Math for Machine Learning Week 2.1: Singular Value Decomposition

By: Samuel Deng

Logistics & Announcements

Lesson Overview

Orthogonal complement and properties of projection. We go over several useful properties of the projection operation.

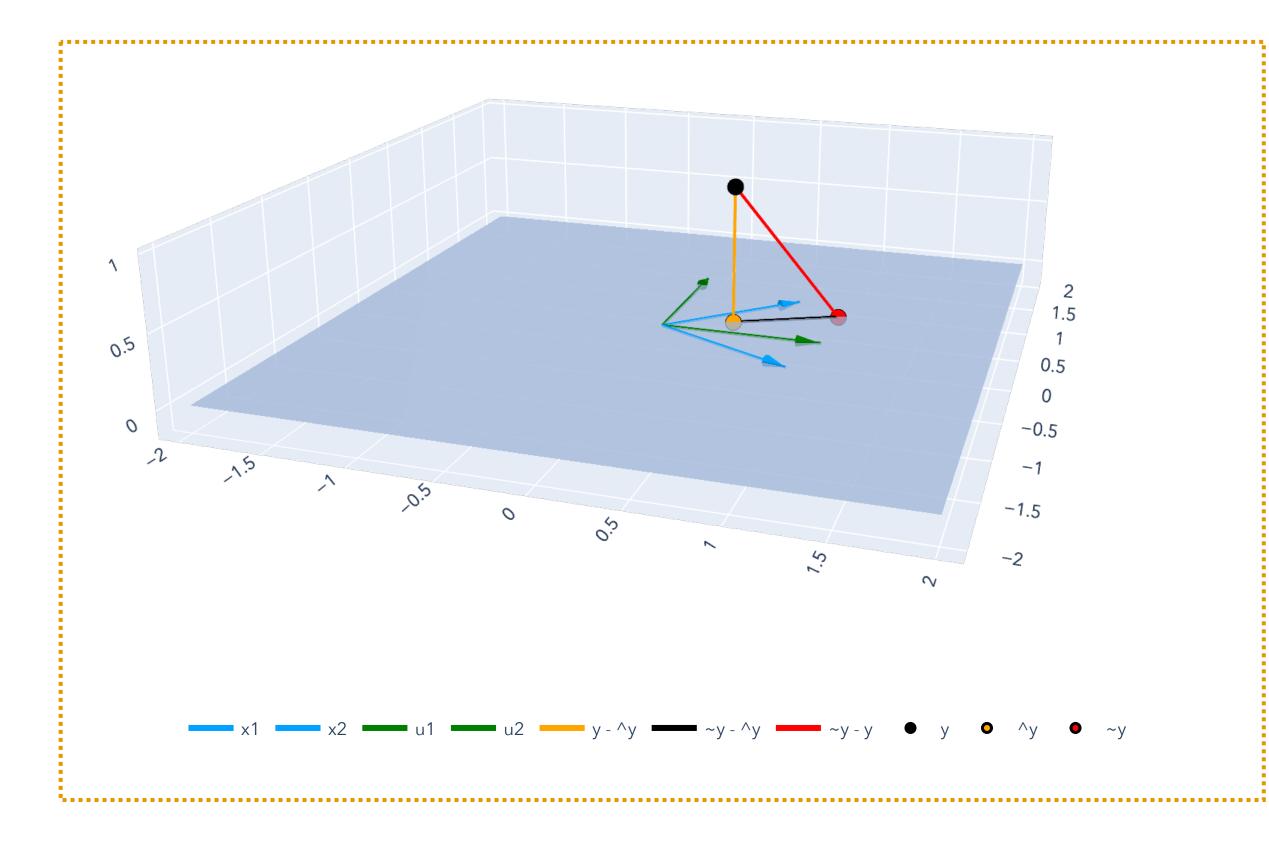
Derivation of the singular value decomposition (SVD). We derive the SVD from the "best-fitting subspace" problem using all the properties of projection.

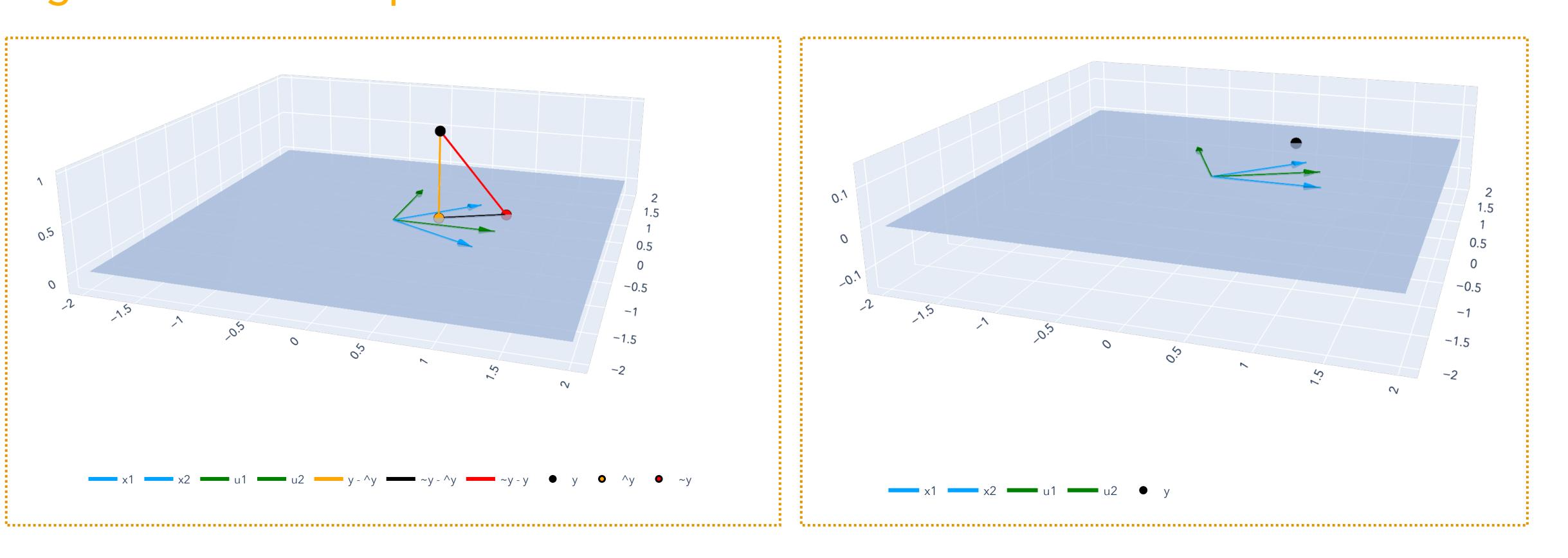
SVD Definition. We go over the definition of SVD and the geometric intuition as the factorization of a data matrix.

Application of SVD: rank-k approximation. We state and give an example of rank-*k* approximation, a common data compression technique using SVD.

Pseudoinverse. We unify our OLS solution from the perspective of SVD and the notion of the **pseudoinverse**, a generalization of inverses to rectangular matrices.

Lesson Overview **Big Picture: Least Squares**

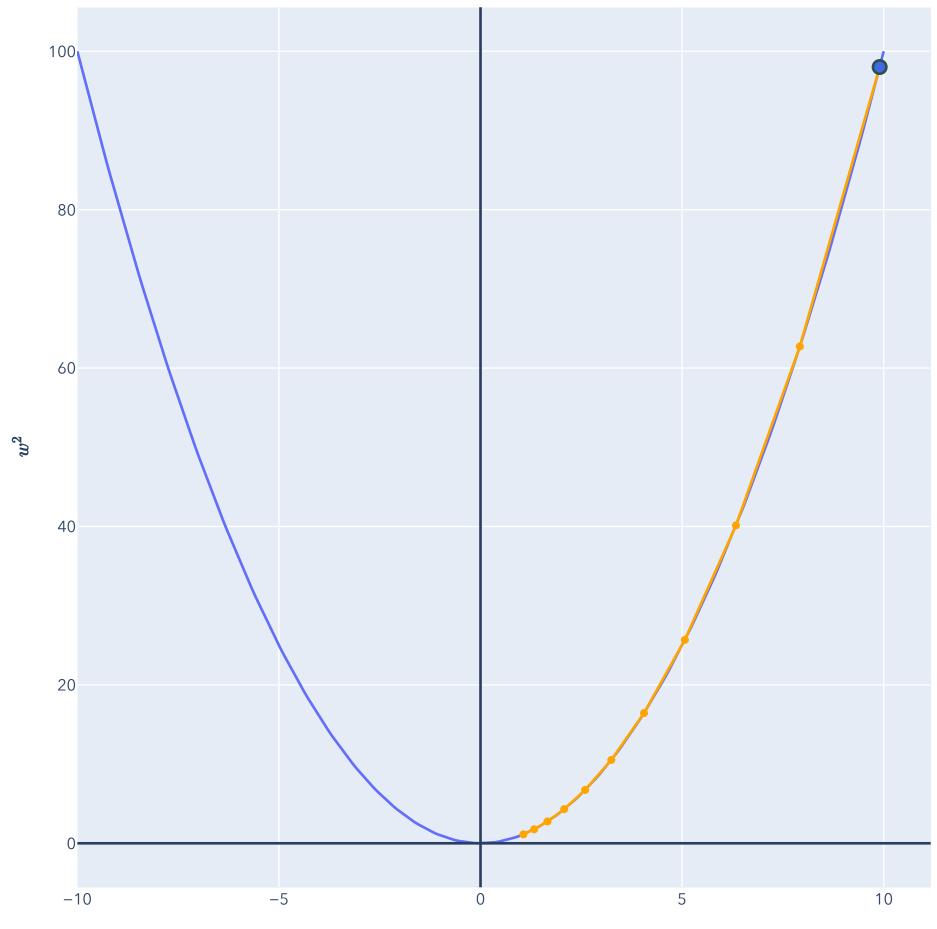


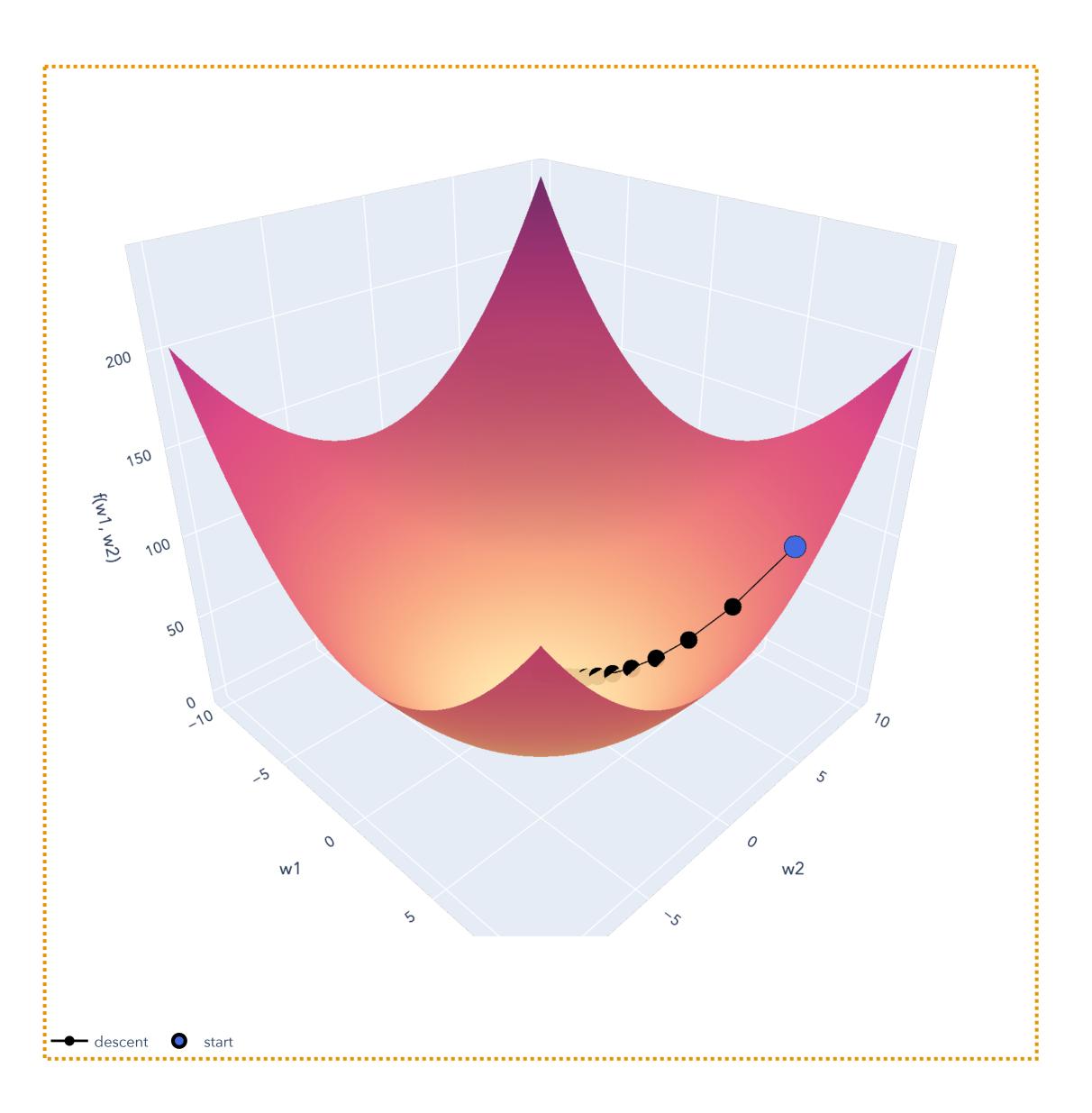


Lesson Overview

Big Picture: Gradient Descent

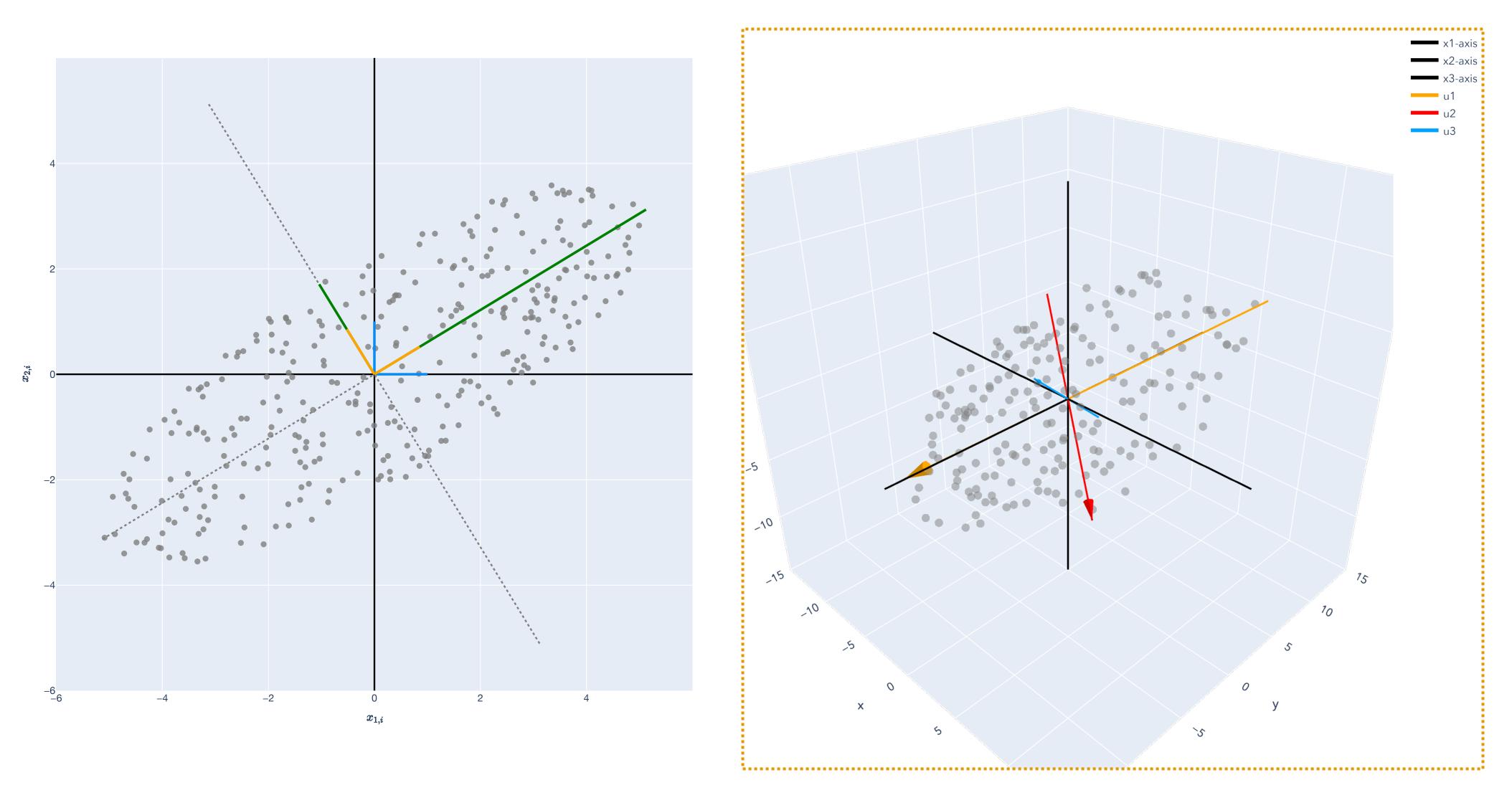
 $f(w)=w^2$





Lesson Overview

Big Picture: Singular Value Decomposition (SVD)



Least Squares A Quick Review

Regression Setup (Example View)

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$.

$$\mathbf{X} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \rightarrow \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \rightarrow \end{bmatrix} \mathbf{y}$$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

<u>Goal</u>: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$= \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d.$$

 $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

Regression Setup (Feature View)

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \mathbf{y} = \mathbf{y}$$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$= \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n.$$

 $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

Regression Setup

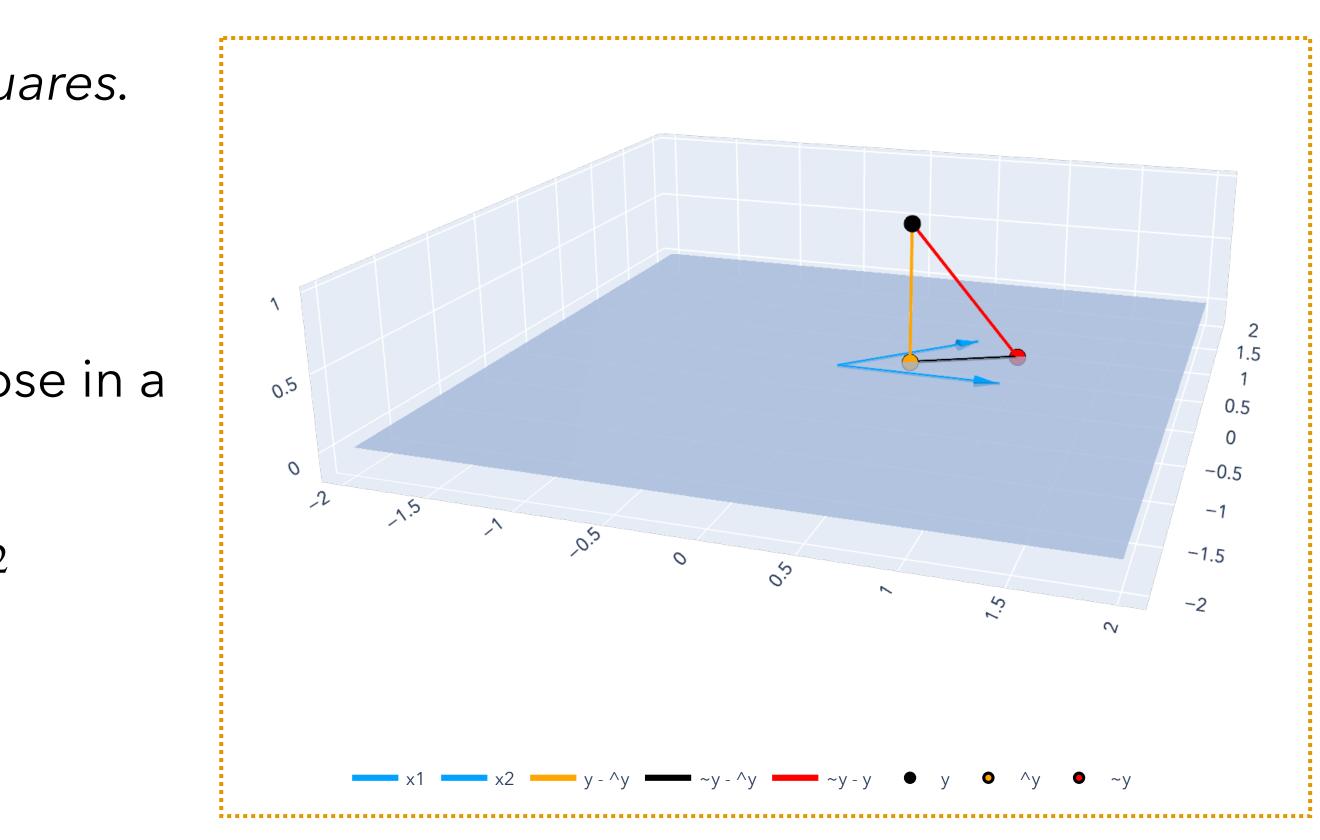
To find $\hat{\mathbf{w}}$, we follow the principle of least squares.

$\hat{\mathbf{w}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$

This gives the predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$ that are close in a least squares sense:

 $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}}$ such that $\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$

(for $\tilde{\mathbf{y}} = \mathbf{X}\mathbf{w}$ from any other $\mathbf{w} \in \mathbb{R}^d$).



Least Squares **OLS Theorem**

minimizer:

 $\mathbf{w} \in \mathbb{R}^d$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

<u>Theorem (Ordinary Least Squares).</u> Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$. Let $\hat{\mathbf{w}} \in \mathbb{R}^{d}$ be the least squares

$\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$

 $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$

Least Squares OLS with Orthogonal Basis

<u>Theorem (OLS with orthogonal basis).</u> Let $\mathscr{X} \subseteq \mathbb{R}^n$ be a subspace and let $\mathbf{u}_1, \dots, \mathbf{u}_d \in \mathbb{R}^n$ be an squares minimizer:

> $\hat{\mathbf{w}} = \arg n$ w∈

which is solved by:

Additionally, the projection $\hat{\mathbf{y}} \in \mathbb{R}^n$ is given by $\Pi_{\mathscr{X}}(\mathbf{y}) = \arg \min \|\hat{\mathbf{y}} - \mathbf{y}\|^2$:

 $\hat{\mathbf{y}} = \Pi_{\mathscr{X}}(\mathbf{y}) = \mathbf{U}\mathbf{U}^{\top}\mathbf{y}.$

orthonormal basis for \mathcal{X} , with semi-orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$. Let $\mathbf{y} \in \mathbb{R}^n$ and let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least

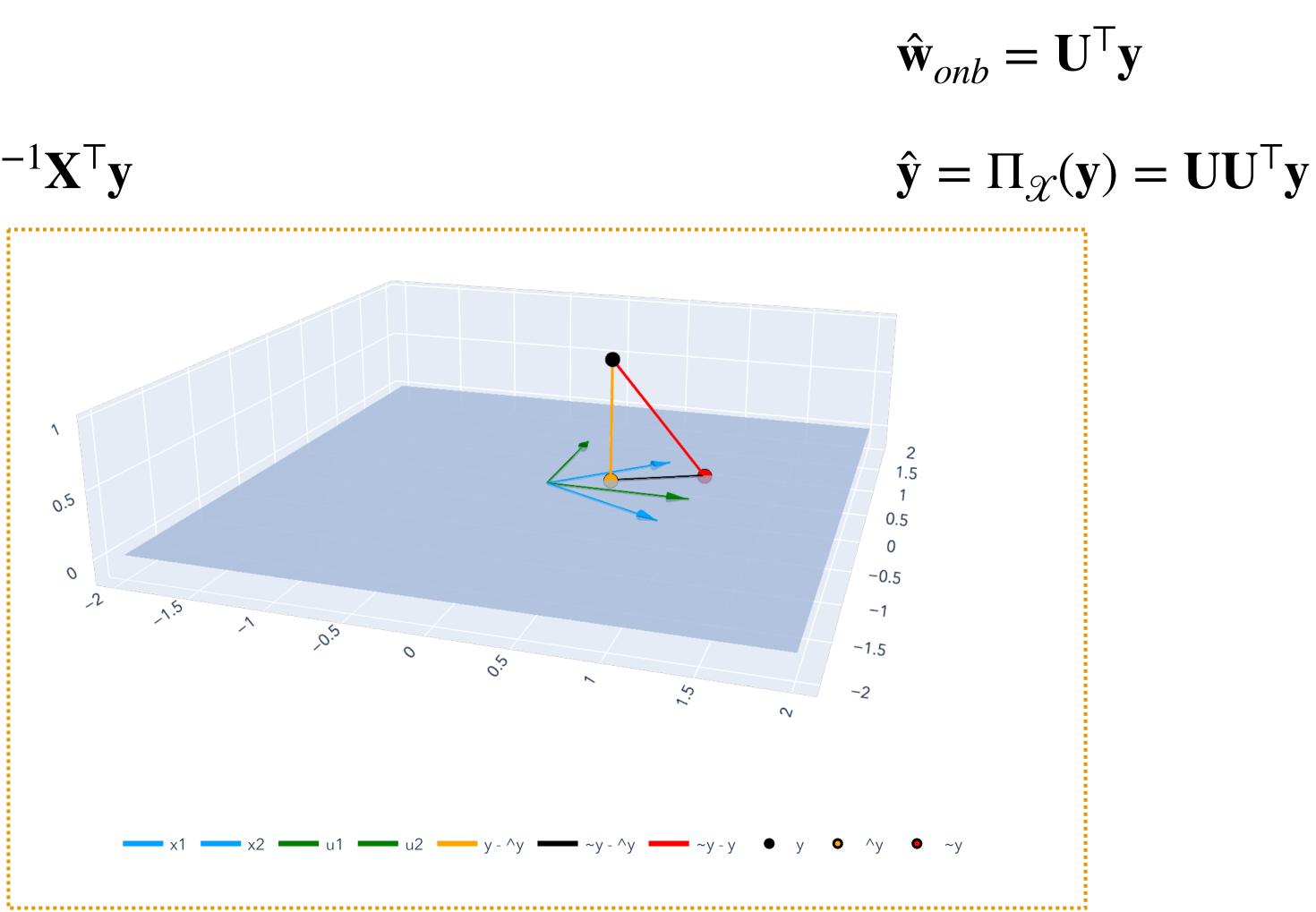
$$\min_{\mathbb{R}^d} \|\mathbf{U}\mathbf{w} - \mathbf{y}\|^2,$$

 $\hat{\mathbf{w}} = \mathbf{U}^{\mathsf{T}}\mathbf{y}$.

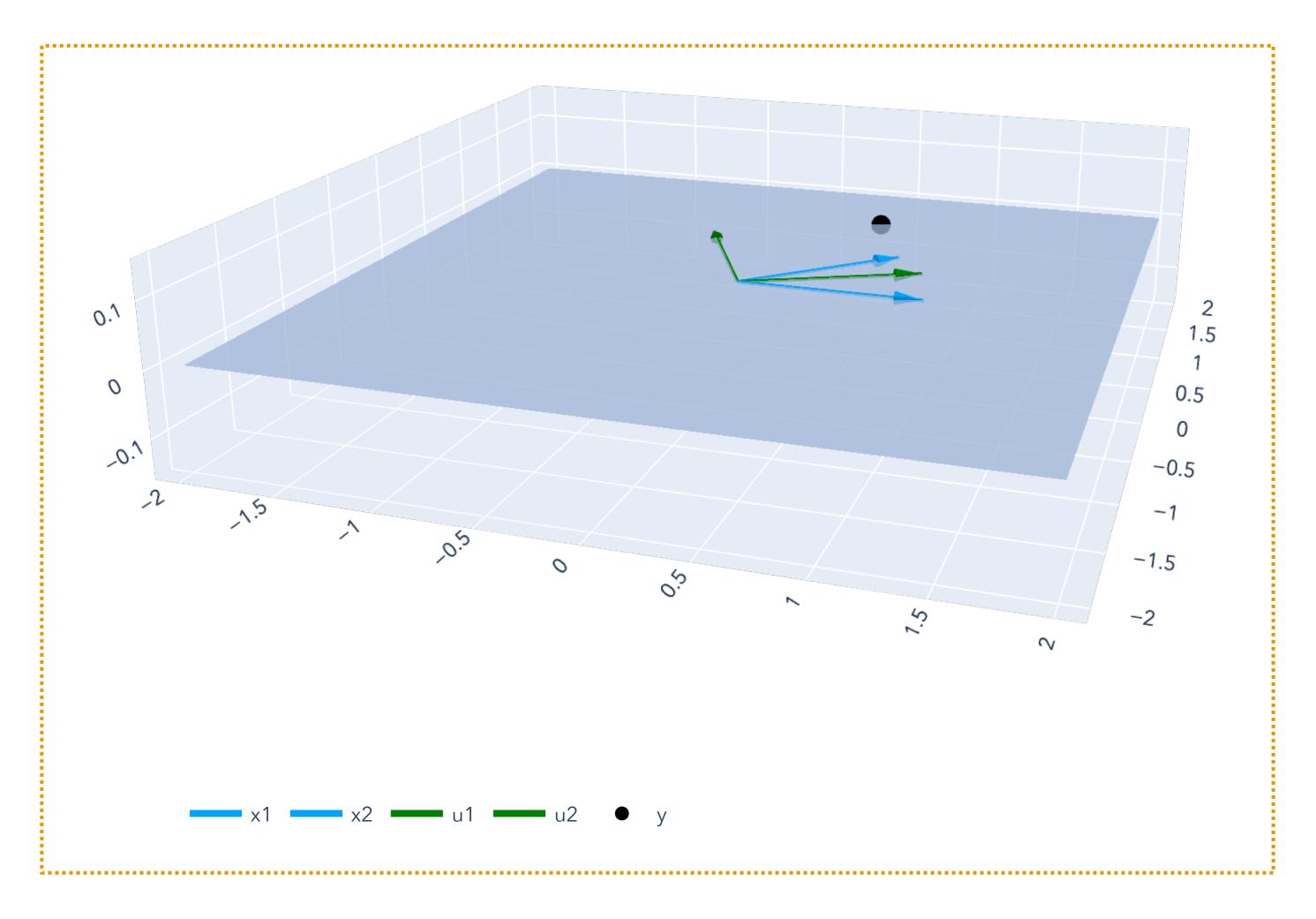
 $\hat{\mathbf{y}} \in \mathcal{X}$

Least Squares OLS with Orthogonal Basis

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ $\hat{\mathbf{y}} = \Pi_{\mathscr{X}}(\mathbf{y}) = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$



How to find a good orthogonal basis?



Properties of Projections Projection Matrices and Orthogonal Complement

Projection Projection of a vector onto a subspace

y, in a Euclidean distance sense:

 $\hat{\mathbf{y}} = \arg \min$ $\hat{\mathbf{y}} \in \mathcal{X}$

Let $\mathscr{X} = CS(X)$. Any point $\hat{y} \in \mathscr{X}$ is a linear combination $\hat{y} = X\hat{w}$, with:

 $\hat{\mathbf{w}} = \arg \mathbf{w}$ ŵ∈

For a subspace $\mathscr{X} \subseteq \mathbb{R}^n$, the <u>projection</u> of a vector $\mathbf{y} \in \mathbb{R}^n$ onto \mathscr{X} is the closest vector $\hat{\mathbf{y}}$ in \mathscr{X} to

$$\|\hat{\mathbf{y}} - \mathbf{y}\| = \|\hat{\mathbf{y}} - \mathbf{y}\|^2.$$

$$\min_{\mathbb{R}^d} \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2.$$

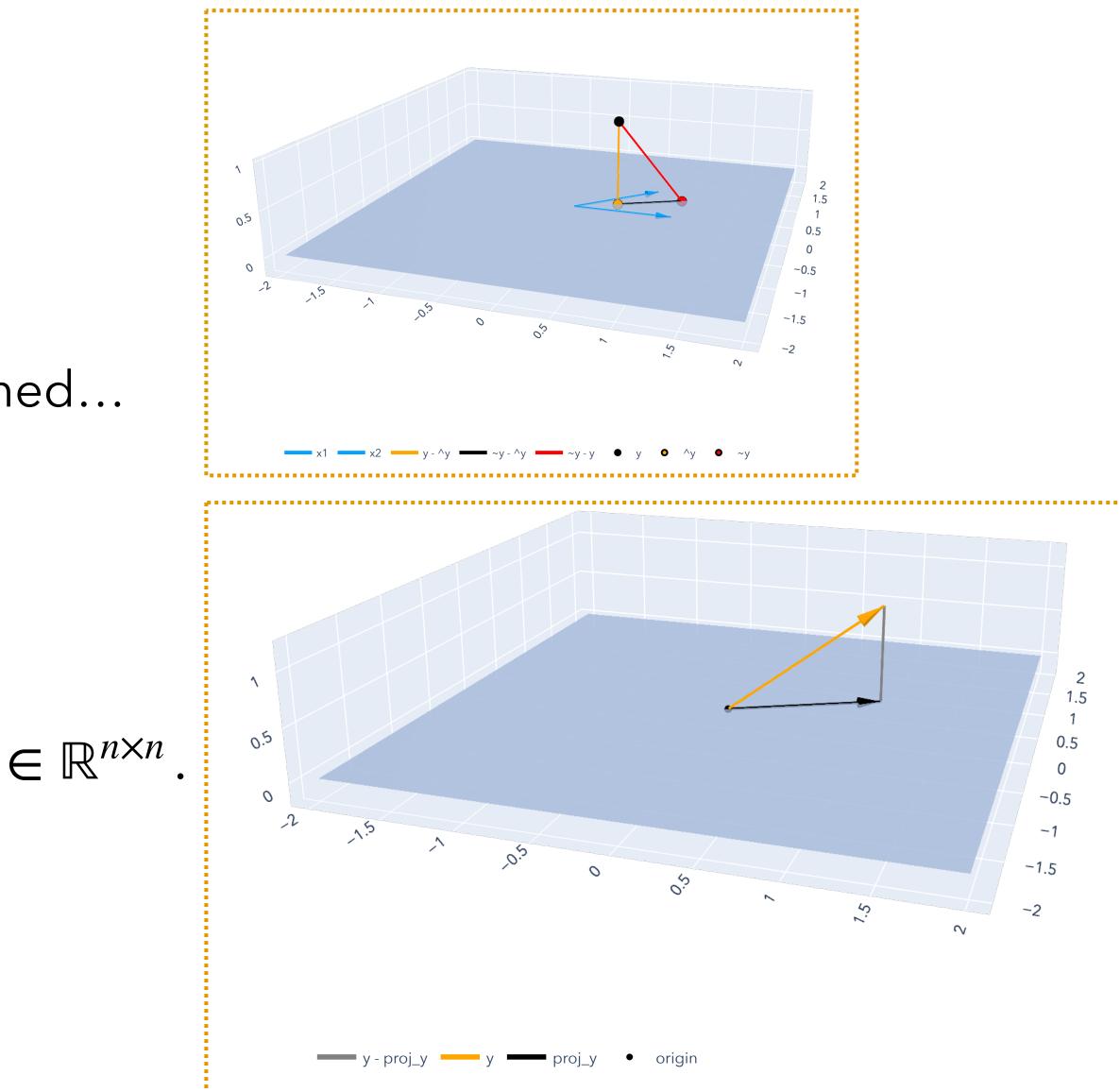
Least Squares as Projection **Projection Matrix**

$$\hat{\mathbf{w}} = \arg \min_{\hat{\mathbf{w}} \in \mathbb{R}^d} \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2$$

This is just least squares! By what we've learned...

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$
$$\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

The projection matrix is: $P_{\mathcal{X}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{n \times n}$.



3.....

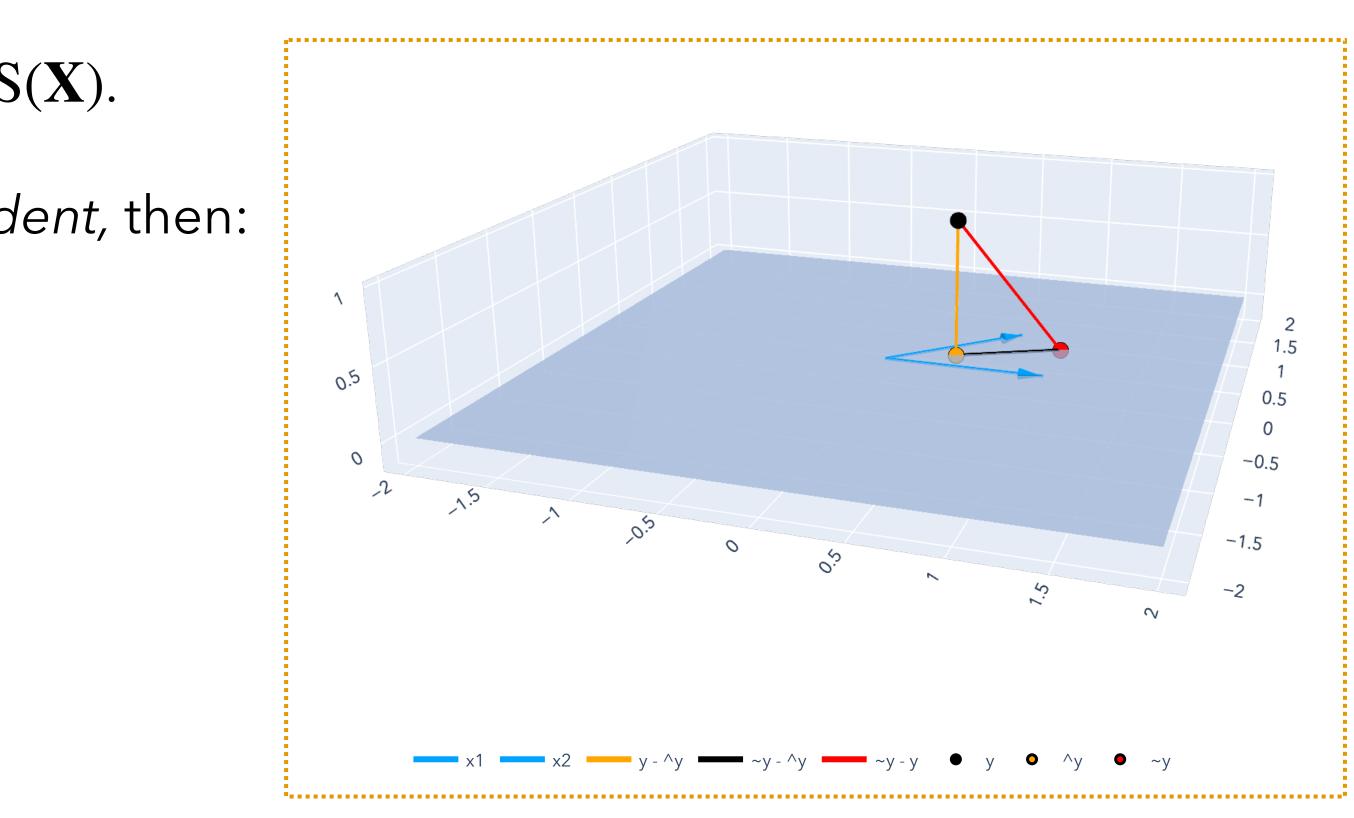
Least Squares as Projection Projection Matrix

Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has a subspace $\mathscr{X} = \mathbf{CS}(\mathbf{X})$. If the columns $\mathbf{x}_1, \dots, \mathbf{x}_d$ are *linearly independent*, then:

 $\Pi_{\mathcal{X}}(\mathbf{y}) = P_{\mathcal{X}}\mathbf{y} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y},$

where $P_{\mathcal{X}} \in \mathbb{R}^{n \times n}$ is a projection matrix.

What else can we say about projections?

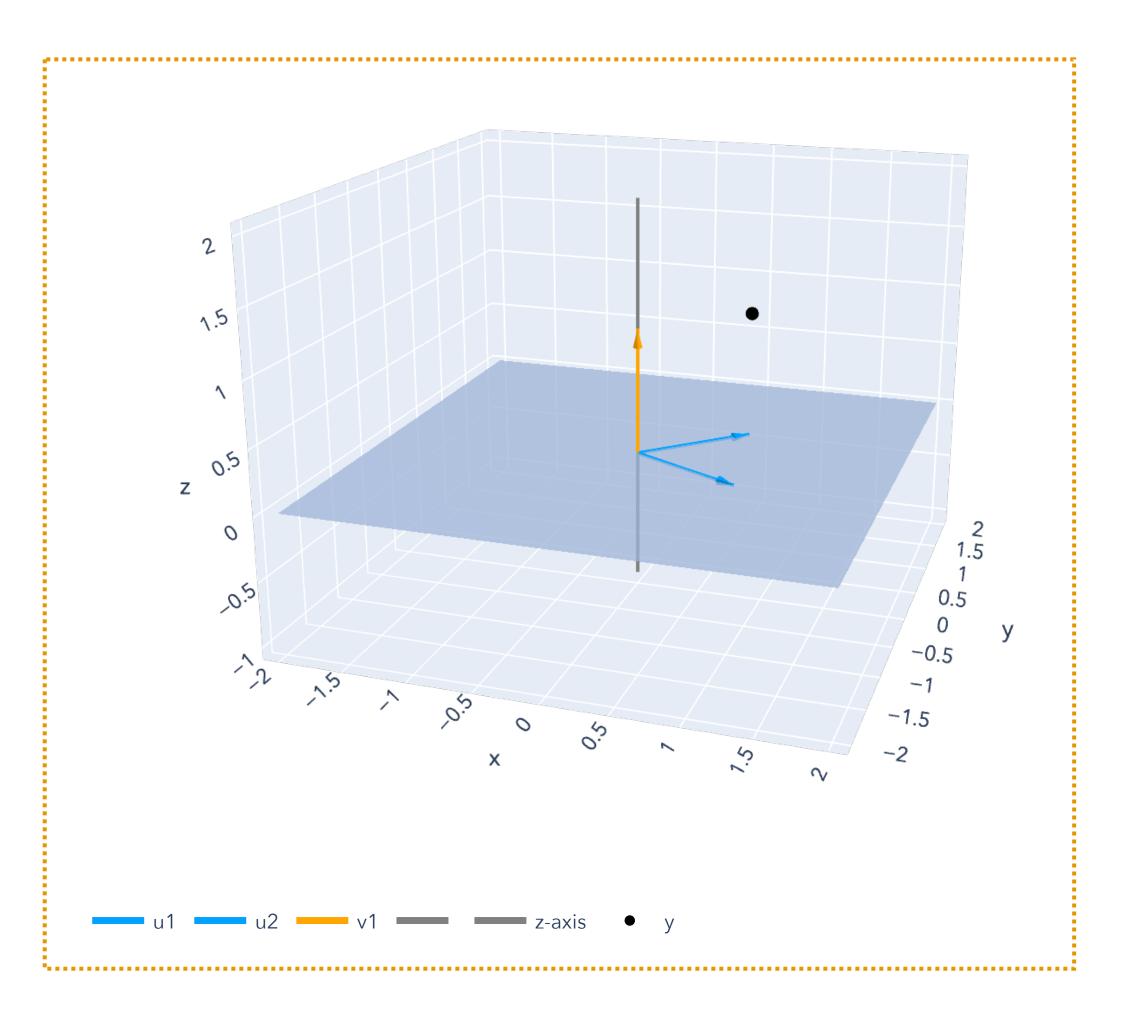


Orthogonal Complement Intuition

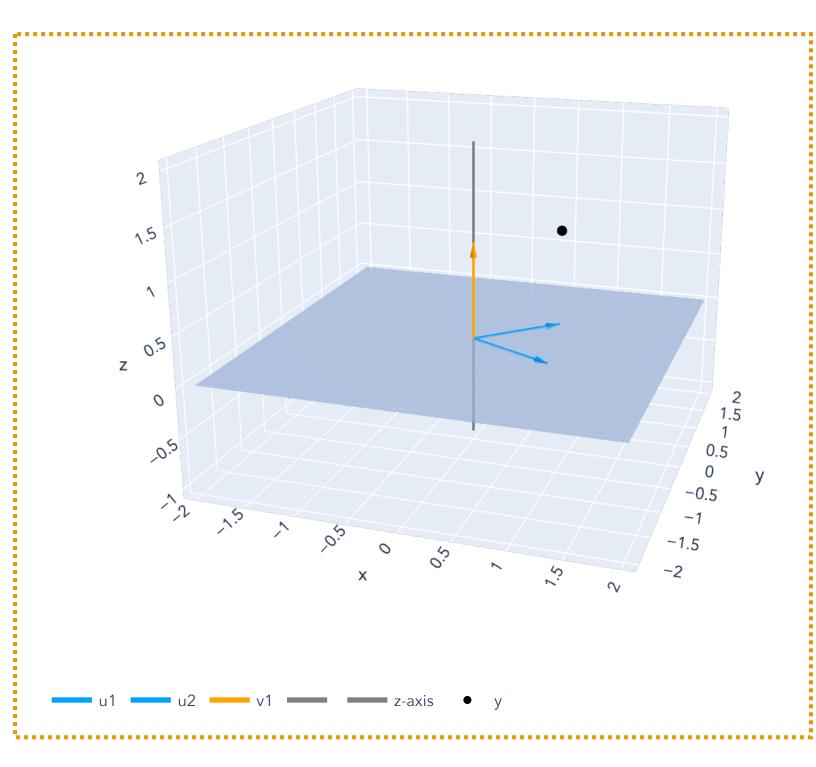
Any subspace $A \subseteq \mathbb{R}^n$ has an <u>orthogonal</u> <u>complement</u> A^{\perp} .

All vectors in A are orthogonal to all the vectors in A^{\perp} , and vice versa.

Any vector $\mathbf{y} \in \mathbb{R}^n$ can be constructed by adding a vector from A to a vector from A^{\perp} .



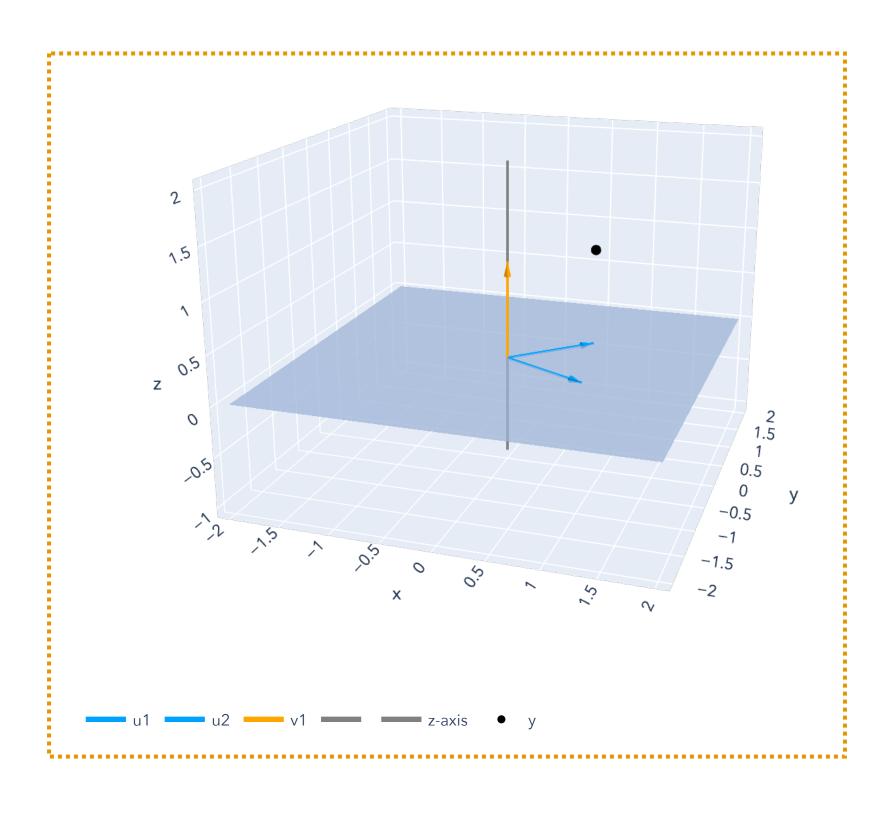
Orthogonal Complement Definition



Let $A \subseteq \mathbb{R}^n$ be a subspace. The <u>orthogonal complement</u> of A, written A^{\perp} , is the set of vectors

$A^{\perp} := \{ \mathbf{v} \in \mathbb{R}^n : \langle \mathbf{v}, \mathbf{u} \rangle = 0 \text{ for all } \mathbf{u} \in A \}.$

Orthogonal Complement Dimension



For any subspace $A \subseteq \mathbb{R}^n$ with $\dim(A) = d$, orthogonal complement A^{\perp} has $\dim(A^{\perp}) = n - d$.

Orthogonal Complement **Orthogonal Complement and Matrices**

Let $\mathbf{a}_1, \ldots, \mathbf{a}_d \in \mathbb{R}^n$ be a basis for the subspace $A \subseteq \mathbb{R}^n$. Let $\mathbf{b}_1, \ldots, \mathbf{b}_{n-d}$ be a basis for the orthogonal complement, A^{\perp} . Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ have columns $\mathbf{a}_1, \dots, \mathbf{a}_d$. Let $\mathbf{B} \in \mathbb{R}^{n \times (n-d)}$ have columns $\mathbf{b}_1, \dots, \mathbf{b}_{n-d}$. Then:

We can break down any vector $\mathbf{x} \in \mathbb{R}^n$ into two projections:

- $\mathbf{A}^{\mathsf{T}}\mathbf{B} = \mathbf{0}$ and $\mathbf{B}^{\mathsf{T}}\mathbf{A} = \mathbf{0}$.

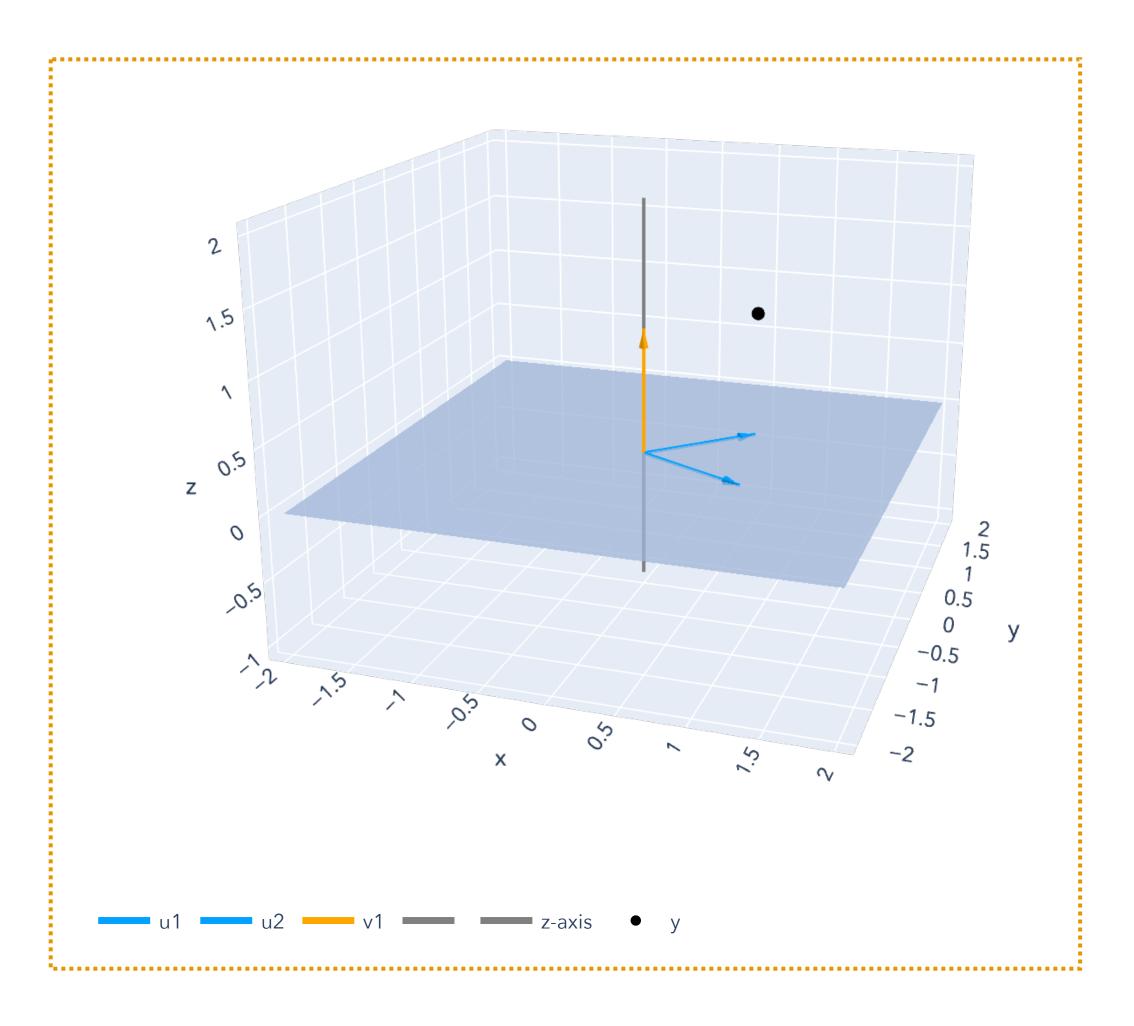
 - $\mathbf{x} = P_{\mathbf{A}}\mathbf{x} + P_{\mathbf{B}}\mathbf{x}.$

Orthogonal Complement and Projections

We can break down any vector $\mathbf{x} \in \mathbb{R}^n$ into two projections:

$$\mathbf{x} = P_{\mathbf{A}}\mathbf{x} + P_{\mathbf{B}}\mathbf{x}.$$

Additionally, $\mathbf{I} = P_{\mathbf{A}} + P_{\mathbf{B}}$.



Projection Matrices Properties

<u>Prop (Orthogonal Decomposition).</u> For any vector $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} = P_A \mathbf{x} + P_B \mathbf{x}$. <u>Prop (Projection and Orthogonal Complement Matrices).</u> $P_A + P_B = I$. <u>Prop (Projecting twice doesn't do anything)</u>. $P_A = P_A P_A = P_A^2$. <u>Prop (Projections are symmetric)</u>. $P_A = P_A^{\top}$.

 $\mathbf{A} \in \mathbb{R}^{n \times d}$ has columnspace $\mathbf{CS}(\mathbf{A})$; $\mathbf{B} \in \mathbb{R}^{n \times (n-d)}$ has columns $\mathbf{b}_1, \dots, \mathbf{b}_{n-d}$, a basis for $\mathbf{CS}(\mathbf{A})^{\perp}$.

<u>Prop (1D projection formula)</u>. For the 1D subspace associated with $\mathbf{a} \in \mathbb{R}^n$: $P_{\mathbf{a}} = \frac{\mathbf{a}\mathbf{a}^\top}{\mathbf{a}^\top \mathbf{a}}$.

Singular Value Decomposition 1D Intuition and Derivation

Singular Value Decomposition (SVD) 1D Picture

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ (forget about training labels $\mathbf{y} \in \mathbb{R}^n$ for now). $\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix}$, where $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$.

<u>**Goal:</u>** Find the best one-dimensional subspace $\mathcal{U} \subseteq \mathbb{R}^n$ that fits the points.</u>

A one-dimensional subspace is determined by a single vector $\mathbf{u} \in \mathbb{R}^{n}$:

 $\mathcal{U} = \{ c\mathbf{u} : c \in \mathbb{R} \}.$

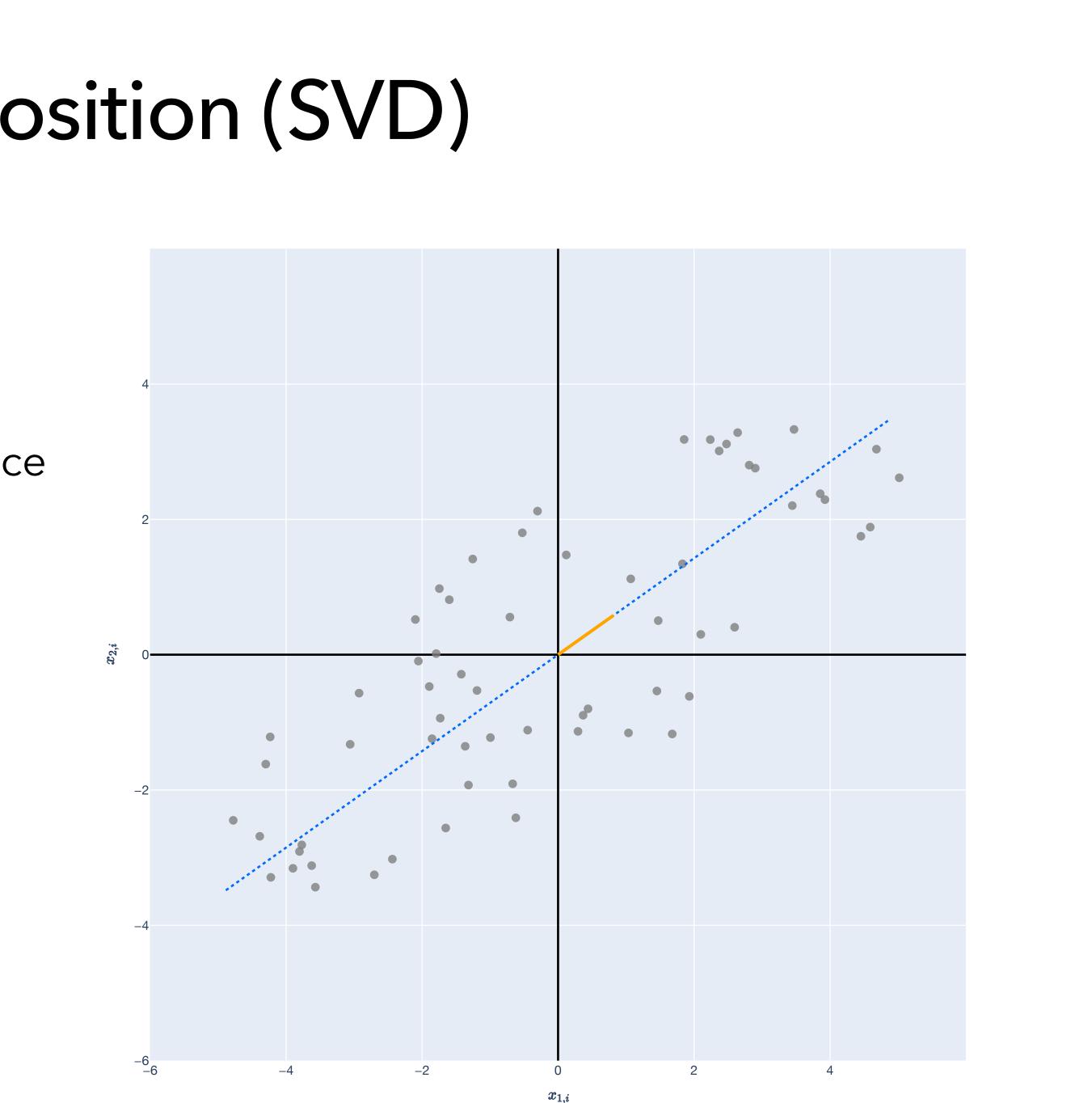
Singular Value Decomposition (SVD) 1D Picture

Observe data $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$.

<u>Goal</u>: Find the best one-dimensional subspace $\mathcal{U} \subseteq \mathbb{R}^n$ that fits the points.

How? Find $\mathbf{u} \in \mathbb{R}^n$ that minimizes the sum of squared projection distances:

$$\underset{\mathbf{u}\in\mathbb{R}^n}{\operatorname{arg min}} \sum_{i=1}^d \|\mathbf{x}_i - \Pi_{\mathbf{u}}(\mathbf{x}_i)\|^2$$



Comparison with OLS 1D Pictures

<u>OLS</u>: Find best linear combination $\hat{\mathbf{w}} \in \mathbb{R}^d$ of $\mathbf{x}_1, \dots, \mathbf{x}_d$ such that

$$\hat{\mathbf{w}} = \arg \min_{\hat{\mathbf{w}} \in \mathbb{R}^d} \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2$$

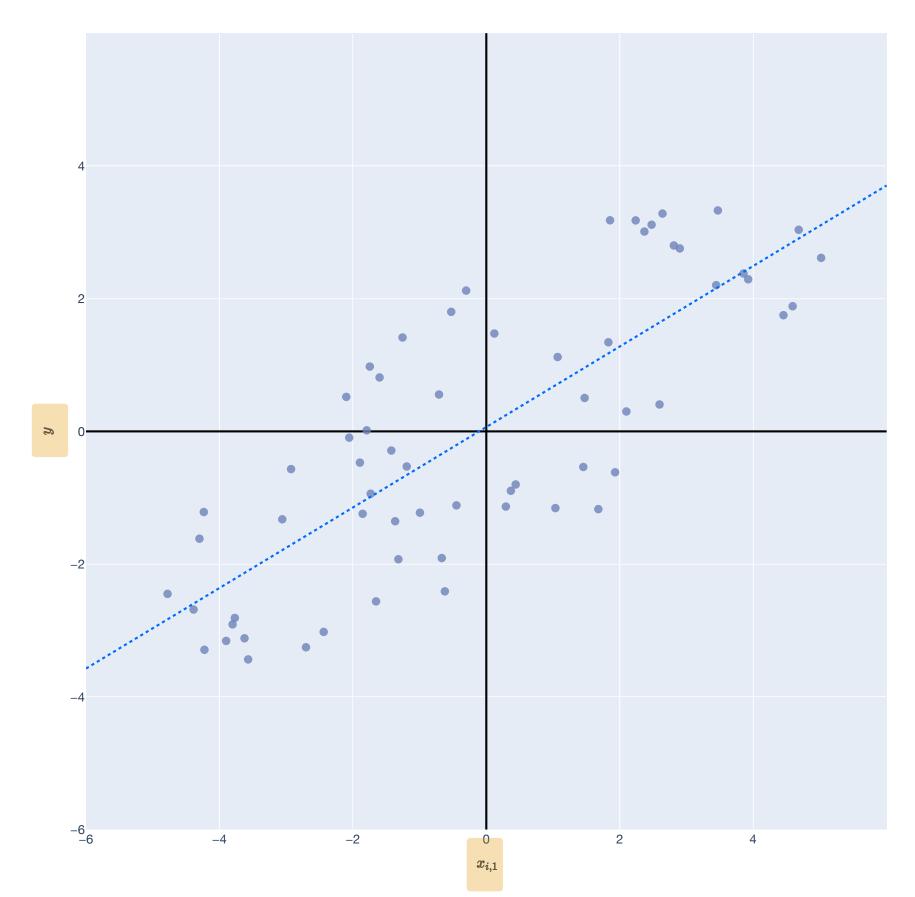
Important: there is no **y** in our BFS problem!

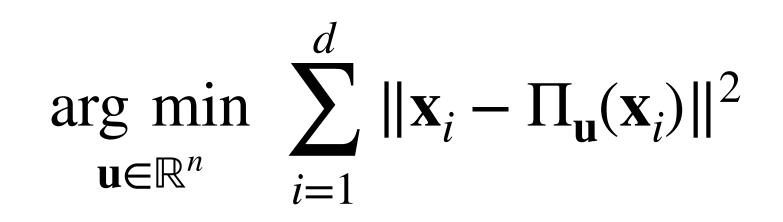
<u>BFS</u>: Find one-dimensional subspace determined by $\mathbf{u} \in \mathbb{R}^n$ such that

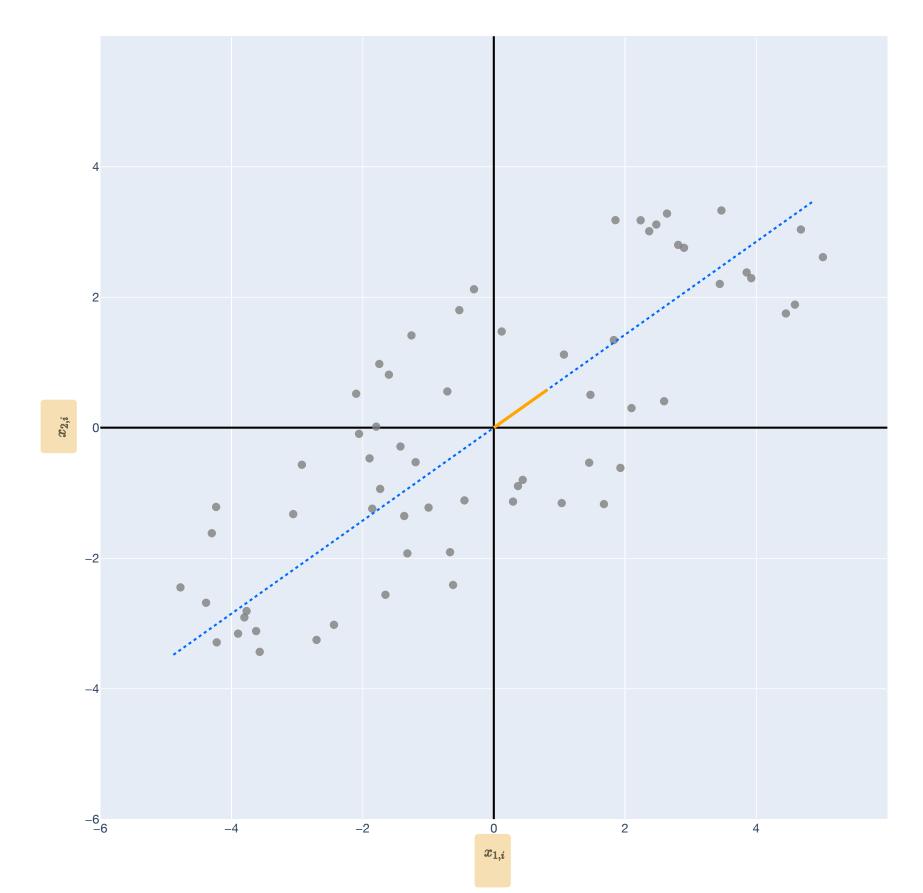
$$\underset{\mathbf{u}\in\mathbb{R}^n}{\operatorname{arg min}} \sum_{i=1}^d \|\mathbf{x}_i - \Pi_{\mathbf{u}}(\mathbf{x}_i)\|^2$$

Comparison with OLS 1D Pictures

 $\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2$ $\hat{\mathbf{w}} \in \mathbb{R}^d$

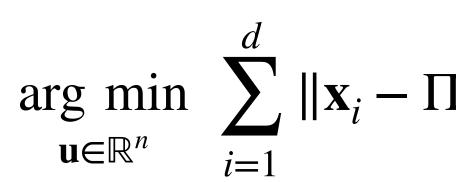


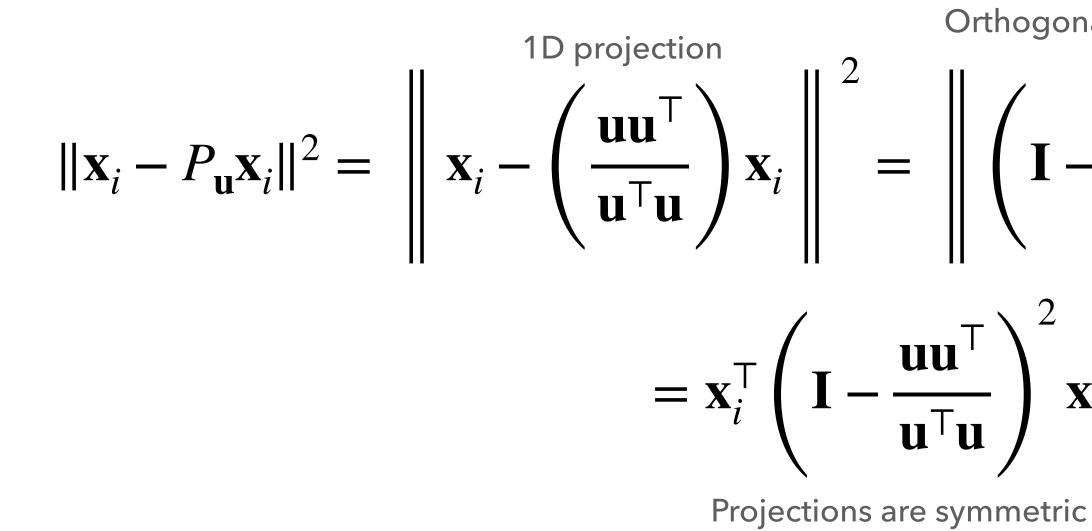




Best-fitting 1D Subspace Step 1: Expand out squared projection distance

Find $\mathbf{u} \in \mathbb{R}^n$ that minimizes the sum of squared projection distances:





$$\mathbf{I}_{\mathbf{u}}(\mathbf{x}_i)\|^2 = \sum_{i=1}^d \|\mathbf{x}_i - P_{\mathbf{u}}\mathbf{x}_i\|^2.$$

Orthogonal comp. to **u** subspace!

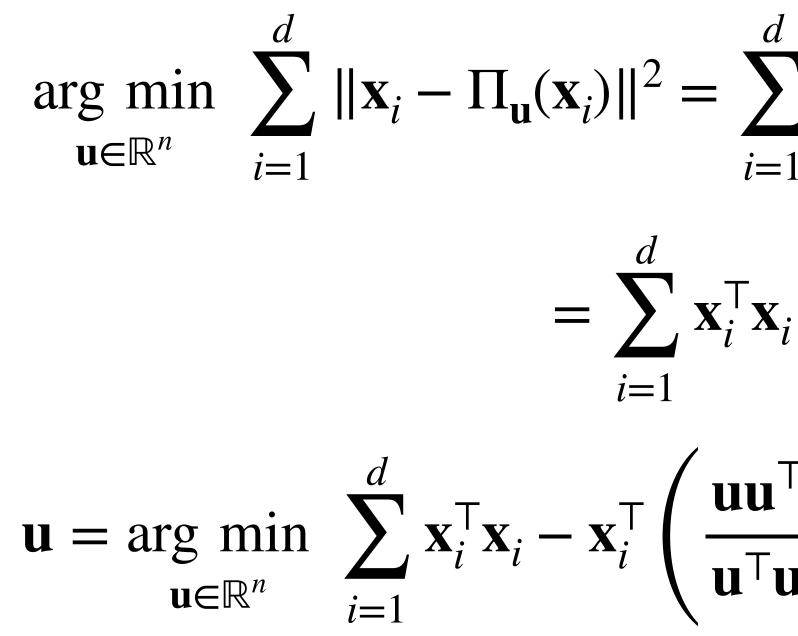
$$\left(\mathbf{I} - \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} \right) \mathbf{x}_{i} \|^{2} = \mathbf{x}_{i}^{\mathsf{T}} \left(\mathbf{I} - \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} \right)^{\mathsf{T}} \left(\mathbf{I} - \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} \right) \mathbf{x}_{i}$$

$$\int^{2} \mathbf{x}_{i} = \mathbf{x}_{i}^{\mathsf{T}} \left(\mathbf{I} - \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} \right) \mathbf{x}_{i}$$

$$\text{Projecting twice doesn't do anything}$$

Best-fitting 1D Subspace Step 2: Simplify minimization problem into maximization

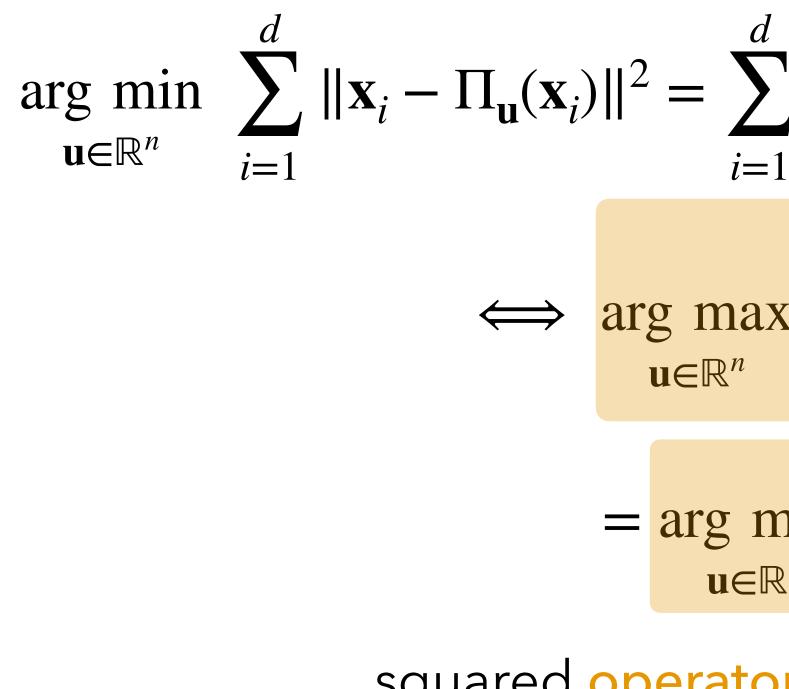
Find $\mathbf{u} \in \mathbb{R}^n$ that minimizes the sum of squared projection distances:



$$\sum_{i=1}^{d} \|\mathbf{x}_{i} - P_{\mathbf{u}}\mathbf{x}_{i}\|^{2} = \sum_{i=1}^{d} \mathbf{x}_{i}^{\mathsf{T}} \left(\mathbf{I} - \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}}\right) \mathbf{x}_{i}$$
$$\mathbf{x}_{i} - \mathbf{x}_{i}^{\mathsf{T}} \left(\frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}}\right) \mathbf{x}_{i}$$
$$\frac{\mathsf{T}}{\mathbf{u}} \mathbf{x}_{i} \iff \arg\max_{\mathbf{u}\in\mathbb{R}^{n}} \sum_{i=1}^{d} \mathbf{x}_{i}^{\mathsf{T}} \left(\frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}}\right) \mathbf{x}_{i}$$

Best-fitting 1D Subspace Step 3: Derive "operator norm" from matrix outer products

Find $\mathbf{u} \in \mathbb{R}^n$ that minimizes the sum of squared projection distances:



$$\sum_{i=1}^{d} \|\mathbf{x}_{i} - P_{\mathbf{u}}\mathbf{x}_{i}\|^{2} = \sum_{i=1}^{d} \mathbf{x}_{i}^{\mathsf{T}} \left(\mathbf{I} - \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}}\right) \mathbf{x}_{i}.$$

$$\mathbf{x} \sum_{i=1}^{d} \mathbf{x}_{i}^{\mathsf{T}} \left(\frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}}\right) \mathbf{x}_{i}$$

$$\max_{\mathbb{R}^{n}} \frac{\mathbf{u}^{\mathsf{T}}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{u}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}}$$

squared <u>operator norm</u> of **X**, i.e. $\|\mathbf{X}\|_{op}^2$

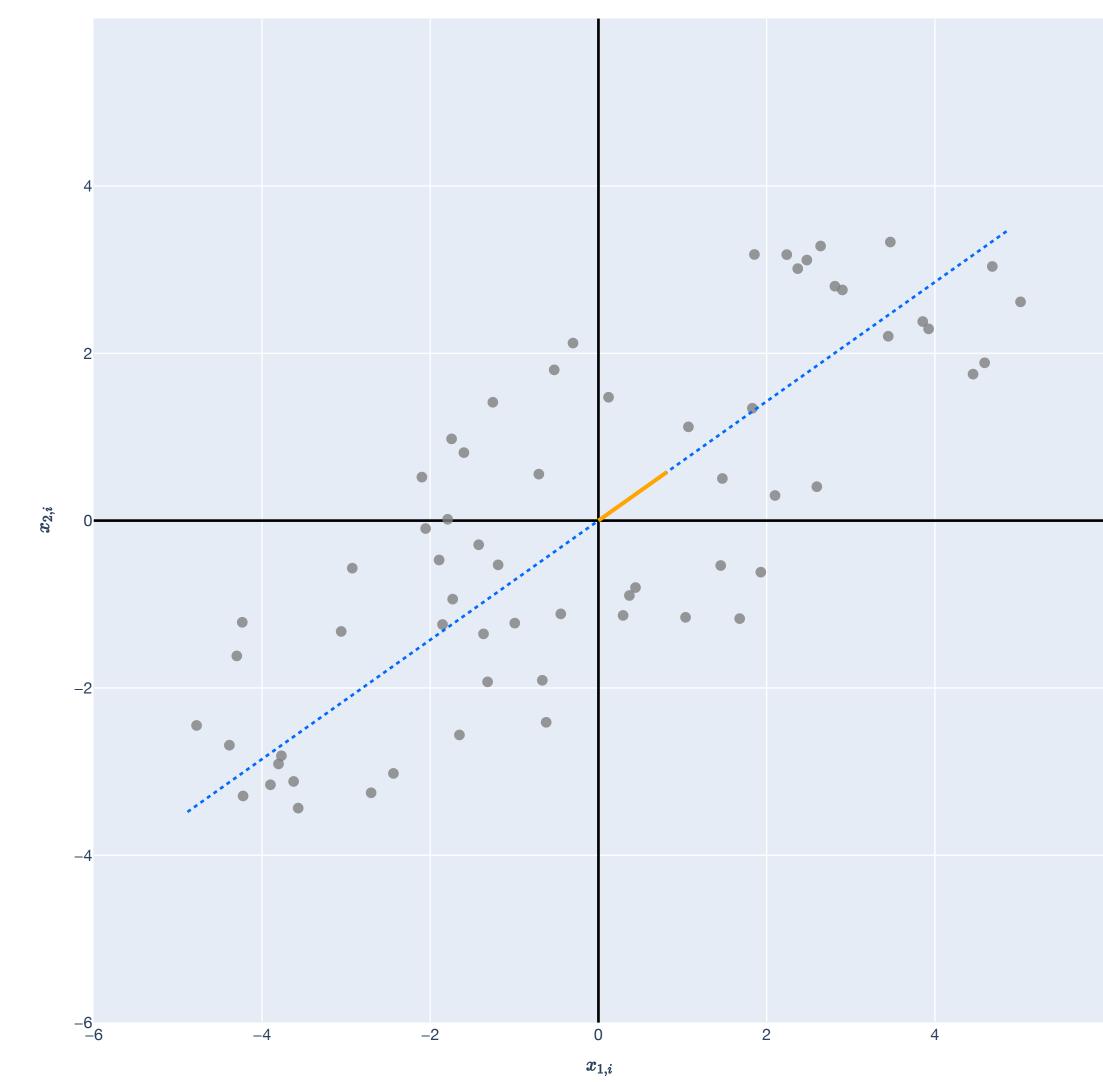
Singular Value Decomposition (SVD) 1D Picture

Observe data $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$.

<u>Goal</u>: Find the best one-dimensional subspace $\mathcal{U} \subseteq \mathbb{R}^n$ that fits the points.

How? Find $\mathbf{u} \in \mathbb{R}^n$ that minimizes the sum of squared projection distances:

$$\underset{\mathbf{u} \in \mathbb{R}^{n}}{\operatorname{arg min}} \sum_{i=1}^{d} \|\mathbf{x}_{i} - \Pi_{\mathbf{u}}(\mathbf{x}_{i})\|^{2} = \underset{\mathbf{u} \in \mathbb{R}^{n}}{\operatorname{arg max}} \frac{\mathbf{u}^{\mathsf{T}}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{u}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}}$$
$$\mathbf{u} \in \mathbb{R}^{n} \text{ is the 1st left singular vector with 1st (squared) singular value $\sigma_{1}^{2} = \frac{\mathbf{u}^{\mathsf{T}}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{u}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}}$$$



Singular Value Decomposition Definition of Full SVD and Compact SVD

Singular Value Decomposition (SVD) Building up the SVD

Observe data $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$. Consider the following procedure...

For t = 1, 2, ..., n:

1. Find $\mathbf{u}_1 \in \mathbb{R}^n$, the best one-dimensional sul

Let $\mathbf{x}_{i}^{(1)}$

2. Find $\mathbf{u}_2 \in \mathbb{R}^n$, the best one-dimensional subspace fit to $\mathbf{x}_1^{(1)}, \dots, \mathbf{x}_d^{(1)}$.

Let
$$\mathbf{x}_i^{(2)} = \mathbf{x}_i^{(1)} - \Pi_{\mathbf{u}_2}(\mathbf{x}_i) = \mathbf{x}_i - \Pi_{\mathbf{u}_1}(\mathbf{x}_i) - \Pi_{\mathbf{u}_2}(\mathbf{x}_i).$$

3. Find $\mathbf{u}_3 \in \mathbb{R}^n$, the best one-dimensional subspace fit to $\mathbf{x}_1^{(2)}, \dots, \mathbf{x}_d^{(2)}$...

bspace fit to
$$\mathbf{x}_1, \dots, \mathbf{x}_d$$
.

$$\mathbf{x}_i = \mathbf{x}_i - \Pi_{\mathbf{u}_1}(\mathbf{x}_i).$$

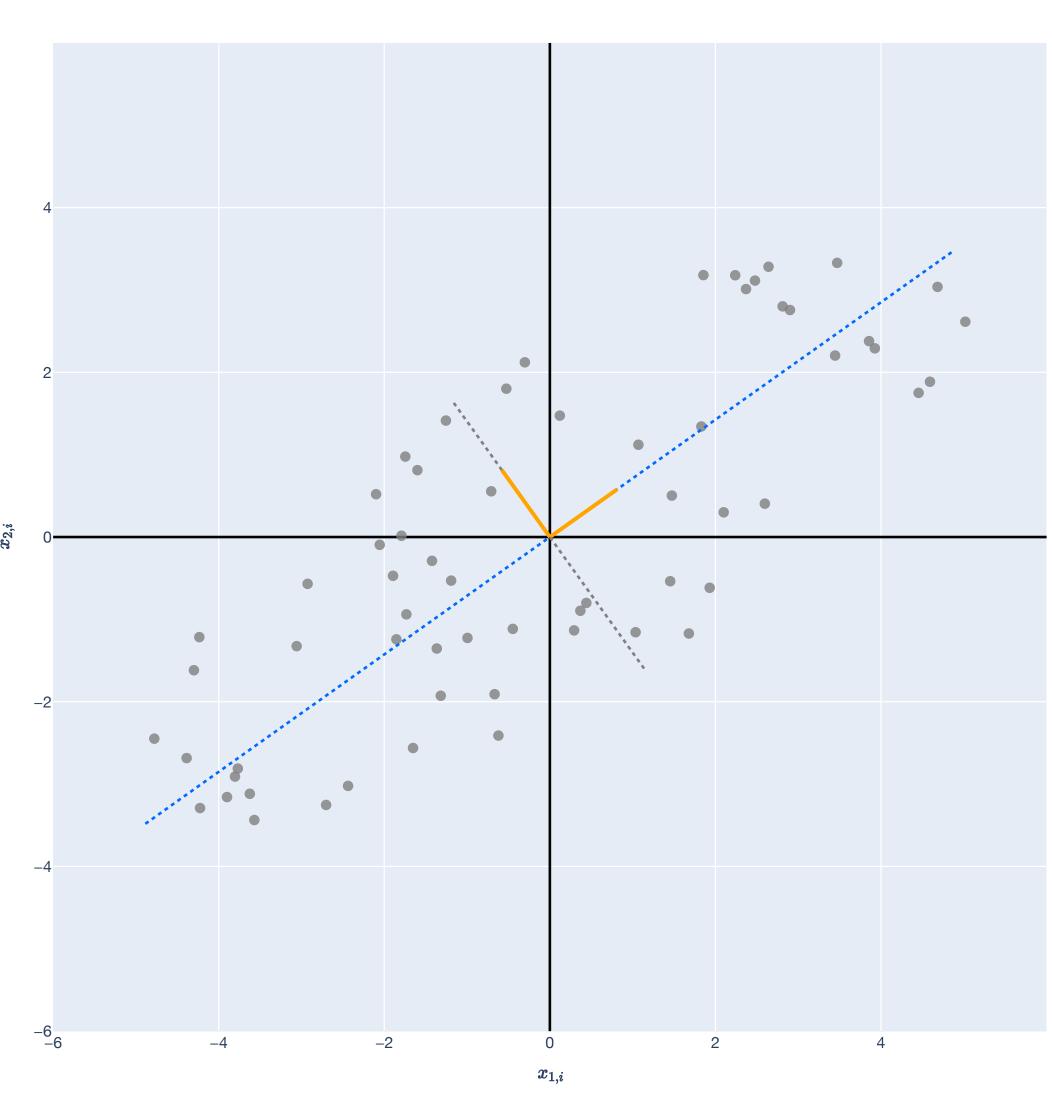
Singular Value Decomposition (SVD) Building up the SVD

Observe data $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^2$.

1. Find $\mathbf{u}_1 \in \mathbb{R}^2$, the best one-dimensional subspace fit to $\mathbf{X}_1, \ldots, \mathbf{X}_d$.

Let
$$\mathbf{x}_i^{(1)} = \mathbf{x}_i - \Pi_{\mathbf{u}_1}(\mathbf{x}_i)$$
.

2. Find $\mathbf{u}_2 \in \mathbb{R}^n$, the best one-dimensional subspace fit to $\mathbf{x}_{1}^{(1)}, \dots, \mathbf{x}_{d}^{(1)}$.



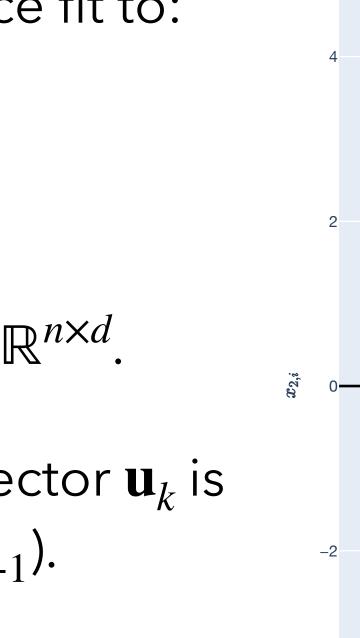
Singular Value Decomposition (SVD) Building up the SVD

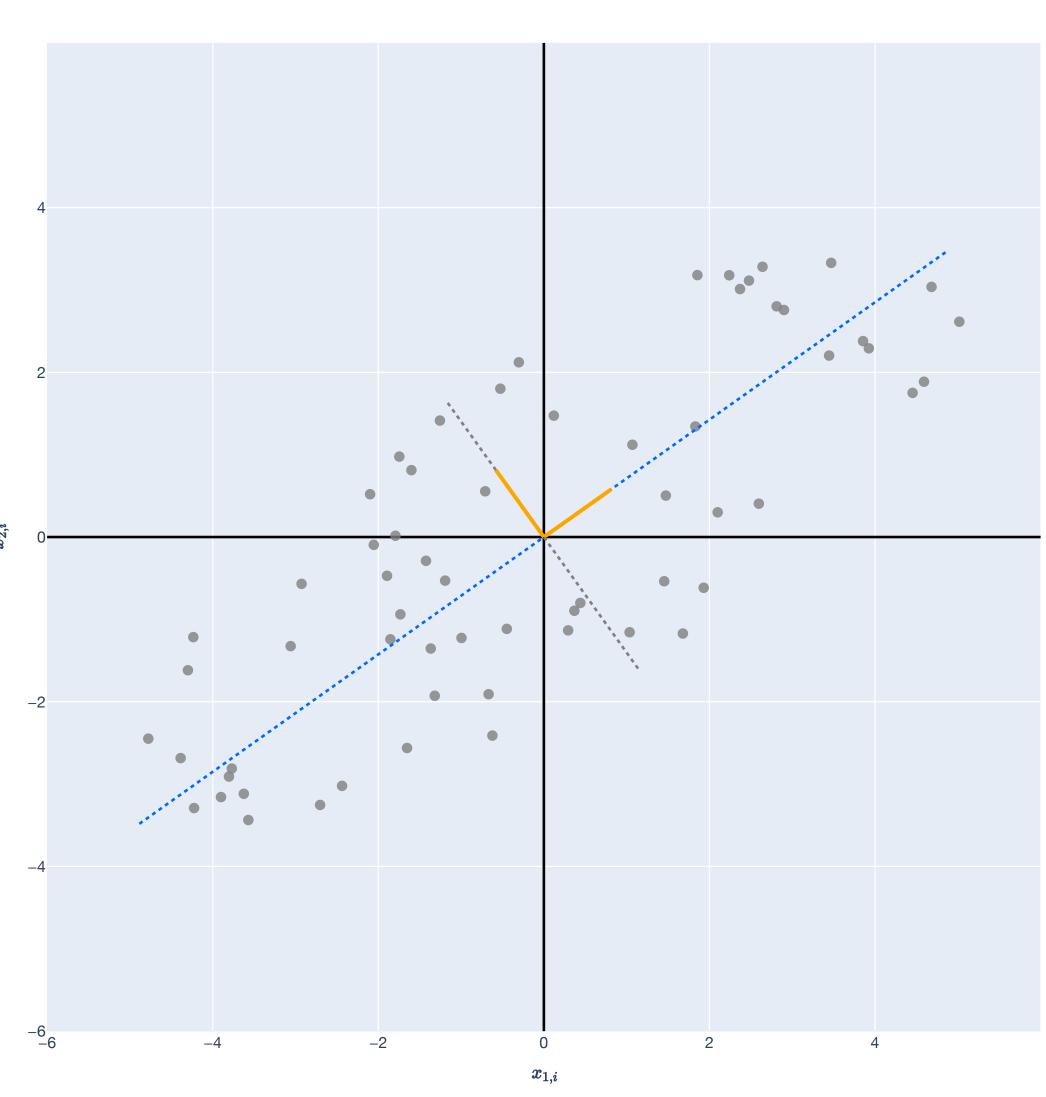
 $\mathbf{u}_t \in \mathbb{R}^n$ is the best one-dimensional subspace fit to:

$$\mathbf{x}_i - \sum_{k=1}^{t-1} \Pi_{\mathbf{u}_k}(\mathbf{x}_i).$$

These are the *n* left singular vectors of $\mathbf{X} \in \mathbb{R}^{n \times d}$.

Orthogonal, by construction (left singular vector \mathbf{u}_k is in the orthogonal complement of $\mathbf{u}_1, \dots, \mathbf{u}_{k-1}$).





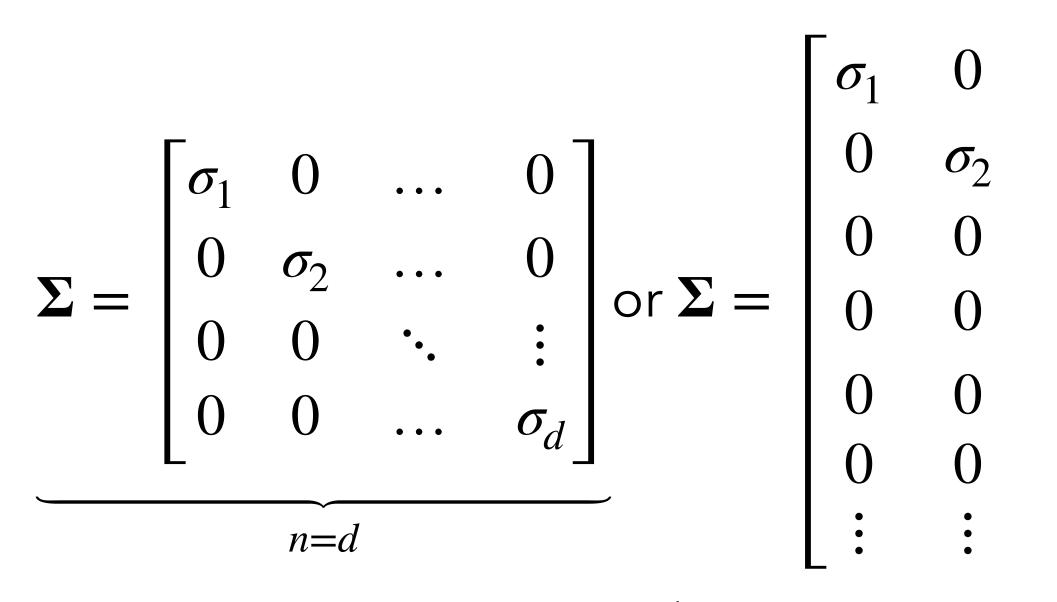
Singular Value Decomposition (SVD) **Definition of the Full SVD**

Consider any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$. The <u>full singular value decomposition (SVD)</u> is $\underbrace{\mathbf{X}}_{} = \underbrace{\mathbf{U}}_{} \underbrace{\mathbf{\Sigma}}_{} \underbrace{\mathbf{V}}_{}^{\top}.$ $n \times d$

The columns of $\mathbf{U} \in \mathbb{R}^{n \times n}$ are the <u>left singular vectors</u> and \mathbf{U} is orthogonal: $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}$. The columns of $\mathbf{V} \in \mathbb{R}^{d \times d}$ are the <u>right singular vectors</u> and \mathbf{V} is orthogonal: $\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{I}$. $\Sigma \in \mathbb{R}^{n \times d}$ is a diagonal matrix with <u>singular values</u> $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_d \ge 0$ on the diagonal. The rank of **X** is equal to the number of $\sigma_i > 0$.

- $n \times n$ $n \times d$ $d \times d$

Singular Value Decomposition (SVD) Shape of the Σ Matrix



n > d

 $\Sigma \in \mathbb{R}^{n \times d}$ is a diagonal matrix with <u>singular values</u> $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_{\min\{n,d\}} \ge 0$ on the diagonal. $\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_d \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ 0 & 0 & \dots & \sigma_d \\ 0 & 0 & \dots & \sigma_d \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 & 0 & 0 & \dots \\ 0 & \sigma_2 & \dots & 0 & 0 & 0 & \dots \\ 0 & 0 & \ddots & \vdots & \vdots & \vdots & \dots \\ 0 & 0 & \dots & \sigma_n & 0 & 0 & \dots \end{bmatrix}_{d > n}$

Interpreting the SVD Example in \mathbb{R}^2

Let $\mathbf{x}_1, \dots, \mathbf{x}_{212} \in \mathbb{R}^2$. The SVD is given by:

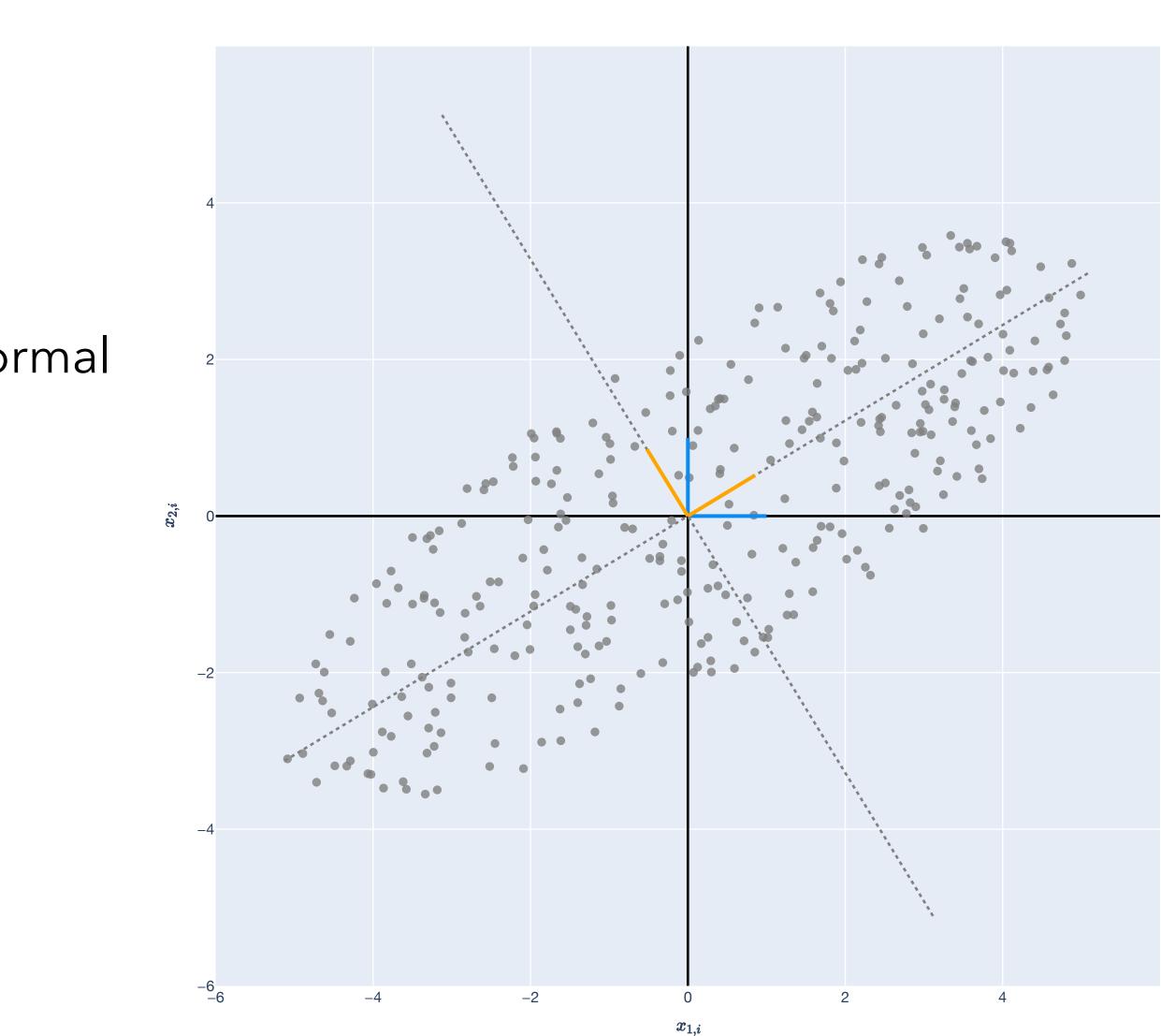
$\underbrace{\mathbf{X}}_{2\times 212} = \underbrace{\mathbf{U}}_{2\times 212} \underbrace{\mathbf{\Sigma}}_{2\times 212} \underbrace{\mathbf{V}}_{212\times 212}^{\mathsf{T}}$

Left Singular Vectors Interpreting the U matrix

$\underbrace{\mathbf{X}}_{} = \underbrace{\mathbf{U}}_{} \underbrace{\mathbf{\Sigma}}_{} \underbrace{\mathbf{V}}_{}^{\top}$

2×212 2×2 2×212 212×212

The columns $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{R}^2$ of \mathbf{U} are an orthonormal basis for $\mathbf{CS}(\mathbf{X})$.



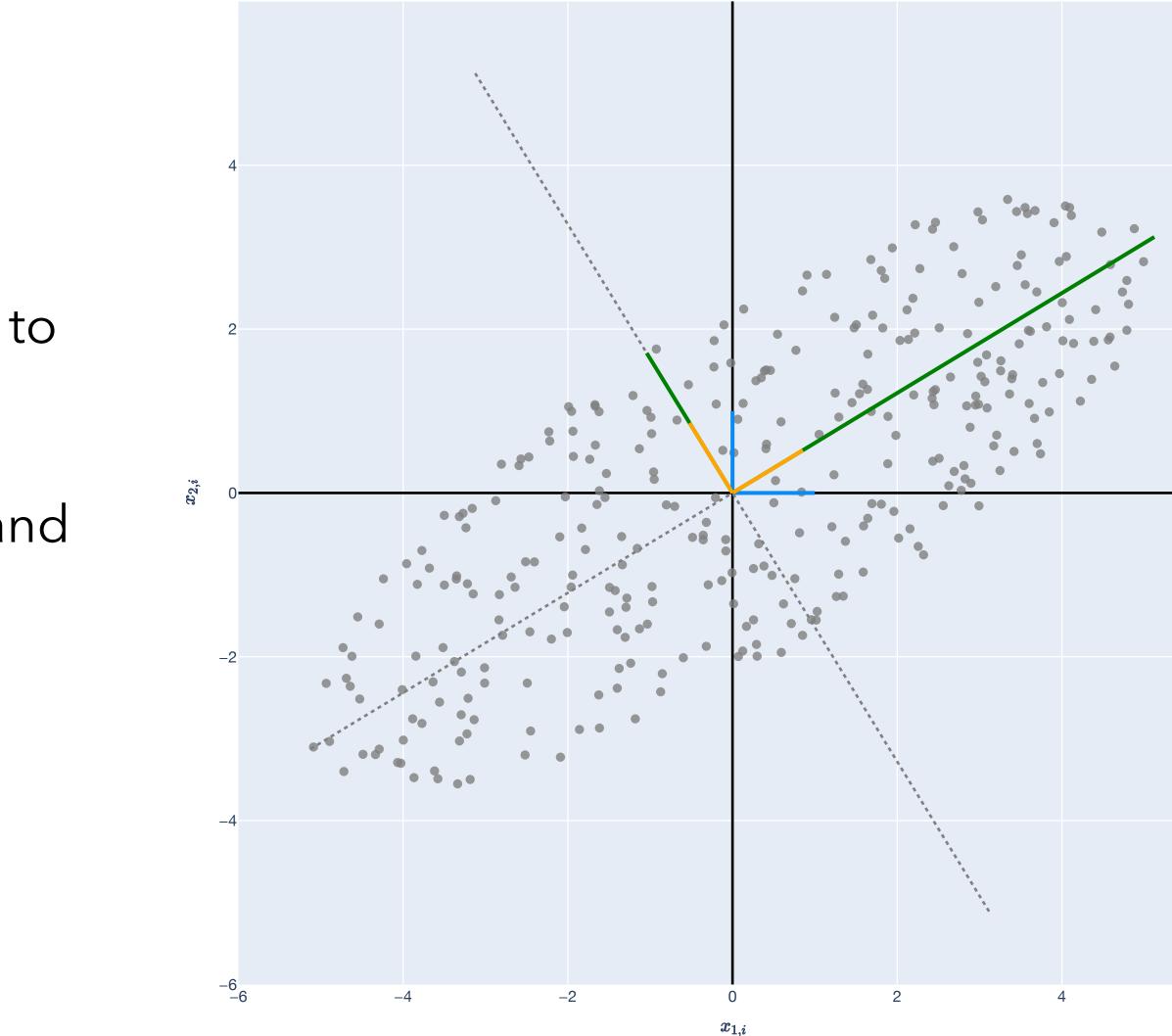
Singular Values Interpreting the Σ matrix

$\underline{\mathbf{X}} = \underline{\mathbf{U}} \quad \underline{\mathbf{\Sigma}} \quad \underline{\mathbf{V}}^{\mathsf{T}}$

2×212 2×2 2×212 212×212

The singular values $\sigma_1, \sigma_2 > 0$ represent how to scale \mathbf{u}_1 and \mathbf{u}_2 to "fit" all the data.

They represent the relative "strength" of \mathbf{u}_1 and \mathbf{u}_2 in explaining the data.



Right Singular Vectors Interpreting the V matrix

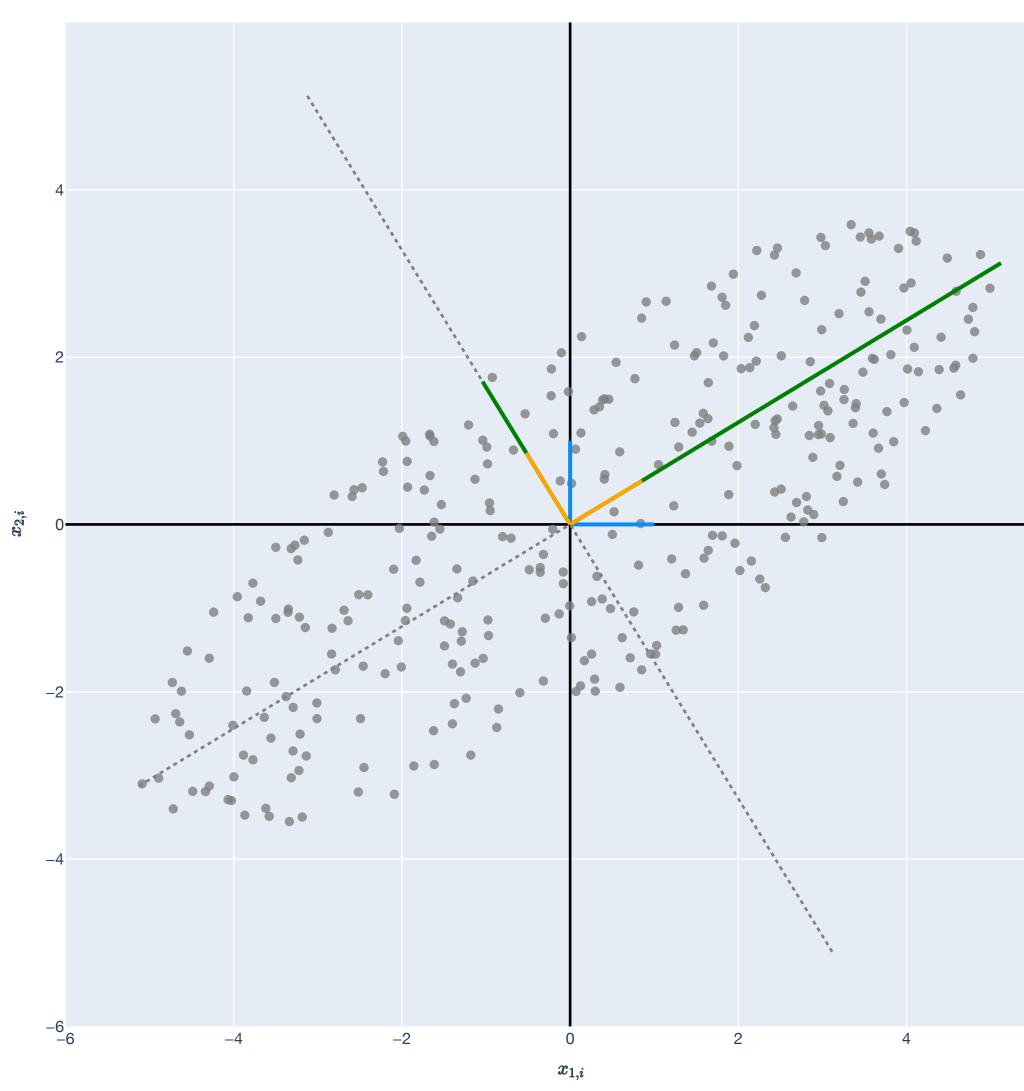
$\underbrace{\mathbf{X}}_{} = \underbrace{\mathbf{U}}_{} \underbrace{\mathbf{\Sigma}}_{} \underbrace{\mathbf{V}}_{}^{\top}$

2×212 2×2 2×212 212×212

The rows of \mathbf{V}^{T} give the coordinates for each point under the basis $\sigma_1 \mathbf{u}_1, \sigma_2 \mathbf{u}_2$.

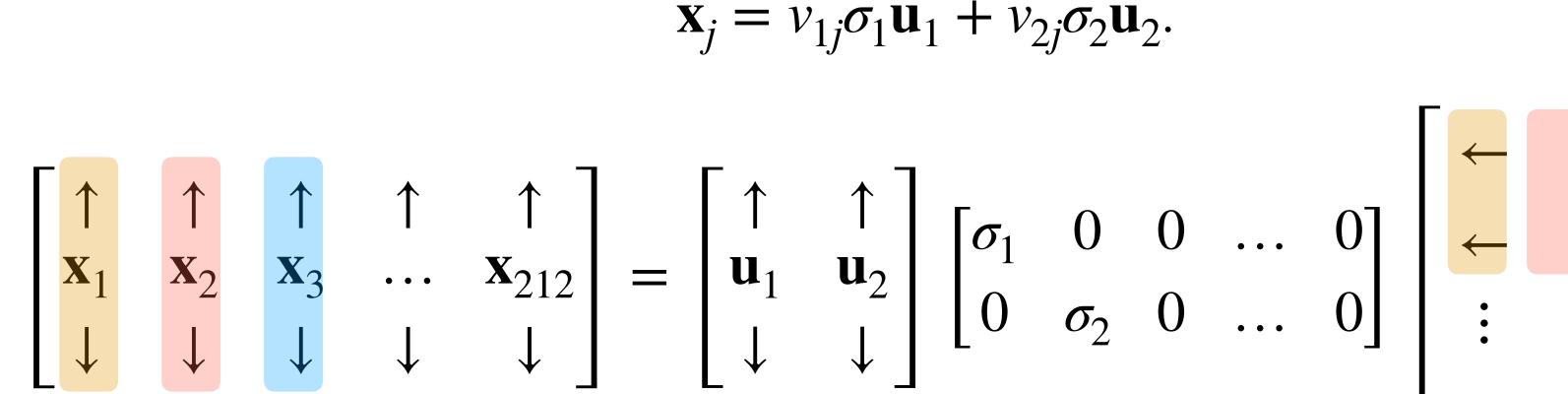
Specifically, for $j \in [d]$,

$$\mathbf{x}_j = v_{1j}\sigma_1\mathbf{u}_1 + v_{2j}\sigma_2\mathbf{u}_2.$$



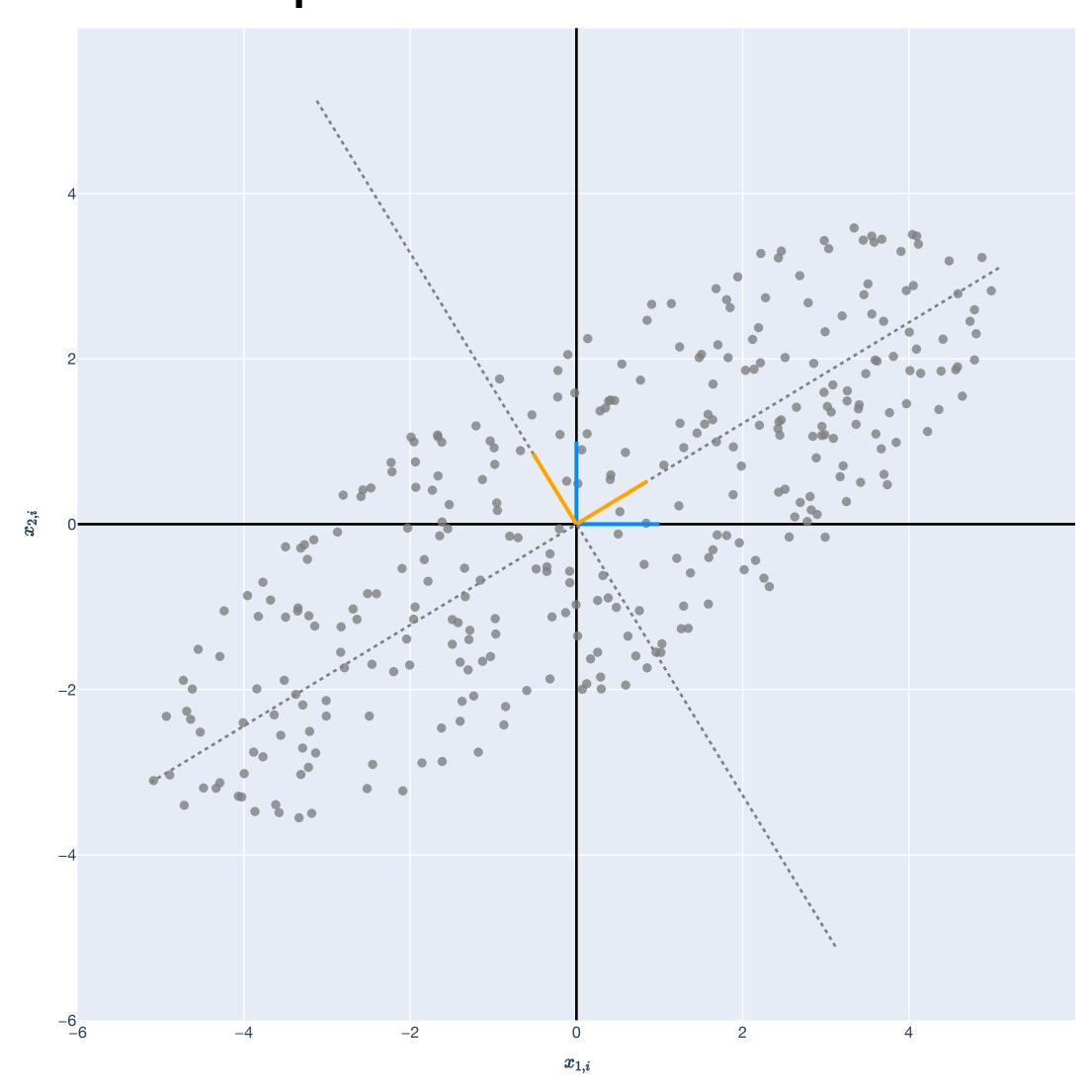
Right Singular Vectors Interpreting the V matrix

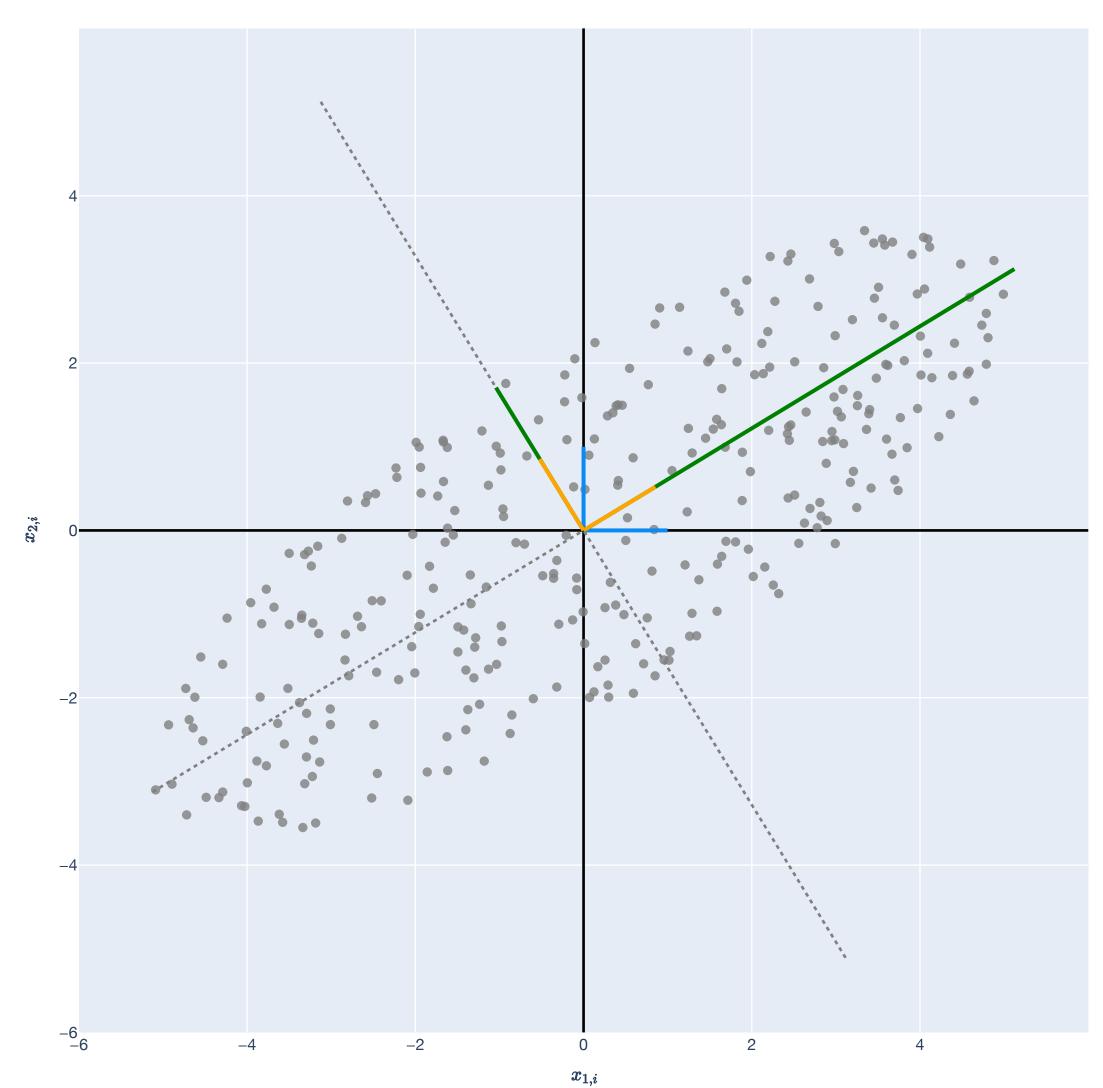
Specifically, for $j \in [d]$,



$$\begin{pmatrix} \uparrow \\ \mathbf{u}_2 \\ \downarrow \end{pmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} \leftarrow & \mathbf{v}_1^\mathsf{T} & \to \\ \leftarrow & \mathbf{v}_2^\mathsf{T} & \to \\ \vdots & \vdots & \vdots \\ \leftarrow & \mathbf{v}_{212}^\mathsf{T} & \to \end{bmatrix}$$

Interpretation of the SVD Full Interpretation of the SVD

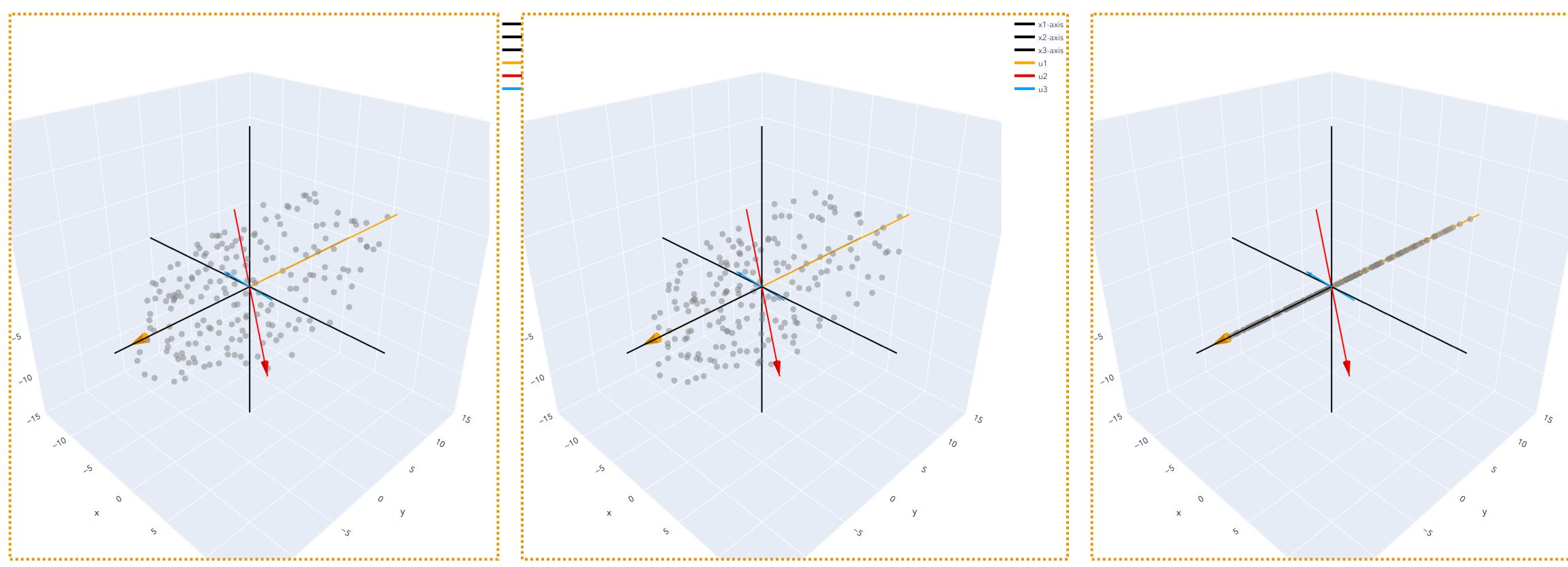




Singular Value Decomposition (SVD) Example of SVD

 $\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 10 \end{bmatrix}$

Singular Value Decomposition (SVD) Example in \mathbb{R}^3



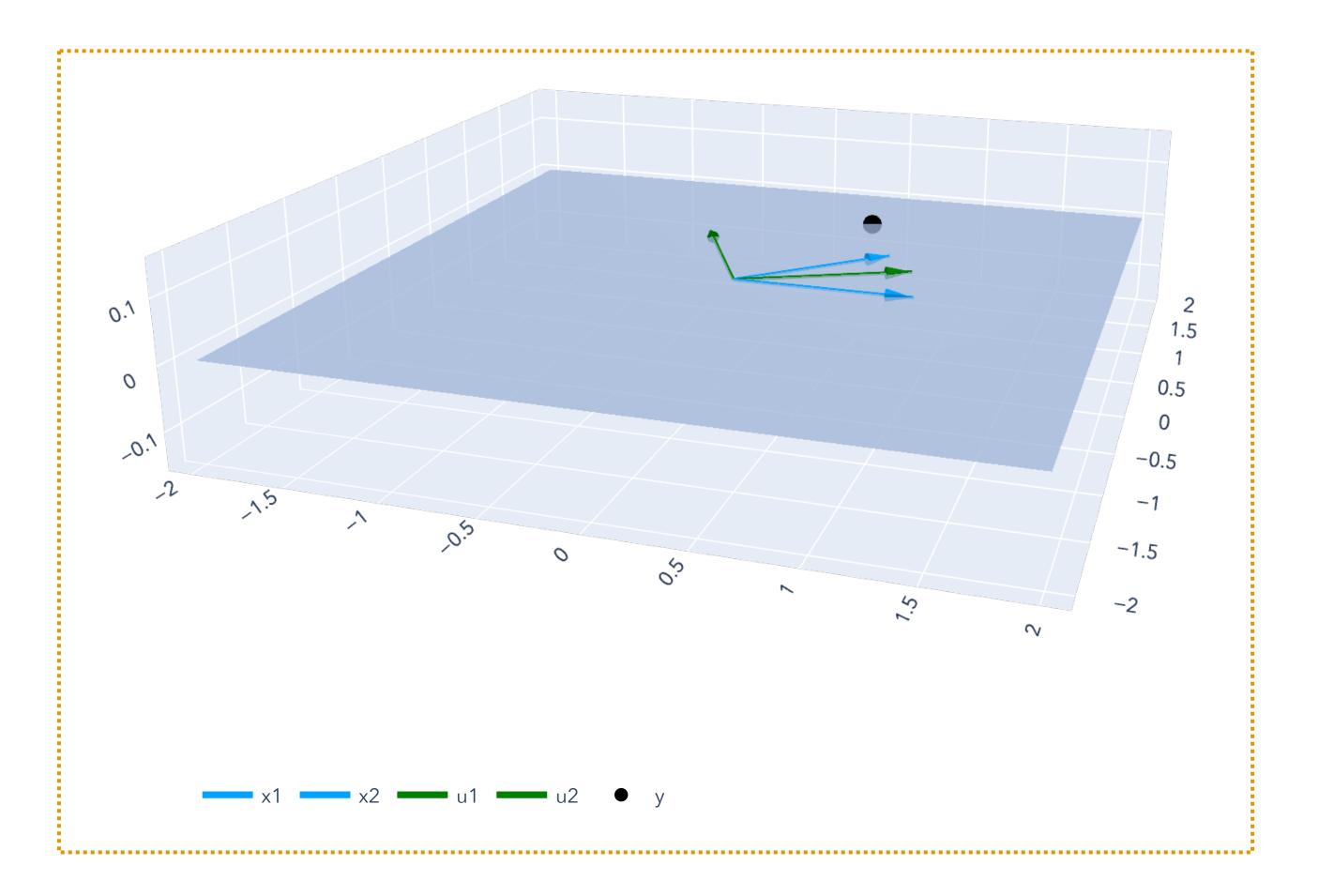
Singular Value Decomposition (SVD) **Definition of the Compact SVD**

 $X \in \mathbb{R}^{n \times d}$ with rank $r \leq \min\{n, d\}$ has <u>compact singular value decomposition (SVD)</u>: $\mathbf{X} = \mathbf{U} \quad \mathbf{\Sigma} \quad \mathbf{V}^{\top}.$ n×d n×r r×r r×d

Columns of $\mathbf{U} \in \mathbb{R}^{n \times r}$ are the <u>left singular vectors</u> and $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$, o.n.b. for $\mathbf{CS}(\mathbf{X})$. Columns of $\mathbf{V} \in \mathbb{R}^{r \times d}$ are the <u>right singular vectors</u> and $\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$, o.n.b. for $\mathbf{CS}(\mathbf{X}^{\mathsf{T}})$.

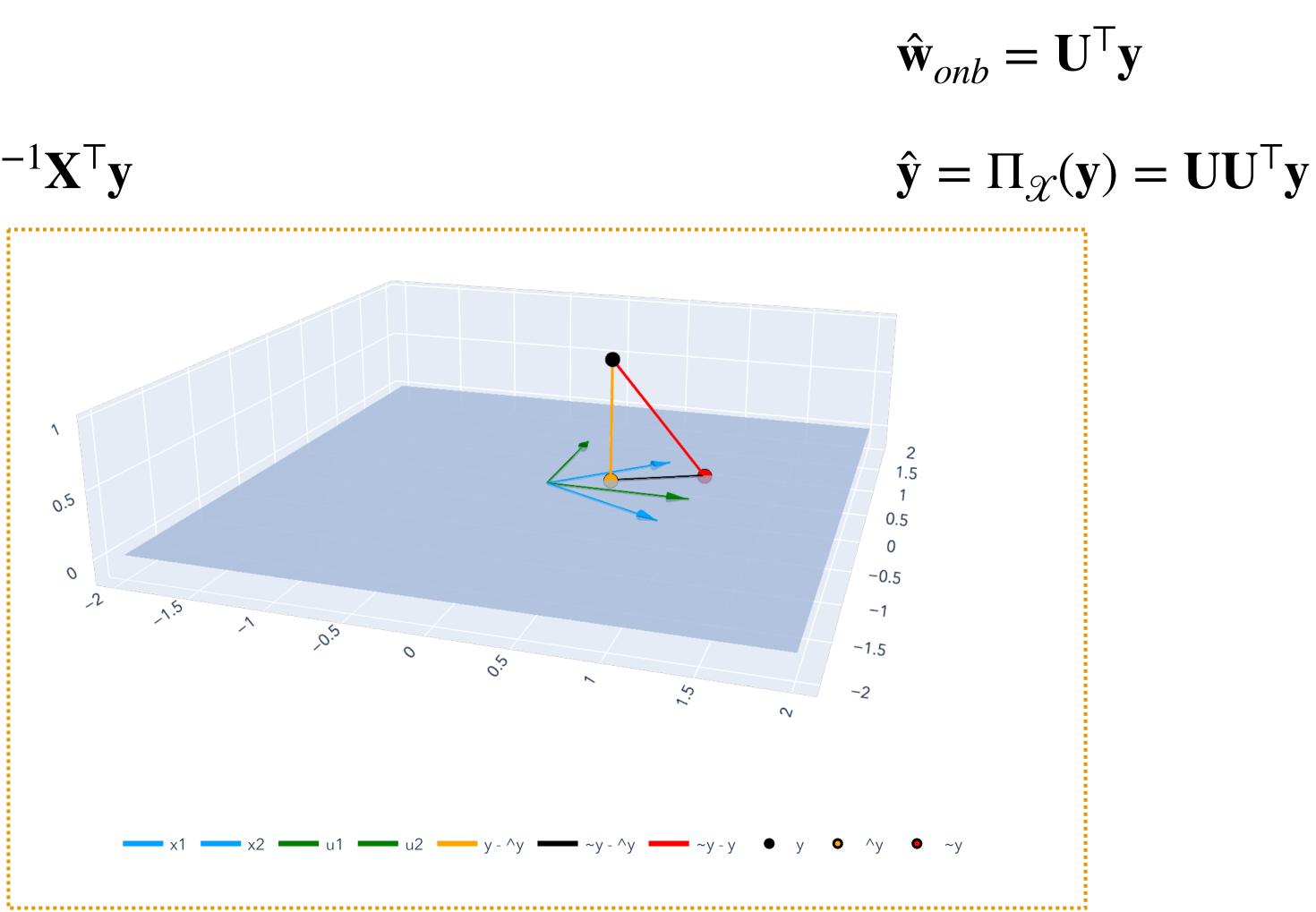
- $\Sigma \in \mathbb{R}^{r \times r}$ is a square diagonal matrix with <u>singular values</u> $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > 0$ on diagonal.

How to find a good orthogonal basis?

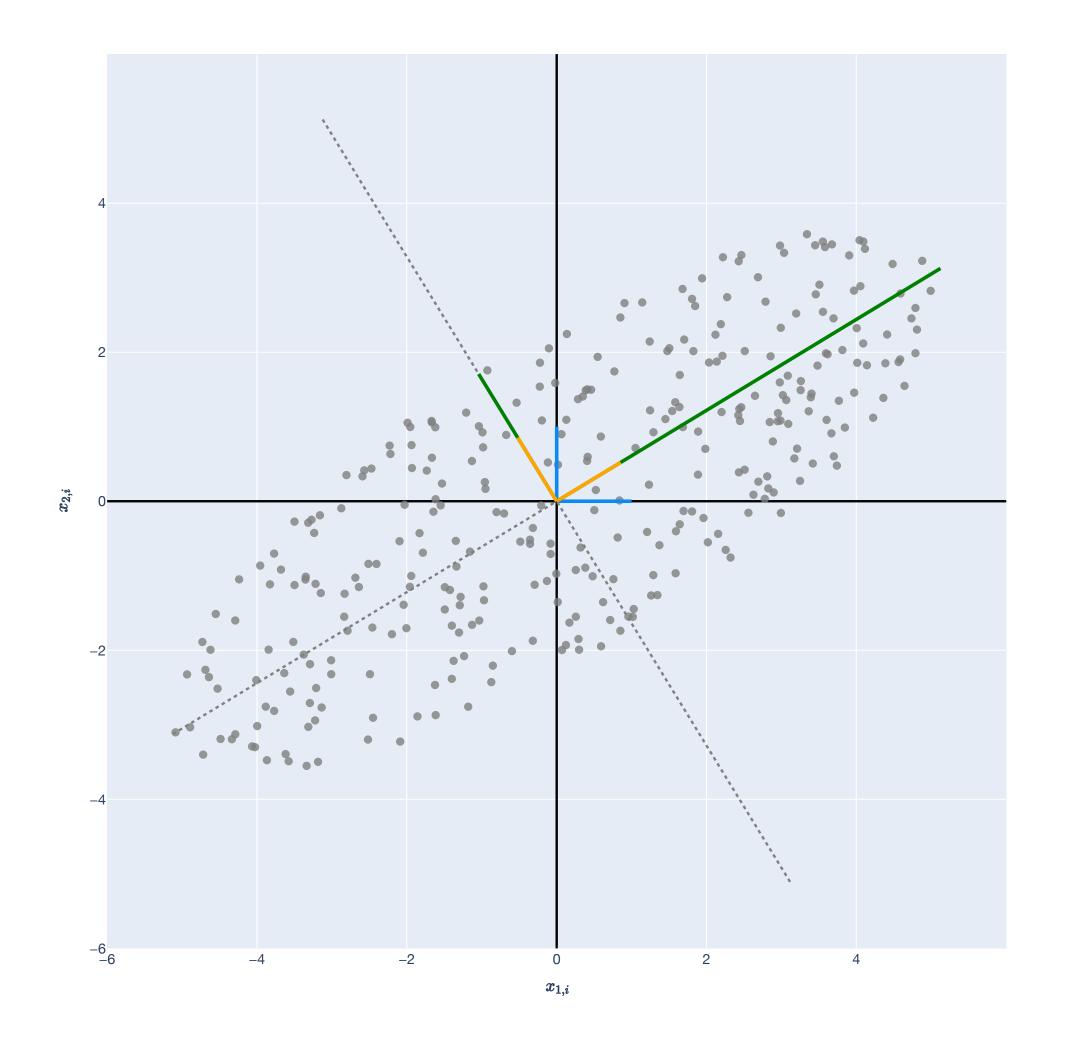


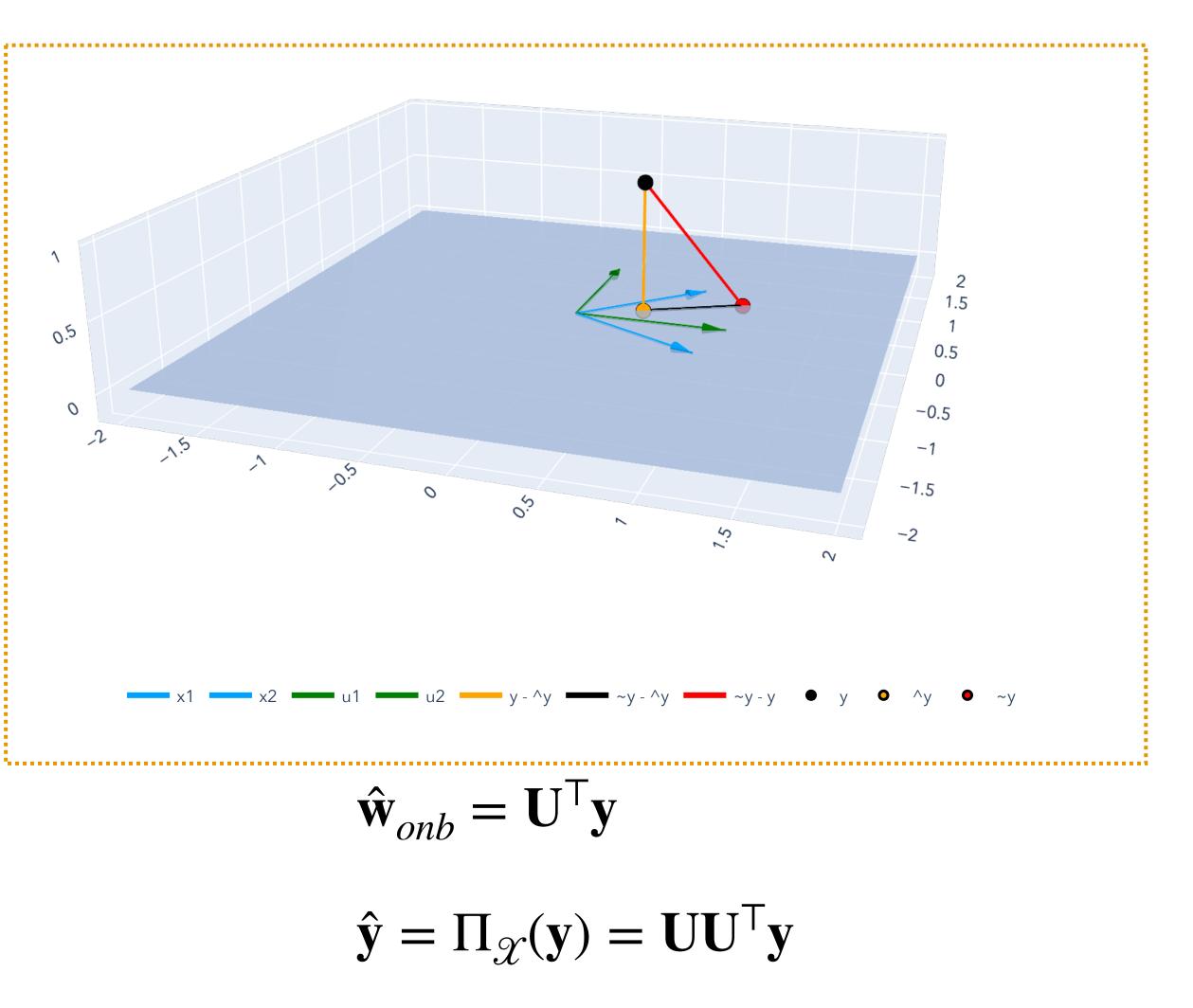
Least Squares OLS with Orthogonal Basis

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ $\hat{\mathbf{y}} = \Pi_{\mathscr{X}}(\mathbf{y}) = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$



Least Squares OLS with Orthogonal Basis





Singular Value Decomposition Application: Low-rank Approximation

Rank-k Approximation Idea

In many applications, it is useful to approximate a matrix.

matrix (i.e. how much "novel information" the matrix contains).

We might approximate a matrix **X** with $r = \operatorname{rank}(\mathbf{X})$ by asking:

One notion of "close" for matrices is the Frob

- The rank of a matrix represents how many linearly independent columns (or rows) make up a

 - What's the closest rank-k matrix (with $k \ll r$) to X?

Denius norm:
$$\|\mathbf{X}\|_F := \sqrt{\sum_{i=1}^n \sum_{j=1}^d X_{ij}^2}$$

Rank-k Approximation Theorem

<u>Theorem (Rank-*k* Approximation).</u> Let $\mathbf{X} \in \mathbb{R}$ $\mathbf{U}_k \in \mathbb{R}^{n \times k}$, $\mathbf{\Sigma}_k \in \mathbb{R}^{k \times k}$, and $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ as trunc $\hat{\mathbf{X}}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{\mathsf{T}}$ and

Then, $\hat{\mathbf{X}}_k \in \mathbb{R}^{n \times d}$ is the rank-*k* approximation of **X** in Frobenius norm:

$$\hat{\mathbf{X}}_k = \underset{\hat{\mathbf{X}} \in \mathbb{R}^{n \times d}}{\arg \min} \|\mathbf{X} - \underset{\hat{\mathbf{X}} \in \mathbb{R}^{n \times d}}{\lim}$$

<u>Theorem (Rank-*k* Approximation).</u> Let $\mathbf{X} \in \mathbb{R}^{n \times d}$. If $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ is the compact SVD of \mathbf{X} with $\mathbf{U}_k \in \mathbb{R}^{n \times k}$, $\mathbf{\Sigma}_k \in \mathbb{R}^{k \times k}$, and $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ as truncated matrices of \mathbf{U} , $\mathbf{\Sigma}$, and \mathbf{V} , respectively, then

d
$$\|\mathbf{X} - \hat{\mathbf{X}}_k\|^2 = \sum_{i=k+1}^r \sigma_i^2.$$

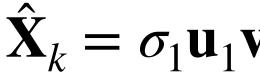
 $\hat{\mathbf{X}}\|_{F'}$ such that $\operatorname{rank}(\hat{\mathbf{X}}) = k$.

Rank-k Approximation **Outer Product Interpretation**

The (compact) SVD of a matrix can also be written as a sum of rank-1 matrices.

 $\mathbf{X} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathsf{T}} + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^{\mathsf{T}} + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^{\mathsf{T}}.$ $n \times d$

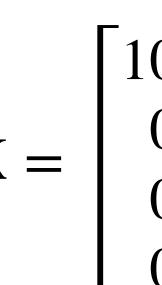
In this way, the rank-k approximation $\hat{\mathbf{X}}_k$ can be written as truncating this sum at k:



 $\hat{\mathbf{X}}_k = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\top + \ldots + \sigma_k \mathbf{u}_k \mathbf{v}_k^\top.$

Rank-k Approximation Example

Consider the 4 x 4 matrix:



 $\mathbf{X} = \begin{bmatrix} 100 & 0 & 0 & 0 \\ 0 & 90 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

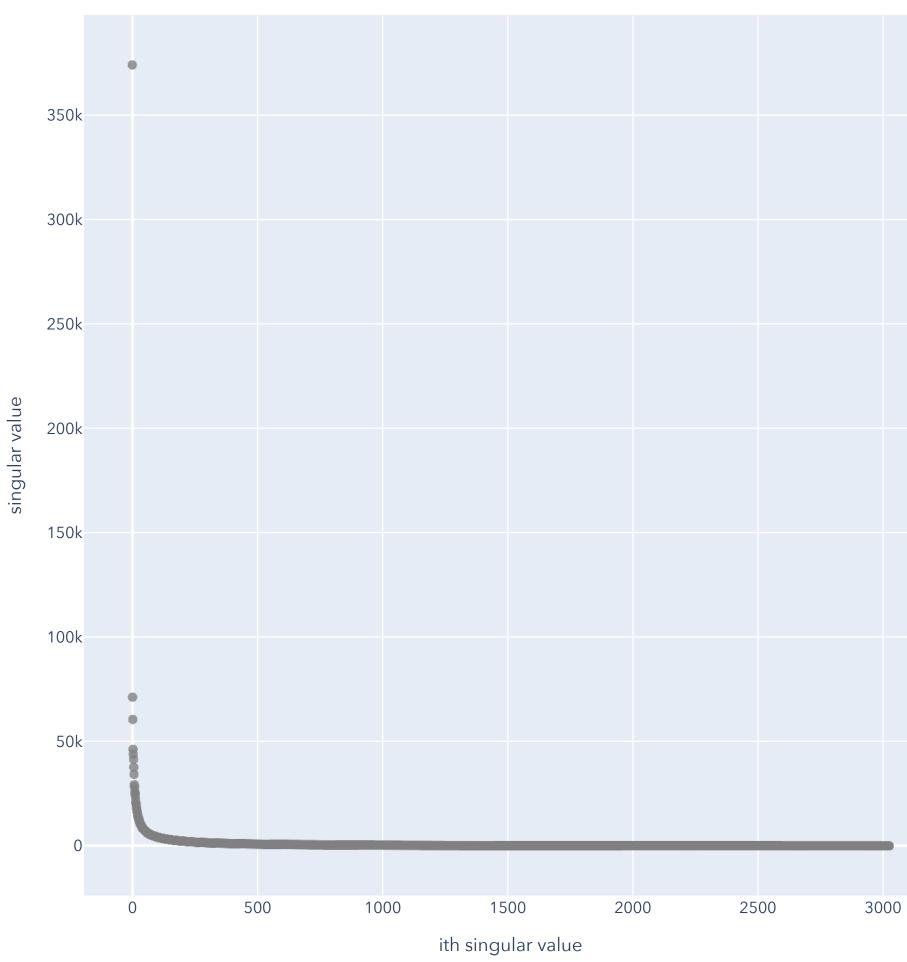
Rank-k Approximation **Application in Image Processing**


```
print(X)
   print("Shape: {}".format(X.shape))
 √ 0.0s
[[37 39 38 ... 32 31 29]
[40 43 41 ... 32 30 27]
 [41 45 44 ... 32 30 27]
 . . .
[50 51 54 ... 57 58 58]
[50 53 56 ... 57 58 60]
[50 53 55 ... 58 60 63]]
Shape: (3024, 4032)
   # Take an SVD
   U, S, Vt = np.linalg.svd(X, full_matrices=False)
 √ 16.5s
```

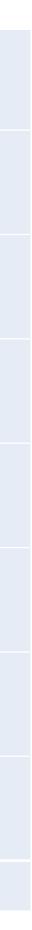
3500 4000

Rank-k Approximation **Application in Image Processing**

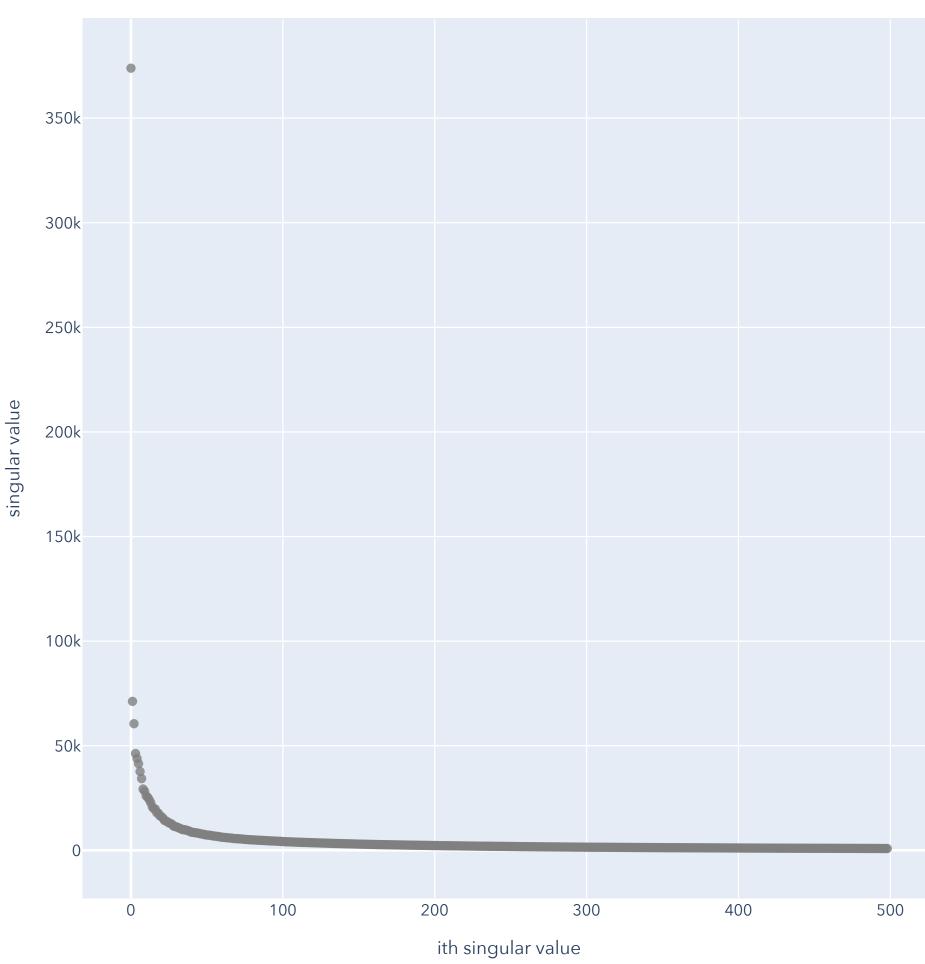




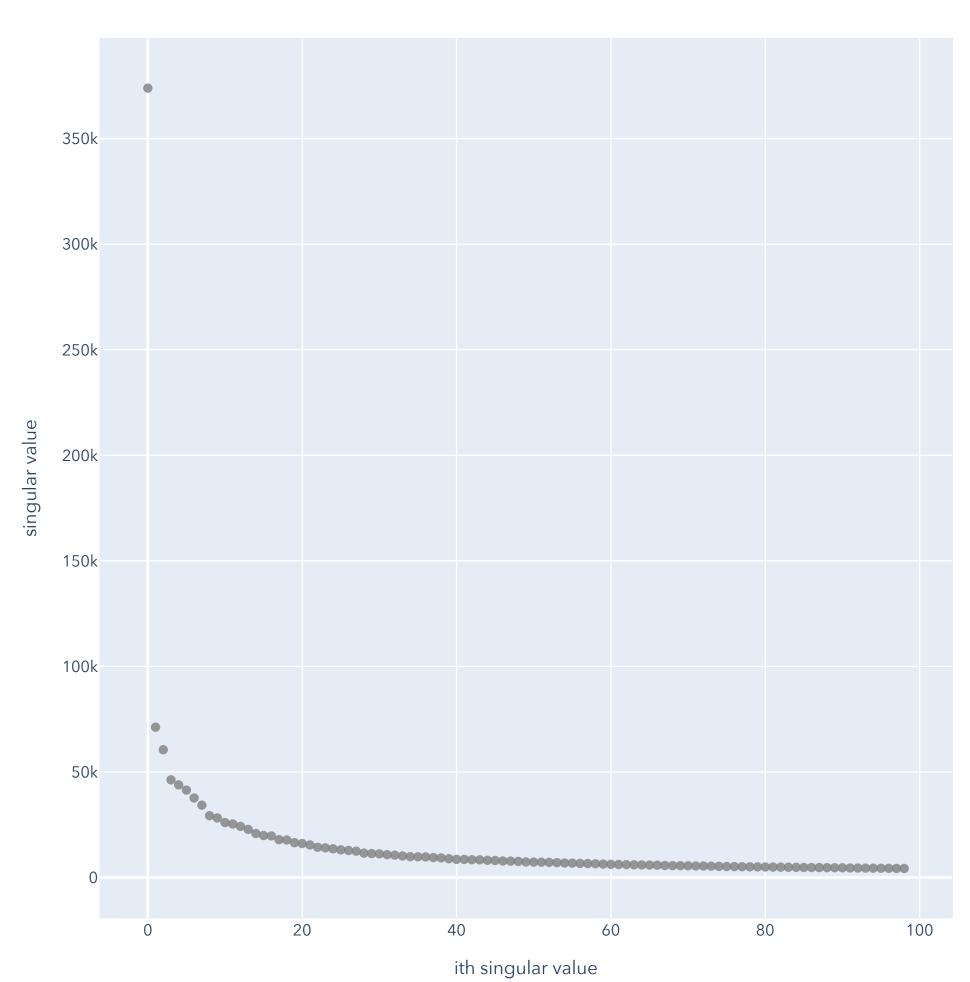
3500 4000



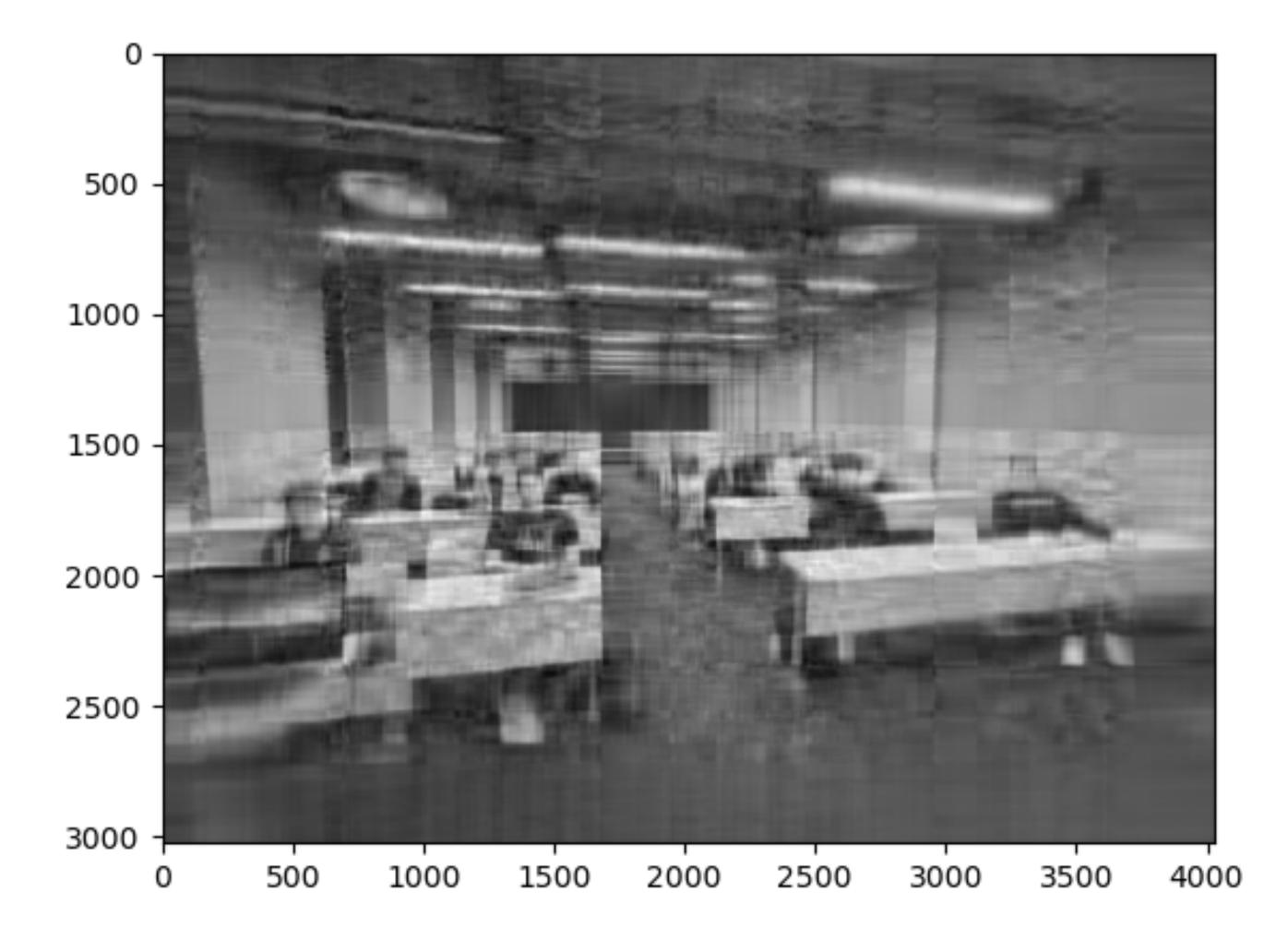
Rank-*k* **Approximation** Application in Image Processing (*k* = 500)

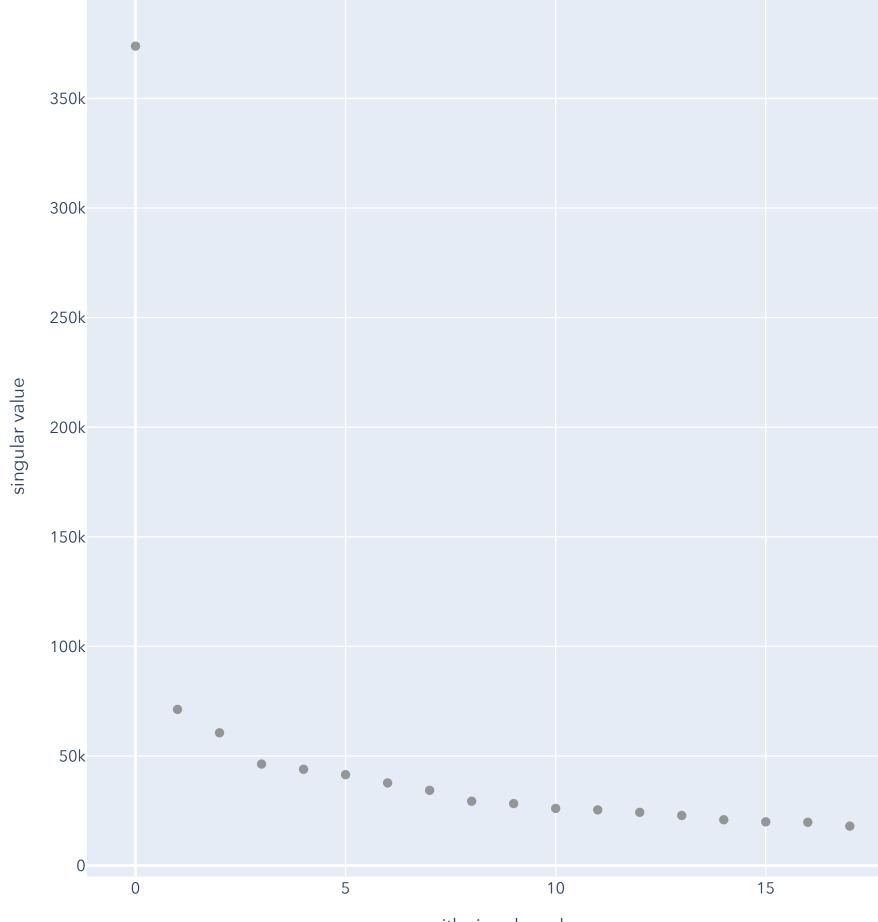


Rank-*k* **Approximation** Application in Image Processing (*k* = 100)

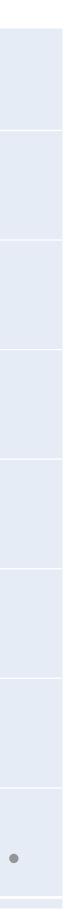


Rank-*k* **Approximation** Application in Image Processing (*k* = 20)

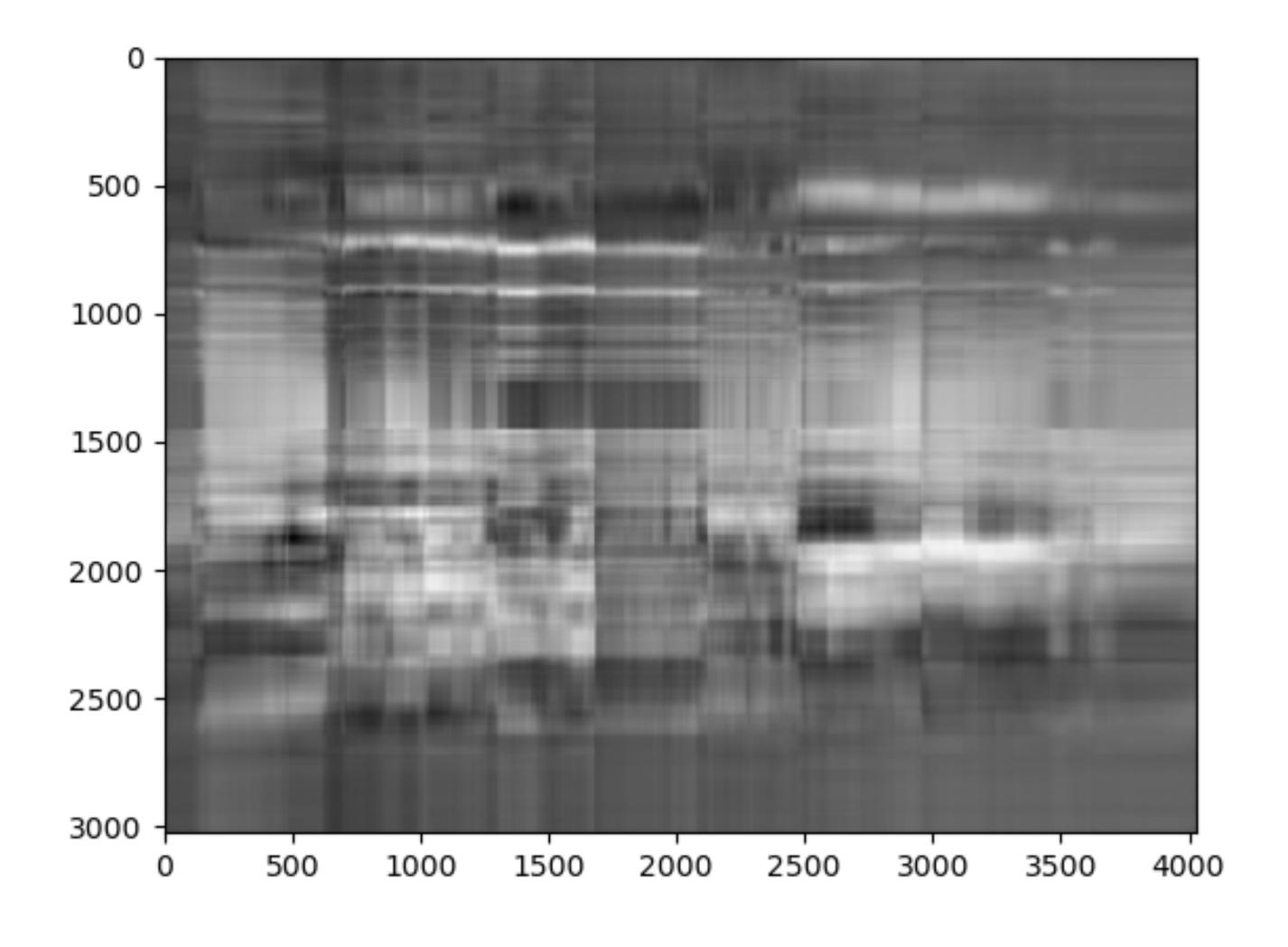


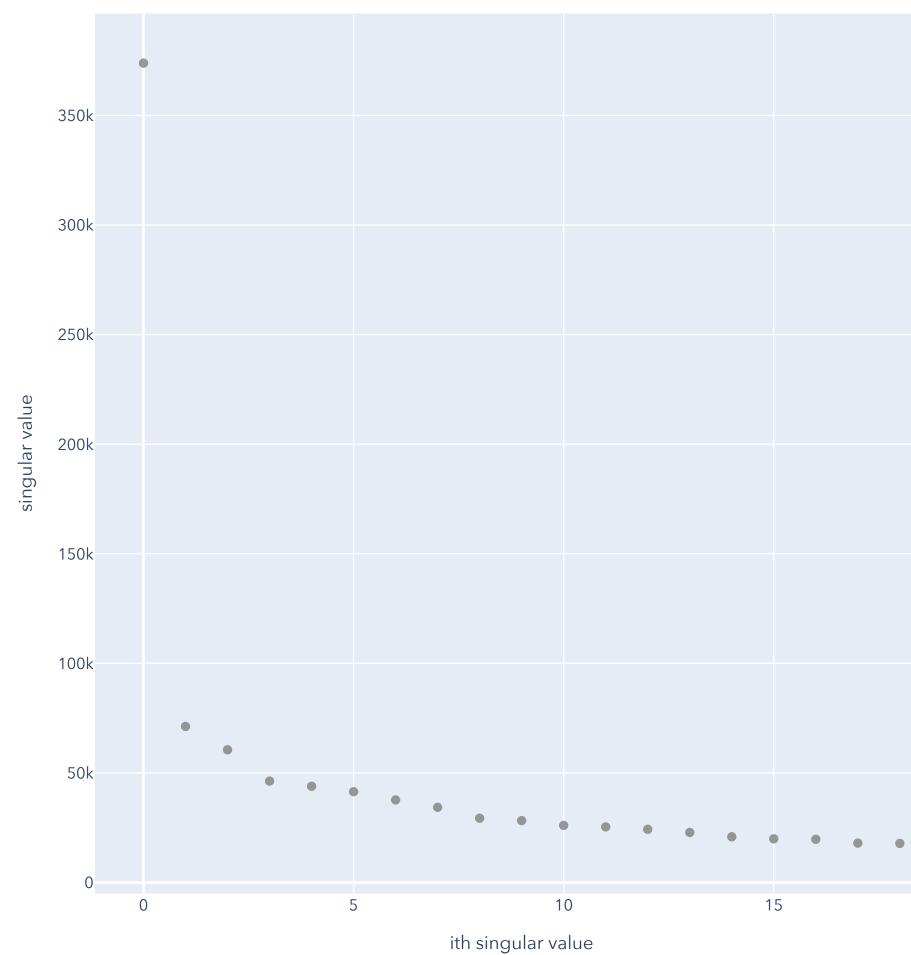


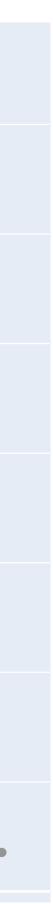
ith singular value



Rank-*k* **Approximation** Application in Image Processing (*k* = 5)







Least Squares SVD and the Pseudoinverse

Regression Setup (Example View)

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$.

$$\mathbf{X} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \rightarrow \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \rightarrow \end{bmatrix} \mathbf{y}$$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

<u>Goal</u>: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$= \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d.$$

 $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

Regression Setup (Feature View)

<u>**Observed:**</u> Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^{n}$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \mathbf{y} = \mathbf{y}$$

<u>**Unknown:**</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights w_1, \ldots, w_d .

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$= \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n.$$

 $\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$.

Least Squares **OLS Theorem**

minimizer:

 $\mathbf{w} \in \mathbb{R}^d$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

<u>Theorem (Ordinary Least Squares).</u> Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$. Let $\hat{\mathbf{w}} \in \mathbb{R}^{d}$ be the least squares

$\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$

 $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$

Least Squares: SVD Perspective Plugging in the SVD

now that we know the SVD?

By the full SVD, we can represent $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$. How can we interpret the least squares solution

$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

Least Squares: SVD Perspective Plugging in the SVD

now that we know the SVD?

- By the full SVD, we can represent $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$. How can we interpret the least squares solution
 - $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = (\mathbf{V}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}})^{-1}(\mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}})\mathbf{y}$ because $\mathbf{X}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}$
 - = $(\mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})^{-1}\mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{y}$ because $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$
 - = $(\Sigma^{\top}\Sigma V^{\top})^{-1}V^{\top}V\Sigma^{\top}U^{\top}y$ because $(AB)^{-1} = B^{-1}A^{-1}$
 - = $(\Sigma^{\top}\Sigma V^{\top})^{-1}\Sigma^{\top}U^{\top}y$ because $V^{\top}V = I$
 - = $\mathbf{V}(\mathbf{\Sigma}^{\mathsf{T}}\mathbf{\Sigma})^{-1}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{y}$ because $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$

Pseudoinverse Idea

Therefore, we derived:

Taking a closer look at the matrix $(\Sigma^{\top}\Sigma)^{-1}\Sigma^{\top} \in \mathbb{R}^{d \times n}$, we have:

In this way, $(\Sigma^{\top}\Sigma)^{-1}\Sigma^{\top}$ acts "like an inverse" to Σ , though Σ may not be square.

 $\hat{\mathbf{w}} = \mathbf{V}(\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma})^{-1}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{y}$ (when $n \ge d$ and $\operatorname{rank}(\mathbf{X}) = d$).

 $(\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma})^{-1}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma} = \mathbf{I}_{d\times d}.$

Pseudoinverse Definition

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, and let $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ be its full SVD. If $n \ge d$, the matrix $\Sigma^+ := (\Sigma^\top \Sigma)^{-1} \Sigma^\top \in \mathbb{R}^{d \times n}$ is the <u>pseudoinverse</u> of the matrix Σ . If d > n, the matrix $\Sigma^+ := \Sigma^\top (\Sigma \Sigma^\top)^{-1}$ is the pseudoinverse.

- More generally, the matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with full SVD $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ has the <u>pseudoinverse</u>: $\mathbf{X}^+ := \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^+$
 - Note: If using the notation of the compact SVD, this is written differently (see PS2).

Pseudoinverse Main Property

and $rank(\mathbf{A}) = min\{n, d\}$, the pseudo inverse

has the following properties:

<u>Prop (Pseudoinverse as left/right inverse)</u>. For any matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with full SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$

$\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^\top$

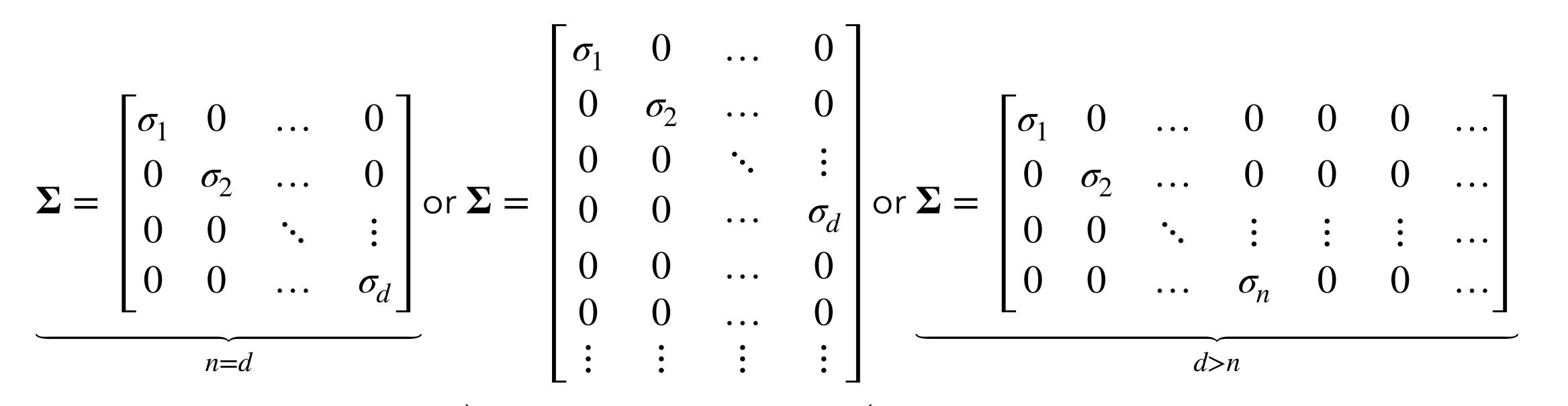
If n = d, then \mathbf{A}^+ is the *inverse*: $\mathbf{A}^+ = \mathbf{A}^{-1}$ and $\mathbf{A}^+\mathbf{A} = \mathbf{A}\mathbf{A}^+ = \mathbf{I}$.

If n > d, then \mathbf{A}^+ is a left inverse: $\mathbf{A}^+\mathbf{A} = \mathbf{I}_{d \times d}$.

If d > n, then \mathbf{A}^+ is a right inverse: $\mathbf{A}\mathbf{A}^+ = \mathbf{I}_{n \times n}$.

Pseudoinverse Shape of Σ^+

 $\Sigma \in \mathbb{R}^{n \times d}$ is a diagonal matrix with <u>singular values</u> $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r \ge 0$, with $r \le \min\{n, d\}$.



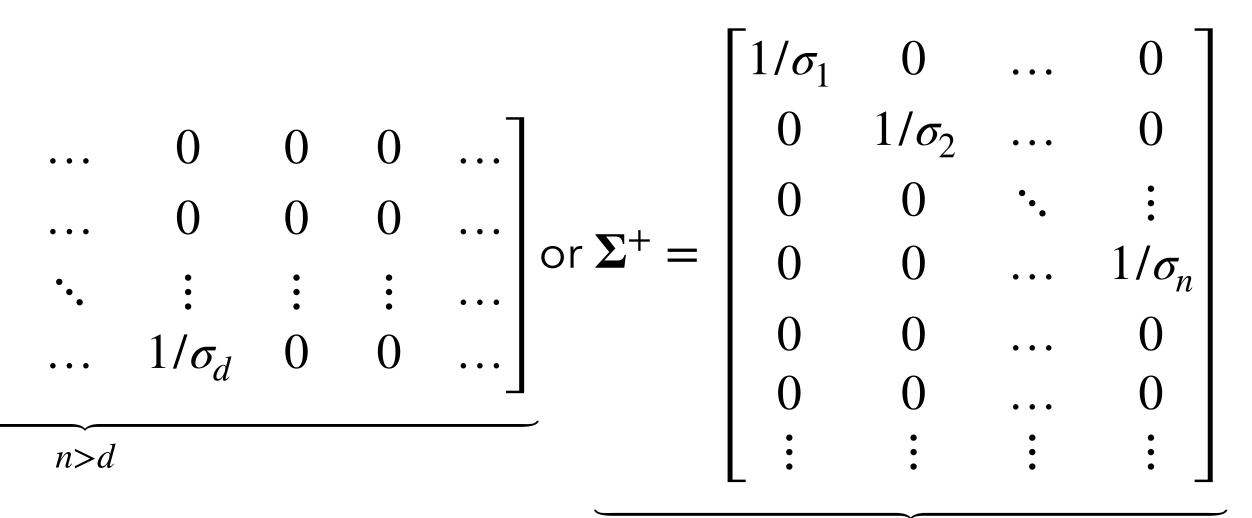
n > d

Pseudoinverse Shape of Σ^+

 $\Sigma \in \mathbb{R}^{n \times d}$ is a diagonal matrix with <u>singular values</u> $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r \ge 0$, with $r \le \min\{n, d\}$.

$$\Sigma^{+} = \begin{bmatrix} 1/\sigma_{1} & 0 & \dots & 0 \\ 0 & 1/\sigma_{2} & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & 1/\sigma_{d} \end{bmatrix} \text{ or } \Sigma^{+} = \begin{bmatrix} 1/\sigma_{1} & 0 \\ 0 & 1/\sigma_{2} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

n=d



d > n

Least Squares: SVD Perspective Using the pseudoinverse

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$. Let $\hat{\mathbf{w}} \in \mathbb{R}^{d}$ be the least squares minimizer:

> $\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$ $\mathbf{w} \in \mathbb{R}^d$

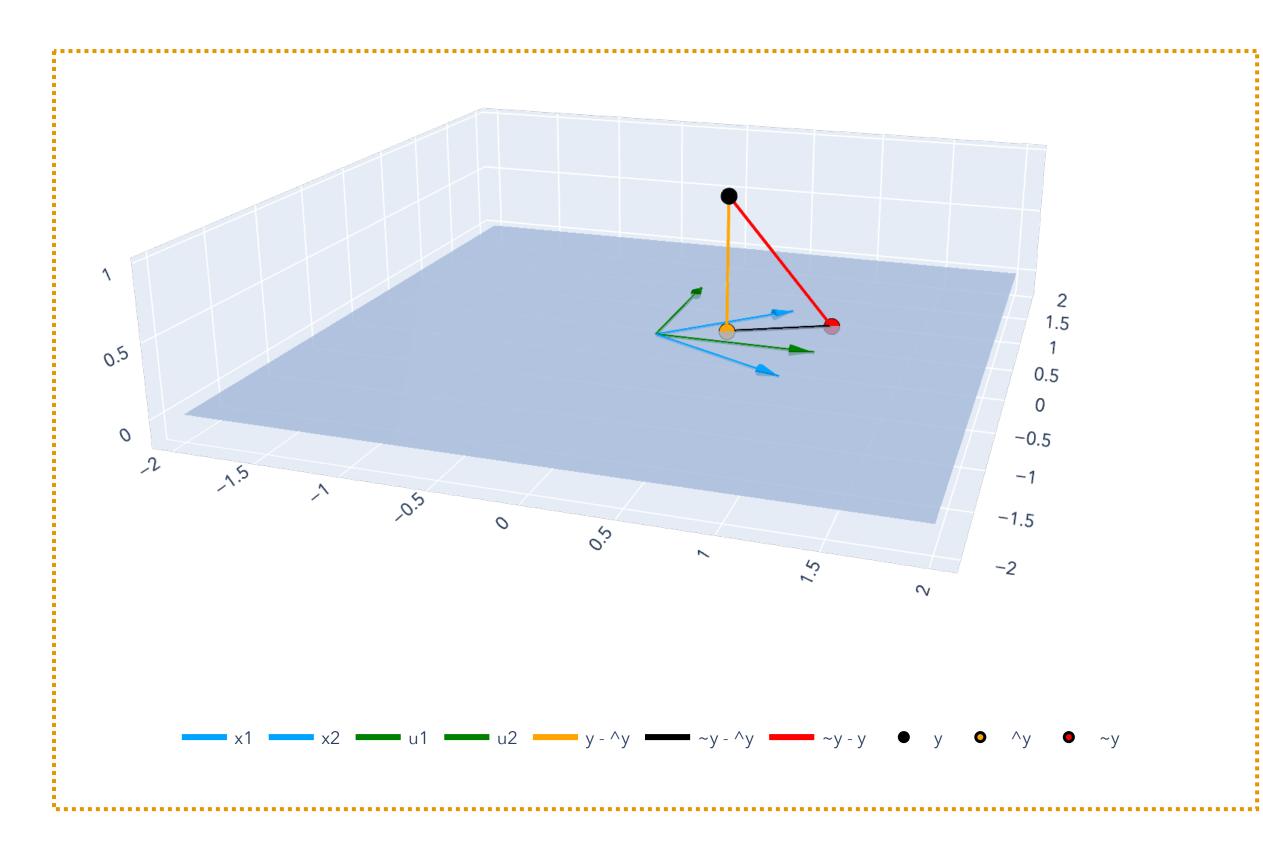
<u>Theorem (Ordinary Least Squares).</u>

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$



Least Squares: SVD Perspective Using the pseudoinverse

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$. Let $\hat{\mathbf{w}} \in \mathbb{R}^{d}$ be the least squares minimizer: $\mathbf{w} \in \mathbb{R}^d$

If n = d and $rank(\mathbf{X}) = d$, then we are just solving the system $\mathbf{X}\mathbf{w} = \mathbf{y}$, and:

We are solving for an *approximation*:

- $\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} \mathbf{y}\|^2$

 - $\hat{\mathbf{w}} = \mathbf{X}^{-1}\mathbf{y}.$
- We solved this by the principle of least squares because, when n > d, we don't have an inverse.

$\mathbf{X}\mathbf{w} \approx \mathbf{y}$.

Least Squares: SVD Perspective Using the pseudoinverse

We solved this by the principle of least squares because, when n > d, we don't have an inverse. We are solving for an *approximation*:

We don't have an inverse – but now we have a pseudoinverse:

$$X^+Xw \approx X^+y =$$

$\mathbf{X}\mathbf{w} \approx \mathbf{y}.$

$\implies \hat{\mathbf{w}} = \mathbf{X}^+ \mathbf{y} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^\top \mathbf{y}.$

Least Squares: SVD Perspective Main Theorem (with pseudoinverse)

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$. Let $\hat{\mathbf{w}} \in \mathbb{R}^{d}$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

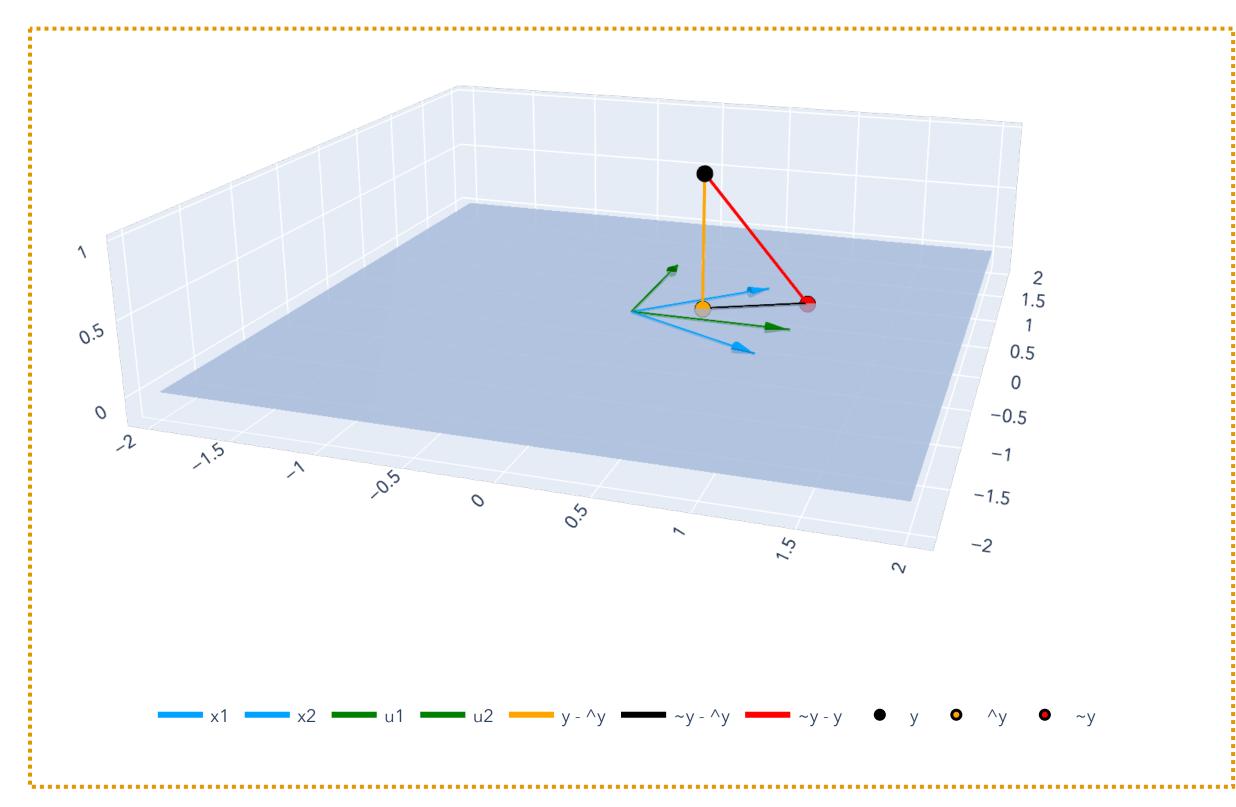
<u>Theorem (OLS with pseudoinverse).</u>

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = \mathbf{X}^+ \mathbf{y} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^\top \mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}\mathbf{X}^{+}\mathbf{y}.$$



Least Squares with $d \ge n$ **Review: Systems of Linear Equations**

So far, we've considered the case where $\mathbf{X} \in \mathbb{R}^{n \times d}$, $n \ge d$, and $\operatorname{rank}(\mathbf{X}) = d$.

In general, our goal is to solve the system of linear equations:

We know that there are three scenarios, if X is full rank (i.e., $rank(X) = min\{n, d\}$)...

If n = d, then number of equations = number of unknowns. One unique solution: $\hat{\mathbf{w}} = \mathbf{X}^{-1}\mathbf{y}$.

If d > n, then number of unknowns > number of equations. Infinitely many solutions!

 $\mathbf{X}\mathbf{w} = \mathbf{y}.$

If n > d, then number of equations > number of unknowns. One unique (approximate) solution: $\hat{\mathbf{w}} = \mathbf{X}^+ \mathbf{y}$.

Systems of Linear Equations Example: no solutions

In general, our goal is to solve the system of linear equations:

Consider the system:

 $\mathbf{X}\mathbf{w} = \mathbf{y}.$

 $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

Systems of Linear Equations Example: one unique solution, n = d

In general, our goal is to solve the system of linear equations:

Consider the system:

 $\mathbf{X}\mathbf{w} = \mathbf{y}.$

 $\begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

Systems of Linear Equations Example: one unique solution, *n* > *d*

In general, our goal is to solve the system of linear equations:

Consider the system:

 $\begin{bmatrix} 2 & 1 \\ 2 & -1 \\ 4 & -2 \end{bmatrix}$

 $\mathbf{X}\mathbf{w} = \mathbf{y}.$

$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

Systems of Linear Equations Example: infinitely many solutions, *d* > *n*

In general, our goal is to solve the system of linear equations:

Consider the system:

 $\mathbf{X}\mathbf{w} = \mathbf{y}$.

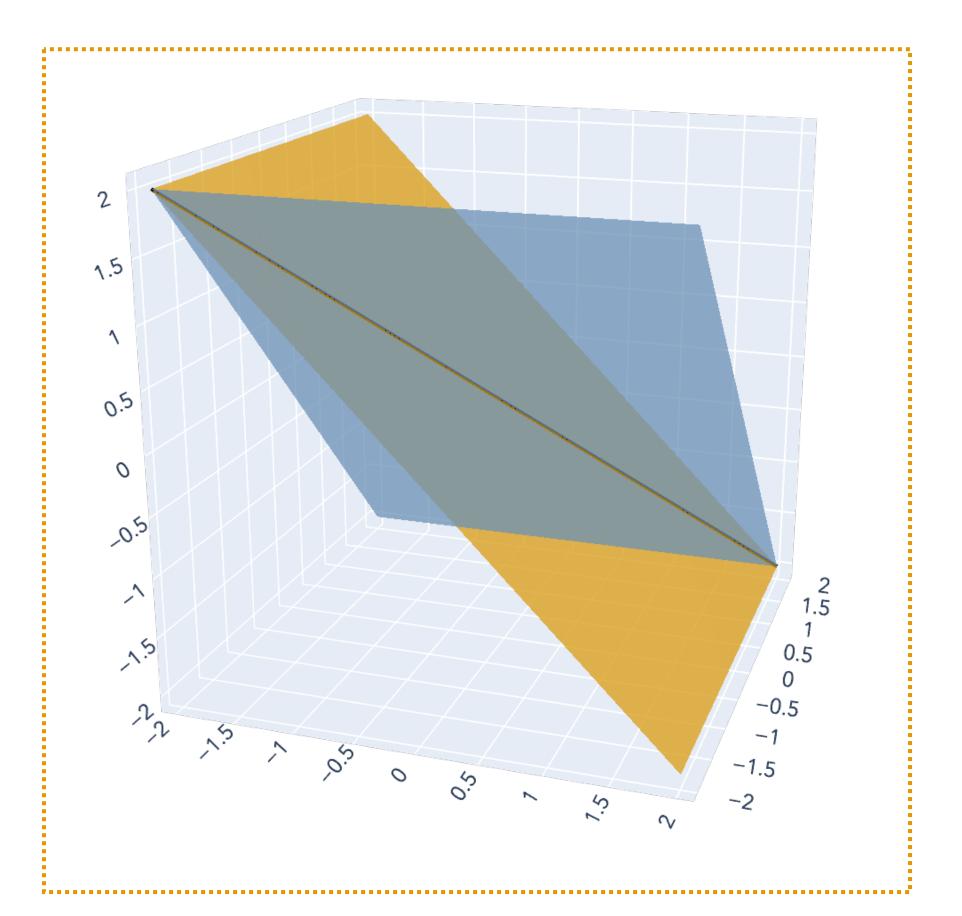
 $\begin{vmatrix} 2 & 1 \\ 2 & -1 \end{vmatrix}$

$$\begin{array}{c} 1\\1\\w_2\\0\end{array} \begin{bmatrix} w_1\\w_2\\w_3 \end{bmatrix} = \begin{bmatrix} 3\\3\end{bmatrix}$$

Least Squares with d > n**Review: Systems of Linear Equations**

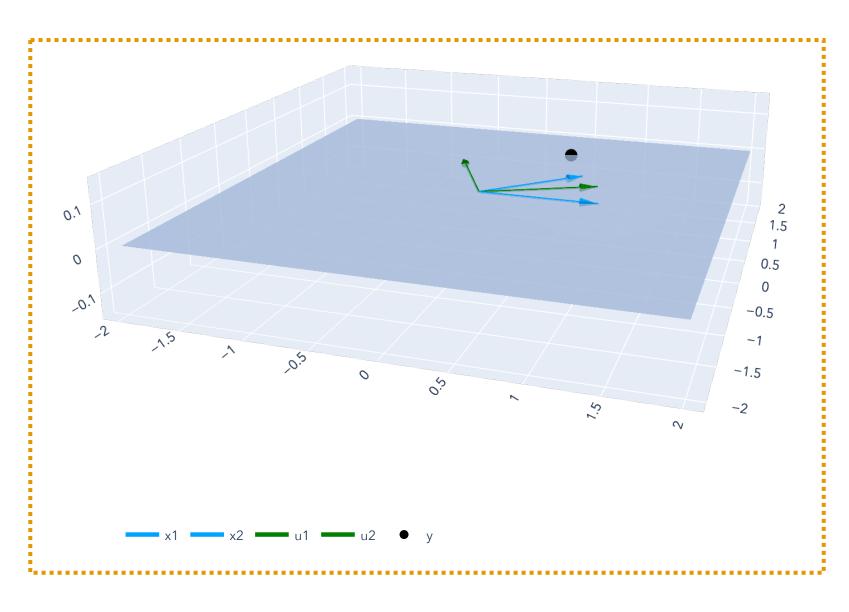
When the number of equations < number of unknowns...

Example. d = 3, n = 2



Least Squares with d > n**Problem Statement**

Because $rank(\mathbf{X}) = n$, infinitely many *exact* solutions exist. Which to choose?

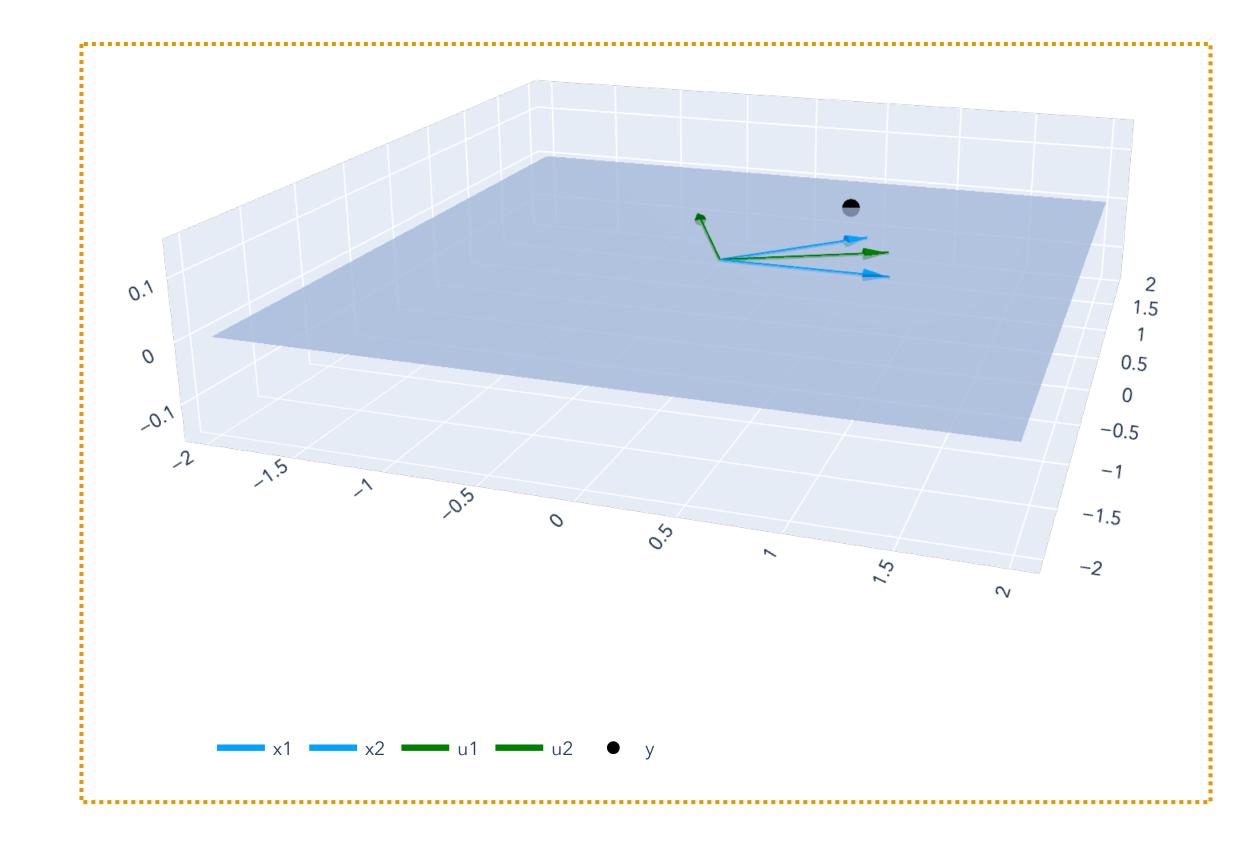


Let $X \in \mathbb{R}^{n \times d}$, let d > n, and let rank(X) = n. We want to solve the system of linear equations:

 $\mathbf{X}\mathbf{w} = \mathbf{y}.$

Least Squares with d > nUsing the Pseudoinverse

There are now infinitely many $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $\mathbf{X}\hat{\mathbf{w}} = \mathbf{y}$. Which $\hat{\mathbf{w}}$ to pick?



Pseudoinverse Main Property

and $rank(\mathbf{A}) = min\{n, d\}$, the pseudo inverse

has the following properties:

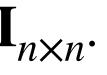
If n = d, then \mathbf{A}^+ is the *inverse*: $\mathbf{A}^+ = \mathbf{A}^{-1}$ and $\mathbf{A}^+\mathbf{A} = \mathbf{A}\mathbf{A}^+ = \mathbf{I}$.

If n > d, then \mathbf{A}^+ is a left inverse: $\mathbf{A}^+\mathbf{A} = \mathbf{I}_{d \times d}$.

If d > n, then \mathbf{A}^+ is a right inverse: $\mathbf{A}\mathbf{A}^+ = \mathbf{I}_{n \times n}$.

<u>Prop (Pseudoinverse as left/right inverse)</u>. For any matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with full SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$

$A^+ = V\Sigma^+ U^\top$



Least Squares with d > nUsing the Pseudoinverse

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ have the full SVD $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$. Choose $\hat{\mathbf{w}} = \mathbf{X}^+ \mathbf{y} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^{\top} \mathbf{y}$ to use the pseudoinverse.

Least Squares with d > nUsing the Pseudoinverse

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ have the full SVD $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$. Choose $\hat{\mathbf{w}} = \mathbf{X}^+ \mathbf{y} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^\top \mathbf{y}$ to use the pseudoinverse. Then, $\hat{\mathbf{w}} \in \mathbb{R}^d$ is a solution:

 $X\hat{w} = XX$

where $\mathbf{X}^+ \in \mathbb{R}^{d \times n}$ is a right inverse by the previous property.

$$\mathbf{X}^+\mathbf{y} = \mathbf{I}_{n \times n} \mathbf{y} = \mathbf{y}_{n \times n} \mathbf{y}_{n \times$$

Least Squares with d > nTheorem: Minimum norm solution

<u>Theorem (Minimum norm least squares solution).</u> Let $\mathbf{X} \in \mathbb{R}^{n \times d}$, let d > n, and let $rank(\mathbf{X}) = n$. Then, $\hat{\mathbf{w}} = \mathbf{X}^+ \mathbf{y} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^\top \mathbf{y}$ is the exact solution $\mathbf{X} \hat{\mathbf{w}} = \mathbf{y}$ with smallest Euclidean norm:

 $\|\mathbf{w}\|^2 \ge \|\hat{\mathbf{w}}\|^2$ for all $\mathbf{w} \in \mathbb{R}^d$ such that $\mathbf{X}\mathbf{w} = \mathbf{y}$.

Least Squares with d > nTheorem: Minimum norm solution

<u>Theorem (Minimum norm least squares solution).</u> Let $\mathbf{X} \in \mathbb{R}^{n \times d}$, let d > n, and let $rank(\mathbf{X}) = n$. Then, $\hat{\mathbf{w}} = \mathbf{X}^+ \mathbf{y} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^\top \mathbf{y}$ is the exact solution $\mathbf{X} \hat{\mathbf{w}} = \mathbf{y}$ with smallest Euclidean norm: $\|\mathbf{w}\|^2 \ge \|\hat{\mathbf{w}}\|^2$ for all

Proof. Consider any arbitrary $\mathbf{w} \in \mathbb{R}^d$ such that $\mathbf{X}\mathbf{w} = \mathbf{y}$.

$$\|\mathbf{w}\|^2 = \|(\mathbf{w} - \hat{\mathbf{w}}) + \hat{\mathbf{w}}\|^2 = \|\mathbf{w} - \hat{\mathbf{w}}\|^2 - \frac{2(\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}}\hat{\mathbf{w}}}{|\mathbf{w}||^2}$$

$$(\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}} \hat{\mathbf{w}} = (\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{X}^{\mathsf{T}})^{-1} \mathbf{y} = (\mathbf{X} \mathbf{w} - \mathbf{X} \hat{\mathbf{w}})^{\mathsf{T}} (\mathbf{X} \mathbf{X}^{\mathsf{T}})^{-1} \mathbf{y} = \mathbf{0}$$

$$\mathbf{X}^{\mathsf{T}} \text{ if } d > n \qquad \text{because both } \mathbf{w} \text{ and } \hat{\mathbf{w}} \text{ are exact sol}$$

Therefore: $\|\mathbf{w}\|^2 = \|\mathbf{w} - \hat{\mathbf{w}}\|^2 + \|\hat{\mathbf{w}}\|^2 \implies \|\mathbf{w}\|^2 \ge \|\hat{\mathbf{w}}\|^2$.

$$\mathbf{w} \in \mathbb{R}^d$$
 such that $\mathbf{X}\mathbf{w} = \mathbf{y}$.

utions

Least Squares: SVD Perspective **Unified Picture**

If n = d and $rank(\mathbf{X}) = d...$

We can solve exactly.

If n > d and $rank(\mathbf{X}) = d...$

We approximate by least squares:

 $\hat{\mathbf{w}} = \arg \min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$ $\mathbf{w} \in \mathbb{R}^d$

Choose

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{+}\mathbf{y},$

the best approximate solution:

 $\|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2 \le \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$

Choose

$$\hat{\mathbf{w}} = \mathbf{X}^{-1}\mathbf{y},$$

which is an exact solution.

- We want to solve $\mathbf{X}\mathbf{w} = \mathbf{y}$.

If n < d and $rank(\mathbf{X}) = n...$

We can solve exactly, but there are infinitely many solutions.

Choose

$$\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{X}^{\mathsf{T}})^{-1} \mathbf{y} = \mathbf{X}^{+} \mathbf{y},$$

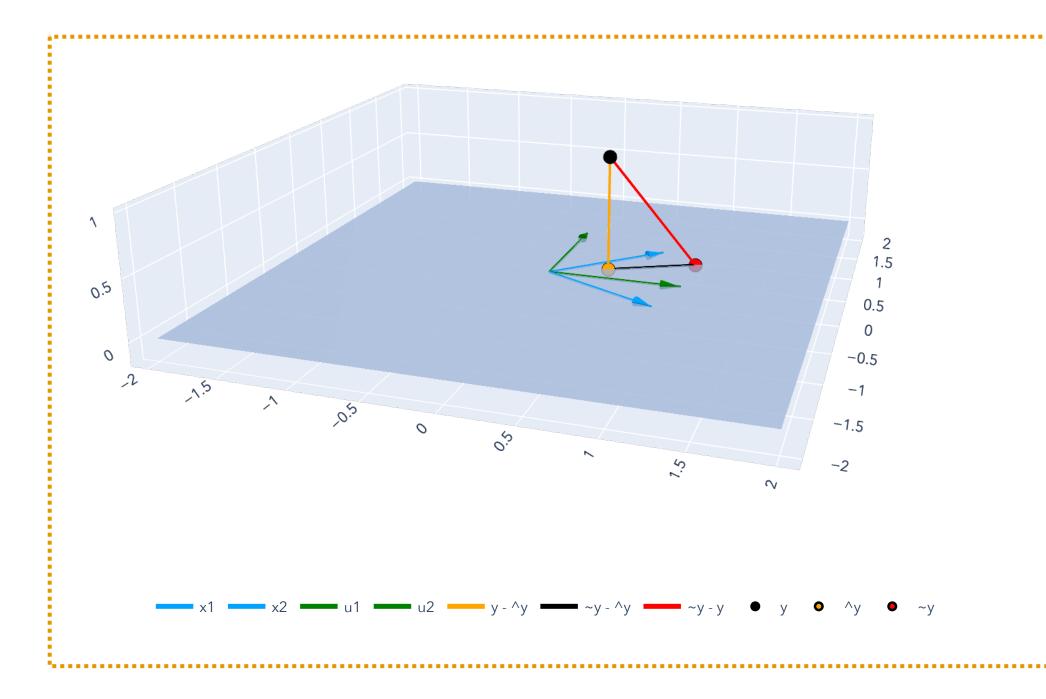
the minimum norm (exact) solution:

 $\|\hat{\mathbf{w}}\|^2 \le \|\mathbf{w}\|^2.$

Least Squares: SVD Perspective **Unified Picture**

If n > d and $rank(\mathbf{X}) = d...$

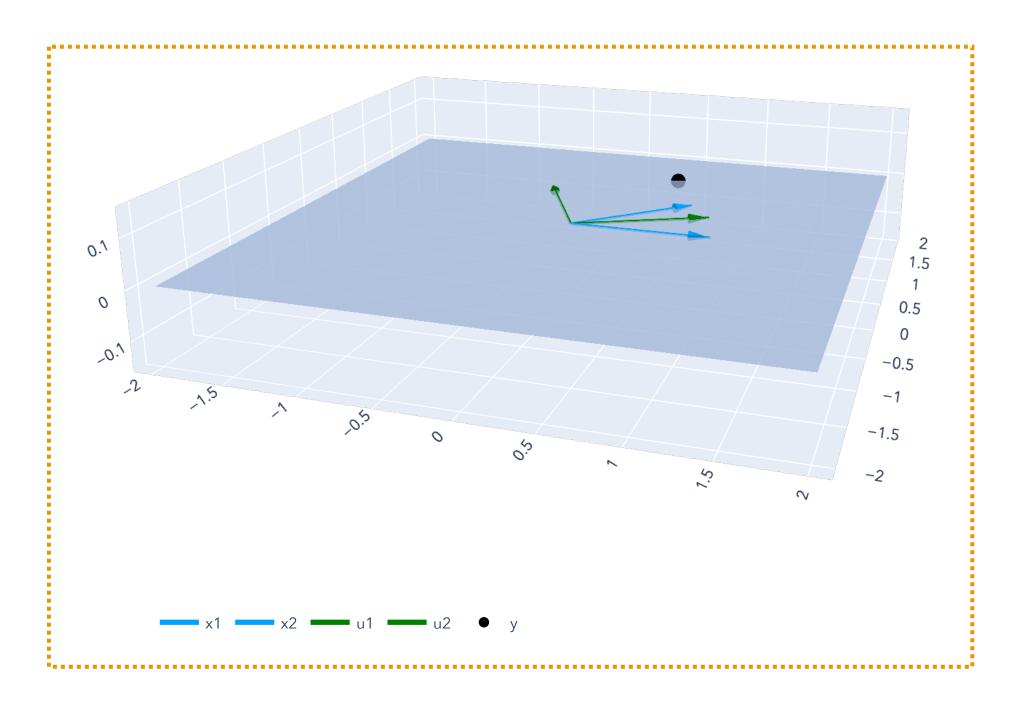
We approximate by least squares.



We want to solve $\mathbf{X}\mathbf{w} = \mathbf{y}$.

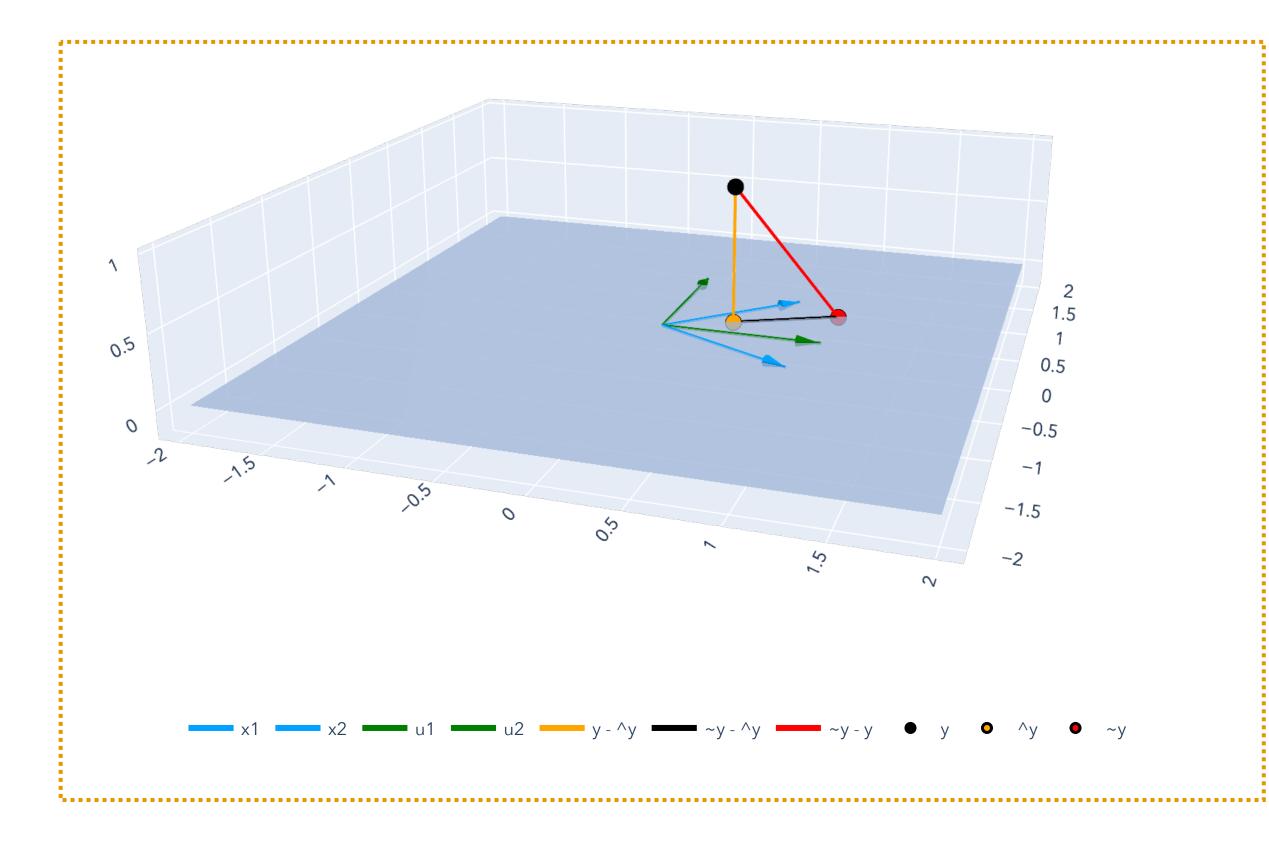
If n < d and $rank(\mathbf{X}) = n...$

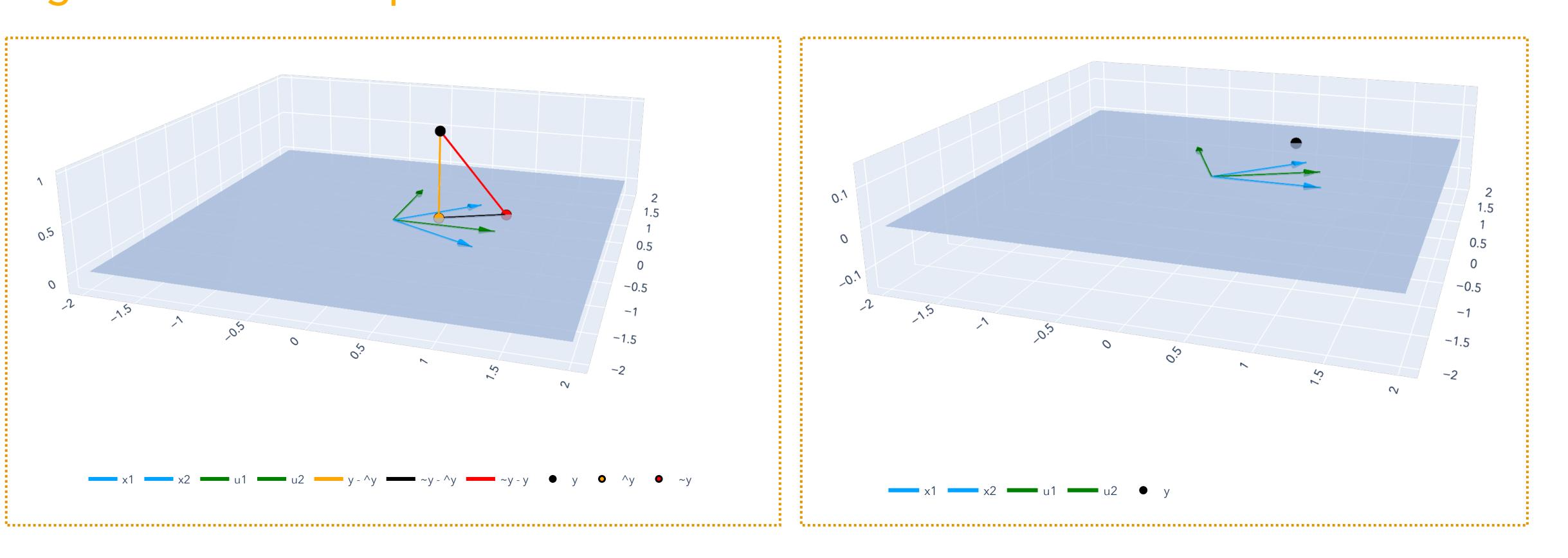
We can solve exactly, but there are infinitely many solutions.



Recap

Lesson Overview **Big Picture: Least Squares**

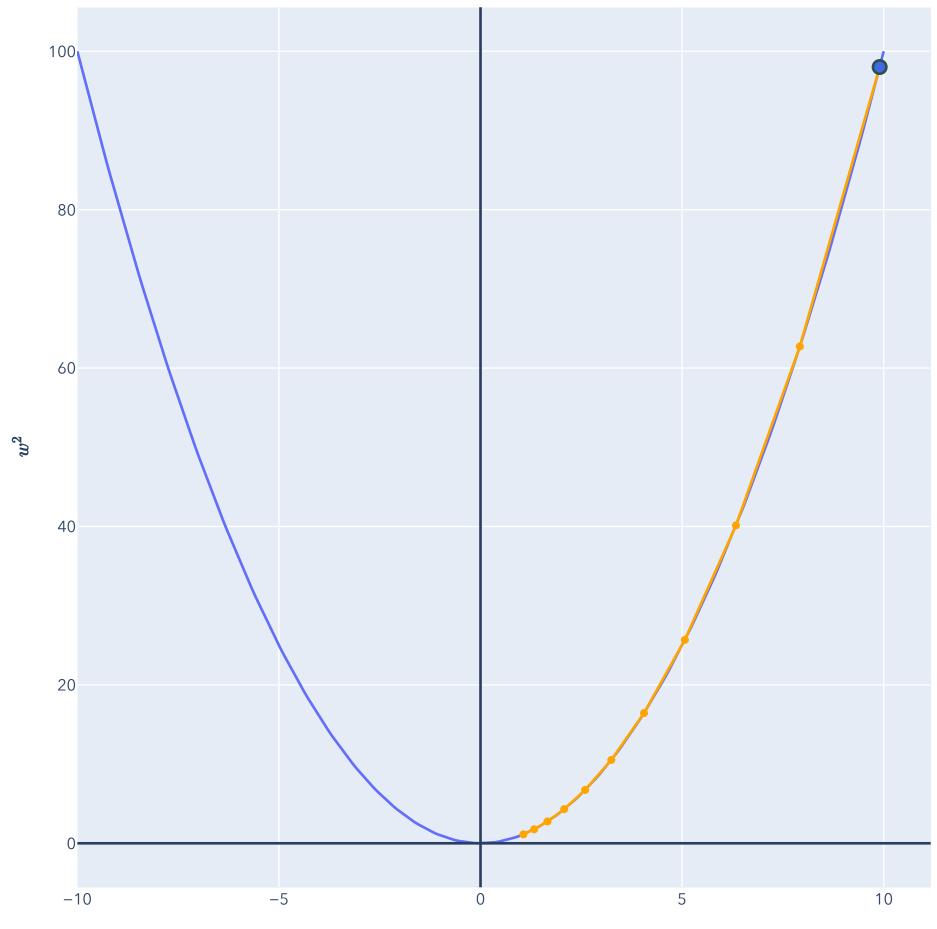


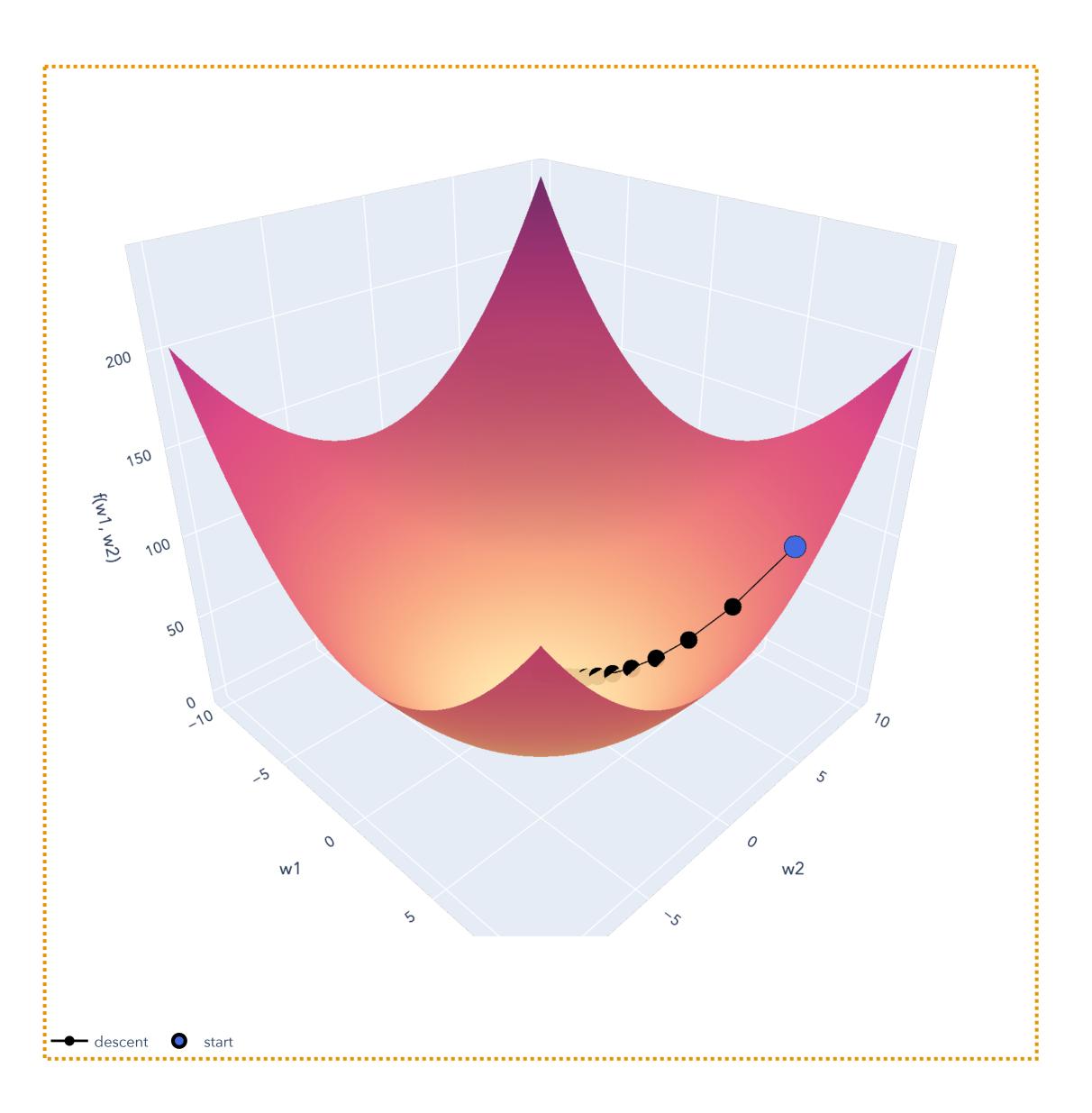


Lesson Overview

Big Picture: Gradient Descent

 $f(w)=w^2$





Lesson Overview

Big Picture: Singular Value Decomposition (SVD)

