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Math for Machine Learning
Week 2.1: Singular Value Decomposition



Logistics & Announcements



Lesson Overview

Orthogonal complement and properties of projection. We go over several useful properties of the 
projection operation. 

Derivation of the singular value decomposition (SVD). We derive the SVD from the “best-fitting 
subspace” problem using all the properties of projection. 

SVD Definition. We go over the definition of SVD and the geometric intuition as the factorization of a 
data matrix. 

Application of SVD: rank-k approximation. We state and give an example of rank-k approximation, a 
common data compression technique using SVD. 

Pseudoinverse. We unify our OLS solution from the perspective of SVD and the notion of the 
pseudoinverse, a generalization of inverses to rectangular matrices.



Lesson Overview
Big Picture: Least Squares
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Lesson Overview
Big Picture: Gradient Descent
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Lesson Overview
Big Picture: Singular Value Decomposition (SVD)
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Least Squares 
A Quick Review



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup

To find , we follow the principle of least squares.  

 

This gives the predictions  that are close in a 
least squares sense: 

 such that   

(for  from any other ). 

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

ŷ ∈ ℝn

ŷ = Xŵ ∥ŷ − y∥2 ≤ ∥ỹ − y∥2

ỹ = Xw w ∈ ℝd

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  and . Let  be the least squares 
minimizer: 

 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y



Least Squares
OLS with Orthogonal Basis

Theorem (OLS with orthogonal basis). Let  be a subspace and let  be an 
orthonormal basis for , with semi-orthogonal matrix . Let  and let  be the least 
squares minimizer: 

 

which is solved by: 

 

Additionally, the projection  is given by : 

.

𝒳 ⊆ ℝn u1, …, ud ∈ ℝn

𝒳 U ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Uw − y∥2,

ŵ = U⊤y .

ŷ ∈ ℝn Π𝒳(y) = arg min
ŷ∈𝒳

∥ŷ − y∥2

ŷ = Π𝒳(y) = UU⊤y



Least Squares
OLS with Orthogonal Basis

 ŵonb = U⊤y

ŷ = Π𝒳(y) = UU⊤y

 ŵ = (X⊤X)−1X⊤y

ŷ = Π𝒳(y) = X(X⊤X)−1X⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


How to find a good orthogonal basis?

x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Properties of Projections 
Projection Matrices and  
Orthogonal Complement



Projection
Projection of a vector onto a subspace

For a subspace , the projection of a vector  onto  is the closest vector  in  to 
, in a Euclidean distance sense: 

 

Let . Any point  is a linear combination , with: 

.

𝒳 ⊆ ℝn y ∈ ℝn 𝒳 ŷ 𝒳
y

ŷ = arg min
ŷ∈𝒳

∥ŷ − y∥ = ∥ŷ − y∥2.

𝒳 = CS(X) ŷ ∈ 𝒳 ŷ = Xŵ

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2



Least Squares as Projection
Projection Matrix

 

This is just least squares! By what we’ve learned… 

 

 

The projection matrix is: 

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2

ŵ = (X⊤X)−1X⊤y

ŷ = X(X⊤X)−1X⊤y

P𝒳 = X(X⊤X)−1X⊤ ∈ ℝn×n .

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

y - proj_y y proj_y origin

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/projection.html


Least Squares as Projection
Projection Matrix

Any matrix  has a subspace .  

If the columns  are linearly independent, then: 

, 

where  is a projection matrix. 

What else can we say about projections?

X ∈ ℝn×d 𝒳 = CS(X)

x1, …, xd

Π𝒳(y) = P𝒳y = X(X⊤X)−1X⊤y

P𝒳 ∈ ℝn×n

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Orthogonal Complement
Intuition

Any subspace  has an orthogonal 
complement .  

All vectors in  are orthogonal to all the vectors in 
, and vice versa. 

Any vector  can be constructed by adding 
a vector from  to a vector from . 

A ⊆ ℝn

A⊥

A
A⊥

y ∈ ℝn

A A⊥

u1 u2 v1 z-axis y

https://samuel-deng.github.io/math4ml_su25/assets/figs/ortho_comp.html


Orthogonal Complement
Definition

Let  be a subspace. The orthogonal complement of , written , is the set of vectors 

. 

A ⊆ ℝn A A⊥

A⊥ := {v ∈ ℝn : ⟨v, u⟩ = 0 for all u ∈ A}

u1 u2 v1 z-axis y

https://samuel-deng.github.io/math4ml_su25/assets/figs/ortho_comp.html


Orthogonal Complement
Dimension

For any subspace  with , orthogonal complement  has . A ⊆ ℝn dim(A) = d A⊥ dim(A⊥) = n − d

u1 u2 v1 z-axis y

https://samuel-deng.github.io/math4ml_su25/assets/figs/ortho_comp.html


Orthogonal Complement
Orthogonal Complement and Matrices

Let  be a basis for the subspace .  

Let   be a basis for the orthogonal complement, .  

Let  have columns . Let  have columns . Then: 

 and . 

We can break down any vector  into two projections: 

.

a1, …, ad ∈ ℝn A ⊆ ℝn

b1, …, bn−d A⊥

A ∈ ℝn×d a1, …, ad B ∈ ℝn×(n−d) b1, …, bn−d

A⊤B = 0 B⊤A = 0

x ∈ ℝn

x = PAx + PBx



Orthogonal Complement
Orthogonal Complement and Projections

We can break down any vector  into two 
projections: 

. 

Additionally, .

x ∈ ℝn

x = PAx + PBx

I = PA + PB

u1 u2 v1 z-axis y

https://samuel-deng.github.io/math4ml_su25/assets/figs/ortho_comp.html


Projection Matrices
Properties

 has columnspace  ;  has columns , a basis for . 

Prop (Orthogonal Decomposition). For any vector , . 

Prop (Projection and Orthogonal Complement Matrices).  . 

Prop (Projecting twice doesn’t do anything).  . 

Prop (Projections are symmetric). . 

Prop (1D projection formula). For the 1D subspace associated with : .

A ∈ ℝn×d CS(A) B ∈ ℝn×(n−d) b1, …, bn−d CS(A)⊥

x ∈ ℝn x = PAx + PBx

PA + PB = I

PA = PAPA = P2
A

PA = P⊤
A

a ∈ ℝn Pa =
aa⊤

a⊤a



Singular Value Decomposition 
1D Intuition and Derivation



Singular Value Decomposition (SVD)
1D Picture

Observed: Matrix of training samples  (forget about training labels  for now). 

, where . 

Goal: Find the best one-dimensional subspace  that fits the points. 

A one-dimensional subspace is determined by a single vector : 

.

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
x1, …, xd ∈ ℝn

𝒰 ⊆ ℝn

u ∈ ℝn

𝒰 = {cu : c ∈ ℝ}



Singular Value Decomposition (SVD)
1D Picture

Observe data . 

Goal: Find the best one-dimensional subspace 
 that fits the points. 

How? Find  that minimizes the sum of 
squared projection distances: 

.

x1, …, xd ∈ ℝn

𝒰 ⊆ ℝn

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2
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Comparison with OLS
1D Pictures

OLS: Find best linear combination  of 
 such that 

 

ŵ ∈ ℝd

x1, …, xd

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2

BFS: Find one-dimensional subspace 
determined by  such that  u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2
Important: there is no  in 

our BFS problem!
y



Comparison with OLS
1D Pictures

ŵ = arg min
ŵ∈ℝd

∥Xŵ − y∥2 arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2
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Best-fitting 1D Subspace
Step 1: Expand out squared projection distance

Find  that minimizes the sum of squared projection distances: 

. 

 

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2 =
d

∑
i=1

∥xi − Puxi∥2

∥xi − Puxi∥2 = xi − ( uu⊤

u⊤u ) xi

2

= (I −
uu⊤

u⊤u ) xi

2

= x⊤
i (I −

uu⊤

u⊤u )
⊤

(I −
uu⊤

u⊤u ) xi

= x⊤
i (I −

uu⊤

u⊤u )
2

xi = x⊤
i (I −

uu⊤

u⊤u ) xi

1D projection
Orthogonal comp. to  subspace!u

Projections are symmetric Projecting twice doesn’t do anything



Best-fitting 1D Subspace
Step 2: Simplify minimization problem into maximization

Find  that minimizes the sum of squared projection distances: 

. 

 

 

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2 =
d

∑
i=1

∥xi − Puxi∥2 =
d

∑
i=1

x⊤
i (I −

uu⊤

u⊤u ) xi

=
d

∑
i=1

x⊤
i xi − x⊤

i ( uu⊤

u⊤u ) xi

u = arg min
u∈ℝn

d

∑
i=1

x⊤
i xi − x⊤

i ( uu⊤

u⊤u ) xi ⟺ arg max
u∈ℝn

d

∑
i=1

x⊤
i ( uu⊤

u⊤u ) xi



Best-fitting 1D Subspace
Step 3: Derive “operator norm” from matrix outer products

Find  that minimizes the sum of squared projection distances: 

. 

 

  

squared operator norm of , i.e. 

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2 =
d

∑
i=1

∥xi − Puxi∥2 =
d

∑
i=1

x⊤
i (I −

uu⊤

u⊤u ) xi

⟺ arg max
u∈ℝn

d

∑
i=1

x⊤
i ( uu⊤

u⊤u ) xi

= arg max
u∈ℝn

u⊤XX⊤u
u⊤u

X ∥X∥2
op



Singular Value Decomposition (SVD)
1D Picture

Observe data . 

Goal: Find the best one-dimensional subspace 
 that fits the points. 

How? Find  that minimizes the sum of 
squared projection distances: 

. 

 is the 1st left singular vector with 1st 

(squared) singular value 

x1, …, xd ∈ ℝn

𝒰 ⊆ ℝn

u ∈ ℝn

arg min
u∈ℝn

d

∑
i=1

∥xi − Πu(xi)∥2 = arg max
u∈ℝn

u⊤XX⊤u
u⊤u

u ∈ ℝn

σ2
1 =

u⊤XX⊤u
u⊤u
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Singular Value Decomposition 
Definition of Full SVD and Compact SVD



Singular Value Decomposition (SVD)
Building up the SVD

Observe data . Consider the following procedure… 

For : 

1. Find , the best one-dimensional subspace fit to . 

Let . 

2. Find , the best one-dimensional subspace fit to . 

Let . 

3. Find , the best one-dimensional subspace fit to …

x1, …, xd ∈ ℝn

t = 1,2,…, n

u1 ∈ ℝn x1, …, xd

x(1)
i = xi − Πu1

(xi)

u2 ∈ ℝn x(1)
1 , …, x(1)

d

x(2)
i = x(1)

i − Πu2
(xi) = xi − Πu1

(xi) − Πu2
(xi)

u3 ∈ ℝn x(2)
1 , …, x(2)

d



Singular Value Decomposition (SVD)
Building up the SVD

Observe data . 

1. Find , the best one-dimensional subspace 
fit to . 

Let . 

2. Find , the best one-dimensional subspace 
fit to .

x1, …, xd ∈ ℝ2

u1 ∈ ℝ2

x1, …, xd

x(1)
i = xi − Πu1

(xi)

u2 ∈ ℝn

x(1)
1 , …, x(1)

d
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Singular Value Decomposition (SVD)
Building up the SVD

is the best one-dimensional subspace fit to: 

. 

These are the  left singular vectors of . 

Orthogonal, by construction (left singular vector  is 
in the orthogonal complement of ).

ut ∈ ℝn

xi −
t−1

∑
k=1

Πuk
(xi)

n X ∈ ℝn×d

uk
u1, …, uk−1
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Singular Value Decomposition (SVD)
Definition of the Full SVD

Consider any matrix . The full singular value decomposition (SVD) is 

. 

The columns of  are the left singular vectors and  is orthogonal: . 

The columns of  are the right singular vectors and  is orthogonal: . 

 is a diagonal matrix with singular values  on the diagonal.  

The rank of  is equal to the number of .

X ∈ ℝn×d

X⏟
n×d

= U⏟
n×n

Σ
⏟

n×d

V⊤
⏟
d×d

U ∈ ℝn×n U U⊤U = UU⊤ = I

V ∈ ℝd×d V V⊤V = VV⊤ = I

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σd ≥ 0

X σi > 0



Singular Value Decomposition (SVD)
Shape of the  MatrixΣ

 is a diagonal matrix with singular values  on the diagonal.  

or or  

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σmin{n,d} ≥ 0

Σ =

σ1 0 … 0
0 σ2 … 0
0 0 ⋱ ⋮
0 0 … σd

n=d

Σ =

σ1 0 … 0
0 σ2 … 0
0 0 ⋱ ⋮
0 0 … σd

0 0 … 0
0 0 … 0
⋮ ⋮ ⋮ ⋮

n>d

Σ =

σ1 0 … 0 0 0 …
0 σ2 … 0 0 0 …
0 0 ⋱ ⋮ ⋮ ⋮ …
0 0 … σn 0 0 …

d>n



Interpreting the SVD
Example in ℝ2

Let . The SVD is given by: 

 

x1, …, x212 ∈ ℝ2

X⏟
2×212

= U⏟
2×2

Σ
⏟

2×212

V⊤
⏟

212×212



Left Singular Vectors
Interpreting the  matrixU

 

The columns  of  are an orthonormal 
basis for .

X⏟
2×212

= U⏟
2×2

Σ
⏟

2×212

V⊤
⏟

212×212

u1, u2 ∈ ℝ2 U
CS(X)
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Singular Values
Interpreting the  matrixΣ

 

The singular values  represent how to 
scale  and  to “fit” all the data. 

They represent the relative “strength” of  and 
 in explaining the data.

X⏟
2×212

= U⏟
2×2

Σ
⏟

2×212

V⊤
⏟

212×212

σ1, σ2 > 0
u1 u2

u1
u2
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Right Singular Vectors
Interpreting the  matrixV

 

The rows of  give the coordinates for each 
point under the basis . 

Specifically, for  

.

X⏟
2×212

= U⏟
2×2

Σ
⏟

2×212

V⊤
⏟

212×212

V⊤

σ1u1, σ2u2

j ∈ [d],

xj = v1jσ1u1 + v2jσ2u2
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Right Singular Vectors
Interpreting the  matrixV

Specifically, for  

. 

j ∈ [d],

xj = v1jσ1u1 + v2jσ2u2

↑ ↑ ↑ ↑ ↑
x1 x2 x3 … x212
↓ ↓ ↓ ↓ ↓

=
↑ ↑
u1 u2
↓ ↓

[σ1 0 0 … 0
0 σ2 0 … 0]

← v⊤
1 →

← v⊤
2 →

⋮ ⋮ ⋮
← v⊤

212 →



Interpretation of the SVD
Full Interpretation of the SVD
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Singular Value Decomposition (SVD)
Example of SVD

X =
1 0 0
0 5 0
0 0 10



Singular Value Decomposition (SVD)
Example in ℝ3
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https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd_proju1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd_proju1u2.html


Singular Value Decomposition (SVD)
Definition of the Compact SVD

 with rank has compact singular value decomposition (SVD): 

. 

Columns of  are the left singular vectors and , o.n.b. for . 

Columns of  are the right singular vectors and , o.n.b. for . 

 is a square diagonal matrix with singular values  on diagonal.

X ∈ ℝn×d r ≤ min{n, d}

X⏟
n×d

= U⏟
n×r

Σ
⏟
r×r

V⊤
⏟
r×d

U ∈ ℝn×r U⊤U = I CS(X)

V ∈ ℝr×d V⊤V = I CS(X⊤)

Σ ∈ ℝr×r σ1 ≥ σ2 ≥ … ≥ σr > 0



How to find a good orthogonal basis?

x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Least Squares
OLS with Orthogonal Basis

 ŵonb = U⊤y

ŷ = Π𝒳(y) = UU⊤y

 ŵ = (X⊤X)−1X⊤y

ŷ = Π𝒳(y) = X(X⊤X)−1X⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


Least Squares
OLS with Orthogonal Basis

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

 ŵonb = U⊤y

ŷ = Π𝒳(y) = UU⊤y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


Singular Value Decomposition 
Application: Low-rank Approximation



Rank-k Approximation
Idea

In many applications, it is useful to approximate a matrix.  

The rank of a matrix represents how many linearly independent columns (or rows) make up a 
matrix (i.e. how much “novel information” the matrix contains). 

We might approximate a matrix  with  by asking: 

What’s the closest rank-  matrix (with ) to ? 

One notion of “close” for matrices is the Frobenius norm: .

X r = rank(X)

k k ≪ r X

∥X∥F :=
n

∑
i=1

d

∑
j=1

X2
ij



Rank-k Approximation
Theorem

Theorem (Rank-  Approximation). Let . If  is the compact SVD of  with 
, , and  as truncated matrices of , , and , respectively, then 

 and . 

Then,  is the rank-  approximation of  in Frobenius norm: 

, such that .

k X ∈ ℝn×d X = UΣV⊤ X
Uk ∈ ℝn×k Σk ∈ ℝk×k Vk ∈ ℝd×k U Σ V

X̂k = UkΣkV⊤
k ∥X − X̂k∥2 =

r

∑
i=k+1

σ2
i

X̂k ∈ ℝn×d k X

X̂k = arg min
X̂∈ℝn×d

∥X − X̂∥F rank(X̂) = k



Rank-k Approximation
Outer Product Interpretation

The (compact) SVD of a matrix can also be written as a sum of rank-1 matrices. 

. 

In this way, the rank-  approximation  can be written as truncating this sum at : 

X = σ1u1v⊤
1

n×d

+ σ2u2v⊤
2 + … + σrurv⊤

r

k X̂k k

X̂k = σ1u1v⊤
1 + … + σkukv⊤

k .



Rank-k Approximation
Example

Consider the  matrix: 4 × 4

X =

100 0 0 0
0 90 0 0
0 0 8 0
0 0 0 2



Rank-k Approximation
Application in Image Processing



Rank-k Approximation
Application in Image Processing
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Rank-k Approximation
Application in Image Processing (k = 500)
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Rank-k Approximation
Application in Image Processing (k = 100)
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Rank-k Approximation
Application in Image Processing (k = 20)
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Rank-k Approximation
Application in Image Processing (k = 5)
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Least Squares 
SVD and the Pseudoinverse



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  and . Let  be the least squares 
minimizer: 

 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y



Least Squares: SVD Perspective
Plugging in the SVD

By the full SVD, we can represent . How can we interpret the least squares solution 
now that we know the SVD? 

X = UΣV⊤

ŵ = (X⊤X)−1X⊤y



Least Squares: SVD Perspective
Plugging in the SVD

By the full SVD, we can represent . How can we interpret the least squares solution 
now that we know the SVD? 

  because  

 because  

 because  

 because  

 because 

X = UΣV⊤

ŵ = (X⊤X)−1X⊤y = (VΣ⊤U⊤UΣV⊤)−1(VΣU⊤)y X⊤ = VΣ⊤U⊤

= (VΣ⊤ΣV⊤)−1VΣ⊤U⊤y U⊤U = I

= (Σ⊤ΣV⊤)−1V⊤VΣ⊤U⊤y (AB)−1 = B−1A−1

= (Σ⊤ΣV⊤)−1Σ⊤U⊤y V⊤V = I

= V(Σ⊤Σ)−1Σ⊤U⊤y (AB)−1 = B−1A−1



Pseudoinverse
Idea

Therefore, we derived: 

  (when  and ). 

Taking a closer look at the matrix , we have: 

. 

In this way,  acts “like an inverse” to , though  may not be square. 

ŵ = V(Σ⊤Σ)−1Σ⊤U⊤y n ≥ d rank(X) = d

(Σ⊤Σ)−1Σ⊤ ∈ ℝd×n

(Σ⊤Σ)−1Σ⊤Σ = Id×d

(Σ⊤Σ)−1Σ⊤ Σ Σ



Pseudoinverse
Definition

Let  be a matrix, and let  be its full SVD.  

If , the matrix  is the pseudoinverse of the matrix .  

If , the matrix  is the pseudoinverse. 

More generally, the matrix  with full SVD  has the pseudoinverse:  

. 

Note: If using the notation of the compact SVD, this is written differently (see PS2).

X ∈ ℝn×d X = UΣV⊤

n ≥ d Σ+ := (Σ⊤Σ)−1Σ⊤ ∈ ℝd×n Σ

d > n Σ+ := Σ⊤(ΣΣ⊤)−1

X ∈ ℝn×d X = UΣV⊤

X+ := VΣ+U⊤



Pseudoinverse
Main Property

Prop (Pseudoinverse as left/right inverse). For any matrix  with full SVD  
and , the pseudo inverse  

 

has the following properties: 

If , then  is the inverse:  and . 

If , then  is a left inverse: . 

If , then  is a right inverse: .

A ∈ ℝn×d A = UΣV⊤

rank(A) = min{n, d}

A+ = VΣ+U⊤

n = d A+ A+ = A−1 A+A = AA+ = I

n > d A+ A+A = Id×d

d > n A+ AA+ = In×n



Pseudoinverse
Shape of Σ+

 is a diagonal matrix with singular values , with . 

or or 

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σr ≥ 0 r ≤ min{n, d}

Σ =

σ1 0 … 0
0 σ2 … 0
0 0 ⋱ ⋮
0 0 … σd

n=d

Σ =

σ1 0 … 0
0 σ2 … 0
0 0 ⋱ ⋮
0 0 … σd

0 0 … 0
0 0 … 0
⋮ ⋮ ⋮ ⋮

n>d

Σ =

σ1 0 … 0 0 0 …
0 σ2 … 0 0 0 …
0 0 ⋱ ⋮ ⋮ ⋮ …
0 0 … σn 0 0 …

d>n



Pseudoinverse
Shape of Σ+

 is a diagonal matrix with singular values , with . 

or or 

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σr ≥ 0 r ≤ min{n, d}

Σ+ =

1/σ1 0 … 0
0 1/σ2 … 0
0 0 ⋱ ⋮
0 0 … 1/σd

n=d

Σ+ =

1/σ1 0 … 0 0 0 …
0 1/σ2 … 0 0 0 …
0 0 ⋱ ⋮ ⋮ ⋮ …
0 0 … 1/σd 0 0 …

n>d

Σ+ =

1/σ1 0 … 0
0 1/σ2 … 0
0 0 ⋱ ⋮
0 0 … 1/σn

0 0 … 0
0 0 … 0
⋮ ⋮ ⋮ ⋮

d>n



Least Squares: SVD Perspective
Using the pseudoinverse

Let  and . Let  be the least 
squares minimizer: 

 

Theorem (Ordinary Least Squares). 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


Least Squares: SVD Perspective
Using the pseudoinverse

Let  and . Let  be the least squares minimizer: 

 

If  and , then we are just solving the system , and: 

. 

We solved this by the principle of least squares because, when , we don’t have an inverse. 
We are solving for an approximation: 

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n = d rank(X) = d Xw = y

ŵ = X−1y

n > d

Xw ≈ y



Least Squares: SVD Perspective
Using the pseudoinverse

We solved this by the principle of least squares because, when , we don’t have an inverse. 
We are solving for an approximation: 

. 

We don’t have an inverse — but now we have a pseudoinverse: 

. 

n > d

Xw ≈ y

X+Xw ≈ X+y ⟹ ŵ = X+y = VΣ+U⊤y



Least Squares: SVD Perspective
Main Theorem (with pseudoinverse)

Let  and . Let  be the least 
squares minimizer: 

 

Theorem (OLS with pseudoinverse). 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = X+y = VΣ+U⊤y

ŷ ∈ ℝn

ŷ = Xŵ = XX+y
x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html


Least Squares with d ≥ n
Review: Systems of Linear Equations

So far, we’ve considered the case where , , and . 

In general, our goal is to solve the system of linear equations: 

. 

We know that there are three scenarios, if  is full rank (i.e., )… 

If , then number of equations = number of unknowns. One unique solution: . 

If , then number of equations > number of unknowns. One unique (approximate) solution: . 

If , then number of unknowns > number of equations. Infinitely many solutions! 

X ∈ ℝn×d n ≥ d rank(X) = d

Xw = y

X rank(X) = min{n, d}

n = d ŵ = X−1y

n > d ŵ = X+y

d > n



Systems of Linear Equations
Example: no solutions

In general, our goal is to solve the system of linear equations: 

. 

Consider the system: 

Xw = y

[ 1 −1
−1 1 ][w1

w2] = [2
2]



Systems of Linear Equations
Example: one unique solution, n = d

In general, our goal is to solve the system of linear equations: 

. 

Consider the system: 

Xw = y

[2 1
2 −1][w1

w2] = [3
3]



Systems of Linear Equations
Example: one unique solution, n > d

In general, our goal is to solve the system of linear equations: 

. 

Consider the system: 

Xw = y

[
2 1
2 −1
4 −2][w1

w2] = [
3
3
3]



Systems of Linear Equations
Example: infinitely many solutions, d > n

In general, our goal is to solve the system of linear equations: 

. 

Consider the system: 

Xw = y

[2 1 1
2 −1 0]

w1
w2
w3

= [3
3]



Least Squares with d > n
Review: Systems of Linear Equations

When the number of equations < number of unknowns… 

Example. , d = 3 n = 2

https://samuel-deng.github.io/math4ml_su25/assets/figs/intersecting_planes.html


Least Squares with d > n
Problem Statement

Let , let , and let . We want to solve the system of linear equations: 

. 

Because , infinitely many exact solutions exist. Which to choose?

X ∈ ℝn×d d > n rank(X) = n

Xw = y

rank(X) = n

x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Least Squares with d > n
Using the Pseudoinverse

There are now infinitely many  such that . Which  to pick?ŵ ∈ ℝd Xŵ = y ŵ

x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Pseudoinverse
Main Property

Prop (Pseudoinverse as left/right inverse). For any matrix  with full SVD  
and , the pseudo inverse  

 

has the following properties: 

If , then  is the inverse:  and . 

If , then  is a left inverse: . 

If , then  is a right inverse: .

A ∈ ℝn×d A = UΣV⊤

rank(A) = min{n, d}

A+ = VΣ+U⊤

n = d A+ A+ = A−1 A+A = AA+ = I

n > d A+ A+A = Id×d

d > n A+ AA+ = In×n



Least Squares with d > n
Using the Pseudoinverse

Let  have the full SVD .  

Choose  to use the pseudoinverse. 

X ∈ ℝn×d X = UΣV⊤

ŵ = X+y = VΣ+U⊤y



Least Squares with d > n
Using the Pseudoinverse

Let  have the full SVD .  

Choose  to use the pseudoinverse. 

Then,  is a solution: 

, 

where  is a right inverse by the previous property.

X ∈ ℝn×d X = UΣV⊤

ŵ = X+y = VΣ+U⊤y

ŵ ∈ ℝd

Xŵ = XX+y = In×ny = y

X+ ∈ ℝd×n



Least Squares with d > n
Theorem: Minimum norm solution

Theorem (Minimum norm least squares solution). Let , let , and let . 
Then,  is the exact solution  with smallest Euclidean norm: 

 for all  such that .

X ∈ ℝn×d d > n rank(X) = n
ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2 ≥ ∥ŵ∥2 w ∈ ℝd Xw = y



Least Squares with d > n
Theorem: Minimum norm solution

Theorem (Minimum norm least squares solution). Let , let , and let . 
Then,  is the exact solution  with smallest Euclidean norm: 

 for all  such that . 

Proof. Consider any arbitrary  such that . 

 

 

Therefore: .

X ∈ ℝn×d d > n rank(X) = n
ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2 ≥ ∥ŵ∥2 w ∈ ℝd Xw = y

w ∈ ℝd Xw = y

∥w∥2 = ∥(w − ŵ) + ŵ∥2 = ∥w − ŵ∥2 − 2(w − ŵ)⊤ŵ + ∥ŵ∥2

(w − ŵ)⊤ŵ = (w − ŵ)⊤X⊤(XX⊤)−1y = (Xw − Xŵ)⊤(XX⊤)−1y = 0

∥w∥2 = ∥w − ŵ∥2 + ∥ŵ∥2 ⟹ ∥w∥2 ≥ ∥ŵ∥2
because both  and  are exact solutions!w ŵ if X+ d > n



Least Squares: SVD Perspective
Unified Picture

If  and … 

We can solve exactly. 

Choose 

 

which is an exact solution.

n = d rank(X) = d

ŵ = X−1y,

If  and … 

We approximate by least 
squares: 

 

Choose 

 

the best approximate solution: 

.

n > d rank(X) = d

ŵ = arg min
w∈ℝd

∥Xw − y∥2.

ŵ = (X⊤X)−1X⊤y = X+y,

∥Xŵ − y∥2 ≤ ∥Xw − y∥2

If  and … 

We can solve exactly, but there 
are infinitely many solutions. 

Choose 

 

the minimum norm (exact) 
solution: 

.

n < d rank(X) = n

ŵ = X⊤(XX⊤)−1y = X+y,

∥ŵ∥2 ≤ ∥w∥2

We want to solve .Xw = y



Least Squares: SVD Perspective
Unified Picture

If  and … 

We approximate by least squares.

n > d rank(X) = d If  and … 

We can solve exactly, but there 
are infinitely many solutions.

n < d rank(X) = n

We want to solve .Xw = y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Recap



Lesson Overview
Big Picture: Least Squares

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y
x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Lesson Overview
Big Picture: Gradient Descent

descent start
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https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html


Lesson Overview
Big Picture: Singular Value Decomposition (SVD)
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https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd.html

