
By: Samuel Deng

Math for Machine Learning
Week 2.2: Eigendecomposition and PSD Matrices



Logistics & Announcements



Lesson Overview

Linear dynamical systems example. Motivation for eigendecomposition as a way to make 
repeated matrix multiplication easier. 

Eigendecomposition. Definition of eigenvectors, eigenvalues. 

Eigendecomposition and SVD. The eigendecomposition drops out of the SVD. 

Spectral Theorem. Symmetric matrices are always diagonalizable. 

Positive semidefinite matrices/positive definite matrices. Definition and some visual examples 
through the corresponding quadratic forms.



Lesson Overview
Big Picture: Least Squares

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y
x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Lesson Overview
Big Picture: Gradient Descent
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https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/indef_gd_bad.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_gd.html


Least Squares 
A Quick Review



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup

To find , we follow the principle of least squares.  

 

This gives the predictions  that are close in a 
least squares sense: 

 such that   

(for  from any other ). 

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

ŷ ∈ ℝn

ŷ = Xŵ ∥ŷ − y∥2 ≤ ∥ỹ − y∥2

ỹ = Xw w ∈ ℝd

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Singular Value Decomposition (SVD)
Matrix Decompositions

. 

 is orthogonal, i.e. . 

 is orthogonal, i.e. . 

 is a diagonal matrix with singular values  on the diagonal. 
 is equal to the number of .

X⏟
n×d

= U⏟
n×n

Σ
⏟

n×d

V⊤
⏟
d×d

U ∈ ℝn×n U⊤U = UU⊤ = I

V ∈ ℝd×d V⊤V = VV⊤ = I

Σ ∈ ℝn×d σ1 ≥ σ2 ≥ … ≥ σd ≥ 0
rank(X) σi > 0



Pseudoinverse
Definition

Let  be a matrix, and let  be its full SVD.  

If , the matrix  is the pseudoinverse of the matrix .  

If , the matrix  is the pseudoinverse. 

More generally, the matrix  with full SVD  has the pseudoinverse:  

. 

Note: If using the notation of the compact SVD, this is written differently (see PS2).

X ∈ ℝn×d X = UΣV⊤

n ≥ d Σ+ := (Σ⊤Σ)−1Σ⊤ ∈ ℝd×n Σ

d > n Σ+ := Σ⊤(ΣΣ⊤)−1

X ∈ ℝn×d X = UΣV⊤

X+ := VΣ+U⊤



Least Squares with Pseudoinverse
Unified Picture

If  and … 

We can solve exactly. 

Choose 

 

which is an exact solution.

n = d rank(X) = d

ŵ = X−1y,

If  and … 

We approximate by least 
squares: 

 

Choose 

 

the best approximate solution: 

.

n > d rank(X) = d

ŵ = arg min
w∈ℝd

∥Xw − y∥2.

ŵ = (X⊤X)−1X⊤y = X+y,

∥Xŵ − y∥2 ≤ ∥Xw − y∥2

If  and … 

We can solve exactly, but there 
are infinitely many solutions. 

Choose 

 

the minimum norm (exact) 
solution: 

.

n < d rank(X) = n

ŵ = X⊤(XX⊤)−1y = X+y,

∥ŵ∥2 ≤ ∥w∥2

We want to solve .Xw = y



Least Squares with Pseudoinverse
Unified Picture

If  and … 

We approximate by least squares.

n > d rank(X) = d If  and … 

We can solve exactly, but there 
are infinitely many solutions.

n < d rank(X) = n

We want to solve . Choose !Xw = y w = X+y

x1 x2 u1 u2 y - ^y ~y - ^y ~y - y y ^y ~y x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


What other matrix 
decompositions are out there?



Eigendecomposition 
Motivation: Linear Dynamical System



Population Change
Example of a linear dynamical system

 := people in California (at start of year) 

 := people outside of California (at start of year) 

xin

xout

# inside at end of year = 0.6xin + 0.05xout

# outside at end of year = 0.4xin + 0.95xout

Example and graphic from Daniel Hsu’s course: 
Computational Linear Algebra (Fall 2022)



Population Change
Modeling with a transition matrix

 

Model this with a transition matrix: 

 

and a system of linear equations: 

# inside at end of year = 0.6xin + 0.05xout

# outside at end of year = 0.4xin + 0.95xout

A = [ in → in out → in
in → out out → out] = [0.6 0.05

0.4 0.95]

Ax = [ in → in out → in
in → out out → out] [ xin

xout] = [0.6 0.05
0.4 0.95] [ xin

xout] Example and graphic from Daniel Hsu’s course: 
Computational Linear Algebra (Fall 2022)



Population Change
Modeling with a transition matrix

 

 is people inside and outside of CA after 
one year, from the initial populations in . 

How to find the number of people inside/outside 
of California after  years have passed?

Ax = [ in → in out → in
in → out out → out] [ xin

xout] = [0.6 0.05
0.4 0.95] [ xin

xout] .

Ax ∈ ℝ2

x ∈ ℝ2

t
Example and graphic from Daniel Hsu’s course: 

Computational Linear Algebra (Fall 2022)



Population Change
Modeling with a transition matrix

 

 is people inside and outside of CA after one 
year, from the initial populations in . 

after one year:  

after two years:  

 

after  years: 

Ax = [ in → in out → in
in → out out → out] [ xin

xout] = [0.6 0.05
0.4 0.95] [ xin

xout] .

Ax(0) ∈ ℝ2

x(0) ∈ ℝ2

x(1) = Ax(0)

x(2) = Ax(1) = AAx(0) = A2x(0)

⋮

t x(t) = AA…A
t products

x(0) = Atx(0)
Example and graphic from Daniel Hsu’s course: 

Computational Linear Algebra (Fall 2022)



Population Change
Modeling with a transition matrix

 

Let initial populations be  

What are the populations inside and outside of CA 
after  years? 

Ax = [ in → in out → in
in → out out → out] [ xin

xout] = [0.6 0.05
0.4 0.95] [ xin

xout] .

x(0) = [ 40
300]

t

x(t) = Atx(0) = [0.6 0.05
0.4 0.95]

t

[ 40
300] Example and graphic from Daniel Hsu’s course: 

Computational Linear Algebra (Fall 2022)



Population Change
Annoying computation 😖

What are the populations inside and outside of CA after  years? 

 

Try calculating this… 

 

t

x(t) = Atx(0) = [0.6 0.05
0.4 0.95]

t

[ 40
300]

[0.6 0.05
0.4 0.95]…[0.6 0.05

0.4 0.95] [0.6 0.05
0.4 0.95] [ 40

300]😖



Population Change
Easy computation 😃

I hand you  and . These two vectors have the properties: 

 

 

 

u = (1,8) v = (−1,1)

Au = [0.6 0.05
0.4 0.95] [1

8] = [1
8]

Av = [0.6 0.05
0.4 0.95] [−1

1 ] =
11
20 [−1

1 ]
Atu = [0.6 0.05

0.4 0.95]
t

[1
8] = (1)t[1

8] = [1
8]

Atv = [0.6 0.05
0.4 0.95]

t

[−1
1 ] = ( 11

20 )
t

[−1
1 ]

😃

😃



Population Change
Easy computation 😃

I hand you  and . These two vectors have the properties: 

 

 

 

u = (1,8) v = (−1,1)

Au = [0.6 0.05
0.4 0.95] [1

8] = [1
8]

Av = [0.6 0.05
0.4 0.95] [−1

1 ] =
11
20 [−1

1 ]
Atu = [0.6 0.05

0.4 0.95]
t

[1
8] = (1)t[1

8] = [1
8] ⟹ Atu = u

Atv = [0.6 0.05
0.4 0.95]

t

[−1
1 ] = ( 11

20 )
t

[−1
1 ] ⟹ Atv = ( 11

20 )
t

v



Population Change
Using  and  for initial populationu v

For  and , 

 

 

Notice that  are a basis for . Then, if we rewrite  as a linear combination of  and , i.e. 

, 

we can obtain  with the following computation: 

.

u = (1,8) v = (−1,1)

Atu = u

Atv = ( 11
20 )

t

v

u, v ℝ2 x(0) u v

x(0) = au + bv

x(t)

x(t) = Atx(0) = At(au + bv) = aAtu + bAtv = au + b(11/20)tv



Population Change
Using  and  for initial populationu v

For  and , and  written as : 

. 

In matrix form: 

 

u = (1,8) v = (−1,1) x(0) au + bv

x(t) = Atx(0) = At(au + bv) = aAtu + bAtv = au + b(11/20)tv

x(0) =
↑ ↑
u v
↓ ↓

[a
b] = V [a

b]

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b] = V [1 0

0 (11/20)t] [a
b]



Population Change
Using  and  for initial populationu v

For  and , and  written as : 

. 

In matrix form: 

   

u = (1,8) v = (−1,1) x(0) au + bv

x(t) = Atx(0) = At(au + bv) = aAtu + bAtv = au + b(11/20)tv

x(0) =
↑ ↑
u v
↓ ↓

[a
b] = V [a

b] ⟺ V−1x(0) = [a
b]

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b] = V [1 0

0 (11/20)t] [a
b]



Population Change
Using  and  for initial populationu v

For  and , and  written as : 

. 

In matrix form: 

   

u = (1,8) v = (−1,1) x(0) au + bv

x(t) = Atx(0) = At(au + bv) = aAtu + bAtv = au + b(11/20)tv

x(0) =
↑ ↑
u v
↓ ↓

[a
b] = V [a

b] ⟺ V−1x(0) = [a
b]

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b] = V [1 0

0 (11/20)t] [a
b]



Population Change
Using  and  for initial populationu v

For  and , and  written as : 

. 

In matrix form: 

   

  

u = (1,8) v = (−1,1) x(0) au + bv

x(t) = Atx(0) = At(au + bv) = aAtu + bAtv = au + b(11/20)tv

x(0) =
↑ ↑
u v
↓ ↓

[a
b] = V [a

b] ⟺ V−1x(0) = [a
b]

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b] = V [1 0

0 (11/20)t] [a
b] ⟺ V [1 0

0 (11/20)t] V−1x(0)



Population Change
Using  and  for initial populationu v

For  and , and  written as : 

. 

In matrix form: 

   

  

u = (1,8) v = (−1,1) x(0) au + bv

x(t) = Atx(0) = At(au + bv) = aAtu + bAtv = au + b(11/20)tv

x(0) =
↑ ↑
u v
↓ ↓

[a
b] = V [a

b] ⟺ V−1x(0) = [a
b]

x(t) =
↑ ↑
u v
↓ ↓ [1 0

0 (11/20)t] [a
b] = V [1 0

0 (11/20)t] [a
b] ⟺ V [1 0

0 (11/20)t] V−1x(0)



Population Change
Using  and  for initial populationu v

For  and : 

 

where 

.

u = (1,8) v = (−1,1)

x(t) = V [1 0
0 (11/20)t] V−1x(0)

V =
↑ ↑
u v
↓ ↓



Population Change
Comparison of hard and easy computation

 

For initial populations , 
the population after  years is: 

 

😖

x(t) = Atx(0)

x(0) = (40, 300)
t

x(t) = [0.6 0.05
0.4 0.95]

t

[ 40
300] .

 

For initial populations , the 
population after  years is: 

 

😃

x(t) = V [1 0
0 (11/20)t] V−1x(0)

x(0) = (40, 300)
t

x(t) = [1 −1
8 1 ] [1 0

0 (11/20)t] [ 1/9 1/9
−8/9 1/9] [ 40

300] .



Diagonal Matrices
Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy: 

. [1 0
0 (11/20)t] = [1 0

0 (11/20)]
t



Diagonal Matrices
Why we like diagonal matrices

Multiplying diagonal matrices with themselves many times is easy: 

. 

But this matrix depended on a basis of vectors that we got out of nowhere: 

 and . 

In what cases (and how) can we obtain such nice bases?

[1 0
0 (11/20)t] = [1 0

0 (11/20)]
t

u = (1,8) v = (−1,1)



Eigendecomposition 
Intuition and Definition



Eigenvectors and eigenvalues
Intuition

Let  be a square matrix.  

This represents a linear transformation from  to . 

Eigenvectors are the vectors that just get scaled by . 

Eigenvalues are how much  scales each eigenvector. 

These only make sense for square matrices!

A ∈ ℝd×d

ℝd ℝd

A

A

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5



Eigenvectors and eigenvalues
Definition

Let  be a square matrix.  

This represents a linear transformation from  to . 

Eigenvectors are the nonzero vectors  such that: 

 

The scalar  is the eigenvalue associated with the 
eigenvector . 

These only make sense for square matrices!

A ∈ ℝd×d

ℝd ℝd

v ∈ ℝd

Av = λv .

λ ∈ ℝ
v

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5



Eigenvectors and eigenvalues
Example

Consider the matrix  given by 

. 

What happens to the vector ?

A ∈ ℝ2×2

A = [−1/2 5/2
0 2 ]

v1 = (1,1)

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5



Eigenvectors and eigenvalues
Example

Consider the matrix  given by 

. 

What happens to the vector ?

A ∈ ℝ2×2

A = [−1/2 5/2
0 2 ]

v2 = (1,0)

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5



Eigenvectors and eigenvalues
Example

Consider the matrix  given by 

. 

What happens to the vector ?

A ∈ ℝ2×2

A = [−1/2 5/2
0 2 ]

v3 = (0,1)

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5



Eigenvectors and eigenvalues
Example

. 

Eigenvectors (with eigenvalues  and ): 

 

 

Not an eigenvector: 

A = [−1/2 5/2
0 2 ]

λ1 = 2 λ2 = − 1/2

[−1/2 5/2
0 2 ] [1

1] = [2
2] = 2[1

1]
[−1/2 5/2

0 2 ] [1
0] = [−1/2

0 ] = −
1
2 [1

0]

[−1/2 5/2
0 2 ] [0

1] = [5/2
2 ]

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5



Eigenvectors and eigenvalues
Example

 

 and  form a basis for . 

So any  can be written as: . 

 

A = [−1/2 5/2
0 2 ]

v1 = (1,1) v2 = (1,0) ℝ2

x ∈ ℝ2 x = av1 + bv2

x =
↑ ↑
v1 v2
↓ ↓

[a
b]

Atx = At(av1 + bv2) = aAtv1 + bAtv2 = a2tv1 + b (−
1
2 )

t

v2

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5



Eigenvectors and eigenvalues
Example

 and  form a basis for . 

So any  can be written as: . 

 

 

v1 = (1,1) v2 = (1,0) ℝ2

x ∈ ℝ2 x = av1 + bv2

x =
↑ ↑
v1 v2
↓ ↓

[a
b] ⟹ [a

b] = V−1x

Atx = At(av1 + bv2) = aAtv1 + bAtv2 = a2tv1 + b (−
1
2 )

t

v2

⟹ Atx = V [2t 0
0 (−1/2)t] V−1x

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5



Eigenvectors and eigenvalues
Example

Repeated multiplication: 

 

Single multiplication: 

 

, where  is diagonal.

Atx = At(av1 + bv2) = aAtv1 + bAtv2 = a2tv1 + b (−
1
2 )

t

v2 ⟹ Atx = V [2t 0
0 (−1/2)t] V−1x

Ax = V [2 0
0 −1/2] V−1x

A = VΛV−1 Λ ∈ ℝ2×2



Eigendecomposition
Definition

Prop (Eigendecomposition of a diagonalizable matrix). Let  have  linearly 
independent eigenvectors, satisfying  for . Then,  has the 
eigendecomposition: 

, 

where  and . 

A matrix with an eigendecomposition is called diagonalizable.

A ∈ ℝd×d d
Avi = λvi i ∈ [d] A

A = VΛV−1 =
↑ … ↑
v1 … vd

↓ … ↓

λ1 0 … 0
0 λ2 … 0
0 0 ⋱ 0
0 0 … λd

↑ … ↑
v1 … vd

↓ … ↓

−1

Λ ∈ ℝd×d V ∈ ℝd×d



Eigendecomposition
Example

 has the eigenvectors  and  because 

 and . 

 and  are linearly independent, so  is diagonalizable with eigendecomposition: 

 

 

A = [−1/2 5/2
0 2 ] v1 = (1,1) v2 = (1,0)

Av1 = 2v1 Av2 = −
1
2

v2

v1 v2 A

A = VΛV−1

[−1/2 5/2
0 2 ] = [1 1

1 0] [2 0
0 −1/2] [0 1

1 −1]
Question: But when do (square) matrices have a basis of eigenvectors?



Eigendecomposition 
Connection with SVD



Connection with SVD
Eigendecomposition from SVD

Eigendecomposition only applies to square matrices : 

 

The SVD applies to any matrix : 

A ∈ ℝd×d

A = VΛV−1 .

X ∈ ℝn×d

X = UΣV⊤ .



Connection with SVD
Eigendecomposition from SVD

The SVD applies to any matrix : 

 

Consider the square matrix . By the SVD: 

X ∈ ℝn×d

X = UΣV⊤ .

A = X⊤X ∈ ℝd×d

A = X⊤X
= VΣ⊤U⊤UΣV⊤

= VΣ⊤ΣV⊤



Connection with SVD
Eigendecomposition from SVD

The SVD applies to any matrix : 

 

Consider the square matrix . By the SVD: 

 

The eigendecomposition of  is: 

X ∈ ℝn×d

X = UΣV⊤ .

A = X⊤X ∈ ℝd×d

A = V⏟
d×d

Σ⊤Σ
⏟

d×d

V⊤
⏟
d×d

A

A = V⏟
d×d

Λ
⏟

d×d

V−1
⏟
d×d



Connection with SVD
Eigendecomposition from SVD

Theorem (SVD and Eigendecomposition). Let  be a matrix with  and 
. Let the SVD of  have nonzero singular values 

 

and let  be the columns of . Then, each  is an eigenvector for  with 
corresponding eigenvalue , and the eigendecomposition of  is: 

, 

where  is the diagonal matrix with entries  for .

X ∈ ℝn×d rank(X) = r
A = X⊤X ∈ ℝd×d X = UΣV⊤

σ1 ≥ σ2 ≥ … ≥ σr > 0,

v1, …, vd V ∈ ℝd×d vi A
λi = σ2

i A

A = VΛV⊤

Λ ∈ ℝd×d λi = σ2
i i ∈ [d]

Note: this isn’t the original matrix!



Connection with SVD
Eigendecomposition from SVD

Therefore, for any matrix ,  if  we know that we have  linearly independent 
eigenvectors — this is a case when  is diagonalizable! 

Moreover, the eigendecomposition looks like: 

 

where  is the SVD of .

X ∈ ℝn×d A = X⊤X d
A

X⊤X = A = VΛV⊤

X = UΣV⊤ X



Positive Semidefinite Matrices 
Definition and Connections



Positive Semidefinite (PSD) Matrices
First definition

Square matrix  is positive semidefinite (PSD) if there exists a matrix  s.t. 

. 

Note: If you’ve seen PSD matrices before, this isn’t the usual first definition (but it’s equivalent).

A ∈ ℝd×d X ∈ ℝn×d

A = X⊤X



Positive Semidefinite (PSD) Matrices
Symmetry of PSD Matrices

Square matrix  is positive semidefinite (PSD) if there exists a matrix  s.t. 

. 

Prop (Symmetry of PSD matrices). Any PSD matrix is symmetric. If  is PSD, then 

 .

A ∈ ℝd×d X ∈ ℝn×d

A = X⊤X

A ∈ ℝd×d

A = A⊤



Positive Semidefinite (PSD) Matrices
Example

 is positive semidefinite. 

Its “square root” is the matrix 

because 

A = [5/2 3/2
3/2 5/2]

X =

2

2

2

2
1

2
− 1

2

0 0

X⊤X =

2

2

1

2
0

2

2
− 1

2
0

2

2

2

2
1

2
− 1

2

0 0

= [5/2 3/2
3/2 5/2] = A



PSD Matrices and Eigendecomposition
Connection to eigenvalues

By Theorem (SVD and Eigendecomposition), if  is PSD with  and  then 

,  

with orthonormal eigenvectors  and nonnegative eigenvalues . 

The reverse direction is also true!

A A = X⊤X X = UΣV⊤

A = VΛV⊤

v1, …, vd λ1 = σ2
1 , …, λd = σ2

d



PSD Matrices and Eigendecomposition
Second definition

A square matrix  is positive semidefinite (PSD) if  has  eigenvectors forming an 
orthonormal basis for  with corresponding nonnegative eigenvalues . 

A ∈ ℝd×d A d
ℝd λ1, …, λd ≥ 0



Positive Semidefinite (PSD) Matrices
Example

 is positive semidefinite. 

It has the eigenvectors  and : 

 

 

The eigenvectors are orthonormal and , so  is positive semidefinite.

A = [5/2 3/2
3/2 5/2]

v1 = (1/ 2,1/ 2) v2 = (1/ 2, − 1/ 2)

Av1 = [5/2 3/2
3/2 5/2] 1/ 2

1/ 2
=

4/ 2

4/ 2
= 4

1/ 2

1/ 2
⟹ λ1 = 4

Av2 = [5/2 3/2
3/2 5/2] 1/ 2

−1/ 2
=

1/ 2

−1/ 2
⟹ λ1 = 1

λ1, λ2 ≥ 0 A = VΛV⊤



Positive Semidefinite (PSD) Matrices
Third definition

A square matrix  is positive semidefinite (PSD) if, for any , 

. 

This is often taken as the definition of PSD (but it is equivalent to the other two definitions).

A ∈ ℝd×d x ∈ ℝd

x⊤Ax ≥ 0



Positive Semidefinite (PSD) Matrices
Example

 is positive semidefinite. 

Consider any vector . 

 

A = [5/2 3/2
3/2 5/2]

x = (x1, x2) ∈ ℝd

x⊤Ax = [x1 x2] [5/2 3/2
3/2 5/2] [x1

x2] = [x1 x2] [(5/2)x1 + (3/2)x2

(3/2)x1 + (5/2)x2]
x⊤Ax = (5/2)x2

1 + 3x1x2 + (5/2)x2
2

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_example.html


Positive Semidefinite (PSD) Matrices
All definitions

A square matrix  is positive semidefinite (PSD) if… 

there exists  such that . 

 

all eigenvalues of  are nonnegative: . 

 

 for any .

A ∈ ℝd×d

X ∈ ℝn×d A = X⊤X

↕

A λ1 ≥ 0,…, λd ≥ 0

↕

x⊤Ax ≥ 0 x ∈ ℝd



Positive Definite (PD) Matrices
All definitions

A square matrix  is positive definite (PD) if… 

there exists an invertible matrix  such that . 

 

all eigenvalues of  are positive: . 

 

 for any .

A ∈ ℝd×d

X ∈ ℝd×d A = X⊤X

↕

A λ1 > 0,…, λd > 0

↕

x⊤Ax > 0 x ∈ ℝd



Spectral Theorem
Statement

Question: But when does a square matrix  have a basis of eigenvectors (and, hence, is 
diagonalizable)? 

Answer: When  is positive semidefinite! 

But even more generally…

A ∈ ℝd×d

A



Spectral Theorem
Statement

Theorem (Spectral Theorem). Let  be a square, symmetric matrix (i.e. ). Then,  
is diagonalizable. 

That is,  has an orthonormal basis of  eigenvectors  in the columns of a matrix 
, associated eigenvalues  in diagonal matrix  and eigendecomposition 

 

But, in this generality,  can be negative!

A ∈ ℝd×d A⊤ = A A

A d v1, …, vd
V ∈ ℝd×d λ1, …, λd Σ ∈ ℝd×d

A = VΛV⊤ .

λi



Spectral Theorem
Statement

Theorem (Spectral Theorem). Let  be a square, symmetric matrix (i.e. ). Then, 
 is diagonalizable. 

But, in this generality,  can be negative!

A ∈ ℝd×d A⊤ = A
A

λi

Square Matrices

Symmetric MatricesPSD 
Matrices

PD 
Matrices



Principal Components Analysis 
Application of Eigendecomposition



Principal Components Analysis
Example: “Eigenfaces” and facial recognition

Observed: Matrix of training samples  (no labels ). 

, where . 

Each row is a “flattened” image vector. Typically, pixels are in  for grayscale images. 

Images are very high-dimensional: . 

Example: a  image has .

X ∈ ℝn×d y

X =
← x⊤

1 →
⋮

← x⊤
n →

x1, …, xn ∈ ℝd

[0, 255]

d = width in pixels × height in pixels

1080 × 1080 d = 1080 × 1080 = 1,166,400



Principal Components Analysis
Example: “Eigenfaces” and facial recognition

Consider a dataset of 1,000 grayscale face images … 

e.g.                  

Naive facial recognition: Get a new face, linear search over  faces for the “closest” face 
(perhaps in Euclidean norm ). 

Storage: 1166400 integers   images  1 GB.

x1, …, x1000 ∈ ℝ1080×1080

x1 =

1,000
∥x − xi∥

× 1000 ≈



Principal Components Analysis
Example: “Eigenfaces” and facial recognition

Suppose we can find a “basis” of representative faces:  where . 

Then, we can represent any face as a linear combination of the basis faces! 

v1, …, vk k ≪ n

= 0.45 + + +0.21 0.12 0.05 +…



Principal Components Analysis
Example: “Eigenfaces” and facial recognition

Basis of eigenfaces:  where  for subspace  with . 

Improved facial recognition:  

Store the projection of  faces  for each  in our dataset of faces. 

Given a new face , project the face onto the eigenface subsapce  to get .  

Compare  to each projected face in dataset in Euclidean norm .

v1, …, vk k ≪ n 𝒱 dim(𝒱) = k

n Π𝒱(xi) xi

x0 𝒱 Π𝒱(x0)

Π𝒱(x0) ∥Π(x0) − Π(xi)∥



Principal Components Analysis
Example: “Eigenfaces” and facial recognition

Basis of eigenfaces:  where  for 
subspace  with . 

Improved facial recognition:  

Store the projection of  faces  for each  
in our dataset of faces. 

Given a new face , project the face onto the 
eigenface subsapce  to get .  

Compare  to each projected face in 
dataset in Euclidean norm .

v1, …, vk k ≪ n
𝒱 dim(𝒱) = k

n Π𝒱(xi) xi

x0
𝒱 Π𝒱(x0)

Π𝒱(x0)
∥Π(x0) − Π(xi)∥

u1 u2 y - ^y ~y - ^y y ^y face1 face10 face56 face100

What is this basis?

https://samuel-deng.github.io/math4ml_su25/assets/figs/eigenfaces.html


Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points , with columns  and . 

 

Want to find the directions that most explain the “variance” of the data.

X ∈ ℝn×2 x1 x2

X =

x11 x12
x21 x22
⋮ ⋮

xn1 xn2

.



Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points , with columns  and . 

 

Want to find the directions that most explain the “variance” of the data. 

The matrix  is the (unnormalized) covariance matrix of the data.

X ∈ ℝn×2 x1 x2

X =

x11 x12
x21 x22
⋮ ⋮

xn1 xn2

.

C = X⊤X ∈ ℝ2×2



Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points , with columns  and . 

 

The matrix  is the (unnormalized) covariance matrix of the data. 

X ∈ ℝn×2 x1 x2

X =

x11 x12
x21 x22
⋮ ⋮

xn1 xn2

.

C = X⊤X ∈ ℝ2×2

C = [x⊤
1 x1 x⊤

1 x2

x⊤
1 x2 x⊤

2 x2] = [∥x1∥2 x⊤
1 x2

x⊤
1 x2 ∥x2∥2]



Principal Components Analysis
Example: PCA in 2D

Observed: Matrix of training points , with columns  
and . 

 

The matrix  is the covariance matrix of the data. 

 

PCA: Find the ordered set of vectors  that explain 
the most variance to least variance in the data.

X ∈ ℝn×2 x1
x2

X =

x11 x12
x21 x22
⋮ ⋮

xn1 xn2

.

C = X⊤X ∈ ℝ2×2

C = [x⊤
1 x1 x⊤

1 x2

x⊤
1 x2 x⊤

2 x2] = [∥x1∥2 x⊤
1 x2

x⊤
1 x2 ∥x2∥2]

v1, …, vd ∈ ℝd

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6



Derivation of PCA
Eigendecomposition and PCA

PCA = Eigendecomposition (SVD) of the covariance matrix! 

Consider a (column-centered) dataset  and construct its covariance matrix 
. By definition,  is positive semidefinite. 

Therefore, it is diagonalizable with eigendecomposition: 

, with eigenvectors . 

With eigenvectors ordered , choose a cutoff point , and keep 
eigenvectors . 

The eigenvectors  give an orthonormal basis for a -dimensional subspace.

X ∈ ℝn×d

C = X⊤X ∈ ℝd×d C

C = X⊤X = VΛV⊤ v1, …, vd

λ1 ≥ λ2 ≥ … ≥ λd ≥ 0 k ≪ d
v1, …, vk

v1, …, vk k



Derivation of PCA
Eigendecomposition and PCA

…with eigenvectors ordered , choose a cutoff point , and keep 
eigenvectors .

λ1 ≥ λ2 ≥ … ≥ λd ≥ 0 k ≪ d
v1, …, vk



Derivation of PCA
Eigendecomposition and PCA

PCA = Eigendecomposition (SVD) of the covariance matrix! 

Consider a (column-centered) dataset  and construct its covariance matrix 
. By definition,  is positive semidefinite. 

Therefore, it is diagonalizable with eigendecomposition: 

. 

(Could have also just taken the right singular vectors of  if we have efficient algorithm 
to find the SVD — true in practice).

X ∈ ℝn×d

C = X⊤X ∈ ℝd×d C

C = X⊤X = VΛV⊤

X = UΣV⊤



Least Squares 
Interpretation of Eigenvalues



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup

To find , we follow the principle of least squares.  

 

This gives the predictions  that are close in a 
least squares sense: 

 such that   

(for  from any other ). 

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

ŷ ∈ ℝn

ŷ = Xŵ ∥ŷ − y∥2 ≤ ∥ỹ − y∥2

ỹ = Xw w ∈ ℝd

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html


Error in Regression
Error using least squares model

Choose a weight vector that “fits the training data”:  such that  for , or: 

 

But  might not be a perfect fit to !  

Model this using a true weight vector  and an error term .  

 (here  are rows) 

ŵ ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xŵ = ŷ ≈ y .

ŷ y

w* ∈ ℝd ϵ = (ϵ1, …, ϵn) ∈ ℝn

yi = x⊤
i w* + ϵi for all i ∈ [n] xi

y = Xw* + ϵ



Error in Regression
Error using least squares model

Choose a weight vector that “fits the training data”: 
 such that  for , or: 

 

But  might not be a perfect fit to !  

Model this using a true weight vector  and 
an error term .  

 (here  are rows) 

ŵ ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xŵ = ŷ ≈ y .

ŷ y

w* ∈ ℝd

ϵ = (ϵ1, …, ϵn) ∈ ℝn

yi = x⊤
i w* + ϵi for all i ∈ [n] xi

y = Xw* + ϵ
10 20 30 40 50

2

4

6

8

10

“Mystery” w*



Error in Regression
Error using least squares model

Choose a weight vector that “fits the training data”: 
 such that  for , or: 

 

But  might not be a perfect fit to !  

Model this using a true weight vector  and 
an error term .  

 (here  are rows) 

ŵ ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xŵ = ŷ ≈ y .

ŷ y

w* ∈ ℝd

ϵ = (ϵ1, …, ϵn) ∈ ℝn

yi = x⊤
i w* + ϵi for all i ∈ [n] xi

y = Xw* + ϵ
−0.5

0

0.5

1

1.5

2

2.5

3

“Mystery” w*

https://samuel-deng.github.io/math4ml_su25/assets/figs/2d_regression.html


Error in Regression
Error using least squares model

In our model of the world, true labels are given by: . 

What happens when we use the least squares weights ? 

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ



Error in Regression
Error using least squares model

In our model of the world, true labels are given by: . 

What happens when we use the least squares weights ? 

 

When  (  is linearly related to ), this is perfect: !

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ = 0 y X ŵ = w*



Error in Regression
Error using least squares model

In our model of the world, true labels are given by: . 

What happens when we use the least squares weights ? 

 

When , we have the difference of .

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ ≠ 0 ŵ − w* = (X⊤X)−1X⊤ϵ



Error in Regression
Eigendecomposition perspective

Weight vector’s difference from true : . 

We know that  (the covariance matrix) is PSD, so it is diagonalizable: 

 

The inverse of the diagonal matrix : 

, so if  is small, the entries of  blow up! 

w* ŵ − w* = (X⊤X)−1X⊤ϵ

X⊤X

X⊤X = VΛV⊤ ⟹ (X⊤X)−1 = V⊤Λ−1V .

Λ−1

Λ−1 =
1/λ1 … 0

⋮ ⋱ ⋮
0 … 1/λd

λi ŵ − w*



Gradient Descent 
Positive Semidefinite Matrices and Convexity



Lesson Overview
Big Picture: Gradient Descent

descent start
−10 −5 0 5 10

0

20

40

60

80

100

https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/indef_gd_bad.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_gd.html


Quadratic Forms
2D Example

A quadratic function  has the form 

, 

where .  

Example:   

We will be concerned about finding minima of 
quadratic functions.

f : ℝ → ℝ

f(x) = ax2 + bx + c

a, b, c ∈ ℝ

f(x) = 2x2 − x − 1

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8−8
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Quadratic Forms
3D Example

In , a quadratic function  has form: 

, 

where  are all constants. 

Example:  

d = 2 f : ℝ2 → ℝ

f(x) = ax2 + 2bxy + cy2 + dx + ey + f

a, b, c, d, e, f ∈ ℝ

f(x) = 2x2 + 4xy + 2y2 + 2x + 2y + 1

x1-axis x2-axis f(x1, x2)-axis



Quadratic Forms
3D Example

  vs.  f(x) = 2x2 + 4xy + 2y2 + 2x + 2y + 1 f(x) = 2x2 + 4xy + 2y2

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/quad242_stack.html


Quadratic Forms
3D Example

In 3D, a quadratic function  has the form 

. 

Let’s only examine the quadratic part! 

.

f : ℝ2 → ℝ

f(x) = ax2 + 2bxy + cy2

quadratic

+ dx + ey

linear

+ f
⏟

constant

f(x) = ax2 + 2bxy + cy2



Quadratic Forms
Relationship with matrices and eigenvalues

A function  is a quadratic form if it is a polynomial with terms of all degree two: 

 

We can rewrite this in matrix form: 

 

 

f : ℝ2 → ℝ

f(x) = ax2 + 2bxy + cy2 .

f(x, y) = [x y] [a b
b c] [x

y]
f(x) = x⊤Ax



Quadratic Forms
Relationship with matrices and eigenvalues

Consider a quadratic form: 

 

 

The matrix  is always symmetric, so it is diagonalizable! 

, where  is diagonal. 

f(x, y) = [x y] [a b
b c] [x

y]
f(x) = x⊤Ax

A ∈ ℝ2×2

A = VΛV⊤ Λ ∈ ℝd×d



Quadratic Forms
Relationship with matrices and eigenvalues

The matrix  is always symmetric, so it is diagonalizable! 

, where  is diagonal. 

 

, where . 

A ∈ ℝ2×2

A = VΛV⊤ Λ ∈ ℝd×d

⟹ f(x) = x⊤Ax = x⊤VΛV⊤x

⟹ x⊤Λx x = V⊤x

Λ = [λ1 0
0 λ2]



Quadratic Forms
Relationship with matrices and eigenvalues

, where  is diagonal. 

 

There are three possibilities: 

1.  and  are both positive (positive definite). 

2.  or  is zero, and the other is positive (positive semidefinite). 

3.  or  is negative (indefinite).

A = VΛV⊤ Λ ∈ ℝd×d

Λ = [λ1 0
0 λ2]

λ1 λ2

λ1 λ2

λ1 λ2



Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/indef_gd_bad.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_gd.html


Quadratic Forms
Example: positive definite

 

Eigendecomposition: 

 

so .

f(x, y) = [x y] [ 2 −1
−1 2 ] [x

y]

[ 2 −1
−1 2 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [3 0
0 1] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [3 0
0 1]

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_gd.html


Quadratic Forms
Example: positive definite

 

Eigendecomposition: 

 

so .

f(x, y) = [x y] [ 2 −1
−1 2 ] [x

y]

[ 2 −1
−1 2 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [3 0
0 1] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [3 0
0 1]
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Quadratic Forms
Example: positive semidefinite

 

Eigendecomposition: 

 

so .

f(x, y) = [x y] [ 1 −1
−1 1 ] [x

y]

[ 1 −1
−1 1 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [2 0
0 0] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [2 0
0 0]

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_gd.html


Quadratic Forms
Example: positive semidefinite

 

Eigendecomposition: 

 

so .

f(x, y) = [x y] [ 1 −1
−1 1 ] [x

y]

[ 1 −1
−1 1 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [2 0
0 0] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [2 0
0 0]
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Quadratic Forms
Example: indefinite

 

Eigendecomposition: 

 

so .

f(x, y) = [x y] [ 1 −2
−2 1 ] [x

y]

[ 1 −2
−2 1 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [3 0
0 −1] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [3 0
0 −1]

x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/indef_gd_bad.html


Quadratic Forms
Example: indefinite

 

Eigendecomposition: 

 

so .

f(x, y) = [x y] [ 1 −2
−2 1 ] [x

y]

[ 1 −2
−2 1 ] =

−1/ 2 1/ 2

1/ 2 1/ 2 [3 0
0 −1] −1/ 2 1/ 2

1/ 2 1/ 2

Λ = [3 0
0 −1]
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Quadratic Forms
Example: indefinite

x1-axis x2-axis f(x1, x2)-axis descent start
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Quadratic Forms
Example: indefinite
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Least Squares
Example of quadratic form

Consider the sum of squared residuals error function for least squares… 

 

. 

The quadratic form  is positive semidefinite!

f(w) = ∥Xw − y∥2

(Xw − y)⊤(Xw − y) = w⊤(X⊤X)w − 2w⊤(X⊤y) + y⊤y

w⊤(X⊤X)w



Least Squares
Example of quadratic form

Consider the sum of squared residuals error 
function for least squares… 

 

 

The quadratic form  is positive 
semidefinite!

f(w) = ∥Xw − y∥2

(Xw − y)⊤(Xw − y) = w⊤(X⊤X)w − 2w⊤(X⊤y) + y⊤y

w⊤(X⊤X)w
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https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html


Gradient Descent
Preview

Λ = [3 0
0 1] Λ = [2 0

0 0] Λ = [3 0
0 −1]

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/indef_gd_bad.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_gd.html


Recap



Lesson Overview

Linear dynamical systems example. Motivation for eigendecomposition as a way to make 
repeated matrix multiplication easier. 

Eigendecomposition. Definition of eigenvectors, eigenvalues. 

Eigendecomposition and SVD. The eigendecomposition drops out of the SVD. 

Spectral Theorem. Symmetric matrices are always diagonalizable. 

Positive semidefinite matrices/positive definite matrices. Definition and some visual examples 
through the corresponding quadratic forms.



Lesson Overview
Big Picture: Least Squares
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Big Picture: Gradient Descent
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Lesson Overview
Big Picture: Gradient Descent
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