y ⟹ ŵ = X+y = VΣ+U⊤y

Least Squares: SVD Perspective
Main Theorem (with pseudoinverse)

Let and . Let be the least
squares minimizer:

Theorem (OLS with pseudoinverse).

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = X+y = VΣ+U⊤y

ŷ ∈ ℝn

ŷ = Xŵ = XX+y
x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html

Least Squares with d ≥ n
Review: Systems of Linear Equations

So far, we’ve considered the case where , , and .

In general, our goal is to solve the system of linear equations:

.

We know that there are three scenarios, if is full rank (i.e.,)…

If , then number of equations = number of unknowns. One unique solution: .

If , then number of equations > number of unknowns. One unique (approximate) solution: .

If , then number of unknowns > number of equations. Infinitely many solutions!

X ∈ ℝn×d n ≥ d rank(X) = d

Xw = y

X rank(X) = min{n, d}

n = d ŵ = X−1y

n > d ŵ = X+y

d > n

Systems of Linear Equations
Example: no solutions

In general, our goal is to solve the system of linear equations:

.

Consider the system:

Xw = y

[1 −1
−1 1][w1

w2] = [2
2]

Systems of Linear Equations
Example: one unique solution, n = d

In general, our goal is to solve the system of linear equations:

.

Consider the system:

Xw = y

[2 1
2 −1][w1

w2] = [3
3]

Systems of Linear Equations
Example: one unique solution, n > d

In general, our goal is to solve the system of linear equations:

.

Consider the system:

Xw = y

[
2 1
2 −1
4 −2][w1

w2] = [
3
3
3]

Systems of Linear Equations
Example: infinitely many solutions, d > n

In general, our goal is to solve the system of linear equations:

.

Consider the system:

Xw = y

[2 1 1
2 −1 0]

w1
w2
w3

= [3
3]

Least Squares with d > n
Review: Systems of Linear Equations

When the number of equations < number of unknowns…

Example. , d = 3 n = 2

https://samuel-deng.github.io/math4ml_su25/assets/figs/intersecting_planes.html

Least Squares with d > n
Problem Statement

Let , let , and let . We want to solve the system of linear equations:

.

Because , infinitely many exact solutions exist. Which to choose?

X ∈ ℝn×d d > n rank(X) = n

Xw = y

rank(X) = n

x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Least Squares with d > n
Using the Pseudoinverse

There are now infinitely many such that . Which to pick?ŵ ∈ ℝd Xŵ = y ŵ

x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Pseudoinverse
Main Property

Prop (Pseudoinverse as left/right inverse). For any matrix with full SVD
and , the pseudo inverse

has the following properties:

If , then is the inverse: and .

If , then is a left inverse: .

If , then is a right inverse: .

A ∈ ℝn×d A = UΣV⊤

rank(A) = min{n, d}

A+ = VΣ+U⊤

n = d A+ A+ = A−1 A+A = AA+ = I

n > d A+ A+A = Id×d

d > n A+ AA+ = In×n

Least Squares with d > n
Using the Pseudoinverse

Let have the full SVD .

Choose to use the pseudoinverse.

X ∈ ℝn×d X = UΣV⊤

ŵ = X+y = VΣ+U⊤y

Least Squares with d > n
Using the Pseudoinverse

Let have the full SVD .

Choose to use the pseudoinverse.

Then, is a solution:

,

where is a right inverse by the previous property.

X ∈ ℝn×d X = UΣV⊤

ŵ = X+y = VΣ+U⊤y

ŵ ∈ ℝd

Xŵ = XX+y = In×ny = y

X+ ∈ ℝd×n

Least Squares with d > n
Theorem: Minimum norm solution

Theorem (Minimum norm least squares solution). Let , let , and let .
Then, is the exact solution with smallest Euclidean norm:

 for all such that .

X ∈ ℝn×d d > n rank(X) = n
ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2 ≥ ∥ŵ∥2 w ∈ ℝd Xw = y

Least Squares with d > n
Theorem: Minimum norm solution

Theorem (Minimum norm least squares solution). Let , let , and let .
Then, is the exact solution with smallest Euclidean norm:

 for all such that .

Proof. Consider any arbitrary such that .

Therefore: .

X ∈ ℝn×d d > n rank(X) = n
ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2 ≥ ∥ŵ∥2 w ∈ ℝd Xw = y

w ∈ ℝd Xw = y

∥w∥2 = ∥(w − ŵ) + ŵ∥2 = ∥w − ŵ∥2 − 2(w − ŵ)⊤ŵ + ∥ŵ∥2

(w − ŵ)⊤ŵ = (w − ŵ)⊤X⊤(XX⊤)−1y = (Xw − Xŵ)⊤(XX⊤)−1y = 0

∥w∥2 = ∥w − ŵ∥2 + ∥ŵ∥2 ⟹ ∥w∥2 ≥ ∥ŵ∥2
because both and are exact solutions!w ŵ if X+ d > n

Least Squares: SVD Perspective
Unified Picture

If and …

We can solve exactly.

Choose

which is an exact solution.

n = d rank(X) = d

ŵ = X−1y,

If and …

We approximate by least
squares:

Choose

the best approximate solution:

.

n > d rank(X) = d

ŵ = arg min
w∈ℝd

∥Xw − y∥2.

ŵ = (X⊤X)−1X⊤y = X+y,

∥Xŵ − y∥2 ≤ ∥Xw − y∥2

If and …

We can solve exactly, but there
are infinitely many solutions.

Choose

the minimum norm (exact)
solution:

.

n < d rank(X) = n

ŵ = X⊤(XX⊤)−1y = X+y,

∥ŵ∥2 ≤ ∥w∥2

We want to solve .Xw = y

Least Squares: SVD Perspective
Unified Picture

If and …

We approximate by least squares.

n > d rank(X) = d If and …

We can solve exactly, but there
are infinitely many solutions.

n < d rank(X) = n

We want to solve .Xw = y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Recap

Lesson Overview
Big Picture: Least Squares

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y
x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Lesson Overview
Big Picture: Gradient Descent

descent start
−10 −5 0 5 10

0

20

40

60

80

100

https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html

Lesson Overview
Big Picture: Singular Value Decomposition (SVD)

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6
x1-axis
x2-axis
x3-axis
u1
u2
u3

https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd.html

