
By: Samuel Deng

Math for Machine Learning
Week 3.1: Basic Differentiation and Vector Calculus

Logistics & Announcements

Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which require finding
global minima.

Single-variable differentiation review. In single-variable differentiation, the derivative is still a “matrix”
mapping change in input to change in output.

Multivariable differentiation. Derivatives in multiple variables become harder because we can approach
from an infinite number of directions, not just two.

Total, directional, and partial derivatives. When a function is smooth it has a total derivative (it is
differentiable). In this case, the directional derivative and partial derivative comes directly from the total
derivative (Jacobian/gradient).

OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear algebra. We
provide a heuristic derivation of the OLS estimator again.

1 × 1

Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html

Lesson Overview
Big Picture: Gradient Descent

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
trace 1
trace 2
trace 3
trace 4

descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/nonconvex_surface_gd.html

A Motivation for Calculus
Optimization

Motivation
Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an objective function with respect
to a set of constraints :

f : ℝd → ℝ
𝒞 ⊆ ℝd

minimize
x

f(x)

subject to x ∈ 𝒞

Motivation
Optimization in single-variable calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an objective function with respect
to a set of constraints :

How do we know how to do this from single-variable calculus?

f : ℝd → ℝ
𝒞 ⊆ ℝd

minimize
x

f(x)

subject to x ∈ 𝒞

Motivation
Optimization in single-variable calculus

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global min

Motivation
Optimization in single-variable calculus

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minUltimate goal: Find the global

minimum of functions.

Intermediary goal: Find the local
minima.

Derivatives will give us descent
directions!

Single-variable Differentiation
Review of (some) single-variable calculus

Single-variable Differentiation
Difference quotient

For , the difference quotient computes the slope between two points and :

 will denote “change in the inputs.” For any two points , we can write .

For a linear function, this is the slope everywhere.

f : ℝ → ℝ x x + δ

δy
δx

:=
f(x + δ) − f(x)

δ

δ x, y ∈ ℝ δ = y − x

Single-variable Differentiation
Difference quotient

Example.

Example.

f(x) = − 2x

f(x) = x2 − 2x + 1

Single-variable Differentiation
f : ℝ → ℝ

δy
δx

:=
f(x + δ) − f(x)

δ

f(x)

x

f(x0 + δ)

f(x0)
δ

f(x0 + δ) − f(x0)

x0 x0 + δ

Single-variable Differentiation
Definition of the derivative

For , the derivative of at the point is the value

if the limit exists.

We will assume functions are everywhere differentiable (not always the case, e.g.).

We will also denote this as or .

Important: The derivative is defined at a point!

f : ℝ → ℝ f x

df
dx

:= lim
δ→0

δx
δy

= lim
δ→0

f(x + δ) − f(x)
δ

,

f(x) = |x |

f′ (x) ∇f(x)

Single-variable Differentiation
Definition of the derivative

Example.

Example.

f(x) = − 2x

f(x) = x2 − 2x + 1

Single-variable Differentiation
f : ℝ → ℝ

Get used to thinking, for all that are “close” to :

The “target point” can be written .

The derivative gives a good local, linear
approximation to the change in .

x x0

∇f(x0)(x − x0) ≈ f(x) − f(x0)

x = x0 + δ

∇f(x0)δ ≈ f(x0 + δ) − f(x0)

f(x)

f(x)

x

f(x0 + δ)

f(x0)
δ

f(x0 + δ) − f(x0)

x0 x0 + δ

Single-variable Differentiation
Review: basic derivative rules

Product rule:

Quotient rule:

Sum rule:

Chain rule:

∇(f(x)g(x)) = g(x)∇f(x) + f(x)∇g(x)

∇(f(x)
g(x)) =

g(x)∇f(x) − f(x)∇g(x)
g(x)2

∇(f(x) + g(x)) = ∇f(x) + ∇g(x)

∇(g(f(x)) = ∇(g ∘ f)(x) = ∇g(f(x))∇f(x)

Linearity
Review from linear algebra

Linearity is the central property in linear algebra. Cooking is typically linear.
Bacon, egg, cheese (on roll)

1 egg

1 slice of cheese

1 slice bacon

1 Kaiser roll

0 cream cheese

0 slices of lox

0 bagel

Lox sandwich

0 egg

0 slice of cheese

0 slice bacon

0 Kaiser roll

1 cream cheese

2 slices of lox

1 bagel

Bacon, egg, cheese (on bagel)

1 egg

1 slice of cheese

1 slice bacon

0 Kaiser roll

0 cream cheese

0 slices of lox

1 bagel

Linearity
Review from linear algebra

Linearity is the central property in linear algebra.

A function (“transformation”) is linear if satisfies these two properties for any two
vectors :

 for any .

T : ℝd → ℝn T
a, b ∈ ℝd

T(a + b) = T(a) + T(b)

T(ca) = cT(a) c ∈ ℝ

Single-variable Differentiation
Linearity and differentiation

How will we use linear transformations?

Recall: and .

Derivative exploits the fact that, on small scales, things behave linearly!

∇f(x0)(x − x0) ≈ f(x) − f(x0)

T(x + y) = T(x) + T(y) T(cx) = cT(x)

Single-variable Differentiation
Linearity and differentiation

The derivative is a linear transformation that maps changes in to changes in .

We like linear transformations!

x y

T : change in x → change in y

∇f(x0)(x − x0) ≈ f(x) − f(x0)

Single-variable Differentiation
Linearity and differentiation

The derivative is a linear transformation that maps changes in to changes in .

Consider the function . The derivative of at is

The derivative is nothing more than a matrix in single-variable differentiation: .

A goal of differential calculus is to replace nonlinear functions with linear approximations!

x y

T : change in x → change in y

∇f(x0)(x − x0) ≈ f(x) − f(x0)

f(x) = x2 f x = 1 ∇f(1) = 2.

1 × 1 ∇f(1) = [2]

Single-variable Differentiation
Linearity and differentiation

Consider the function .

The derivative of at is

f(x) = x2

f x = 1 ∇f(1) = 2.

−1 0 1 2 3 4 5−1

0

1

2

3

4

5

Single-variable Differentiation
Linearity and differentiation

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approx. change b/w 1 and 2

Let . Derivative of at is

change in between 1 and 2

f(x) = x2 f x = 1 ∇f(1) = 2.

∇f(1)(2 − 1) = [2](2 − 1) = 2 ≈

f

Single-variable Differentiation
Linearity and differentiation

Let . Derivative of at is

change in between 1 and 2

change in between 1 and 1.5

f(x) = x2 f x = 1 ∇f(1) = 2.

∇f(1)(2 − 1) = [2](2 − 1) = 2 ≈

f

∇f(1)(1.5 − 1) = [2](1.5 − 1) = 1 ≈

f

0 1
−1

0

1

2

3

approx. change b/w 1 and 2
approx. change b/w 1 and 1.5

Single-variable Differentiation
Linearity and differentiation

0 1

0

1

approx. change b/w 1 and 2
approx. change b/w 1 and 1.5
approx. change b/w 1 and 1.1

Let . Derivative of at is

change in between 1 and 2

change in between 1 and 1.5

change in between 1 and 1.1

f(x) = x2 f x = 1 ∇f(1) = 2.

∇f(1)(2 − 1) = [2](2 − 1) = 2 ≈

f

∇f(1)(1.5 − 1) = [2](1.5 − 1) = 1 ≈

f

∇f(1)(1.1 − 1) = [2](1.1 − 1) = 0.2 ≈

f

Single-variable Differentiation
Linearity and differentiation

The derivative is a linear transformation that maps changes in to changes in .

The derivative is nothing more than a matrix in single-variable differentiation.

x y

T : change in x → change in y

∇f(x0)(x − x0) ≈ f(x) − f(x0)

1 × 1

Multivariable Differentiation
Review of multivariable notions of derivative

Multivariable Differentiation
Scalar-valued vs. vector-valued functions

 is a scalar-valued multivariable function

 is a vector-valued multivariable function.

But is just made up of scalar-valued functions.

Upshot: Just treat vector-valued functions as a collection of scalar-valued functions, and deal
with each coordinate individually.

f : ℝd → ℝ

f : ℝd → ℝn

f(x0) = (f1(x0), …, fn(x0)) .

f n

n

Multivariable Differentiation
Big picture: total, partial, and directional derivatives.

The total derivative (or just derivative) of at is a linear transformation .

The gradient of at is the vector and derivative of scalar-valued .

The Jacobian of at is the matrix and derivative of vector-valued .

The directional derivative of at in the direction is the derivative applied to :

, via matrix-vector multiplication.

The th partial derivative of at is the directional derivative in the unit basis direction .

f x0 Df(x0) : ℝd → ℝn

f x0 ∇f(x0) ∈ ℝd f : ℝd → ℝ

f x0 ∇f(x0) ∈ ℝn×d f : ℝd → ℝn

f x0 v ∈ ℝd v

∇ f(x0)
⏟

n×d

v
⏟

d×1

i f x0 ei ∈ ℝd

Multivariable Differentiation

Why is multivariable differentiation harder to pin down than single-variable differentiation?

In , there are only two directions from which we can approach (on a standard Cartesian
plane, the “left” and the “right”).

In , we can approach from infinitely many directions!

ℝ x0

ℝn x0

Difference from single-variable differentiation

Multivariable Differentiation

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5

f : ℝ → ℝ

Approach directions
Multivariable Differentiation

x1-axis x2-axis f(x1, x2)-axis

f : ℝ2 → ℝ

https://samuel-deng.github.io/math4ml_su25/assets/figs/localglobal3d.html

Multivariable Differentiation
Approach directions
Multivariable Differentiation

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

x1-axis x2-axis f(x1, x2)-axis

f : ℝ2 → ℝ

https://samuel-deng.github.io/math4ml_su25/assets/figs/localglobal3d.html

Multivariable Differentiation
Directional and partial derivatives

Multivariable Differentiation
Directional and partial derivatives

For and point …

The directional derivative is change in approaching , direction defined by vector .

The th partial derivative is change in when approaching from standard basis direction .

f : ℝd → ℝn x0

f x0 v ∈ ℝd

i f x0 ei

x1

x2

x0

v

e1

e2

Let be a function. The directional derivative of at in the direction is f : ℝd → ℝn f x0 v ∈ ℝd

lim
δ→0

f(x0 + δv) − f(x0)
δ

.

Multivariable Differentiation
Directional derivative

x1

x2

x0

δv

x1

x2

x0

δv

x1

x2

x0

δv

The th partial derivative of at is the directional derivative in the standard basis direction : i f x0 ei

lim
δ→0

f(x0 + δei) − f(x0)
δ

.

Multivariable Differentiation
Partial derivative

x1

x2

x0

δe2

x1

x2

x0

δe2

x1

x2

x0

δe2

The th partial derivative of at can also be written:

Mechanically: take the derivative of variable while keeping all the others constant.

i f x0

∂
∂xi

f(x0) := lim
δ→0

f(x0 + δei) − f(x0)
δ

= lim
δ→0

f(x0,1, …, x0,i + δ, …x0,d) − f(x0,1, …, x0,i, …, x0,d)
δ

xi

Multivariable Differentiation
Partial derivative

Example. Compute the formula for partial derivatives of defined by

.

What are the partial derivatives at ?

f : ℝ2 → ℝ

f(x, y) = x3 + x2y + y2

(1,2)

Multivariable Differentiation
Example: f(x, y) = x3 + x2y + y2

Multivariable Differentiation
Example: f(x, y) = x3 + x2y + y2

x-axis y-axis f(x, y)-axis
−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

−40

−30

−20

−10

0

10

20

30

40

50

60

https://samuel-deng.github.io/math4ml_su25/assets/figs/partial1.html

Example. Compute the partial derivatives of defined by

.

What are the partial derivatives at ?

f : ℝ2 → ℝ2

f(x, y) = (x2y, cos y)

(1,2)

Multivariable Differentiation
Examples

Multivariable Differentiation
Total derivatives

Multivariable Differentiation
Jacobian and gradient idea

The gradient is the vector in that contains the partial derivatives of as each entry.

The Jacobian matrix that contains the partial derivatives of , collected
column-by-column.

Viewing as a collection of functions , the Jacobian is also what we get by
“stacking” all the gradients top-to-bottom in a matrix.

ℝd f : ℝd → ℝ

n × d f : ℝd → ℝn

f n f = (f1, …, fn)

Multivariable Differentiation
Gradient

Let . The gradient of at is the vector composed of all the partial
derivatives of at :

f : ℝd → ℝ f x0 ∇f(x0) ∈ ℝd

f x0

∇f(x0) :=

∂
∂x1

f(x0)

⋮
∂

∂xn
f(x0)

Multivariable Differentiation
Gradient

Example. What’s a formula for the gradient of ?

What’s the gradient at ?

f(x, y) = x3 + x2y + y2

(x, y) = (1,1)

Multivariable Differentiation
Example: f(x, y) = x3 + x2y + y2

x-axis y-axis f(x, y)-axis
−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

−40

−30

−20

−10

0

10

20

30

40

50

60

https://samuel-deng.github.io/math4ml_su25/assets/figs/partial1.html

Multivariable Differentiation
Jacobian

Let be a function .

The Jacobian of at is the matrix composed of all the partial derivatives of at :

f : ℝd → ℝn f(x) = (f1(x), …, fn(x))

f x0 n × d f x0

∇f(x0) :=

∂
∂x1

f1(x0) … ∂
∂xd

f1(x0)

⋮ ⋮
∂

∂x1
fn(x0) … ∂

∂xd
fn(x0)

=
← ∇f1(x0)⊤ →
⋮ ⋮ ⋮
← ∇fn(x0)⊤ →

Multivariable Differentiation
Jacobian

Example. What’s the formula for the Jacobian of ?

What’s the Jacobian at ?

f(x, y) = (x2y, cos y)

(x, y) = (π, π)

Multivariable Differentiation
Total Derivative (Idea)

The total derivative is the linear transformation that “best approximates” the local change in
at a point .

The total derivative takes “change in ” and outputs “change in .”

In 1D, recall:

f
x0

x y

T : change in x → change in y

∇f(x0)(x − x0) ≈ f(x) − f(x0)

Multivariable Differentiation
Total Derivative (Definition)

Let be a function and let be a point.

If there exists a linear transformation such that

then is differentiable at and has the unique (total) derivative .

Approaching from any direction , the change is approximated by .

f : ℝd → ℝn x0 ∈ ℝd

Dfx0
: ℝd → ℝn

lim
⃗δ→0

1

∥ ⃗δ∥ ((f(x0 + ⃗δ) − f(x0)) − Dfx0
(⃗δ)) = 0,

f x0 Dfx0

x0 ⃗δ f(x0 + ⃗δ) − f(x0) Dfx0

Multivariable Differentiation
Total Derivative (Definition)

Approaching from any direction , the change is approximated by .

lim
⃗δ→0

1

∥ ⃗δ∥ ((f(x0 + ⃗δ) − f(x0)) − Dfx0
(⃗δ)) = 0,

x0 ⃗δ f(x0 + ⃗δ) − f(x0) Dfx0

x1

x2

x0

⃗δ x0 + δ

x1

x2

x0 ⃗δ
x0 + δ

x1

x2

x0

⃗δ
x0 + δ

Multivariable Differentiation
Total Derivative (Definition)

x1

x2

x0

⃗δ
x0 + δ

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_circlexy.html

Multivariable Differentiation
Total Derivative

Good news: in many cases, we don’t have to deal with the clunky expression

because we can replace by the Jacobian/gradient for all “nice” functions (the functions we
usually care about)!

The “nice” functions is the class of continuously differentiable (smooth) functions.

lim
⃗δ→0

1

∥ ⃗δ∥ ((f(x0 + ⃗δ) − f(x0)) − Dfx0
(⃗δ)) = 0,

Dfx0

Multivariable Differentiation
Smoothness and consequences

Multivariable Differentiation
Smoothness

A function is continuously differentiable if all partial derivatives of exist and are
continuous. These are the functions, and the collection of all such functions are the class .

Generally: for some are the -times continuously differentiable functions.

f : ℝd → ℝn f
𝒞1 𝒞1

𝒞p p ≥ 1 p

Multivariable Differentiation
Smoothness

Theorem (Sufficient criterion for differentiability). If is a function, then is
differentiable, and its total derivative is equal to its Jacobian matrix.

Theorem (Sufficient criterion for differentiability). If is a function, then is
differentiable, and its total derivative is equal to its gradient.

f : ℝd → ℝn 𝒞1 f

f : ℝd → ℝ 𝒞1 f

Multivariable Differentiation
Directional derivatives from total derivative

Theorem (Computing directional derivatives). If is differentiable with Jacobian
matrix , the directional derivative of at in the direction is given by the
matrix-vector product:

Matrix-vector multiplication is the same as applying a linear transformation.

f : ℝd → ℝn

∇f(x0) ∈ ℝn×d f x0 v ∈ ℝd

∇f(x0)

n×d

v
⏟

d×1

.

Multivariable Differentiation
Directional derivatives from total derivative

Theorem (Computing directional derivatives). If is differentiable with gradient
, the directional derivative of at in the direction is given by the inner product:

.

Vector inner product is the same as applying a linear functional.

f : ℝd → ℝ
∇f(x0) f x0 v ∈ ℝd

∇f(x0)⊤v

Multivariable Differentiation
Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let be differentiable at
. If is a unit vector making angle with the gradient , then:

.

Gradient is the direction of steepest ascent at the rate !

f : ℝd → ℝ
x0 ∈ ℝd v ∈ ℝd θ ∇f(x0)

∇f(x0)⊤v = ∥∇f(x0)∥ cos θ

∥∇f(x0)∥

Multivariable Differentiation
Example: f(x, y) = (1/2)x3y

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

−40

−30

−20

−10

0

10

20

30

40

x-axis y-axis f(x, y)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/partial2.html

Multivariable Differentiation
Big picture: how do all these objects connect?

The total derivative is a linear transformation that maps “changes in inputs” to “changes in
outputs.”

When we apply a total derivative to a vector, think of mapping the “change” represented by that
vector to a “change” in output space.

The partial derivative tells us how our function changes in each basis vector direction. The
directional derivative tells us change in any direction.

For all the “smooth” continuously differentiable functions we care about, the total derivative is
given by the Jacobian matrix (the gradient for scalar-valued functions).

Applying the Jacobian/gradient to a vector is the same as matrix-vector multiplication!

Multivariable Differentiation
Big picture: how do all these objects connect?

 function total derivative is the Jacobian/gradient

 all directional/partial derivatives from matrix-vector product!

 for Jacobian ()

 for gradient ()

𝒞1 ⟹

⟹

∇f(x0)v f : ℝd → ℝn

∇f(x0)⊤v f : ℝd → ℝ

Multivariable Differentiation
Example: f(x, y) = x3 + x2y + y2

x-axis y-axis f(x, y)-axis

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

−40

−30

−20

−10

0

10

20

30

40

50

60

https://samuel-deng.github.io/math4ml_su25/assets/figs/partial1.html

Multivariable Differentiation
The Hessian and the “Second Derivative”

Multivariable Differentiation: Hessian
Hessian matrix

The Hessian is the “second derivative” for scalar-valued multivariable functions .

It is a matrix. For really smooth functions, it is symmetric.

The Hessian contains the local “second-order” information, or curvature of the function. It
describes how “bowl-shaped” the function is around a point.

f : ℝd → ℝ

Multivariable Differentiation: Hessian
Hessian matrix for f : ℝ2 → ℝ

The Hessian matrix for is the matrix of all second-order partial derivatives:

 is the second partial derivative of with respect to .

 is the partial derivative from differentiating w.r.t. first and then differentiating w.r.t. .

f : ℝ2 → ℝ 2 × 2

∇2f(x0) =

∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

∂2f
∂x2

i
f xi

∂2f
∂xi∂xj

xj xi

Multivariable Differentiation: Hessian
Hessian matrix for f : ℝd → ℝ

The Hessian matrix for is the matrix of all second-order partial derivatives.f : ℝd → ℝ d × d

Multivariable Differentiation: Hessian
Equality of mixed partials

Theorem (Equality of mixed partials). If is a twice continuously differentiable
function (i.e., in class), then, for all pairs :

This means that for functions, the Hessian is a symmetric matrix.

, the class of twice continuously differentiable functions, is the collection of all functions
whose second-order partial derivatives all exist and are continuous.

f : ℝd → ℝ
𝒞2 (i, j)

∂2f
∂xi∂xj

=
∂2f

∂xj∂xi
.

𝒞2

𝒞2

Multivariable Differentiation
Wrap-up example

Consider the function given by

.

Is smooth (i.e. in)?

How about ?

What does that tell us?

f : ℝ2 → ℝ3

f(x, y) := (1
2 x3y 2x2y2 xy)

f 𝒞1

𝒞2

Multivariable Differentiation
Wrap-up example

Consider the function given by

.

What’s the formula for the Jacobian of ?
What’s the formula for the gradient of ?

What is the Jacobian/gradient at ?

f : ℝ2 → ℝ3

f(x, y) := (1
2 x3y 2x2y2 xy)

f
f1(x, y) =

1
2

x3y

x0 = (1,2)

Multivariable Differentiation
Wrap-up example

Consider the function given by

.

What’s the total derivative of at ?

f : ℝ2 → ℝ3

f(x, y) := (1
2 x3y 2x2y2 xy)

f x0 = (1,0)

Multivariable Differentiation
Wrap-up example

Consider the function given by

.

What’s the directional derivative of at in the direction ?

How about in the direction ?

f : ℝ2 → ℝ3

f(x, y) := (1
2 x3y 2x2y2 xy)

f x0 v = (1,1)

e1

Multivariable Differentiation
Common Derivative Rules

Multivariable Differentiation
Basic derivative rules

Same as single-variable differentiation rules, but we need to “type-check” dimensions.

Let be the differentiation “operator.”

Derivatives of from reasoning about each scalar-valued .

∂
∂x

f : ℝd → ℝn f1, …, fn

Multivariable Differentiation
Sum Rule

For and : f : ℝd → ℝ g : ℝd → ℝ

∂
∂x

(f(x) + g(x)) =
∂f
∂x

+
∂g
∂x

Multivariable Differentiation
Product Rule

For and : f : ℝd → ℝ g : ℝd → ℝ

∂
∂x

(f(x)g(x)) =
∂f
∂x

g(x) + f(x)
∂g
∂x

Multivariable Differentiation
Chain Rule

For and : f : ℝd → ℝ g : ℝ → ℝ

∂
∂x

(g ∘ f)(x) =
∂

∂x
g(f(x)) =

∂g
∂f

∂f
∂x

Multivariable Differentiation
Example of chain rule

Example. Let be defined as . Let be defined as
.

We can also write this as:

What is ?

g : ℝ2 → ℝ g(y1, y2) = y2
1 + 2y2 f : ℝ2 → ℝ2

f(x1, x2) := (sin(x1) + cos(x2) x1x3
2)

g(f(x)) = (g ∘ f)(x1, x2) = (sin(x1) + cos(x2))2 + 2(x1x3
2)

∂(g ∘ f)
∂x

Multivariable Differentiation
g(f(x)) = (g ∘ f)(x1, x2) = (sin(x1) + cos(x2))2 + 2(x1x3

2)

x-axis y-axis f(x, y)-axis−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

−150

−100

−50

0

50

100

150

https://samuel-deng.github.io/math4ml_su25/assets/figs/partial3.html

“Matrix Calculus”
Useful identities in machine learning

More in The Matrix Cookbook.

∂x⊤a
∂x

= a

∂a⊤x
∂x

= a

∂Ax
∂x

= A

∂x⊤Ax
x

= (A + A⊤)x

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

“Matrix Calculus”
Example

Why ?

Why do we get “for free?”

∂x⊤a
∂x

= a

∂a⊤x
∂x

Least Squares
Optimization Perspective

Regression
Setup (Example View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Goal: For each , we predict: .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Regression
Setup (Feature View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Regression
Setup

To find , we follow the principle of least squares.

This gives the predictions that are close in a
least squares sense:

 such that

(for from any other).

ŵ

ŵ = arg min
w∈ℝd

∥Xw − y∥2

ŷ ∈ ℝn

ŷ = Xŵ ∥ŷ − y∥2 ≤ ∥ỹ − y∥2

ỹ = Xw w ∈ ℝd

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and
. Let be the least squares minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and
. Let be the least squares minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and
. Let be the least squares minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html

Least Squares
Optimization Problem

Let and . Let be the least squares minimizer:

What if we consider this as an optimization problem instead?

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

Least Squares
Optimization Problem

Let and . Let be the least squares minimizer:

What if we consider this as an optimization problem instead?

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

f : ℝd → ℝ

f(w) = ∥Xw − y∥2

Motivation
Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an objective function with respect
to a set of constraints :

f : ℝd → ℝ
𝒞 ⊆ ℝd

minimize
x

f(x)

subject to x ∈ 𝒞

Least Squares
Least Squares Objective

Before, we called this the squared error or sum of squared residuals…

This is also the objective function of an optimization problem: the least squares objective.

f : ℝd → ℝ

f(w) = ∥Xw − y∥2

Least Squares
Least Squares Objective in ℝ

 f : ℝ → ℝ

f(w) = ∥Xw − y∥2 ⟹ f(w) = ∥wx − y∥2

Least Squares
Least Squares Objective in ℝ

−1 0 1 2 3 4 5−1

0

1

2

3

4

5

Consider the dataset and ,
where , .

x = (1, − 1) y = (3, − 3)
n = 2 d = 1

f(w) = ∥wx − y∥2

Least Squares
Least Squares Objective in ℝ2

 f : ℝ2 → ℝ

f(w) = ∥Xw − y∥2

Least Squares
Least Squares Objective in ℝ2

Consider the dataset and ,

where , .

X = [1 0
0 1] y = [−1

1]
n = 2 d = 2

f(w) = ∥Xw − y∥2

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Least Squares
Least Squares Objective in ℝ2

Consider the dataset and ,

where , .

X = [1 0
0 0] y = [−1

1]
n = 2 d = 2

f(w) = ∥Xw − y∥2

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and
. Let be the least squares minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html

Least Squares
OLS from Optimization

Theorem (Full rank and eigenvalues). Let be a square matrix with all real
eigenvalues .

 for all .

A ∈ ℝd×d

λ1, …, λd ∈ ℝ

rank(A) = d ⟺ λi > 0 i ∈ [d]

Least Squares
Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

?

First derivative test. Take derivative and set equal to to find candidates for optima, .

Second derivative test. Check for minimum; check for maximum.

f(w) = 4w2 − 4w + 1

f′ (w) 0 ŵ

f′ ′ (ŵ) > 0 f′ ′ (ŵ) < 0

Least Squares (Calculus Proof)
Step 1: Expand the squared norm

Let and . Consider the function ,

X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.

f(w) = ∥Xw − y∥2

= (Xw − y)⊤(Xw − y)
= w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

Quadratic Forms
Review

A function is a quadratic form if it is a polynomial with terms of all degree two:

We can rewrite this in matrix form:

f : ℝ2 → ℝ

f(x) = ax2 + 2bxy + cy2 .

f(x, y) = [x y] [a b
b c] [x

y]
f(x) = x⊤Ax

Least Squares
Step 2: Recognize quadratic form

Let and . Consider the function ,

Expand the squared norm:

This is a quadratic function, with the leading quadratic form:

X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

w⊤X⊤Xw

Positive Semidefinite (PSD) Matrices
Review

A square matrix is positive semidefinite (PSD) if…

there exists such that .

all eigenvalues of are nonnegative: .

 for any .

A ∈ ℝd×d

X ∈ ℝn×d A = X⊤X

↕

A λ1 ≥ 0,…, λd ≥ 0

↕

x⊤Ax ≥ 0 x ∈ ℝd

Least Squares
Step 2: Recognize quadratic form

Let and . Consider the function ,

Expand the squared norm:

This is a quadratic function, with the leading quadratic form:

We know that this is positive semidefinite.

X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

w⊤X⊤Xw

Least Squares
Step 2: Recognize quadratic form

Let and . Consider the function ,

Expand the squared norm:

This is a quadratic function, with the leading quadratic form:

Even better: , so and therefore and is positive definite!

X ∈ ℝn×d y ∈ ℝn f : ℝd → ℝ

f(w) = ∥Xw − y∥2.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

w⊤X⊤Xw

rank(X) = d rank(X⊤X) = d λ1, …, λd > 0 X⊤X

“Matrix Calculus”
Useful identities in machine learning

More in The Matrix Cookbook.

∂x⊤a
∂x

= a

∂a⊤x
∂x

= a

∂Ax
∂x

= A

∂x⊤Ax
x

= (A + A⊤)x

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Least Squares
Step 3: Take first derivative (gradient)

“First derivative test.” Take the gradient.

 (sum rule)

 because

 because

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = ∇w(w⊤X⊤Xw) − ∇w(2w⊤X⊤y) + ∇wy⊤y

∇w(w⊤X⊤Xw) = 2(X⊤X)w
∂x⊤Ax

x
= (A + A⊤)x

∇w(2w⊤X⊤y) = 2X⊤y
∂a⊤x
∂x

= a

∇wy⊤y = 0 ⟹ ∇w f(w) = 2(X⊤X)w − 2X⊤y

Least Squares
OLS from Optimization

“First derivative test.” Take the gradient.

.

Set it equal to .

We have again obtained the normal equations!

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

Least Squares
Obtaining normal equations from linear algebra

Because is perpendicular to , we
obtain the normal equations:

.

ŷ − y CS(X)

X⊤Xŵ = X⊤y

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Least Squares
Obtaining normal equations from optimization

Because the gradient is

,

setting it equal to , we obtain the normal
equations:

.

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

X⊤Xŵ = X⊤y

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Least Squares
Step 4: Solve the normal equations using PD matrix

“First derivative test.” Take the gradient.

.

Set it equal to .

Because , we know and is invertible. Solve the normal equations to get
a candidate for the minimizer:

.

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

0

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d rank(X⊤X) = d X⊤X

ŵ = (X⊤X)−1X⊤y

Least Squares
Step 5: Take second derivative (Hessian)

Objective:

Gradient: .

Candidate minimizer: .

“Second derivative test.” Take the Hessian of .

.

 is positive definite!

f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

ŵ = (X⊤X)−1X⊤y

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X

PSD and PD Quadratic Forms
“Proof by graph”

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axisx1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html

Least Squares
Showing is the minimizer from linear algebraŵ

By Pythagorean Theorem, any other vector
 gives a larger error: ỹ ∈ CS(X)

∥ŷ − y∥2 ≤ ∥ỹ − y∥2.

x1 x2 y - ^y ~y - ^y ~y - y y ^y ~y

https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Least Squares
Showing is the minimizer from optimizationŵ

Because the Hessian of is

,

and we assumed , the matrix must
be positive definite, and therefore has a
“positive” second derivative (Hessian).

f(w)

∇2
w f(w) = 2X⊤X

rank(X) = d X⊤X
f(w)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and
. Let be the least squares minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Gradient Descent
Preview of the Algorithm

Multivariable Differentiation
Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let be differentiable at
. If is a unit vector making angle with the gradient , then:

.

Gradient is the direction of steepest ascent at the rate !

f : ℝd → ℝ
x0 ∈ ℝd v ∈ ℝd θ ∇f(x0)

∇f(x0)⊤v = ∥∇f(x0)∥ cos θ

∥∇f(x0)∥

∇f(x0)

v

θ

Multivariable Differentiation
Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let be differentiable at
. If is a unit vector making angle with the gradient , then:

.

Gradient is the direction of steepest ascent at the rate !

f : ℝd → ℝ
x0 ∈ ℝd v ∈ ℝd θ ∇f(x0)

∇f(x0)⊤v = ∥∇f(x0)∥ cos θ

∥∇f(x0)∥

∇F(w)
v

Gradient Descent
Algorithm

Input: Function . Initial point . Step size .

Initialize at a randomly chosen .

For iteration (until “stopping condition” satisfied):

Return final .

f : ℝd → ℝ x0 ∈ ℝd η ∈ ℝ

x(0) ∈ ℝd

t = 1,2,…

x(t) ← x(t−1) − η∇F(x(t−1))

x(t)

Gradient Descent
Preview

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
trace 1
trace 2
trace 3
trace 4

descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/nonconvex_surface_gd.html

Lesson Overview
Preview

x1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent startx1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/indef_gd_bad.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_gd.html

Recap

Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which require finding
global minima.

Single-variable differentiation review. In single-variable differentiation, the derivative is still a “matrix”
mapping change in input to change in output.

Multivariable differentiation. Derivatives in multiple variables become harder because we can approach
from an infinite number of directions, not just two.

Total, directional, and partial derivatives. When a function is smooth it has a total derivative (it is
differentiable). In this case, the directional derivative and partial derivative comes directly from the total
derivative (Jacobian/gradient).

OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear algebra. We
provide a heuristic derivation of the OLS estimator again.

1 × 1

Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html

Lesson Overview
Big Picture: Gradient Descent

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
trace 1
trace 2
trace 3
trace 4

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/localglobal3d.html

