Math for Machine Learning

Week 3.1: Basic Differentiation and Vector Calculus

Logistics & Announcements 0, PS (1) latest due date tonight [11.59 PM]. opse Friday 11:59 PM ops 3) released today, due next Fri 11.59 PM. If anditing: Imk for a subset of Problems. THURSDAY CLASS (Construzo min) Mid-course leview from Teaching Development Emgroum

Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which require finding global minima.

Single-variable differentiation review. In single-variable differentiation, the <u>derivative</u> is still a 1×1 "matrix" mapping change in input to change in output.

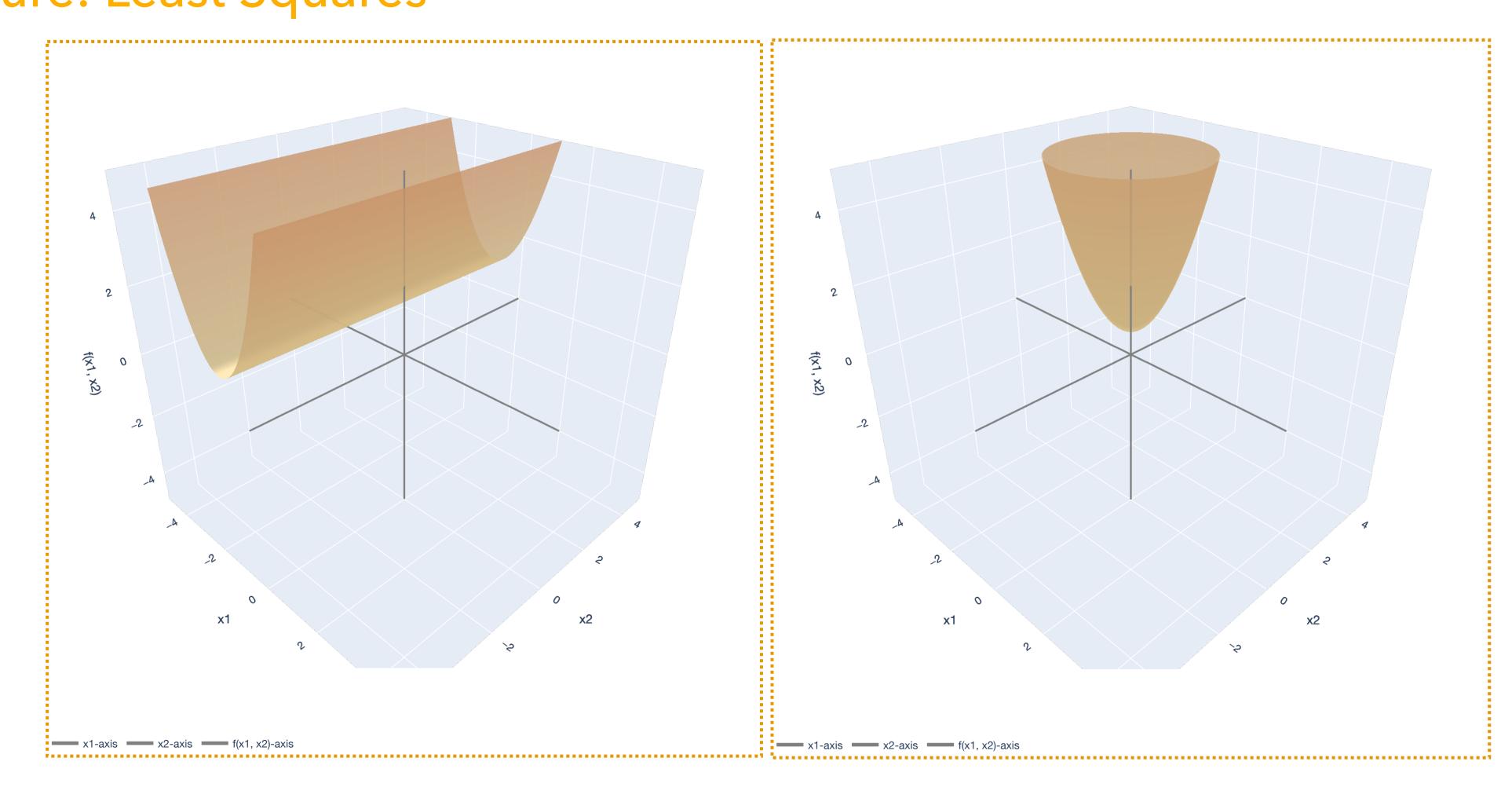
Multivariable differentiation. Derivatives in multiple variables become harder because we can approach from an infinite number of directions, not just two.

Total, directional, and partial derivatives. When a function is <u>smooth</u> it has a <u>total derivative</u> (it is <u>differentiable</u>). In this case, the <u>directional derivative</u> and <u>partial derivative</u> comes directly from the total derivative (Jacobian/gradient).

OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear algebra. We provide a heuristic derivation of the OLS estimator again.

Lesson Overview

Big Picture: Least Squares

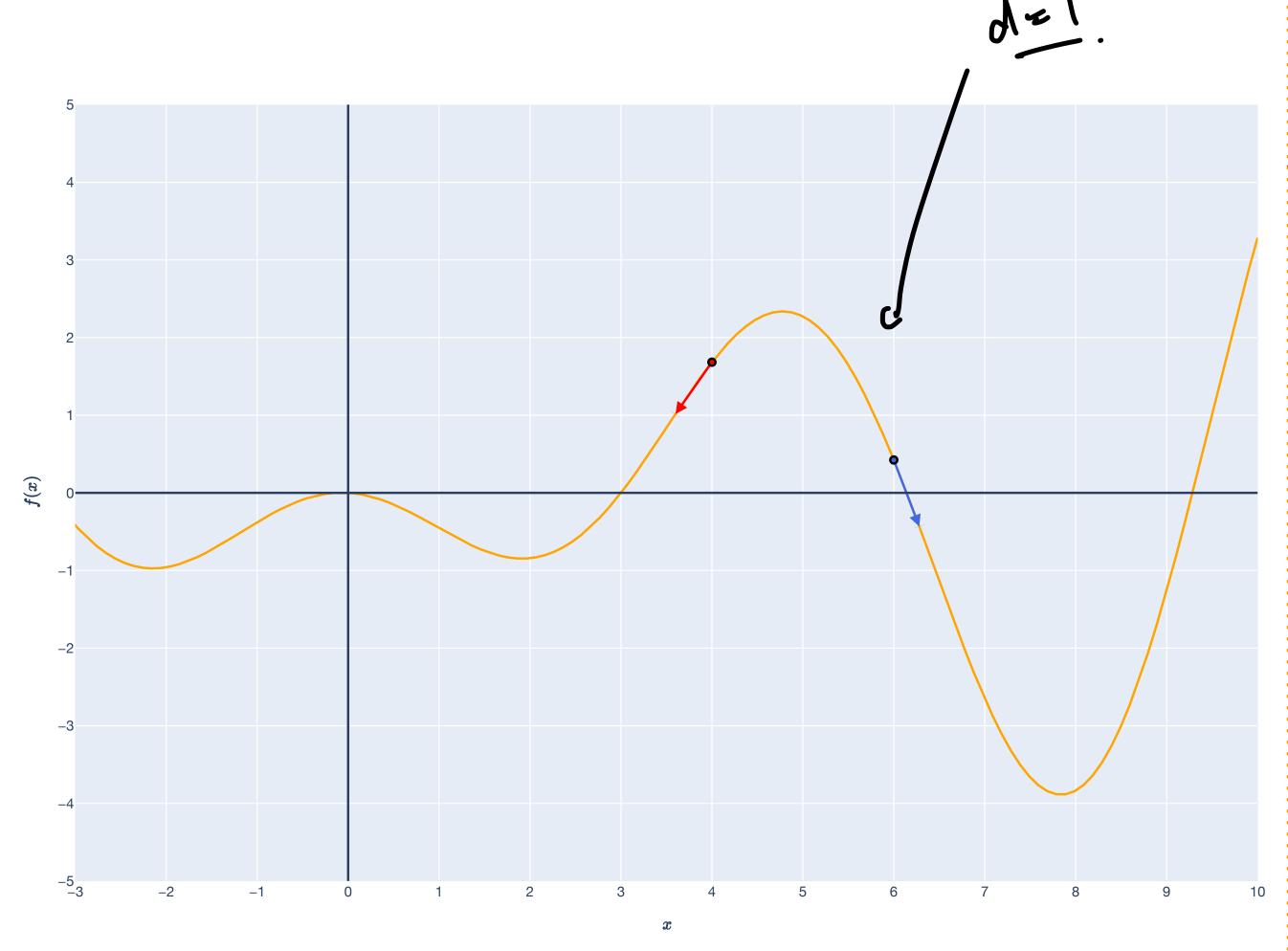


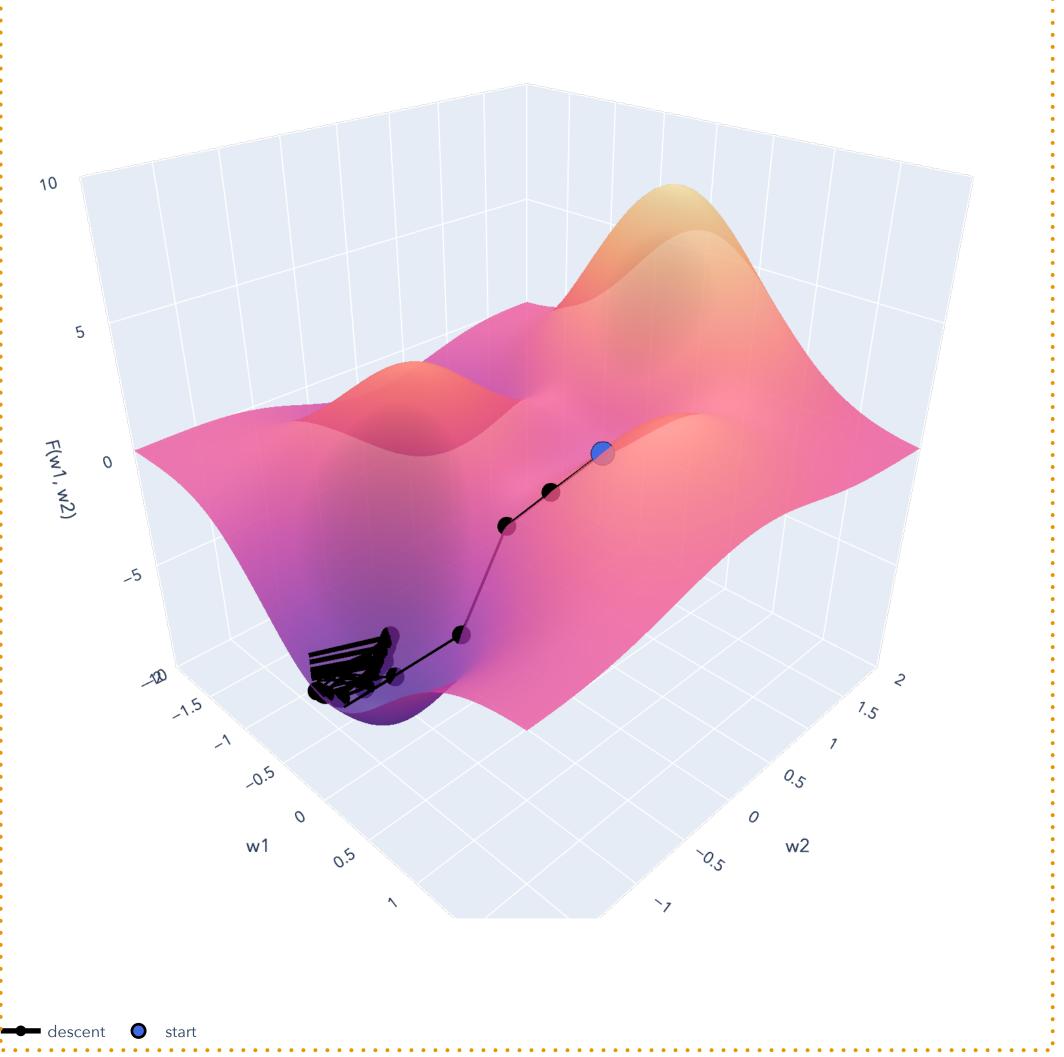
$$\lambda_1, \dots, \lambda_d \geq 0$$

$$\lambda_1, \dots, \lambda_d > 0$$

Lesson Overview

Big Picture: Gradient Descent





A Motivation for Calculus Optimization

Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an <u>objective function</u> $f: \mathbb{R}^d \to \mathbb{R}$ with respect to a set of constraints $\mathscr{C} \subseteq \mathbb{R}^d$:

minimize
$$f(x)$$
 x
subject to $x \in \mathscr{C}$

Optimization in single-variable calculus

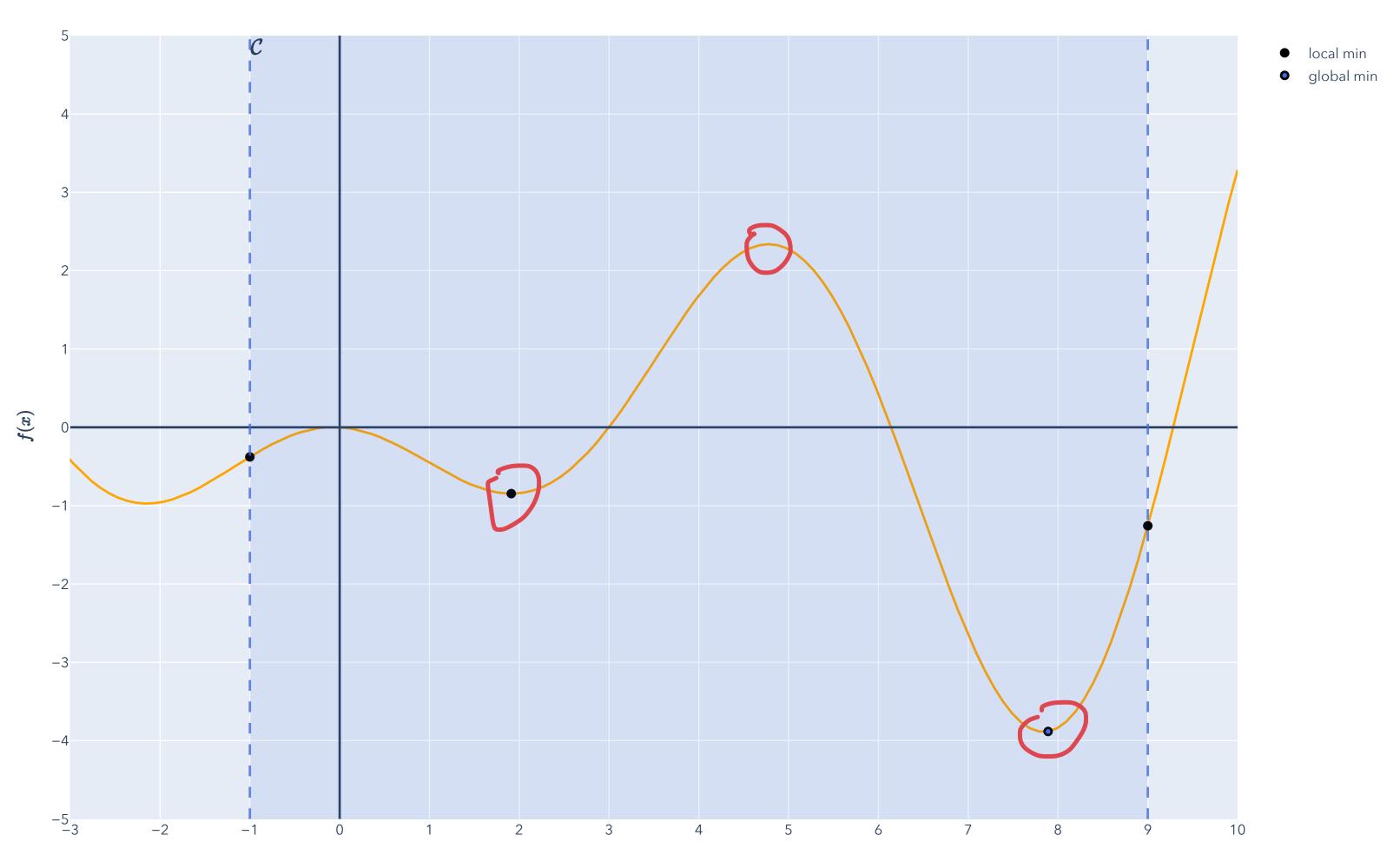
In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an <u>objective function</u> $f: \mathbb{R}^d \to \mathbb{R}$ with respect to a set of constraints $\mathscr{C} \subseteq \mathbb{R}^d$:

minimize
$$f(x)$$
 x
subject to $x \in \mathscr{C}$

How do we know how to do this from single-variable calculus?

Optimization in single-variable calculus

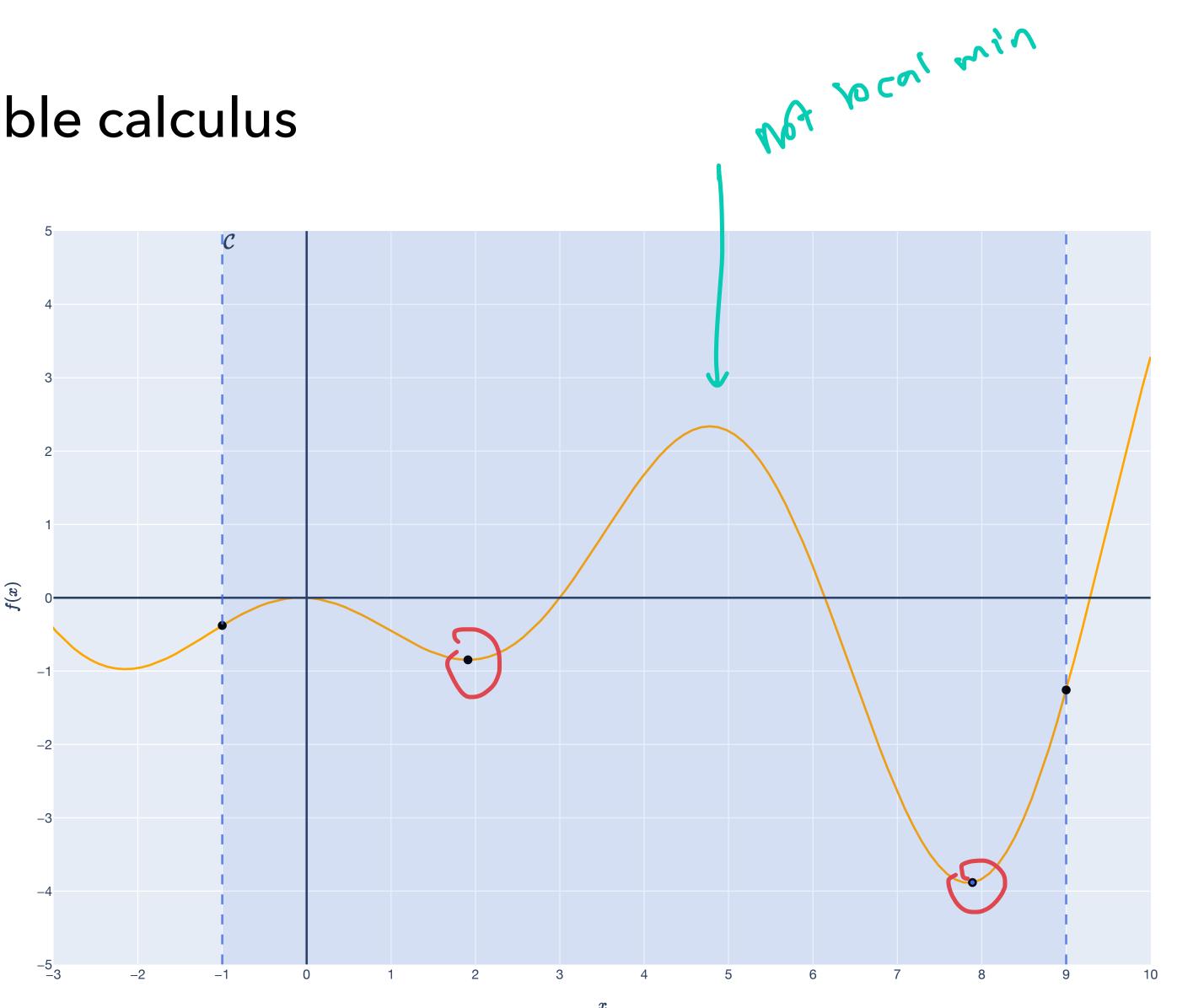


Optimization in single-variable calculus

Ultimate goal: Find the global minimum of functions.

Intermediary goal: Find the *local* minima.

Derivatives will give us descent directions!



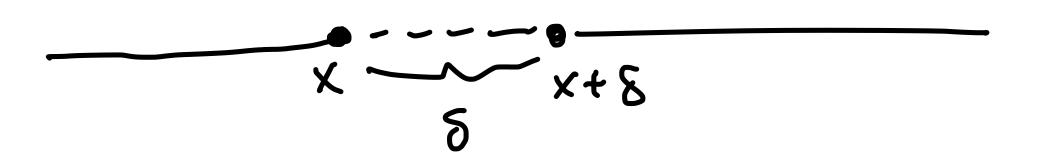
Single-variable Differentiation Review of (some) single-variable calculus

Difference quotient

Difference quotient

Difference quotient

$$\frac{\delta y}{\delta x} := \frac{f(x+\delta) - f(x)}{\delta}$$



Difference quotient

$$\frac{\delta y}{\delta x} := \frac{f(x+\delta) - f(x)}{\delta}$$

Difference quotient

$$\frac{\delta y}{\delta x} := \frac{f(x+\delta) - f(x)}{\delta}$$

Difference quotient

For $f: \mathbb{R} \to \mathbb{R}$, the <u>difference quotient</u> computes the slope between two points x and $x + \delta$:

$$\frac{\delta y}{\delta x} := \frac{f(x+\delta) - f(x)}{\delta}$$

 δ will denote "change in the inputs." For any two points $x, y \in \mathbb{R}$, we can write $\delta = y - x$.

Difference quotient

For $f: \mathbb{R} \to \mathbb{R}$, the <u>difference quotient</u> computes the slope between two points x and $x + \delta$:

$$\frac{\delta y}{\delta x} := \frac{f(x+\delta) - f(x)}{\delta}$$

 δ will denote "change in the inputs." For any two points $x, y \in \mathbb{R}$, we can write $\delta = y - x$.

For a linear function, this is the slope everywhere.

Difference quotient

Example.
$$f(x) = -2x$$

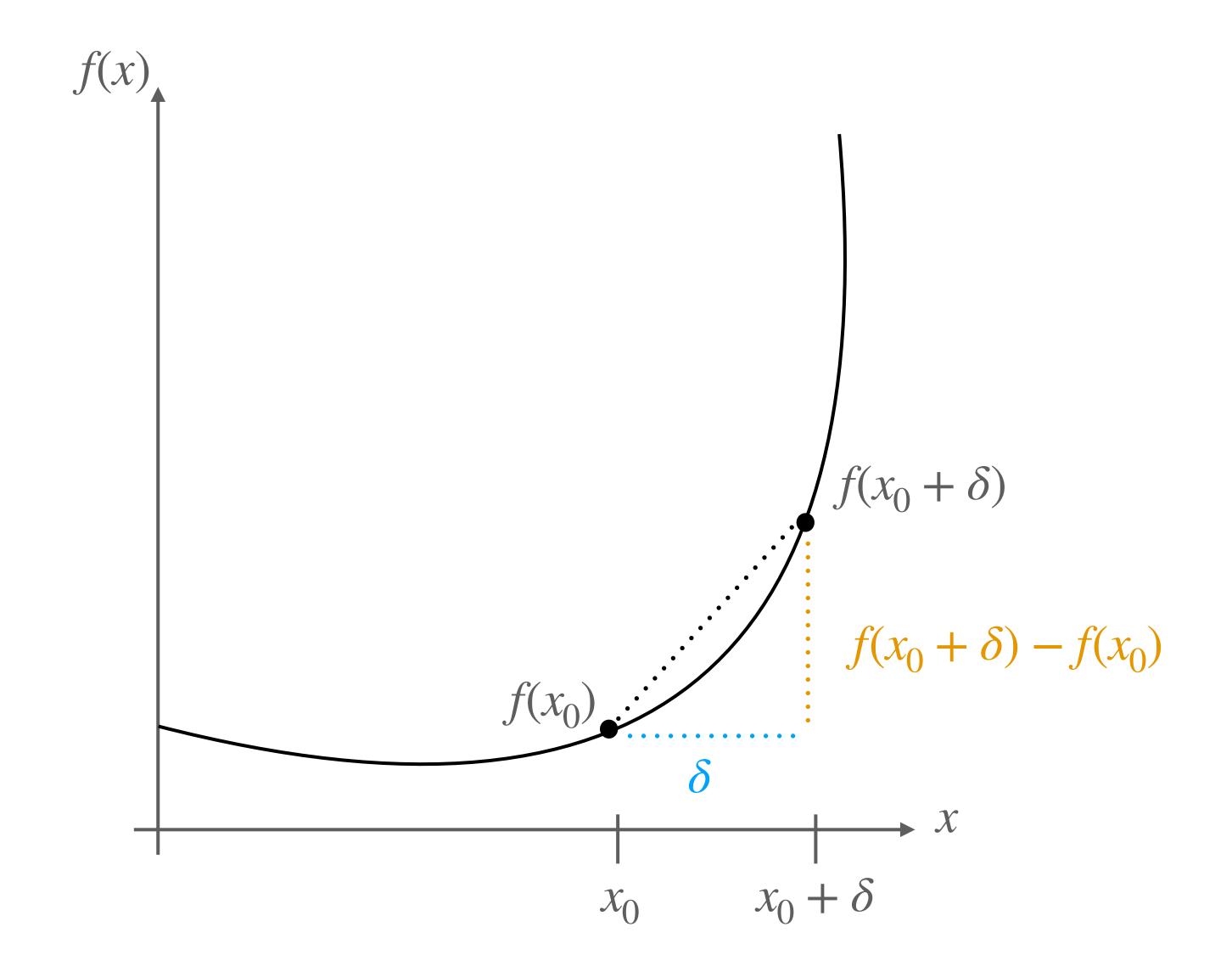
Example.
$$f(x) = x^2 - 2x + 1$$
 $\frac{87}{8x} = \frac{f(x+8) - f(x+8)}{5}$

$$= \frac{(x+8)^2 - 2(x+8) + 1 - (x^2 - 2x+1)}{5}$$

$$= \frac{2x+8-2}{5} = \frac{x^2+28x+6^2-2x-28+1-x^2+2x-1}{5}$$

$$f: \mathbb{R} \to \mathbb{R}$$

$$\frac{\delta y}{\delta x} := \frac{f(x+\delta) - f(x)}{\delta}$$



Definition of the derivative

Definition of the derivative

For $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point x is the value

Definition of the derivative

For $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point x is the value

$$\frac{df}{dx} := \lim_{\delta \to 0} \frac{\delta x}{\delta y} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta},$$

Definition of the derivative

For $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point x is the value

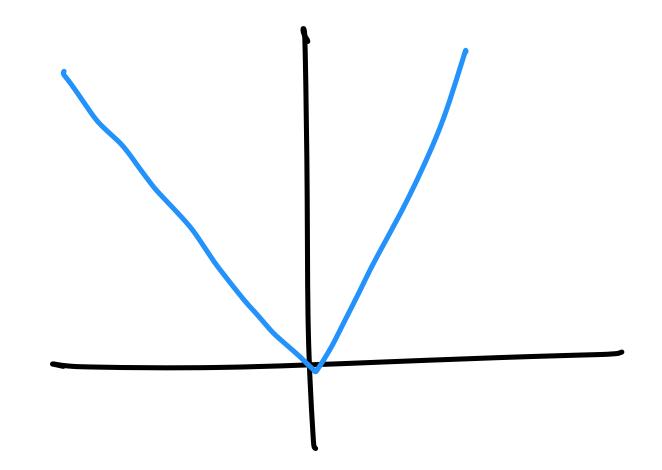
$$\frac{df}{dx} := \lim_{\delta \to 0} \frac{\delta x}{\delta y} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta},$$

if the limit exists.

Definition of the derivative

For $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point x is the value

$$\frac{df}{dx} := \lim_{\delta \to 0} \frac{\delta x}{\delta y} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta},$$



if the limit exists.

We will assume functions are everywhere differentiable (not always the case, e.g. $f(x) = \sqrt{x}$).

- differe a anstrent Single-variable Differentiation

Definition of the derivative

For $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point χ is the value

$$\frac{df}{dx} := \lim_{\delta \to 0} \frac{\delta x}{\delta y} = \lim_{\delta \to 0} \frac{f(x + \delta) - f(x)}{\delta},$$

if the limit exists.

We will assume functions are everywhere differentiable (not always the case, e.g. f(x) = |x|).

We will also denote this as f'(x) or $\nabla f(x)$.

Definition of the derivative

$$f(x) = x^{2}$$

$$f'(x) = 2x$$

formula to tre derivative

For $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point x is the value

$$\frac{df}{dx} := \lim_{\delta \to 0} \frac{\delta x}{\delta y} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta},$$

if the limit exists.

We will assume functions are everywhere differentiable (not always the case, e.g. f(x) = x).

We will also denote this as f'(x) or $\nabla f(x)$.

Important: The derivative is defined at a point!

Definition of the derivative

Example.
$$f(x) = -2x$$

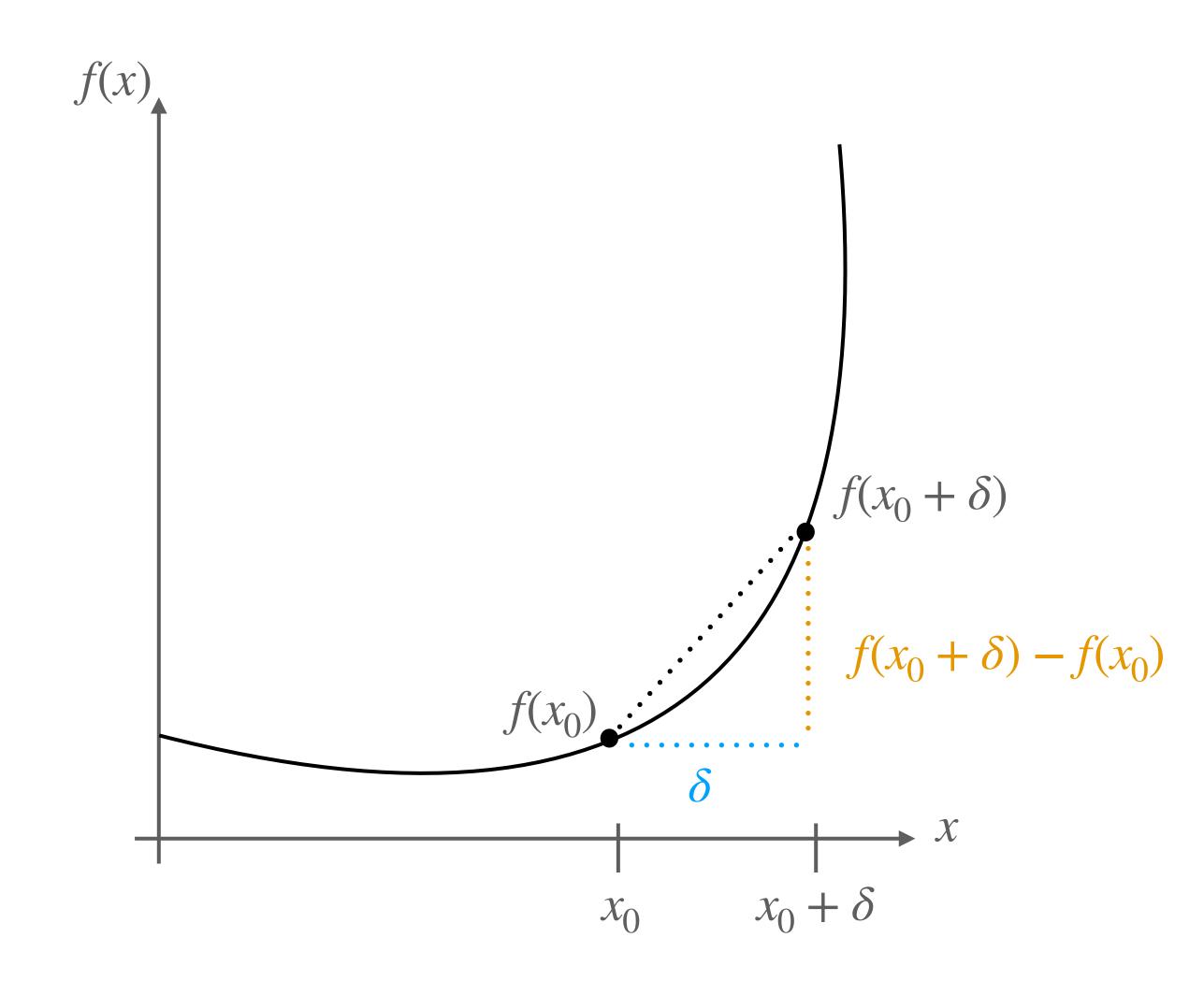
Example.
$$f(x) = x^2 - 2x + 1$$

$$\frac{\delta_7}{\delta_x} = Zx_0 + \delta - Z$$

$$\lim_{\delta \to 0} \frac{\delta_7}{\delta_x} = \lim_{\delta \to 0} (2x_0 + \delta - Z)$$

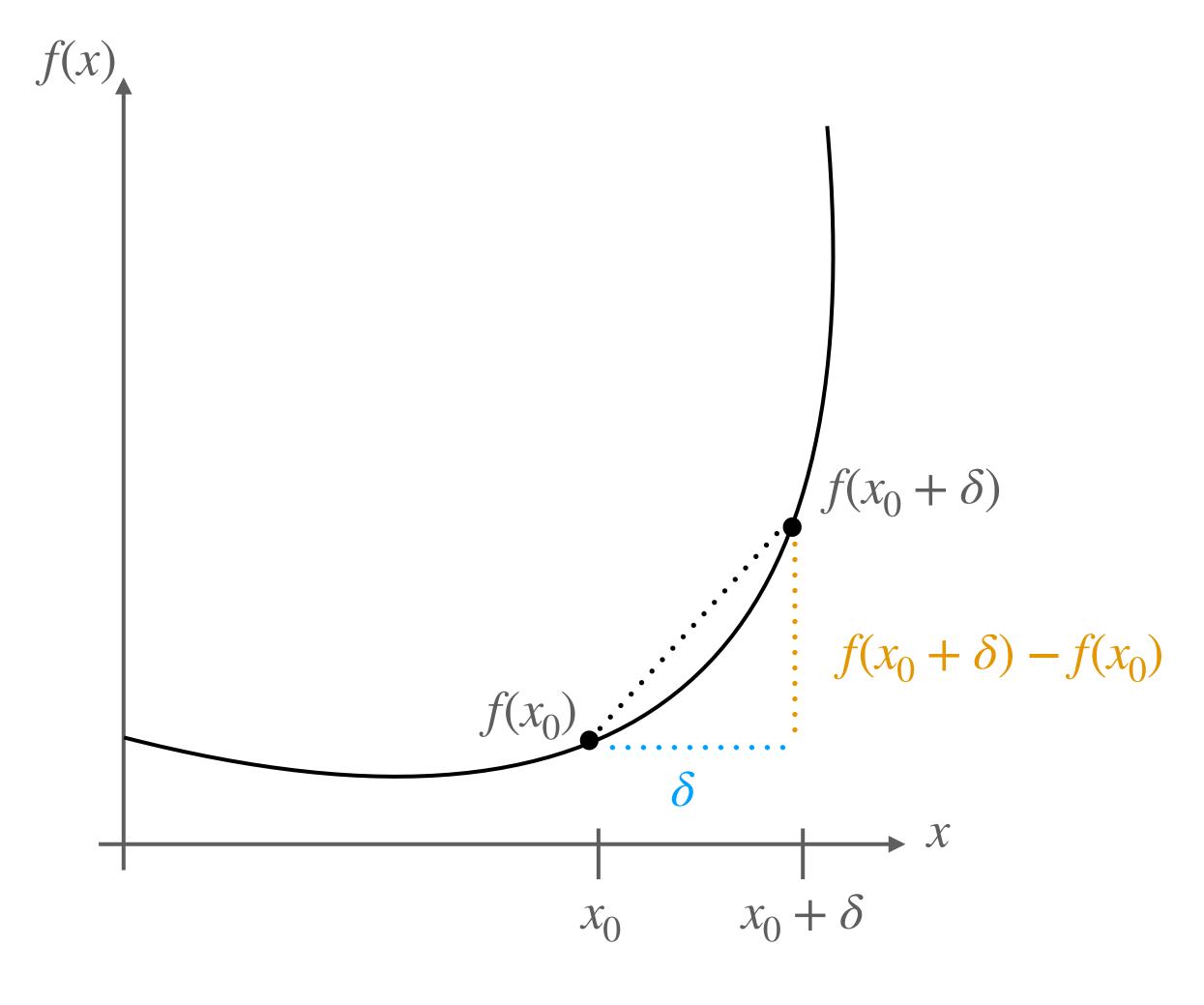
$$= 2x_0 - 2$$

 $f: \mathbb{R} \to \mathbb{R}$



 $f: \mathbb{R} \to \mathbb{R}$

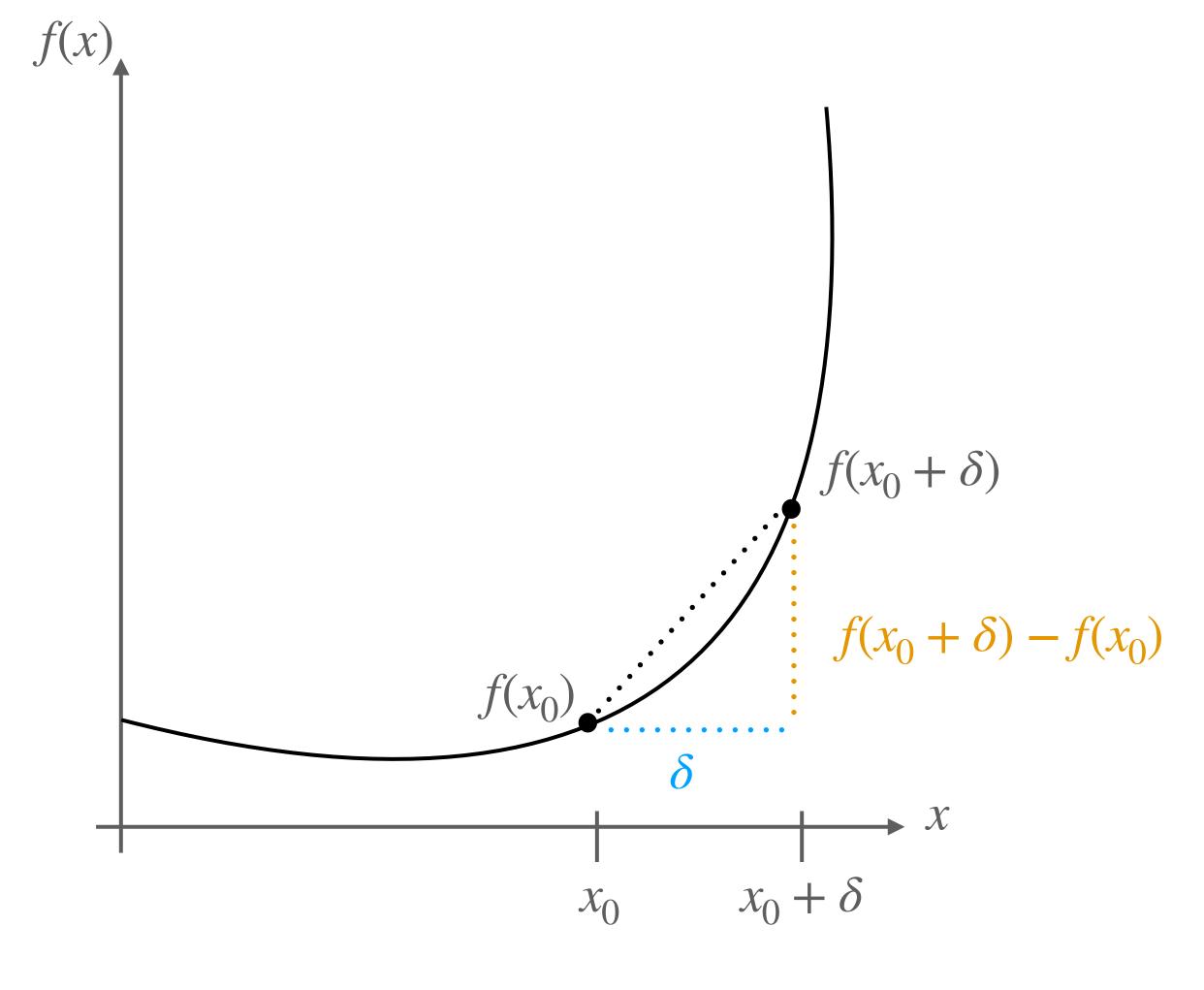
Get used to thinking, for all x that are "close" to x_0 :



 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

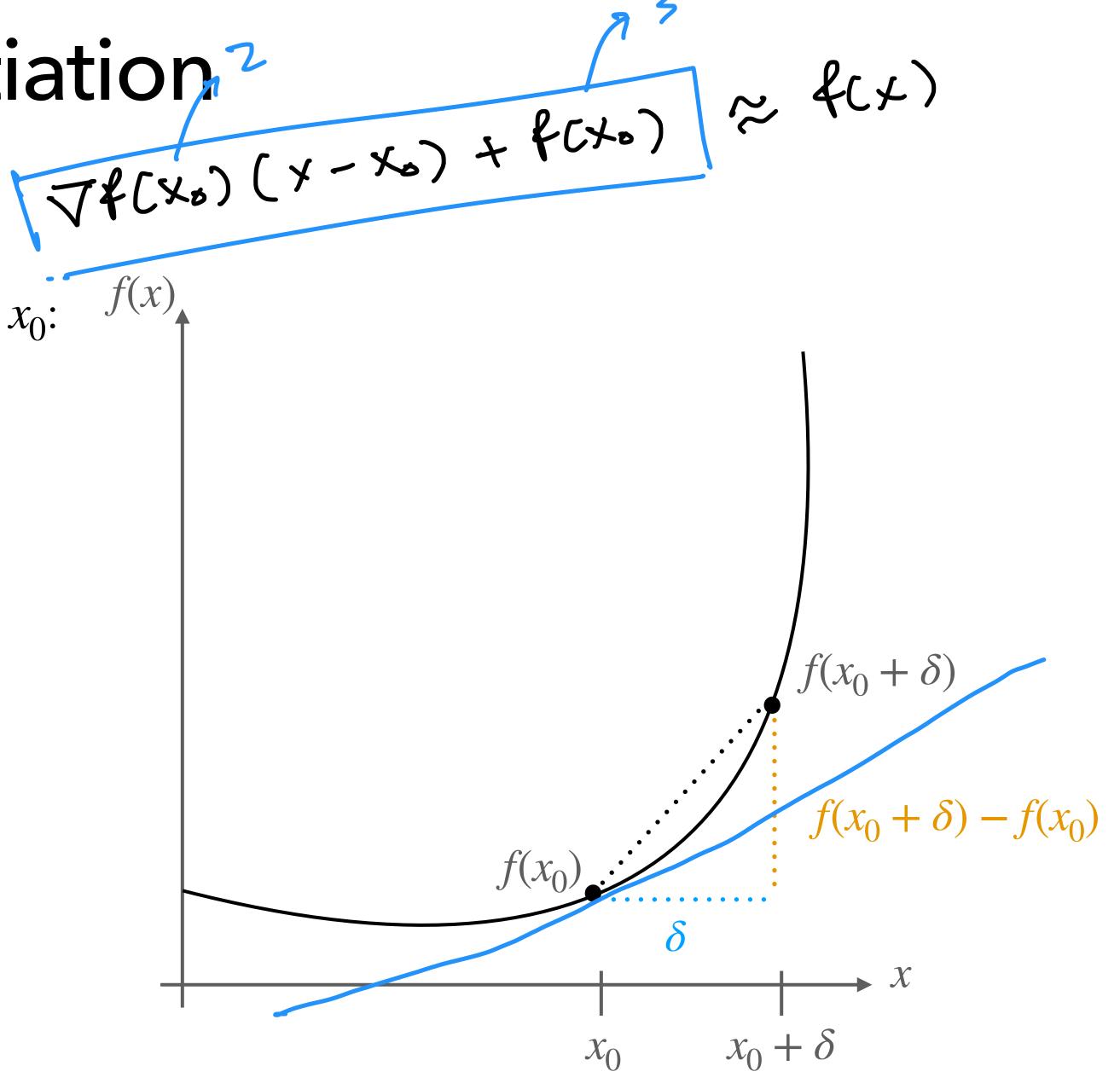


Single-variable Differentiation²

 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

Function
$$= \nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$
where $f(x)$

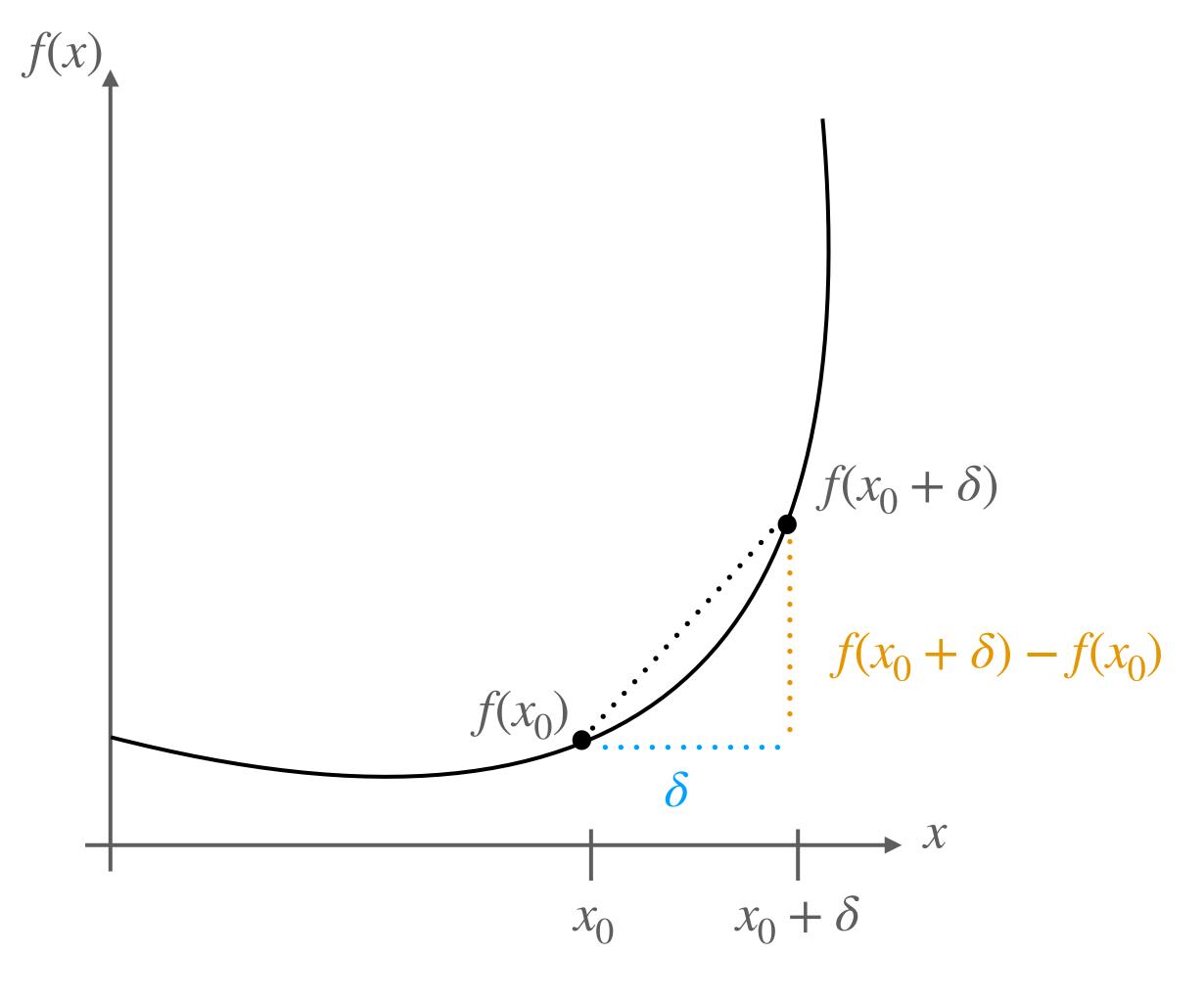


 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

$$\nabla f(x_0)\delta \approx f(x_0 + \delta) - f(x_0)$$

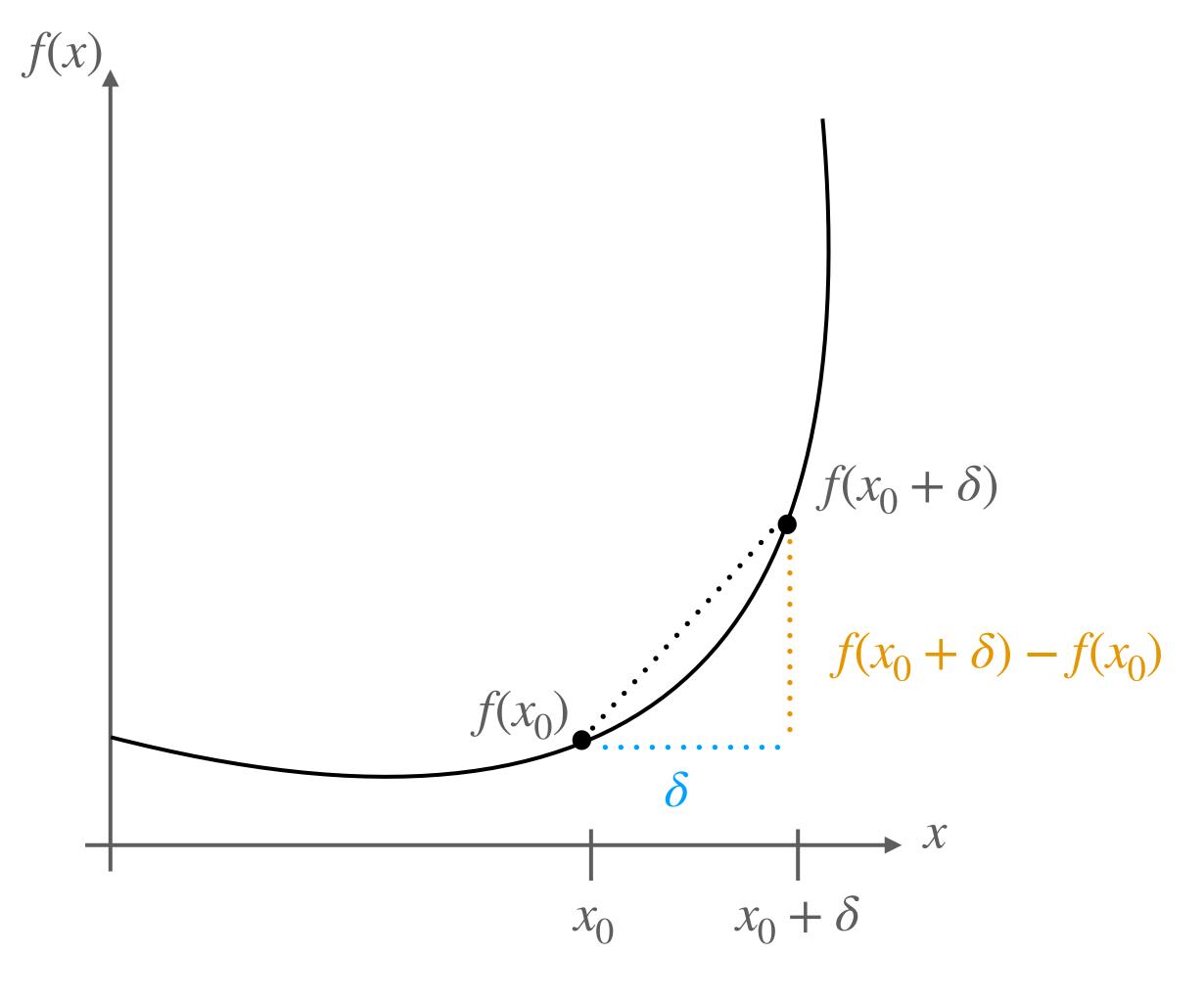


 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

$$\nabla f(x_0)\delta \approx f(x_0 + \delta) - f(x_0)$$

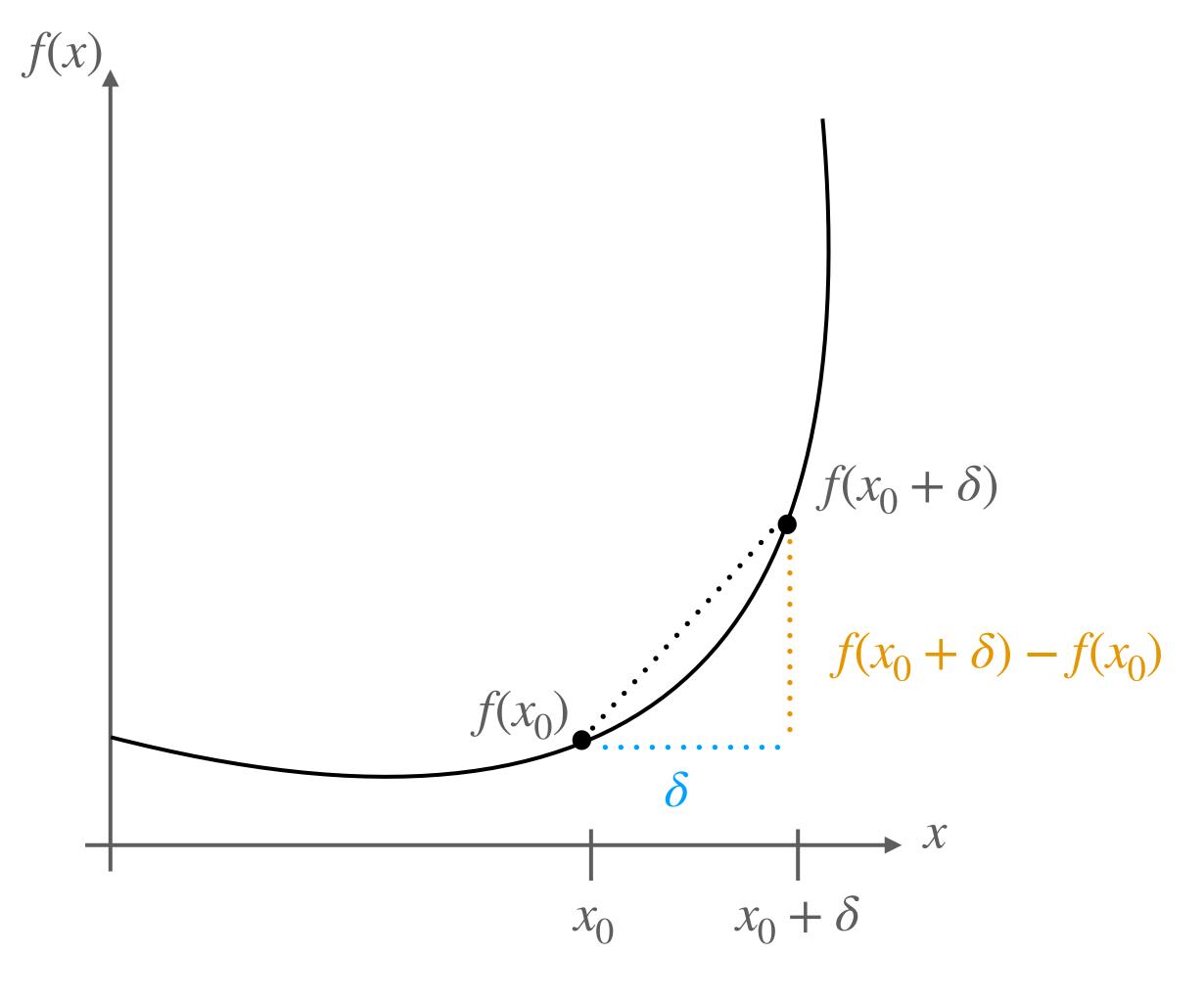


 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

$$\nabla f(x_0)\delta \approx f(x_0 + \delta) - f(x_0)$$



 $f: \mathbb{R} \to \mathbb{R}$

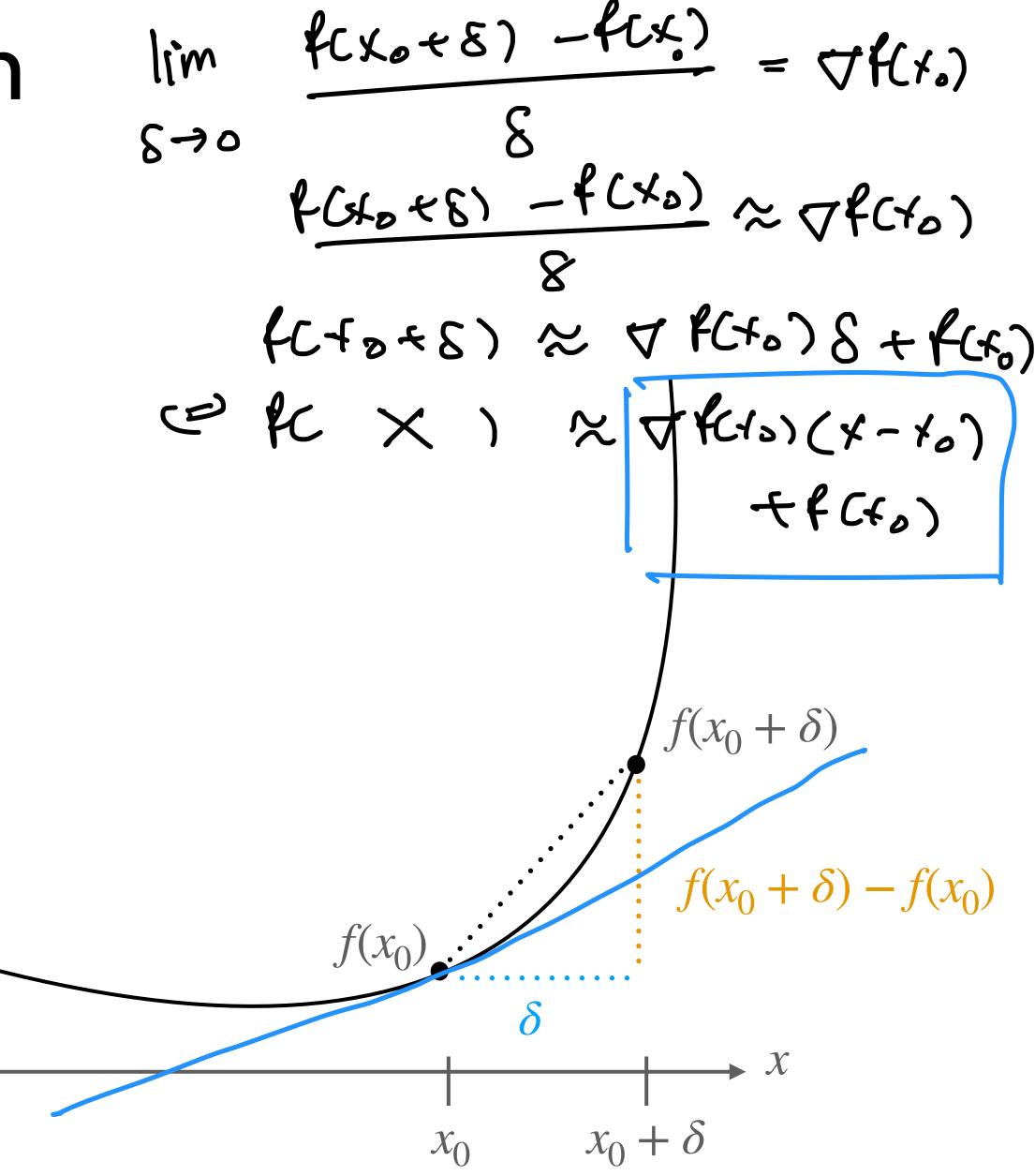
Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The "target point" can be written $x = x_0 + \delta$.

$$\nabla f(x_0)\delta \approx f(x_0 + \delta) - f(x_0)$$

The derivative gives a good local, linear approximation to the change in f(x).



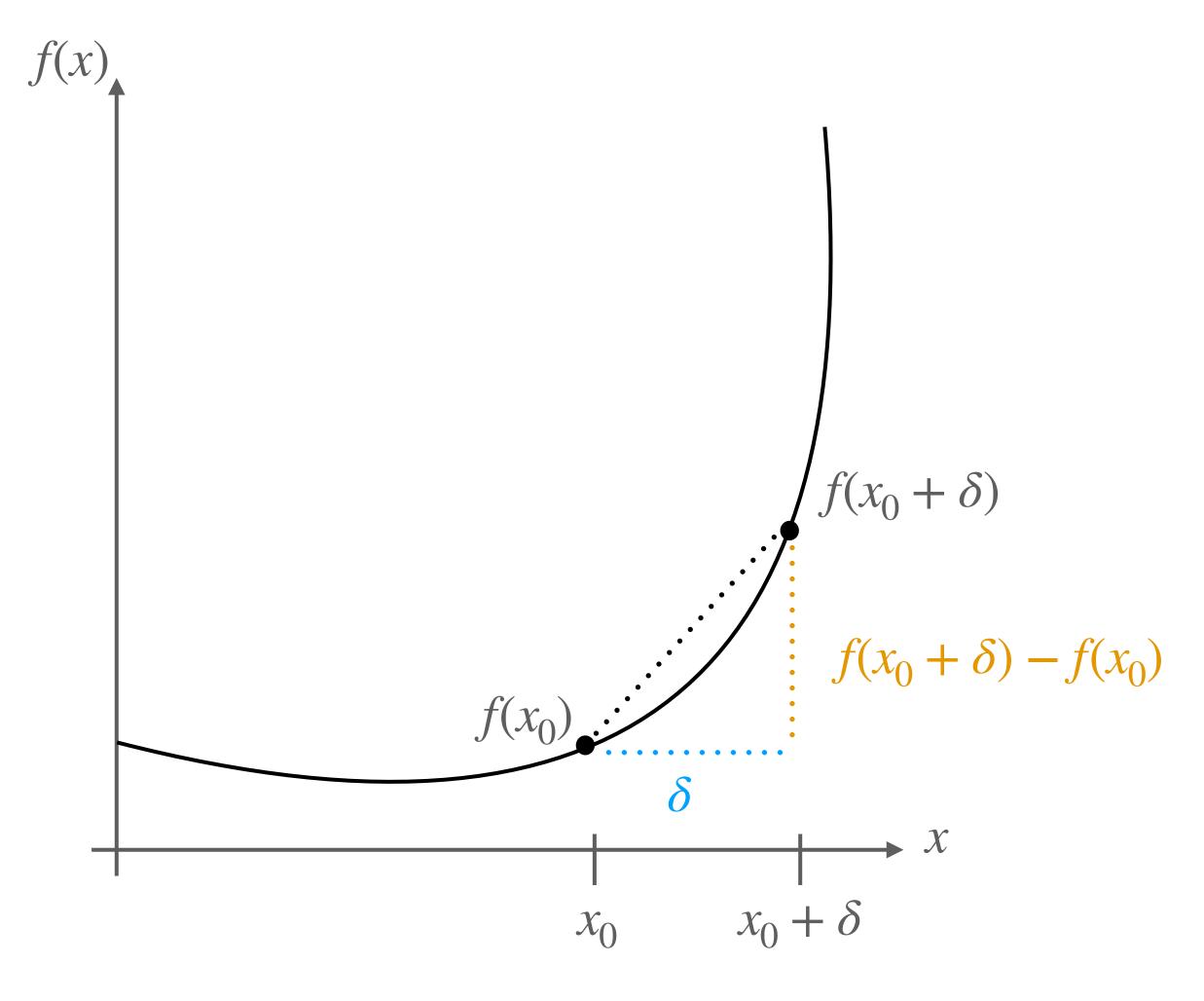
 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The "target point" can be written $x = x_0 + \delta$.

$$\nabla f(x_0)\delta \approx f(x_0 + \delta) - f(x_0)$$



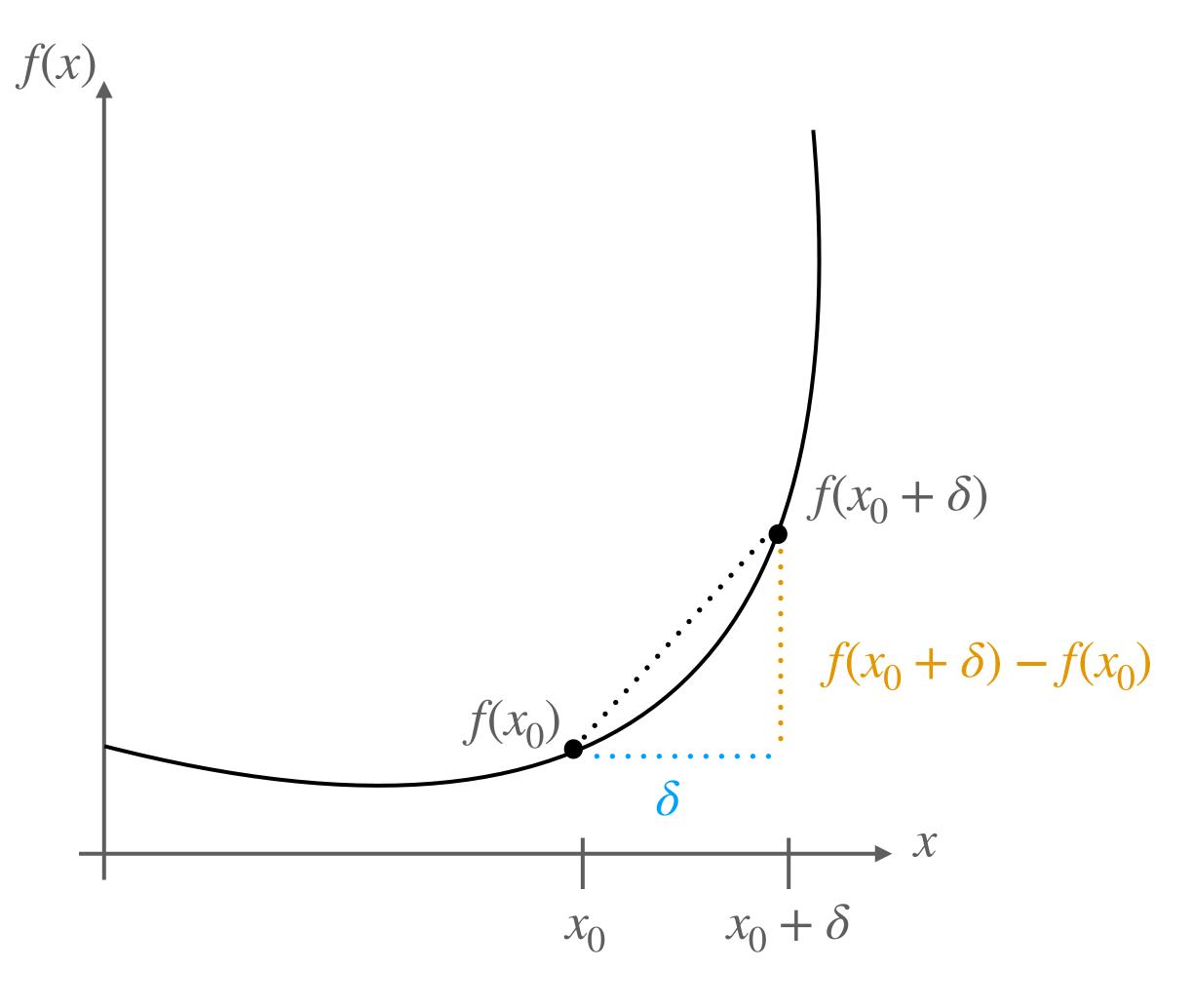
 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The "target point" can be written $x = x_0 + \delta$.

$$\nabla f(x_0)\delta \approx f(x_0 + \delta) - f(x_0)$$



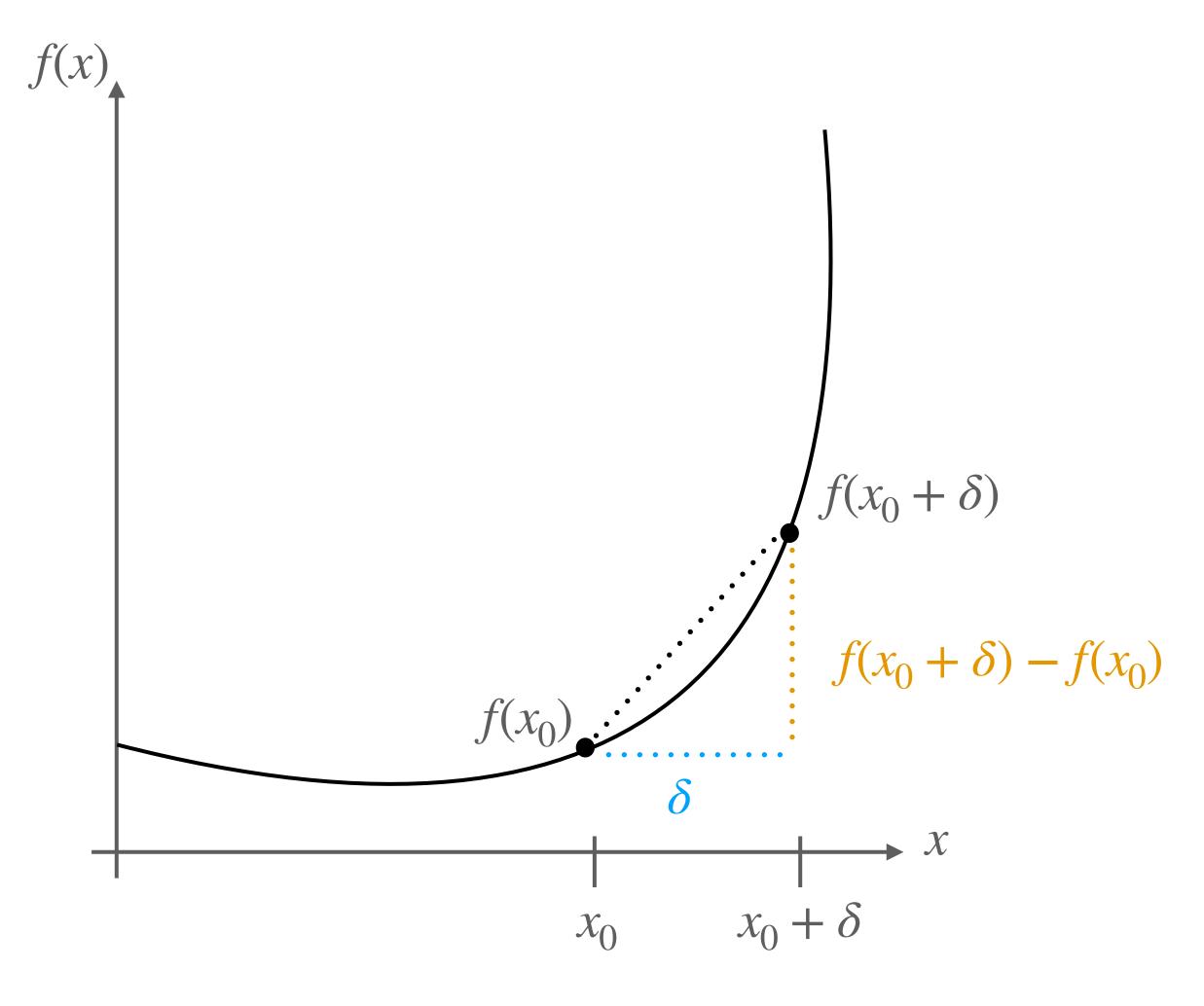
 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The "target point" can be written $x = x_0 + \delta$.

$$\nabla f(x_0) \delta \approx f(x_0 + \delta) - f(x_0)$$



 $f: \mathbb{R} \to \mathbb{R}$

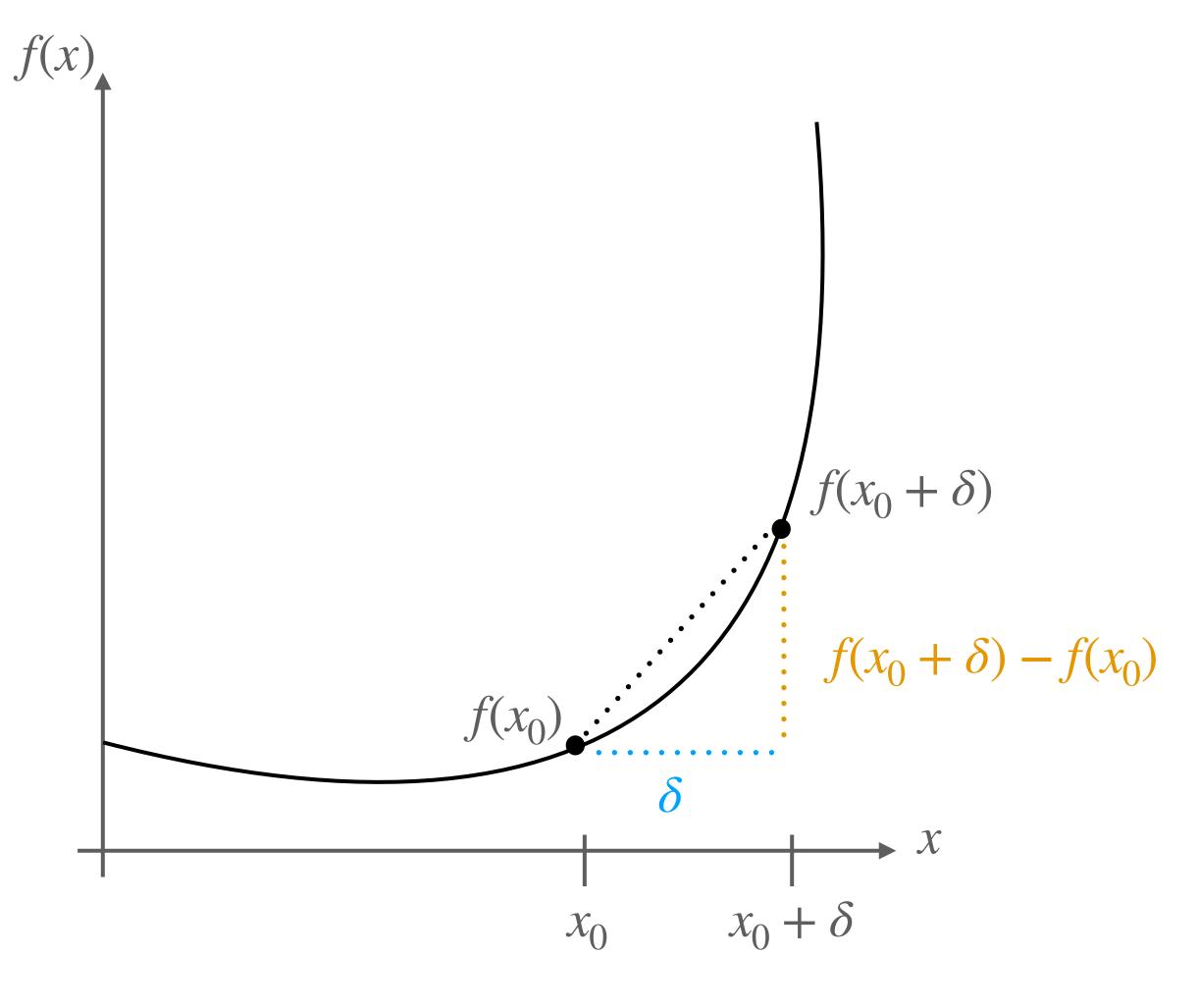
Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The "target point" can be written $x = x_0 + \delta$.

$$\nabla f(x_0) \delta \approx f(x_0 + \delta) - f(x_0)$$

$$\cos^2 \theta + \delta \cos^2 \theta + \delta$$



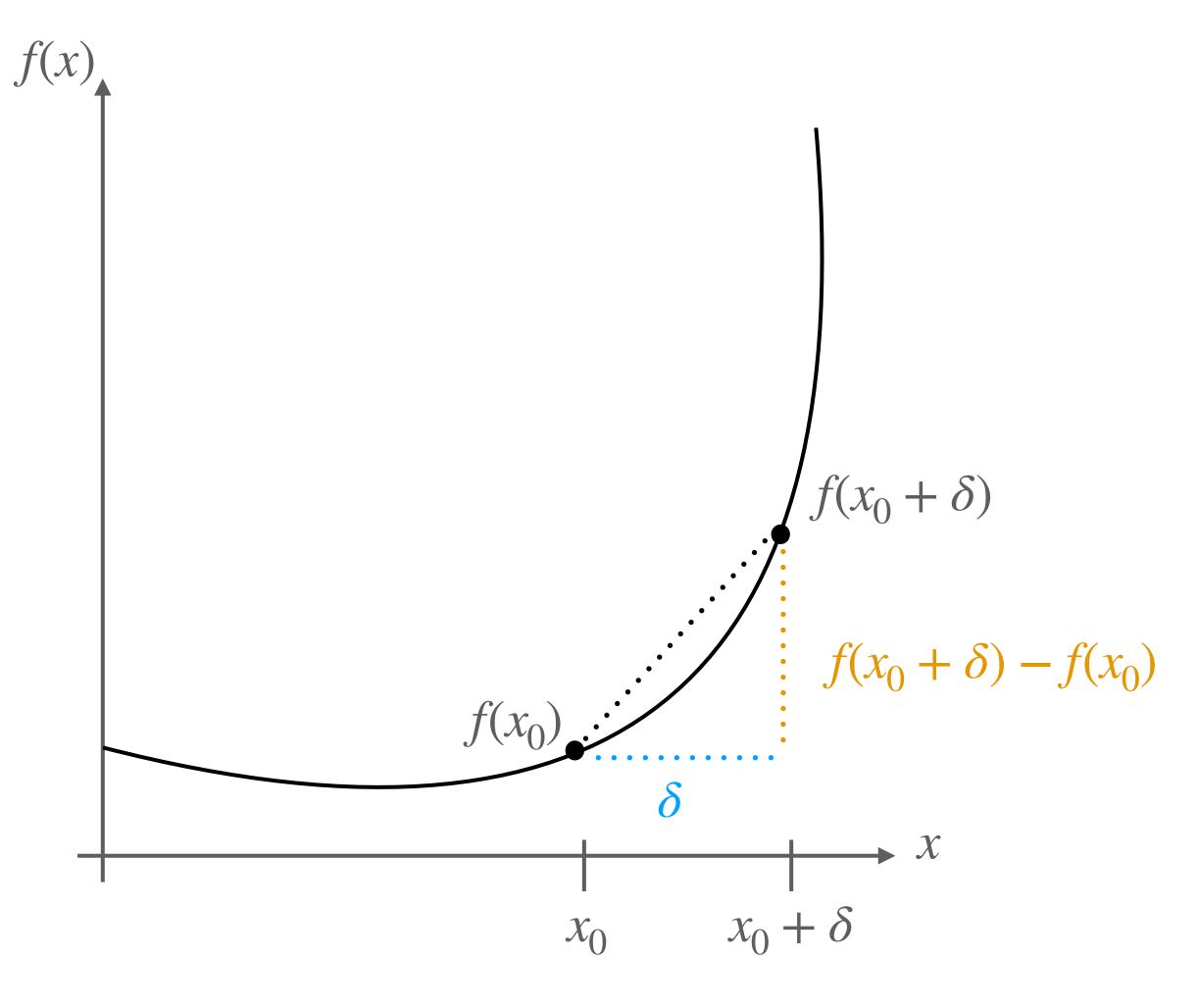
 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The "target point" can be written $x = x_0 + \delta$.

$$\nabla f(x_0) \delta \approx f(x_0 + \delta) - f(x_0)$$



Review: basic derivative rules

Product rule: $\nabla (f(x)g(x)) = g(x) \nabla f(x) + f(x) \nabla g(x)$

Quotient rule:
$$\nabla \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) \nabla f(x) - f(x) \nabla g(x)}{g(x)^2}$$

Sum rule: $\nabla (f(x) + g(x)) = \nabla f(x) + \nabla g(x)$

Chain rule: $\nabla(g(f(x))) = \nabla(g \circ f)(x) = \nabla g(f(x)) \nabla f(x)$

Linearity

Review from linear algebra

Linearity is the central property in linear algebra. Cooking is typically linear.

Bacon, egg, cheese (on roll)	Bacon, egg, cheese (on bagel)	<u>Lox sandwich</u>
1 egg	1 egg	0 egg
1 slice of cheese	1 slice of cheese	0 slice of cheese
1 slice bacon	1 slice bacon	0 slice bacon
1 Kaiser roll	0 Kaiser roll	0 Kaiser roll
0 cream cheese	0 cream cheese	1 cream cheese
0 slices of lox	0 slices of lox	2 slices of lox
0 bagel	1 bagel	1 bagel

Linearity

Review from linear algebra

Linearity is the central property in linear algebra.

A function ("transformation") $T: \mathbb{R}^d \to \mathbb{R}^n$ is <u>linear</u> if T satisfies these two properties for any two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$:

$$T(\mathbf{a} + \mathbf{b}) = T(\mathbf{a}) + T(\mathbf{b})$$

$$T(c\mathbf{a}) = cT(\mathbf{a})$$
 for any $c \in \mathbb{R}$.

Linearity and differentiation

How will we use linear transformations?

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

$$\forall f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Recall: T(x + y) = T(x) + T(y) and T(cx) = cT(x).

Derivative exploits the fact that, on small scales, things behave linearly!

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

T: change in
$$x \to$$
 change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

$$\nabla f(x_0)(x - x_0) \approx f(x)$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

$$T$$
: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

$$T$$
: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

$$T:$$
 change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

$$T:$$
 change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x-x_0) \approx f(x) - f(x_0)$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

$$T:$$
 change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x-x_0) \approx f(x) - f(x_0)$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

$$\nabla f(x_0) = 2x$$

Consider the function $f(x) = x^2$. The derivative of f at x = 1 is $\nabla f(1) = 2$.

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Consider the function $f(x) = x^2$. The derivative of f at x = 1 is $\nabla f(1) = 2$.

The derivative is nothing more than a 1×1 matrix in single-variable differentiation: $\nabla f(1) = [2]$.

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Consider the function $f(x) = x^2$. The derivative of f at x = 1 is $\nabla f(1) = 2$.

The derivative is nothing more than a 1×1 matrix in single-variable differentiation: $\nabla f(1) = [2]$.

A goal of differential calculus is to replace nonlinear functions with linear approximations!

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Consider the function $f(x) = x^2$. The derivative of f at x = 1 is $\nabla f(1) = 2$.

The derivative is nothing more than a 1×1 matrix in single-variable differentiation: $\nabla f(1) = [2]$.

A goal of differential calculus is to replace nonlinear functions with linear approximations!

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Consider the function $f(x) = x^2$. The derivative of f at x = 1 is $\nabla f(1) = 2$.

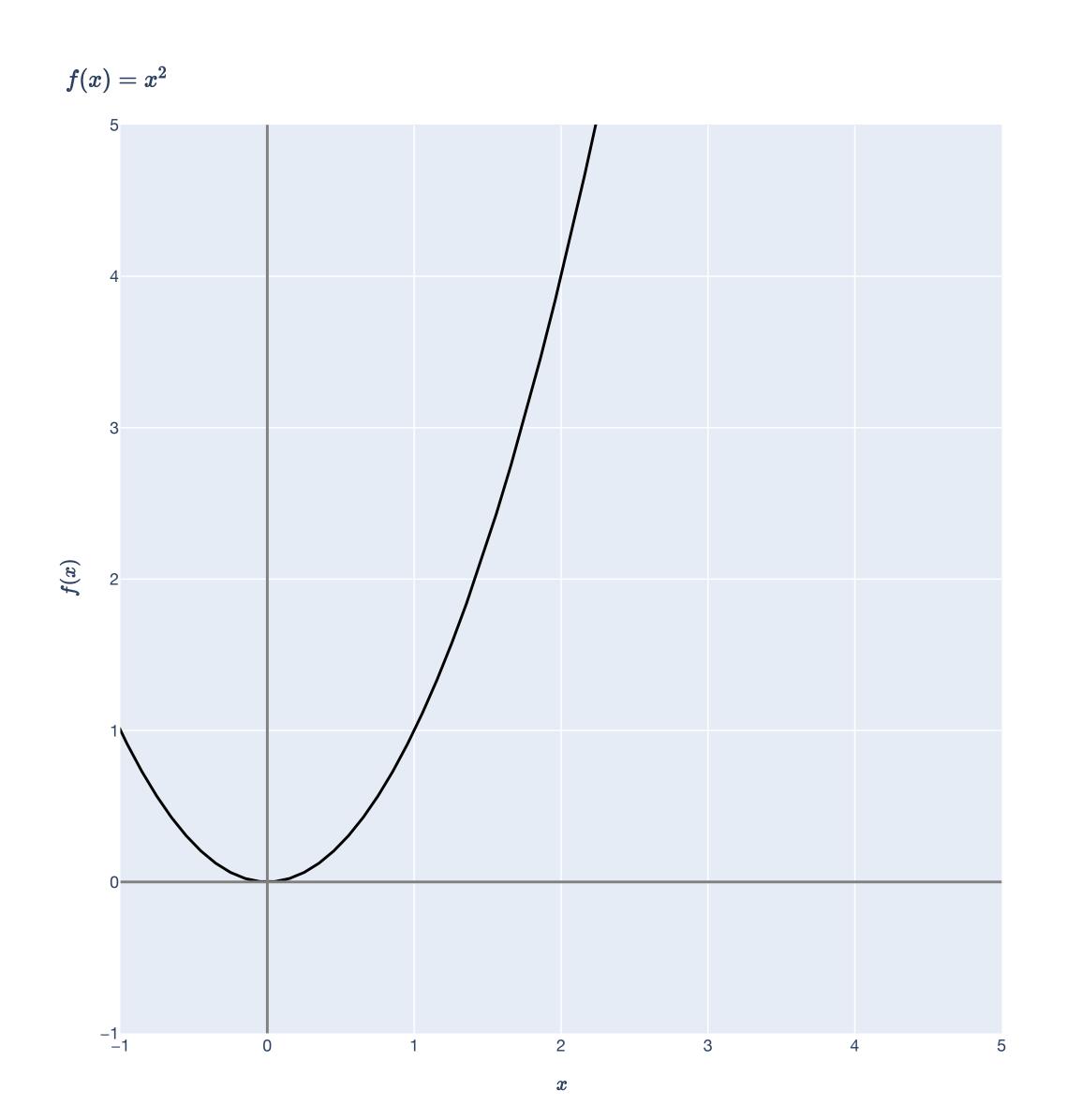
The derivative is nothing more than a 1×1 matrix in single-variable differentiation: $\nabla f(1) = [2]$.

A goal of differential calculus is to replace nonlinear functions with linear approximations!

Linearity and differentiation

Consider the function $f(x) = x^2$.

The derivative of f at x = 1 is $\nabla f(1) = 2$.



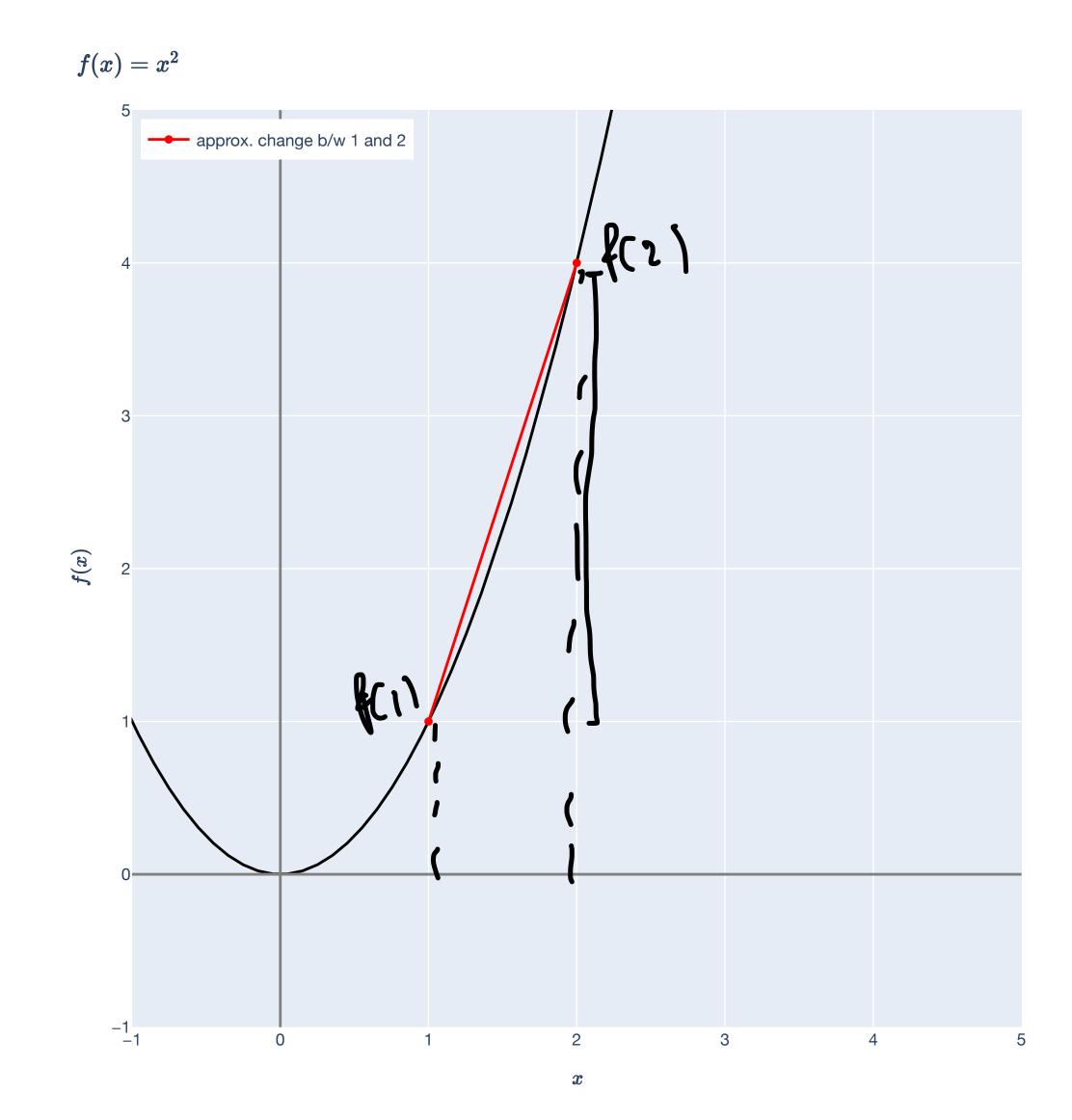
Linearity and differentiation

Let $f(x) = x^2$. Derivative of f at x = 1 is $\nabla f(1) = 2$.

$$\nabla f(1)(2-1) = [2](2-1) = 2 \approx$$

change in f between 1 and 2

$$= P(2) - P(1) = 4 - 1 = 3$$



Linearity and differentiation

Let $f(x) = x^2$. Derivative of f at x = 1 is $\nabla f(1) = 2$.

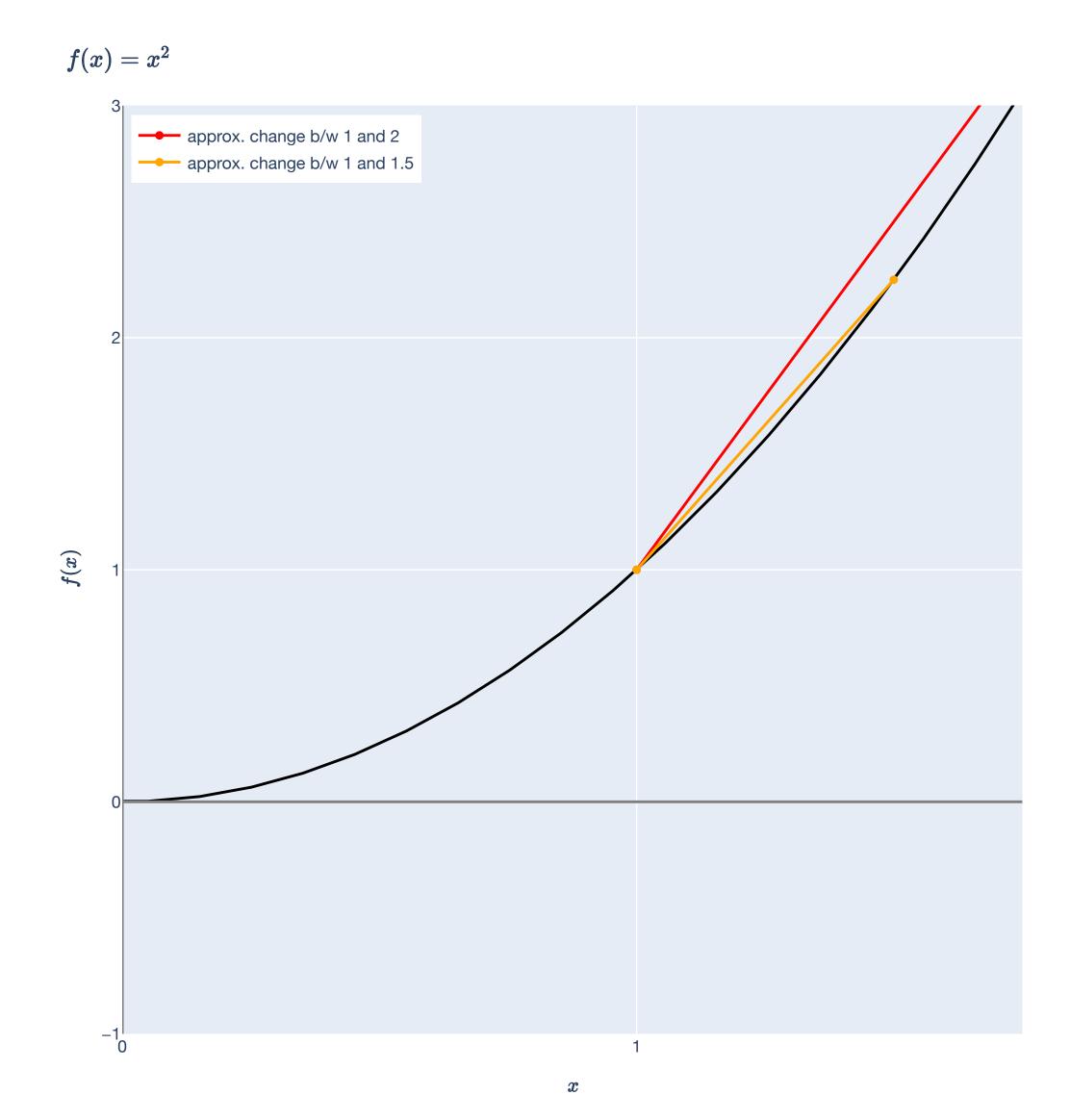
$$\nabla f(1)(2-1) = [2](2-1) = 2 \approx$$

change in f between 1 and 2

$$\nabla f(1)(1.5 - 1) = [2](1.5 - 1) = 1$$

change in f between 1 and 1.5

$$4(1.5)-f(1)=z.25-1$$
=(1.25)



Linearity and differentiation

Let $f(x) = x^2$. Derivative of f at x = 1 is $\nabla f(1) = 2$.

$$\nabla f(1)(2-1) = [2](2-1) = 2 \approx$$

change in f between 1 and 2

$$\nabla f(1)(1.5-1) = [2](1.5-1) = 1 \approx$$

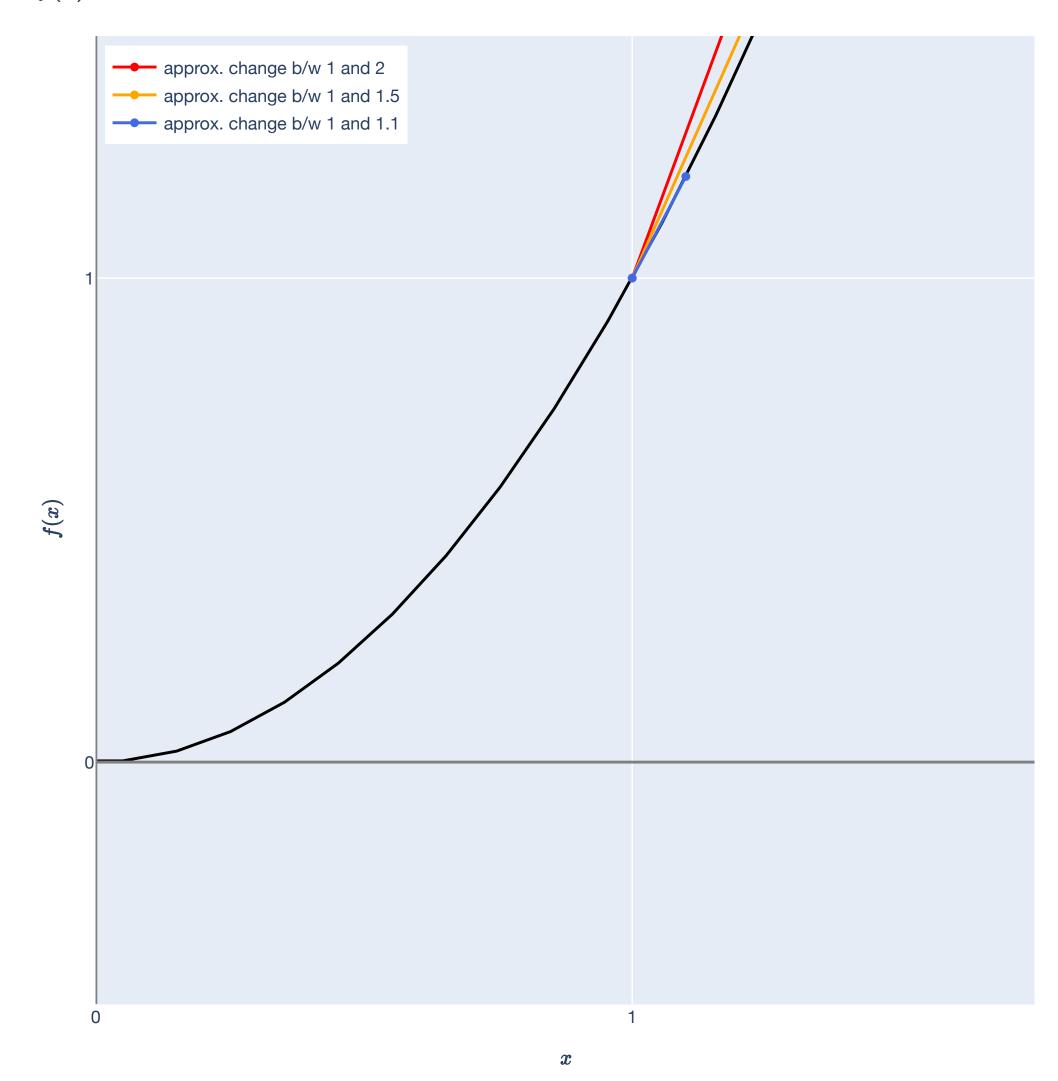
change in f between 1 and 1.5

$$\nabla f(1)(1.1-1) = [2](1.1-1) = 0.2 \approx 0.2$$

change in f between 1 and 1.1

$$f((.1) = [.2[f(1) = [$$

$$f(x) = x^2$$



Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y.

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The derivative is nothing more than a 1×1 matrix in single-variable differentiation.

Review of multivariable notions of derivative

Scalar-valued vs. vector-valued functions

Scalar-valued vs. vector-valued functions

 $f: \mathbb{R}^d \to \mathbb{R}$ is a <u>scalar-valued</u> multivariable function

Scalar-valued vs. vector-valued functions

 $f: \mathbb{R}^d \to \mathbb{R}$ is a <u>scalar-valued</u> multivariable function

 $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is a <u>vector-valued</u> multivariable function.

Scalar-valued vs. vector-valued functions

 $f: \mathbb{R}^d \to \mathbb{R}$ is a <u>scalar-valued</u> multivariable function

 $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is a <u>vector-valued</u> multivariable function.

$$\mathbf{f}(\mathbf{x}_0) = (f_1(\mathbf{x}_0), ..., f_n(\mathbf{x}_0)).$$

Scalar-valued vs. vector-valued functions

 $f: \mathbb{R}^d \to \mathbb{R}$ is a <u>scalar-valued</u> multivariable function

 $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is a <u>vector-valued</u> multivariable function.

$$\mathbf{f}(\mathbf{x}_0) = (f_1(\mathbf{x}_0), ..., f_n(\mathbf{x}_0)).$$

But \mathbf{f} is just made up of n scalar-valued functions.

Scalar-valued vs. vector-valued functions

 $f: \mathbb{R}^d \to \mathbb{R}$ is a <u>scalar-valued</u> multivariable function

 $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is a <u>vector-valued</u> multivariable function.

$$\mathbf{f}(\mathbf{x}_0) = (f_1(\mathbf{x}_0), ..., f_n(\mathbf{x}_0)).$$

But \mathbf{f} is just made up of n scalar-valued functions.

Scalar-valued vs. vector-valued functions

 $f: \mathbb{R}^d \to \mathbb{R}$ is a <u>scalar-valued</u> multivariable function

 $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is a <u>vector-valued</u> multivariable function.

$$\mathbf{f}(\mathbf{x}_0) = (f_1(\mathbf{x}_0), ..., f_n(\mathbf{x}_0)).$$

But \mathbf{f} is just made up of n scalar-valued functions.

Upshot: Just treat vector-valued functions as a collection of n scalar-valued functions, and deal with each coordinate individually.

Big picture: total, partial, and directional derivatives.

The total derivative (or just derivative) of \mathbf{f} at \mathbf{x}_0 is a linear transformation $D\mathbf{f}(\mathbf{x}_0): \mathbb{R}^d \to \mathbb{R}^n$.

The <u>gradient</u> of f at \mathbf{x}_0 is the vector $\nabla f(\mathbf{x}_0) \in \mathbb{R}^d$ and derivative of scalar-valued $f: \mathbb{R}^d \to \mathbb{R}$.

The <u>Jacobian</u> of \mathbf{f} at \mathbf{x}_0 is the matrix $\nabla \mathbf{f}(\mathbf{x}_0) \in \mathbb{R}^{n \times d}$ and derivative of vector-valued $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^n$.

The <u>directional derivative</u> of \mathbf{f} at \mathbf{x}_0 in the direction $\mathbf{v} \in \mathbb{R}^d$ is the derivative applied to \mathbf{v} :

$$\nabla \underbrace{\mathbf{f}(\mathbf{x}_0)}_{n \times d} \underbrace{\mathbf{v}}_{d \times 1}$$
, via matrix-vector multiplication.

The <u>ith partial derivative</u> of **f** at \mathbf{x}_0 is the directional derivative in the unit basis direction $\mathbf{e}_i \in \mathbb{R}^d$.

Difference from single-variable differentiation

Difference from single-variable differentiation

Why is multivariable differentiation harder to pin down than single-variable differentiation?

Difference from single-variable differentiation

Why is multivariable differentiation harder to pin down than single-variable differentiation?

Difference from single-variable differentiation

Why is multivariable differentiation harder to pin down than single-variable differentiation?

Difference from single-variable differentiation

Why is multivariable differentiation harder to pin down than single-variable differentiation?

Difference from single-variable differentiation

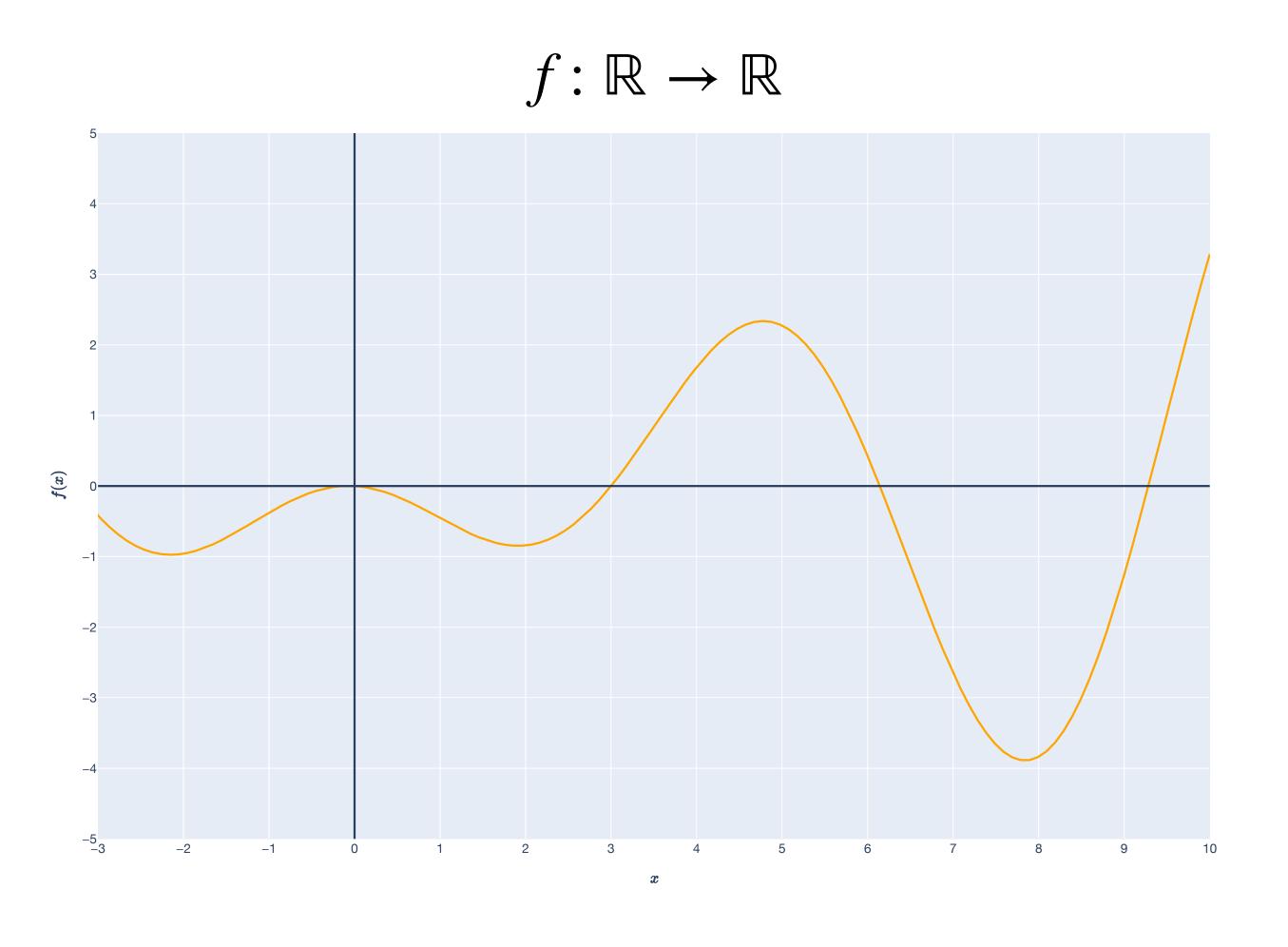
Why is multivariable differentiation harder to pin down than single-variable differentiation?

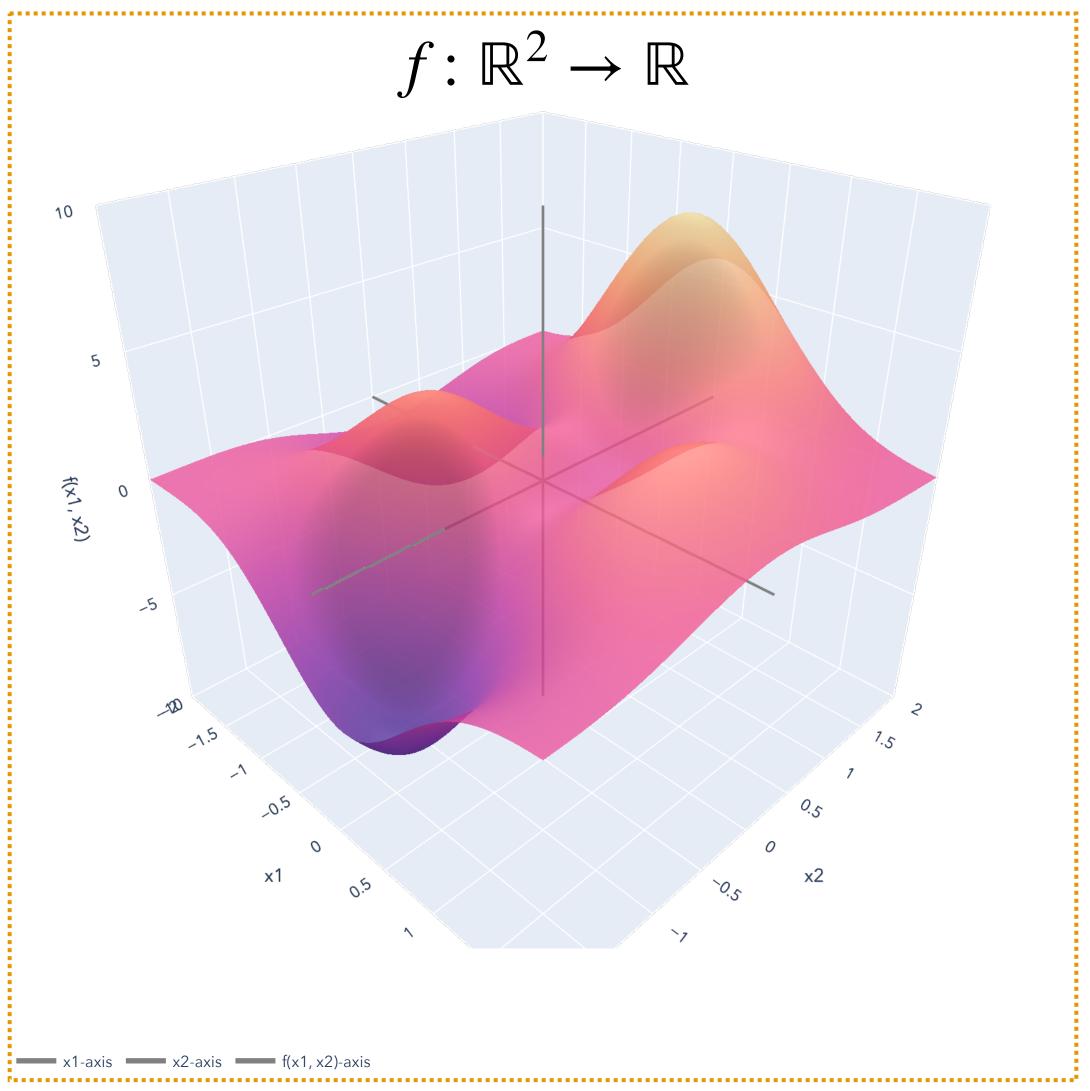
Difference from single-variable differentiation

Why is multivariable differentiation harder to pin down than single-variable differentiation?

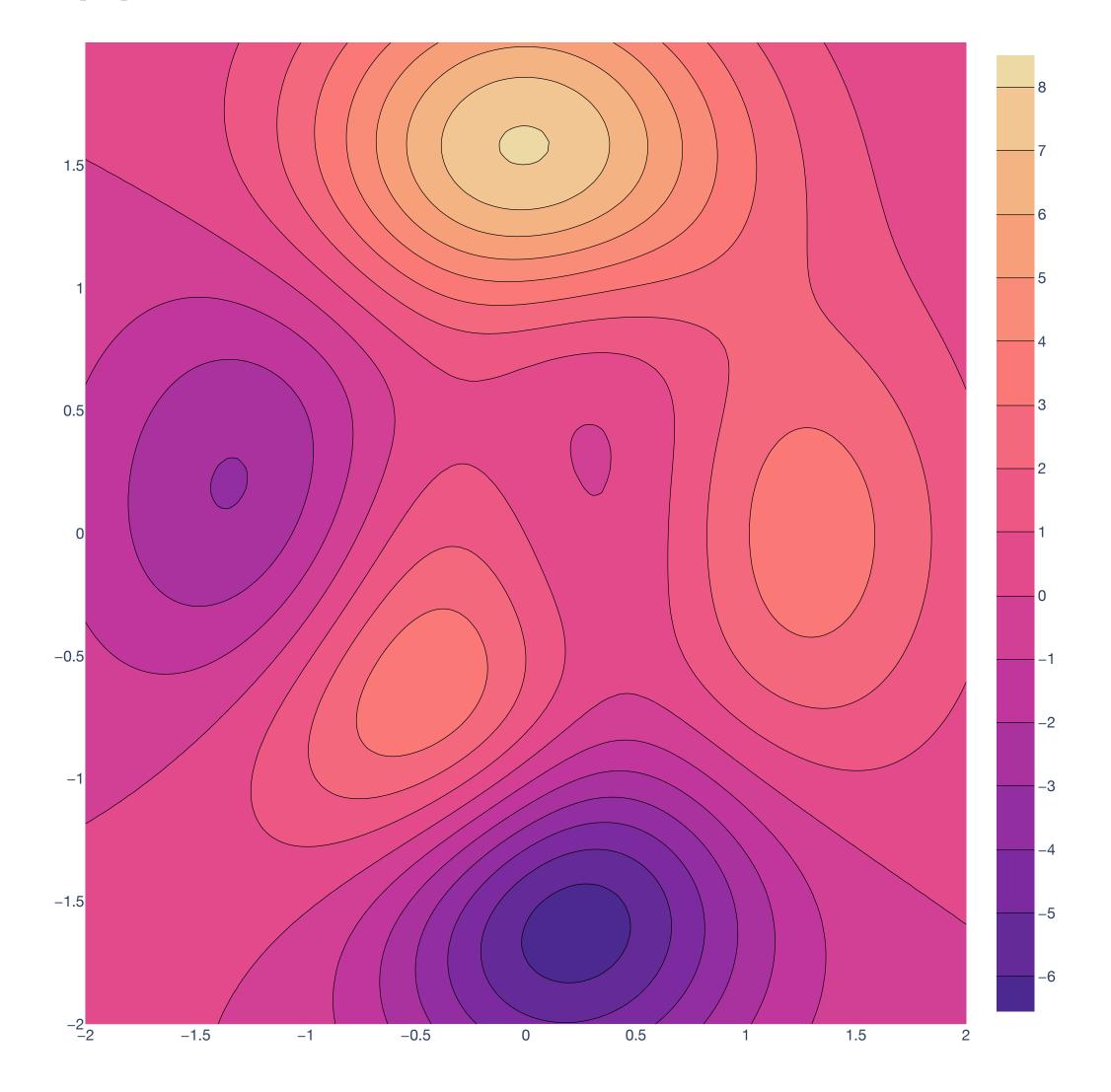
In \mathbb{R} , there are only two directions from which we can approach x_0 (on a standard Cartesian plane, the "left" and the "right").

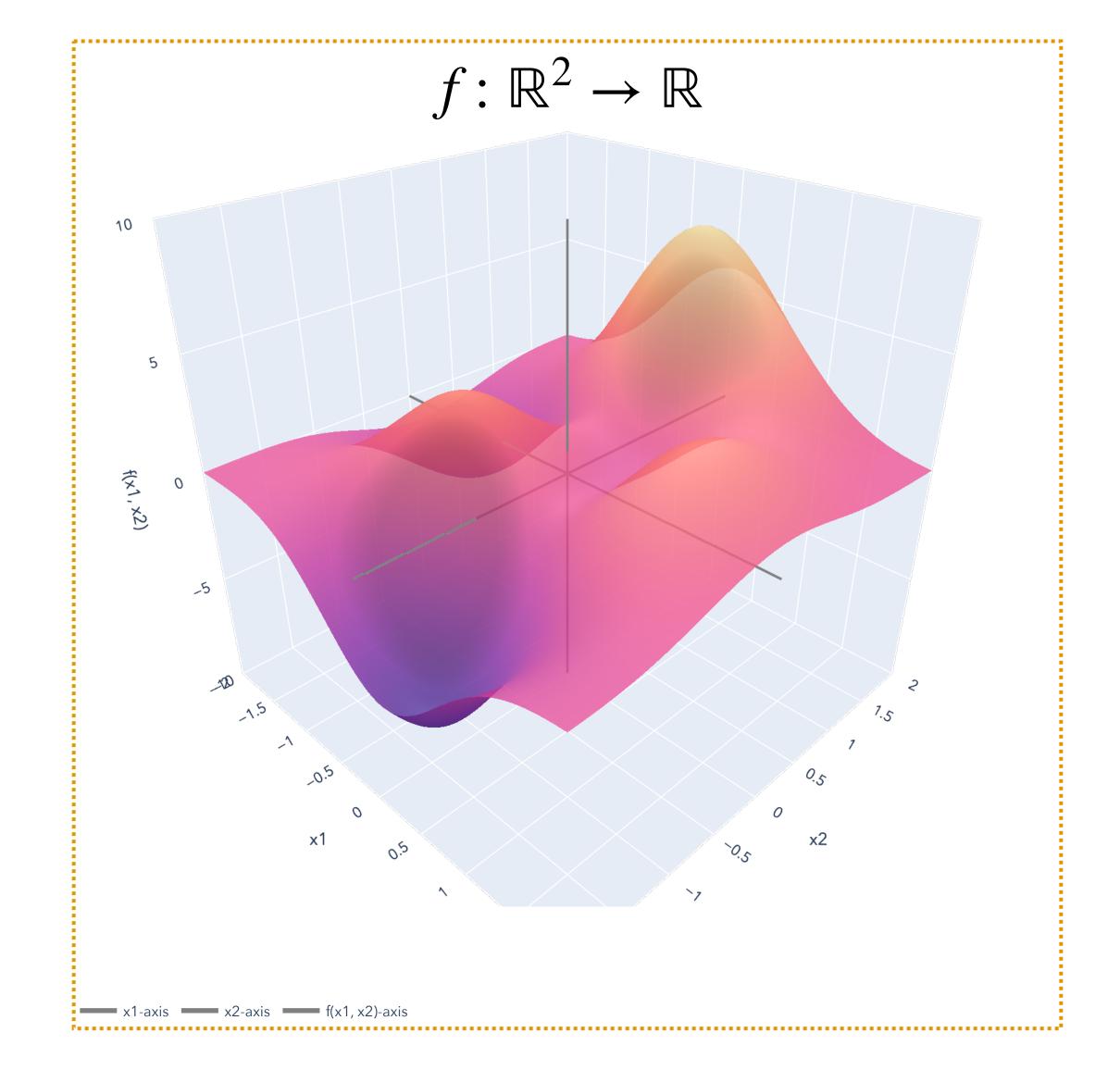
Approach directions





Approach directions





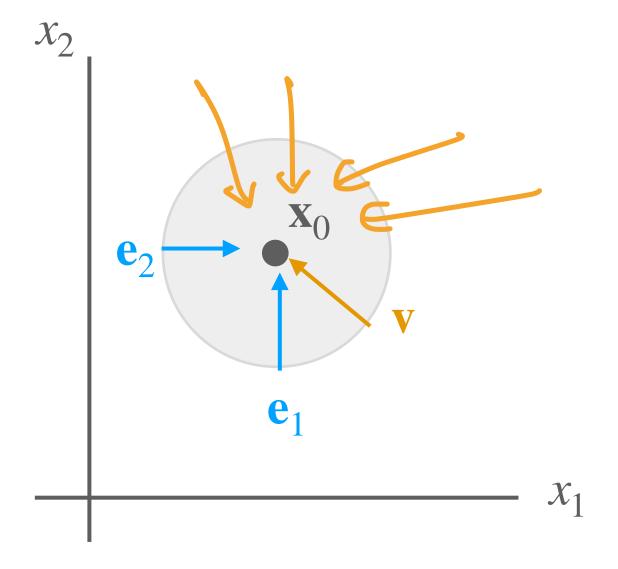
Directional and partial derivatives

Directional and partial derivatives

For
$$\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^{\mathbf{x}}$$
 and point $\mathbf{x}_0...$

The <u>directional derivative</u> is change in \mathbf{f} approaching \mathbf{x}_0 , direction defined by vector $\mathbf{v} \in \mathbb{R}^d$.

The <u>ith partial derivative</u> is change in **f** when approaching \mathbf{x}_0 from standard basis direction \mathbf{e}_i .

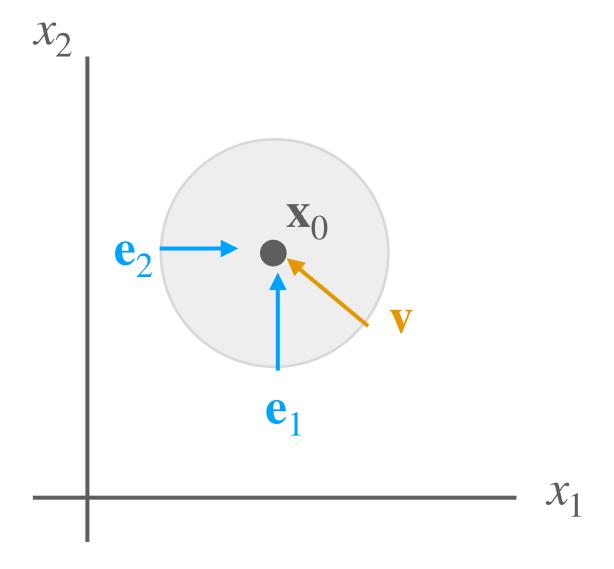


Directional and partial derivatives

For $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ and point \mathbf{x}_0 ...

The <u>directional derivative</u> is change in \mathbf{f} approaching \mathbf{x}_0 , direction defined by <u>vector</u> $\mathbf{v} \in \mathbb{R}^d$.

The <u>ith partial derivative</u> is change in **f** when approaching \mathbf{x}_0 from standard basis direction \mathbf{e}_i .

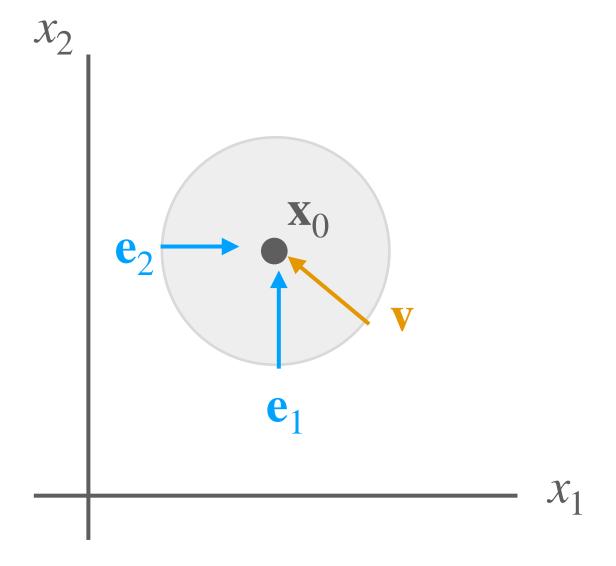


Directional and partial derivatives

For $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ and point \mathbf{x}_0 ...

The <u>directional derivative</u> is change in **f** approaching \mathbf{x}_0 , direction defined by <u>vector</u> $\mathbf{v} \in \mathbb{R}^d$.

The <u>ith partial derivative</u> is change in **f** when approaching \mathbf{x}_0 from standard basis direction \mathbf{e}_i .



Directional derivative

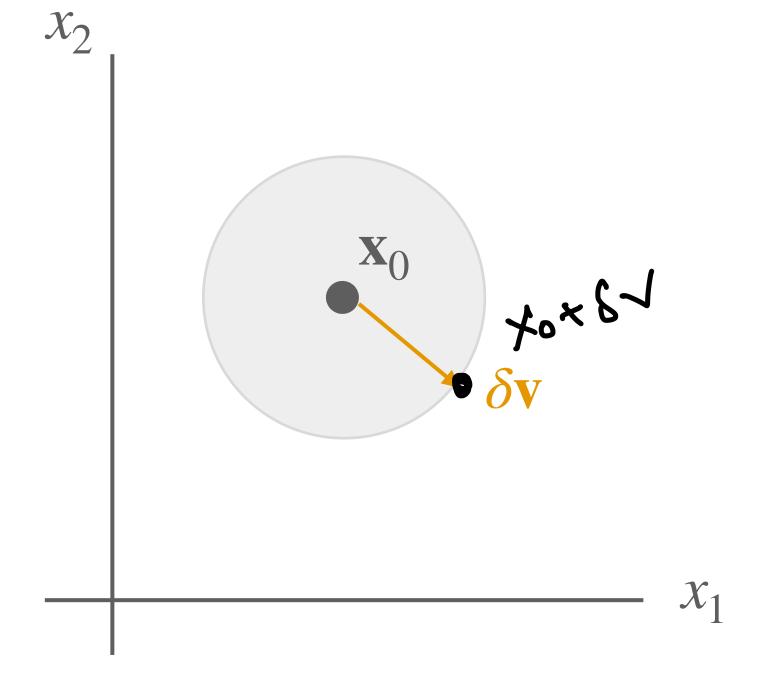
$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{v}) - \mathbf{f}(\mathbf{x}_0)}{\delta}.$$

Directional derivative

$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{v}) - \mathbf{f}(\mathbf{x}_0)}{\delta}.$$

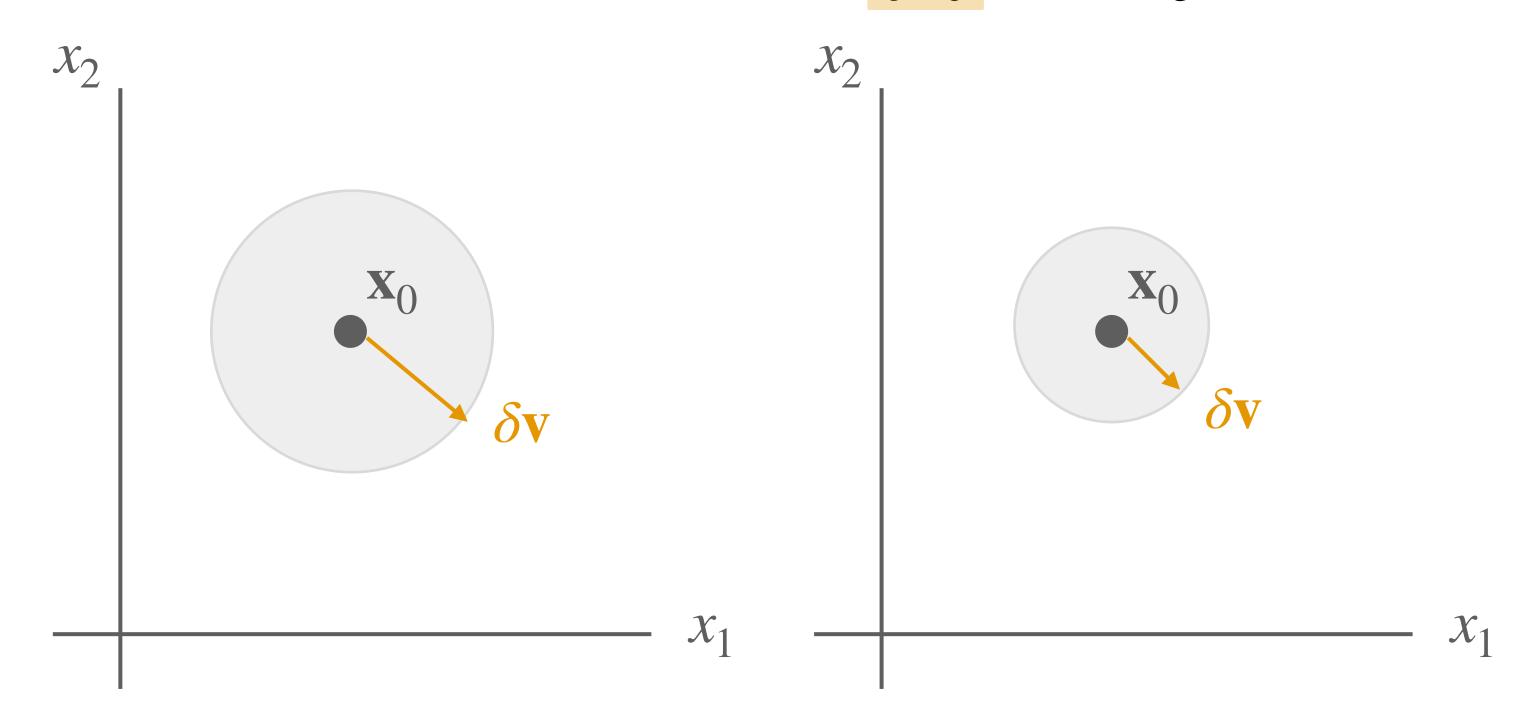
Directional derivative

$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{v}) - \mathbf{f}(\mathbf{x}_0)}{\delta}$$

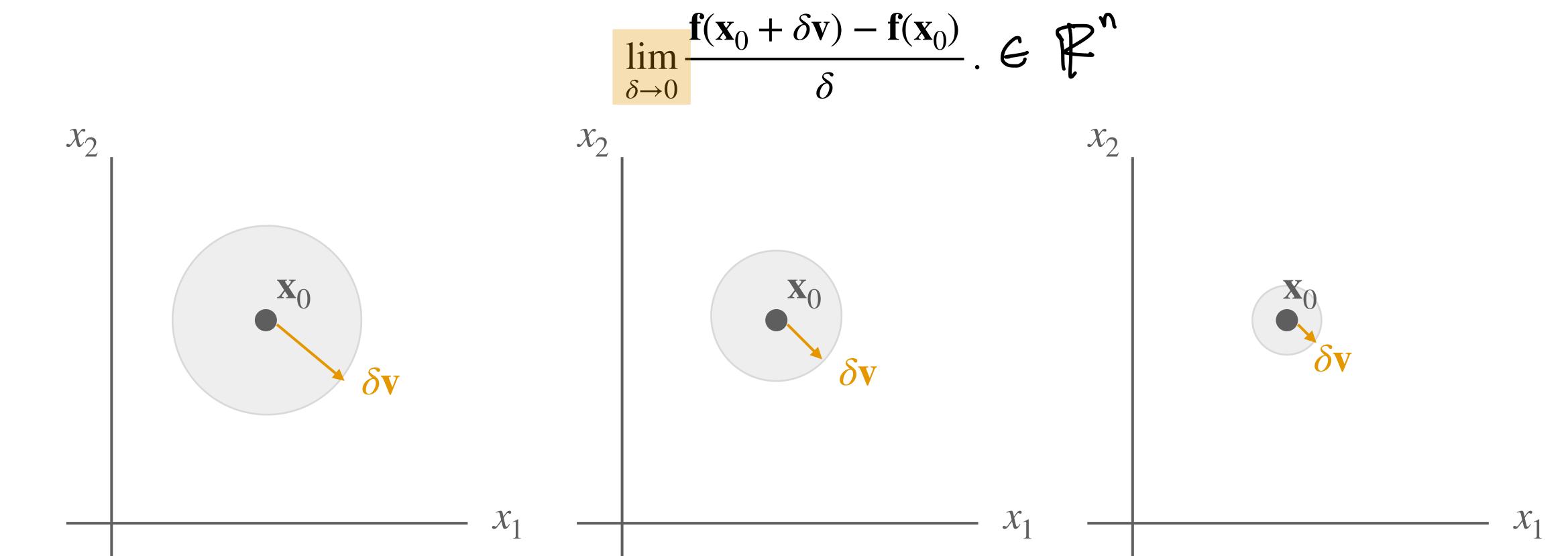


Directional derivative

$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{v}) - \mathbf{f}(\mathbf{x}_0)}{\delta}$$



Directional derivative



Partial derivative

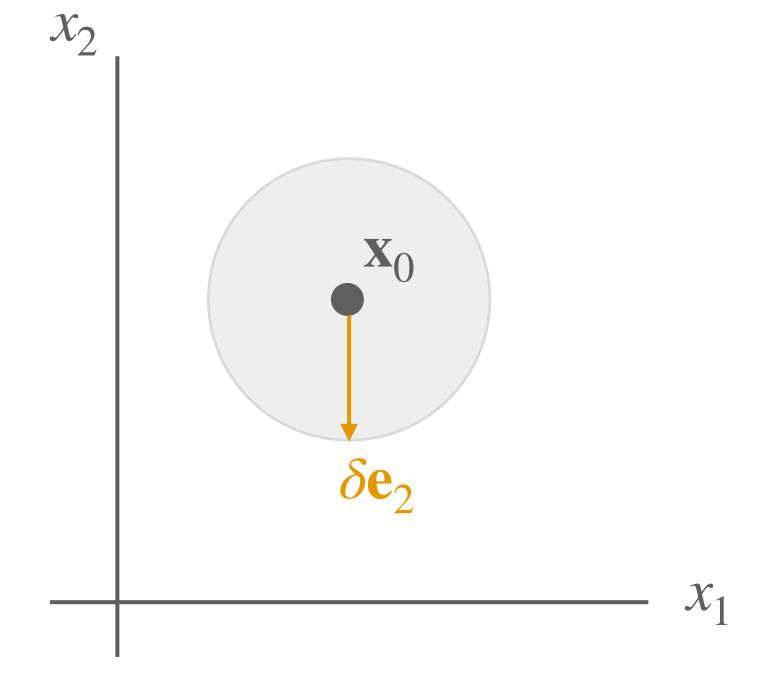
$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{e}_i) - \mathbf{f}(\mathbf{x}_0)}{\delta}.$$

Partial derivative

$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{e}_i) - \mathbf{f}(\mathbf{x}_0)}{\delta}$$

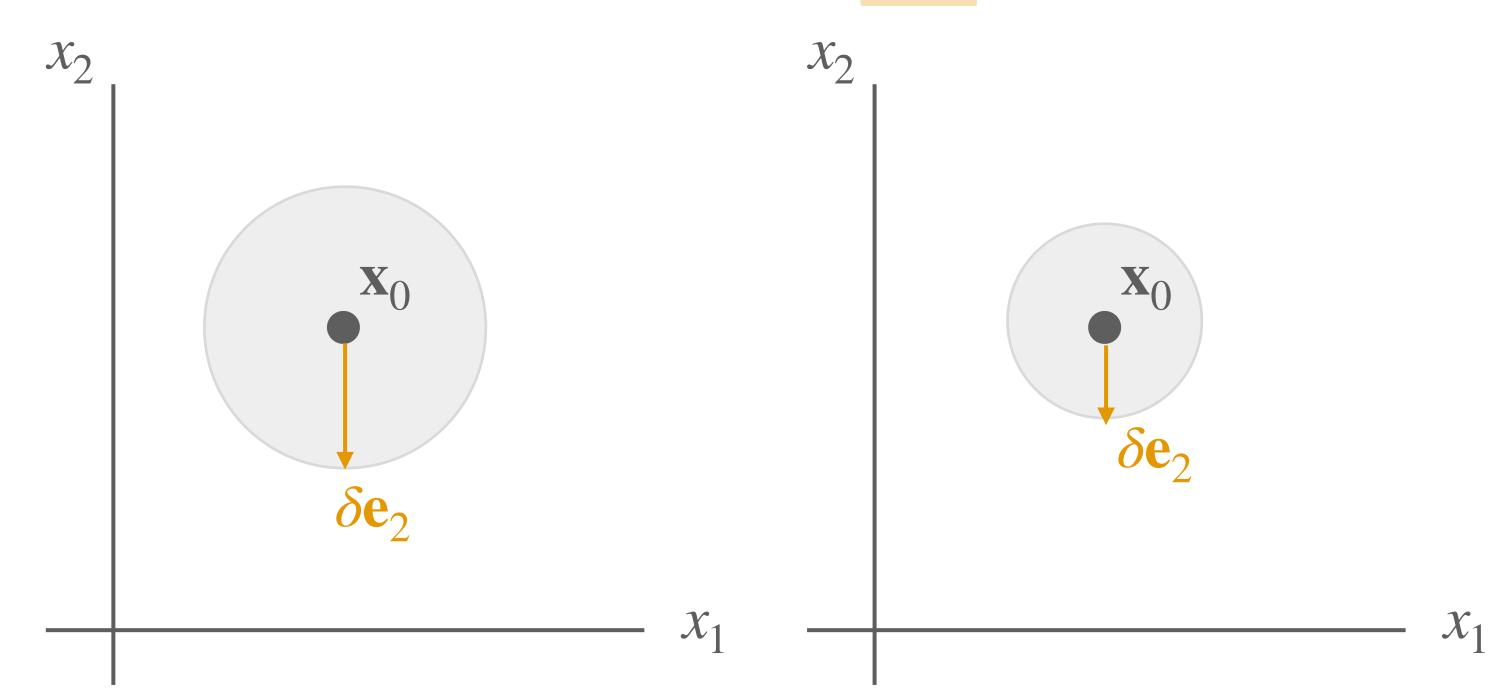
Partial derivative

$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{e}_i) - \mathbf{f}(\mathbf{x}_0)}{\delta}$$

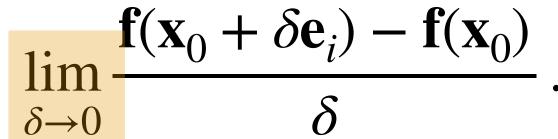


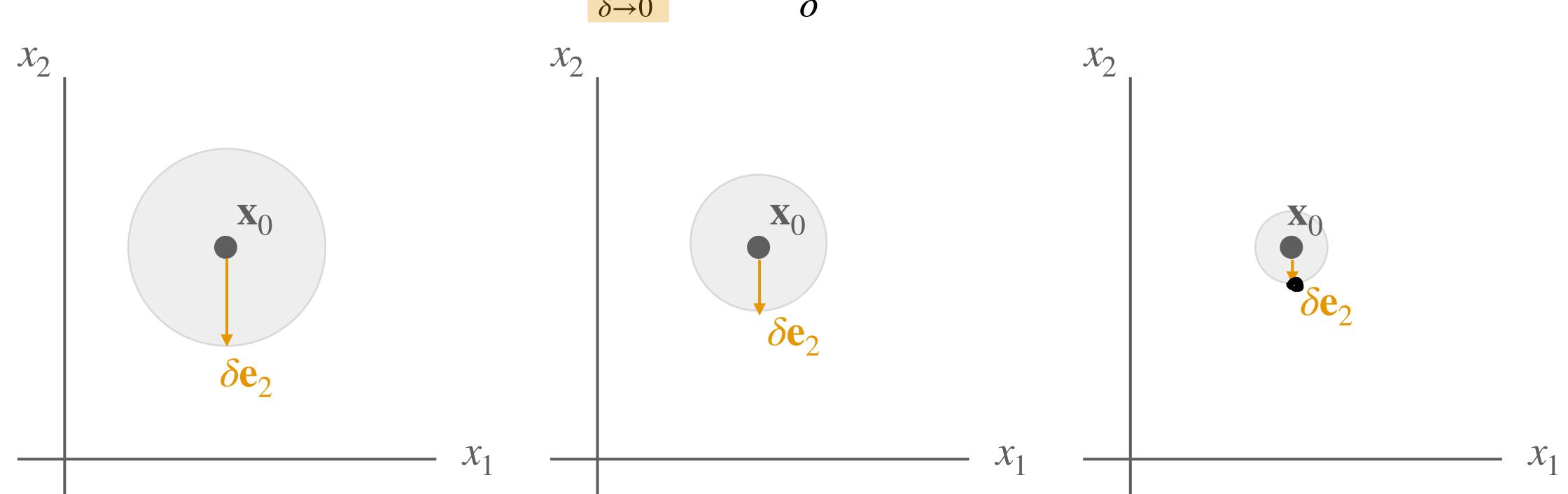
Partial derivative

$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{e}_i) - \mathbf{f}(\mathbf{x}_0)}{\delta}.$$



Partial derivative





Partial derivative

The *i*th partial derivative of \mathbf{f} at \mathbf{x}_0 can also be written:

$$\frac{\partial}{\partial x_i} \mathbf{f}(\mathbf{x}_0) := \lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{e}_i) - \mathbf{f}(\mathbf{x}_0)}{\delta} = \lim_{\delta \to 0} \frac{\mathbf{f}(x_{0,1}, \dots, x_{0,i} + \delta, \dots x_{0,d}) - \mathbf{f}(x_{0,1}, \dots, x_{0,i}, \dots, x_{0,d})}{\delta}$$

Mechanically: take the derivative of variable x_i while keeping all the others constant.

Example: $f(x, y) = x^3 + x^2y + y^2$

Example. Compute the formula for partial derivatives of $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = x^{3} + x^{2}y + y^{2}.$$

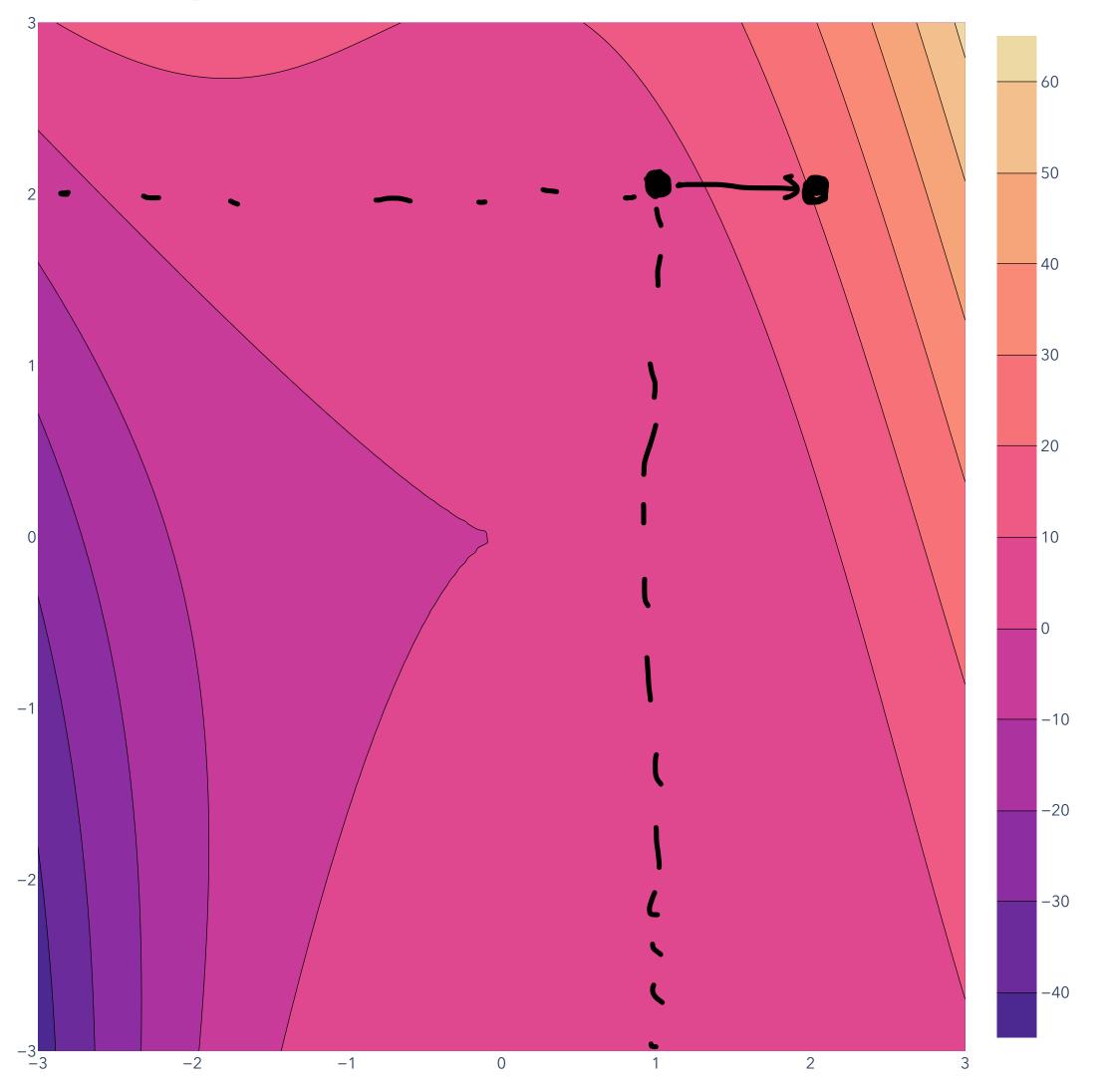
$$\frac{\partial f}{\partial x} = 3x^{2} + 2xy \longrightarrow 3 + 2 \cdot 2 = 17$$

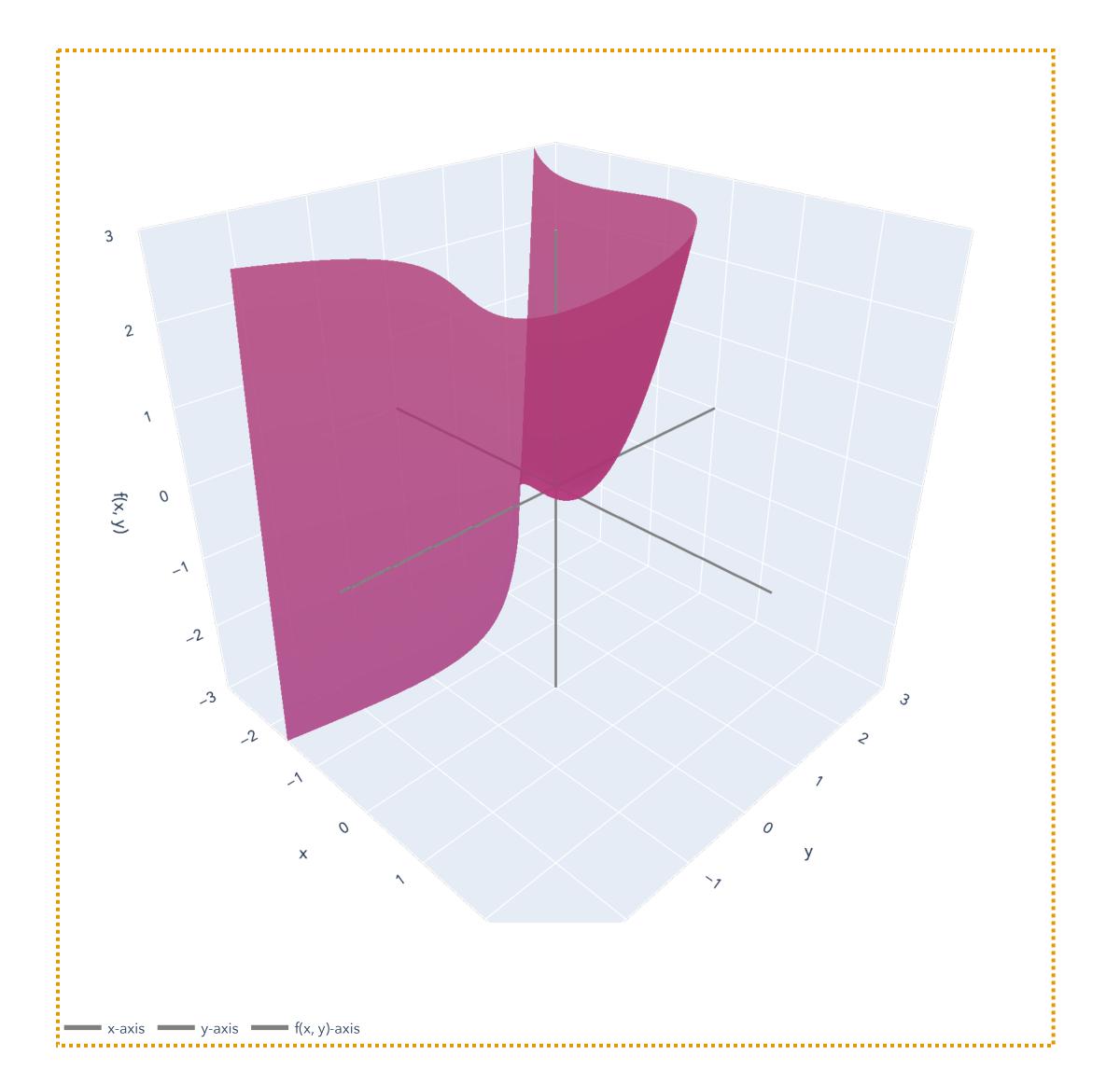
$$\frac{\partial f}{\partial x} = x^{2} + 2y \longrightarrow 1 + 4 = 15$$

What are the partial derivatives at (1,2)?

$$(2,2) \qquad [7] \qquad [7$$

Example: $f(x, y) = x^3 + x^2y + y^2$





Examples

Example. Compute the partial derivatives of $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x, y) = (x^2y, \cos y).$$

What are the partial derivatives at (1,2)?

Total derivatives

Jacobian and gradient idea

The gradient is the vector in \mathbb{R}^d that contains the partial derivatives of $f: \mathbb{R}^d \to \mathbb{R}$ as each entry.

The <u>Jacobian</u> $n \times d$ matrix that contains the partial derivatives of $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^n$, collected column-by-column.

Viewing \mathbf{f} as a collection of n functions $\mathbf{f} = (f_1, ..., f_n)$, the Jacobian is also what we get by "stacking" all the gradients top-to-bottom in a matrix.

Gradient

Let $f: \mathbb{R}^d \to \mathbb{R}$. The gradient of f at \mathbf{x}_0 is the vector $\nabla f(\mathbf{x}_0) \in \mathbb{R}^d$ composed of all the partial derivatives of f at \mathbf{x}_0 :

$$\nabla f(\mathbf{x}_0) := \begin{bmatrix} \frac{\partial}{\partial x_1} f(\mathbf{x}_0) \\ \vdots \\ \frac{\partial}{\partial x_d} f(\mathbf{x}_0) \end{bmatrix}$$

Gradient

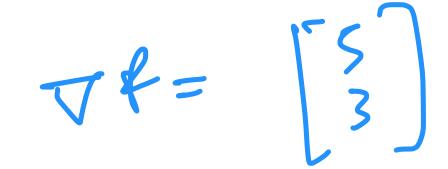
Example. What's a formula for the gradient of $f(x, y) = x^3 + x^2y + y^2$?

 $\frac{\partial f}{\partial x} = 3x^2 + 2xy$ $\frac{\partial f}{\partial x} = x^2 + 2y$ $\frac{\partial f}{\partial x} = x^2 + 2y$ $\frac{\partial f}{\partial x} = x^2 + 2y$

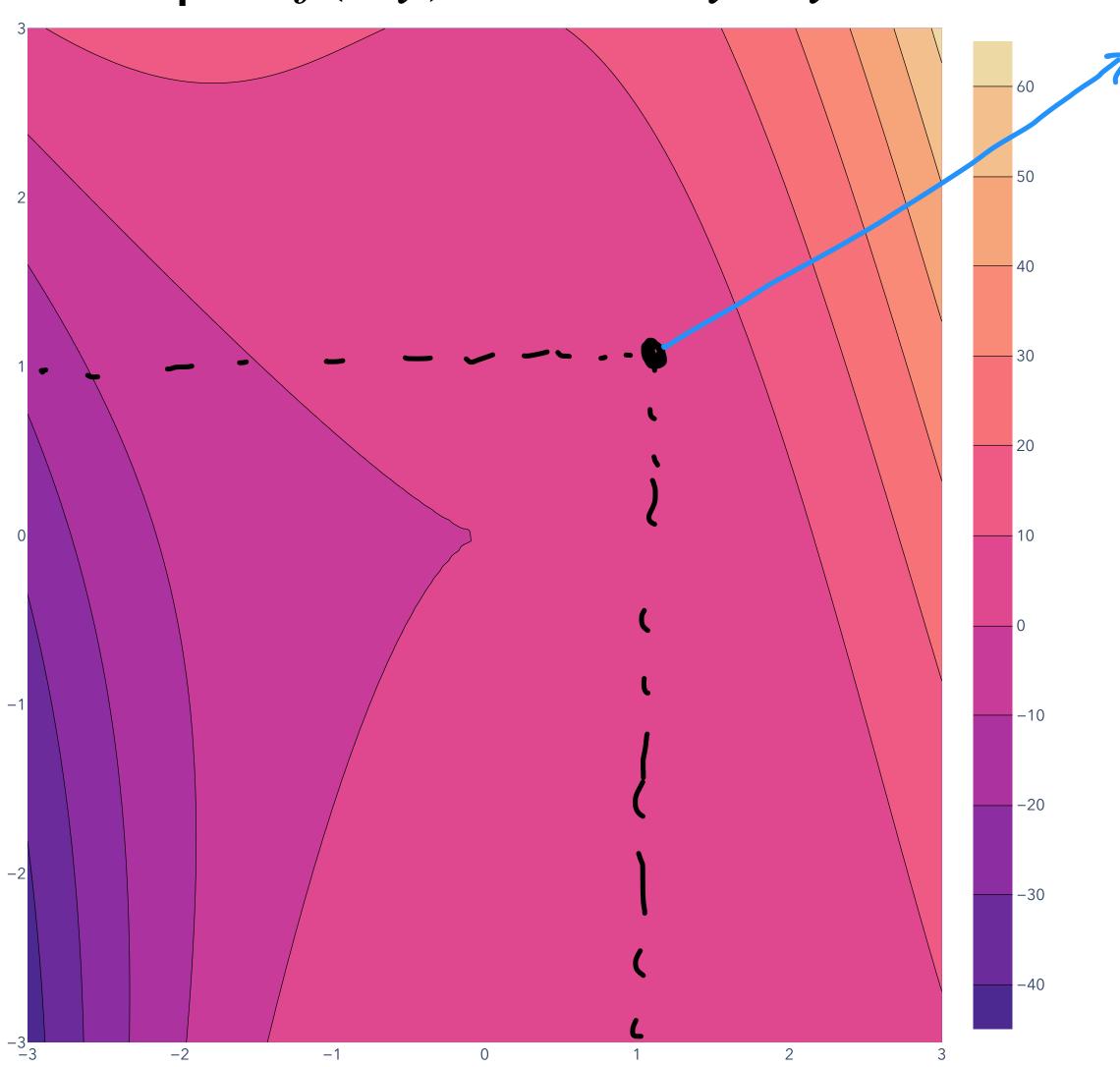
Formula for grand.

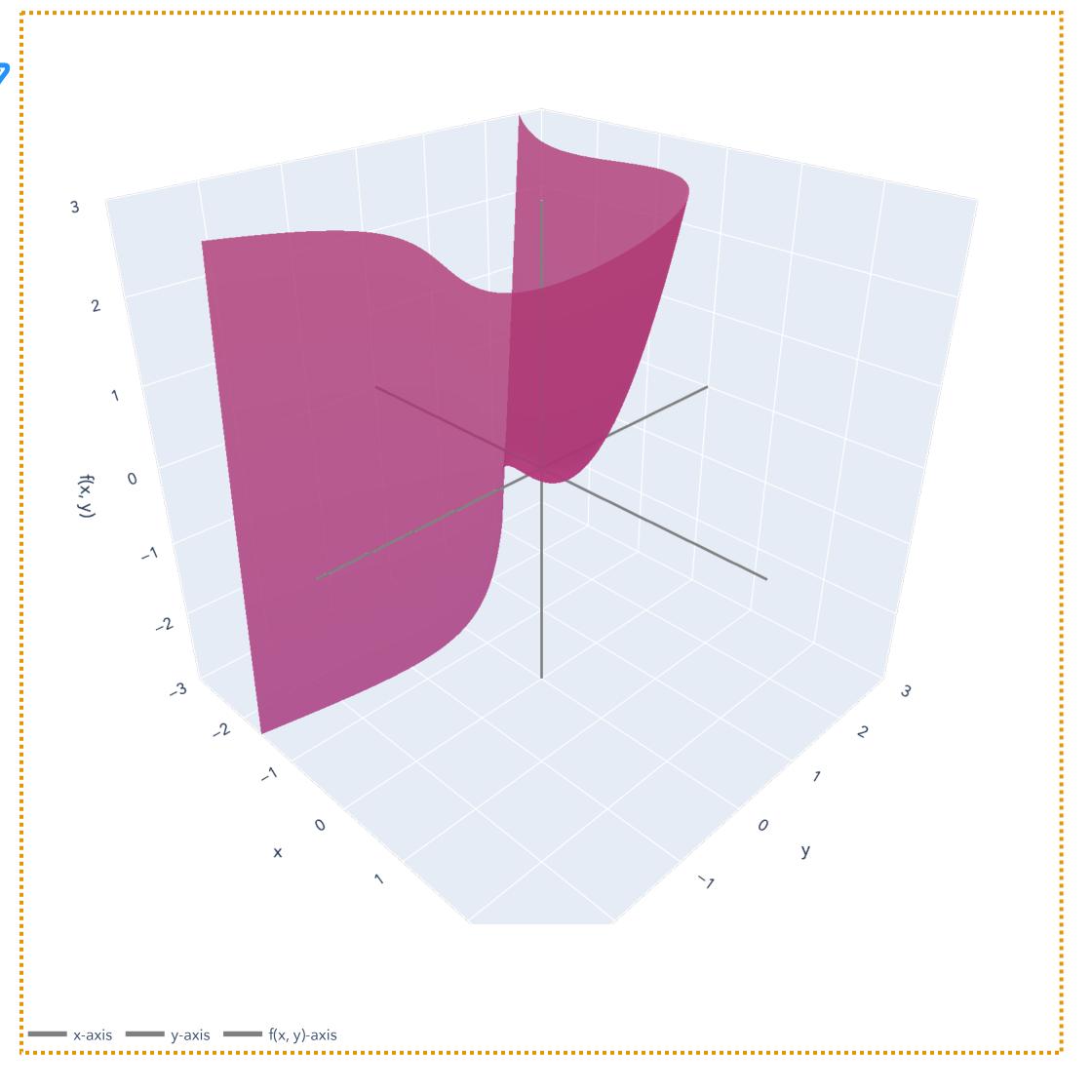
What's the gradient at (x, y) = (1,1)?

$$\nabla f(1,1) = \begin{bmatrix} 3+2 \\ 1+2 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$



Example: $f(x, y) = x^3 + x^2y + y^2$





Jacobian

Let $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ be a function $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), ..., f_n(\mathbf{x}))$.

The <u>Jacobian</u> of \mathbf{f} at \mathbf{x}_0 is the $n \times d$ matrix composed of all the partial derivatives of \mathbf{f} at \mathbf{x}_0 :

$$\nabla \mathbf{f}(\mathbf{x}_0) := \begin{bmatrix} \frac{\partial}{\partial x_1} f_1(\mathbf{x}_0) & \dots & \frac{\partial}{\partial x_d} f_1(\mathbf{x}_0) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} f_n(\mathbf{x}_0) & \dots & \frac{\partial}{\partial x_d} f_n(\mathbf{x}_0) \end{bmatrix} = \begin{bmatrix} \leftarrow & \nabla f_1(\mathbf{x}_0)^\top & \to \\ \vdots & \vdots & \vdots \\ \leftarrow & \nabla f_n(\mathbf{x}_0)^\top & \to \end{bmatrix}$$
Bold

Jacobian

$$f_{1}(x_{1}y) = x^{2}y$$
 $f_{2}(x_{1}y) = \infty 57$

Example. What's the formula for the Jacobian of
$$f(x,y) = (x^2y,\cos y)$$
?

$$f_{1}(x,y) = x^2y \qquad \forall f_{1}(x,y) = (2xy, x^2) \in \mathbb{R}^2$$

$$f_{2}(x,y) = \omega sy \qquad \forall f_{2}(x,y) = (0, -\sin y) \in \mathbb{R}^2$$

What's the Jacobian at $(x, y) = (\pi, \pi)$?

$$\begin{bmatrix} 2\pi^2 & \pi^2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x - \pi \\ -\pi \end{bmatrix} = \begin{bmatrix} 2\pi^2(x - \pi) \\ +\pi^2(y - \pi) \end{bmatrix}$$

Change in
$$f: f(x-\pi, \gamma-\pi) - f(\pi, \pi)$$

Total Derivative (Idea)

Total Derivative (Idea)

The <u>total derivative</u> is the linear transformation that "best approximates" the *local* change in \mathbf{f} at a point \mathbf{x}_0 .

Total Derivative (Idea)

The <u>total derivative</u> is the linear transformation that "best approximates" the *local* change in \mathbf{f} at a point \mathbf{x}_0 .

The total derivative takes "change in \mathbf{x} " and outputs "change in \mathbf{y} ."

Total Derivative (Idea)

The <u>total derivative</u> is the linear transformation that "best approximates" the *local* change in \mathbf{f} at a point \mathbf{x}_0 .

The total derivative takes "change in \mathbf{x} " and outputs "change in \mathbf{y} ."

In 1D, recall:

Total Derivative (Idea)

The <u>total derivative</u> is the linear transformation that "best approximates" the *local* change in \mathbf{f} at a point \mathbf{x}_0 .

The total derivative takes "change in \mathbf{x} " and outputs "change in \mathbf{y} ."

In 1D, recall:

T: change in $x \rightarrow$ change in y

Total Derivative (Idea)

The <u>total derivative</u> is the linear transformation that "best approximates" the *local* change in \mathbf{f} at a point \mathbf{x}_0 .

The total derivative takes "change in \mathbf{x} " and outputs "change in \mathbf{y} ."

In 1D, recall:

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x-x_0) \approx f(x) - f(x_0)$$
(ivear
function

Total Derivative (Definition)

$$\lim_{S \to 0} \frac{f(x_0 + 8) - f(x_0)}{S} = \frac{87f(x_0)}{8}$$

$$\Rightarrow \lim_{S \to 0} f(x_0 + 8) - f(x_0) - \frac{7f(x_0)8}{8}$$

Let $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ be a function and let $\mathbf{x}_0 \in \mathbb{R}^d$ be a point.

If there exists a linear transformation $D\mathbf{f}_{\mathbf{x}_0}:\mathbb{R}^d o \mathbb{R}^n$ such that

$$\lim_{\vec{\delta} \to 0} \frac{1}{\|\vec{\delta}\|} \left(\left(\mathbf{f}(\mathbf{x}_0 + \vec{\delta}) - \mathbf{f}(\mathbf{x}_0) \right) - D\mathbf{f}_{\mathbf{x}_0}(\vec{\delta}) \right) = \mathbf{0},$$
Change in the limit of the properties of the contraction.

x₈

then ${f f}$ is <u>differentiable</u> at ${f x}_0$ and has the unique (total) <u>derivative</u> $D{f f}_{{f x}_0}$.

Total Derivative (Definition)

Let $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ be a function and let $\mathbf{x}_0 \in \mathbb{R}^d$ be a point.

If there exists a linear transformation $D\mathbf{f}_{\mathbf{x}_0}:\mathbb{R}^d o \mathbb{R}^n$ such that

$$\lim_{\vec{\delta} \to 0} \frac{1}{\|\vec{\delta}\|} \left(\left(\mathbf{f}(\mathbf{x}_0 + \vec{\delta}) - \mathbf{f}(\mathbf{x}_0) \right) - D\mathbf{f}_{\mathbf{x}_0}(\vec{\delta}) \right) = \mathbf{0},$$

then ${f f}$ is <u>differentiable</u> at ${f x}_0$ and has the unique (total) <u>derivative</u> $D{f f}_{{f x}_0}$.

Total Derivative (Definition)

Let $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ be a function and let $\mathbf{x}_0 \in \mathbb{R}^d$ be a point.

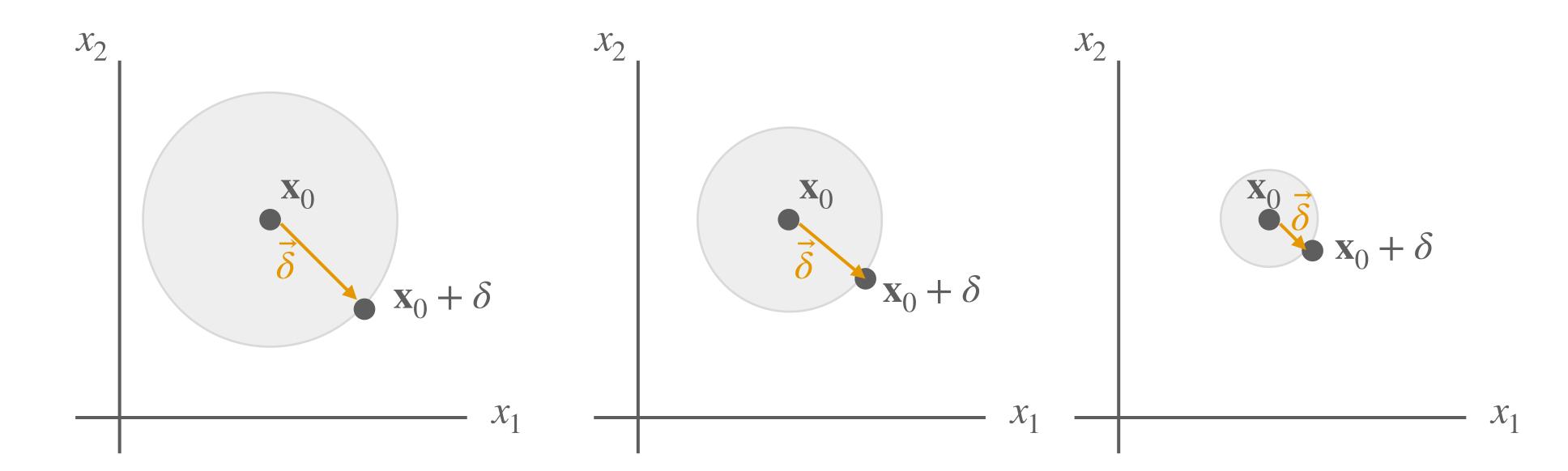
If there exists a linear transformation $D\mathbf{f}_{\mathbf{x}_0}:\mathbb{R}^d o \mathbb{R}^n$ such that

$$\lim_{\vec{\delta} \to 0} \frac{1}{\|\vec{\delta}\|} \left(\left(\mathbf{f}(\mathbf{x}_0 + \vec{\delta}) - \mathbf{f}(\mathbf{x}_0) \right) - D\mathbf{f}_{\mathbf{x}_0}(\vec{\delta}) \right) = \mathbf{0},$$

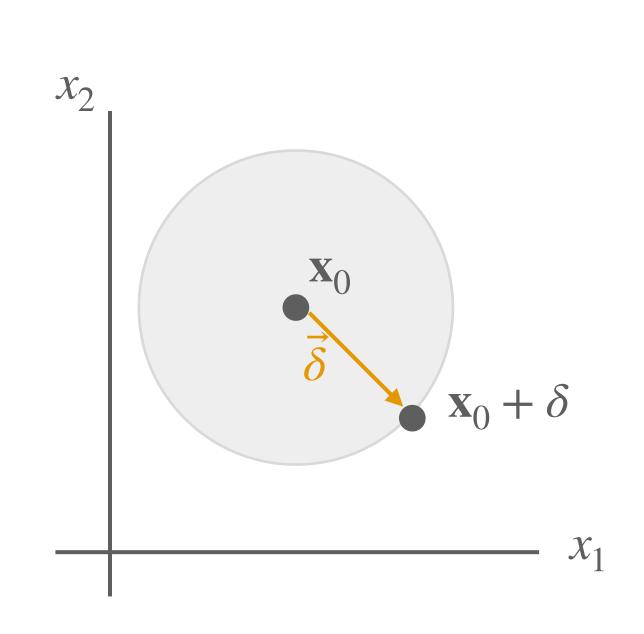
then ${f f}$ is <u>differentiable</u> at ${f x}_0$ and has the unique (total) <u>derivative</u> $D{f f}_{{f x}_0}$.

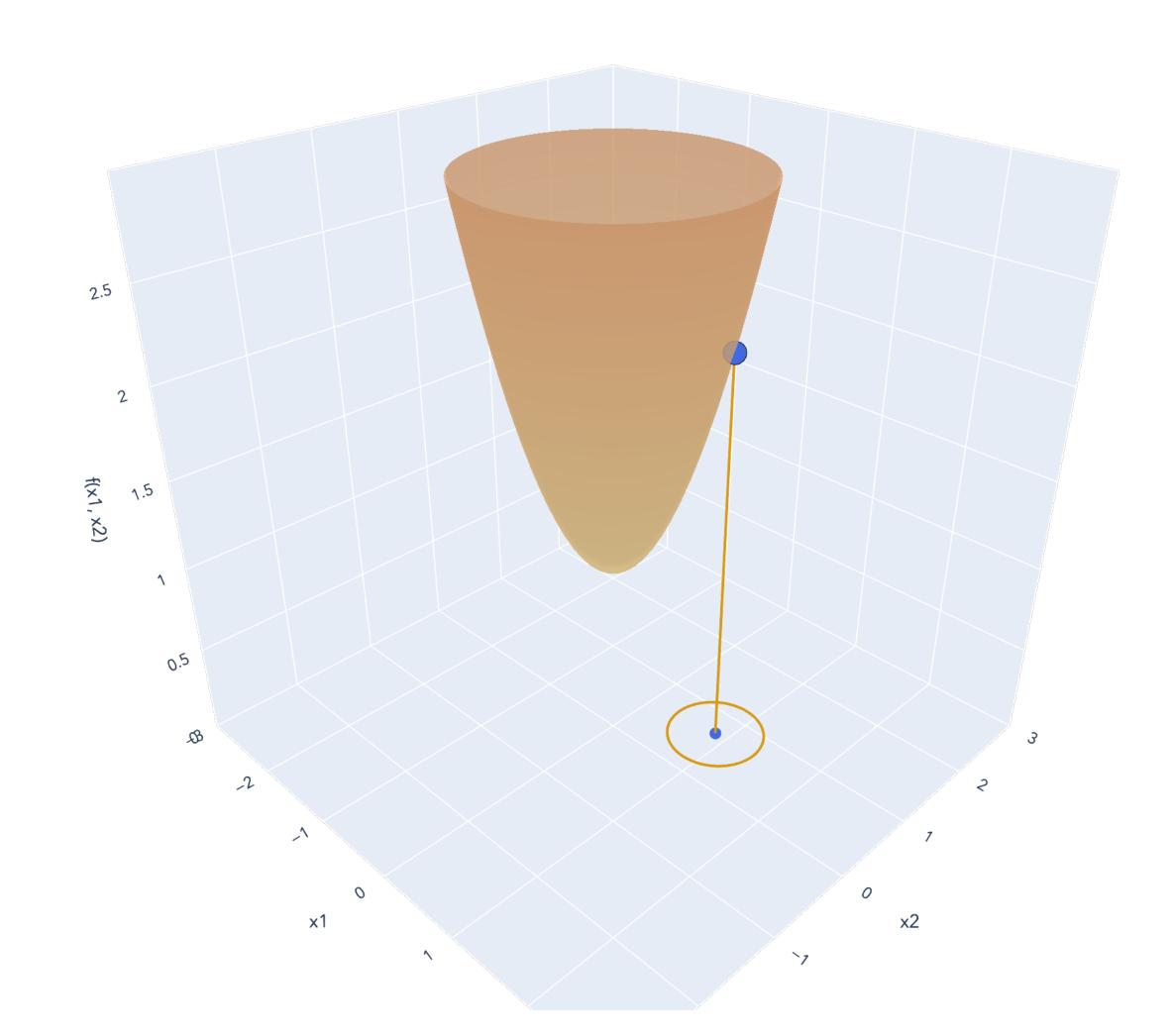
Total Derivative (Definition)

$$\lim_{\vec{\delta} \to 0} \frac{1}{\|\vec{\delta}\|} \left(\left(\mathbf{f}(\mathbf{x}_0 + \vec{\delta}) - \mathbf{f}(\mathbf{x}_0) \right) - D\mathbf{f}_{\mathbf{x}_0}(\vec{\delta}) \right) = \mathbf{0},$$



Total Derivative (Definition)





Total Derivative

Good news: in many cases, we don't have to deal with the clunky expression

$$\lim_{\vec{\delta} \to 0} \frac{1}{\|\vec{\delta}\|} \left(\left(\mathbf{f}(\mathbf{x}_0 + \vec{\delta}) - \mathbf{f}(\mathbf{x}_0) \right) - D\mathbf{f}_{\mathbf{x}_0}(\vec{\delta}) \right) = \mathbf{0},$$

because we can replace $D\mathbf{f}_{\mathbf{x}_0}$ by the Jacobian/gradient for all "nice" functions (the functions we usually care about)!

The "nice" functions is the class of continuously differentiable (smooth) functions.

Multivariable Differentiation Smoothness and consequences

Smoothness

A function $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is <u>continuously differentiable</u> if all <u>partial derivatives of \mathbf{f} exist</u> and are continuous. These are the \mathscr{C}^1 functions, and the collection of all such functions are the class \mathscr{C}^1 .

Generally: \mathscr{C}^p for some $p \ge 1$ are the <u>p-times continuously differentiable</u> functions.

Smoothness

Theorem (Sufficient criterion for differentiability). If $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^n$ is a \mathscr{C}^1 function, then \mathbf{f} is differentiable, and its total derivative is equal to its Jacobian matrix.

Theorem (Sufficient criterion for differentiability). If $f: \mathbb{R}^d \to \mathbb{R}$ is a \mathscr{C}^1 function, then f is differentiable, and its total derivative is equal to its gradient.

Directional derivatives from total derivative

Theorem (Computing directional derivatives). If $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is differentiable with Jacobian matrix $\nabla \mathbf{f}(\mathbf{x}_0) \in \mathbb{R}^{n \times d}$, the directional derivative of \mathbf{f} at \mathbf{x}_0 in the direction $\mathbf{v} \in \mathbb{R}^d$ is given by the matrix-vector product:

$$\underbrace{\nabla \mathbf{f}(\mathbf{x}_0)}_{n \times d} \underbrace{\mathbf{v}}_{d \times 1}.$$

Matrix-vector multiplication is the same as applying a linear transformation.

Directional derivatives from total derivative

Theorem (Computing directional derivatives). If $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable with gradient $\nabla f(\mathbf{x}_0)$, the directional derivative of f at \mathbf{x}_0 in the direction $\mathbf{v} \in \mathbb{R}^d$ is given by the inner product:

$$\nabla f(\mathbf{x}_0)^{\mathsf{T}}\mathbf{v}$$
.

Vector inner product is the same as applying a linear functional.

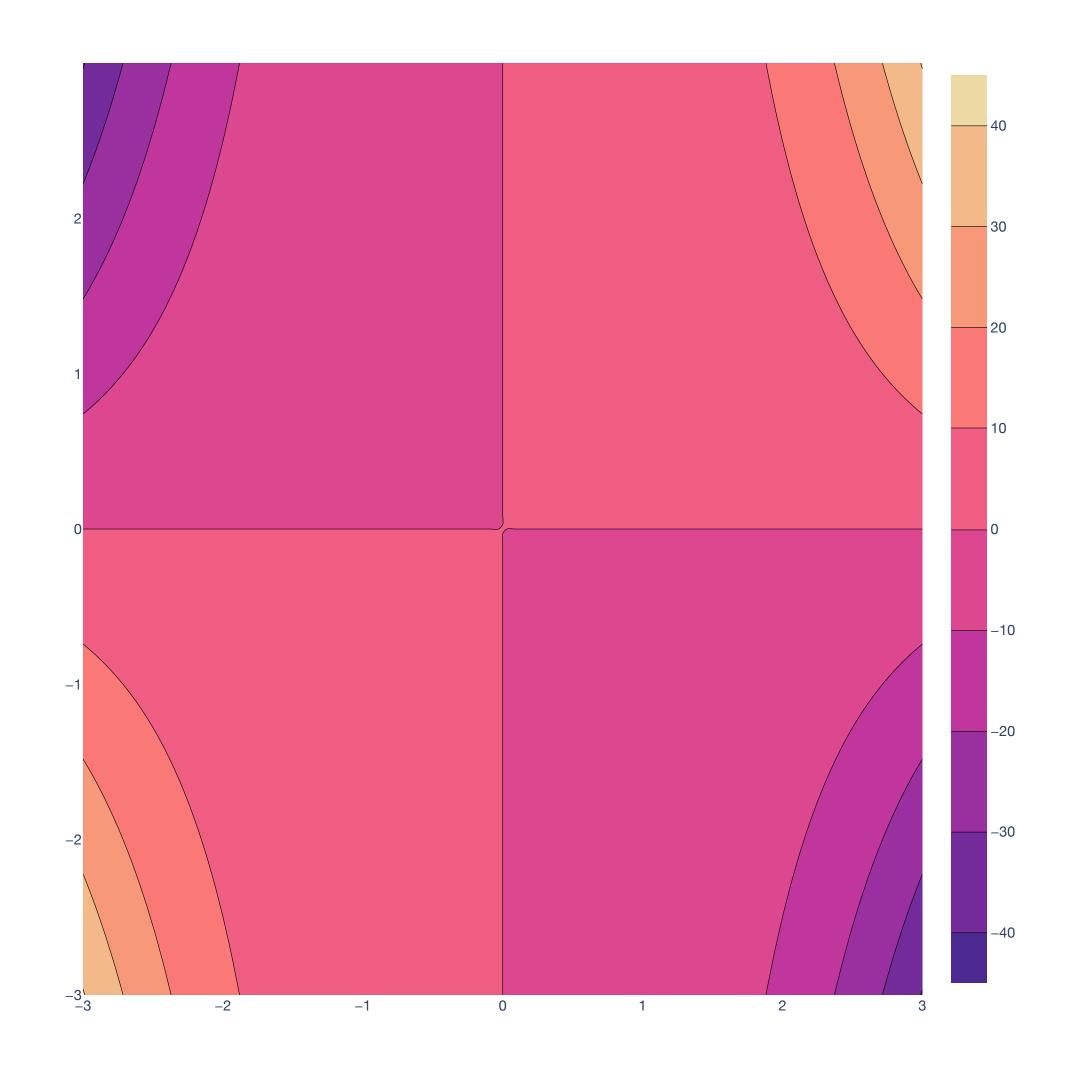
Gradient as direction of steepest ascent

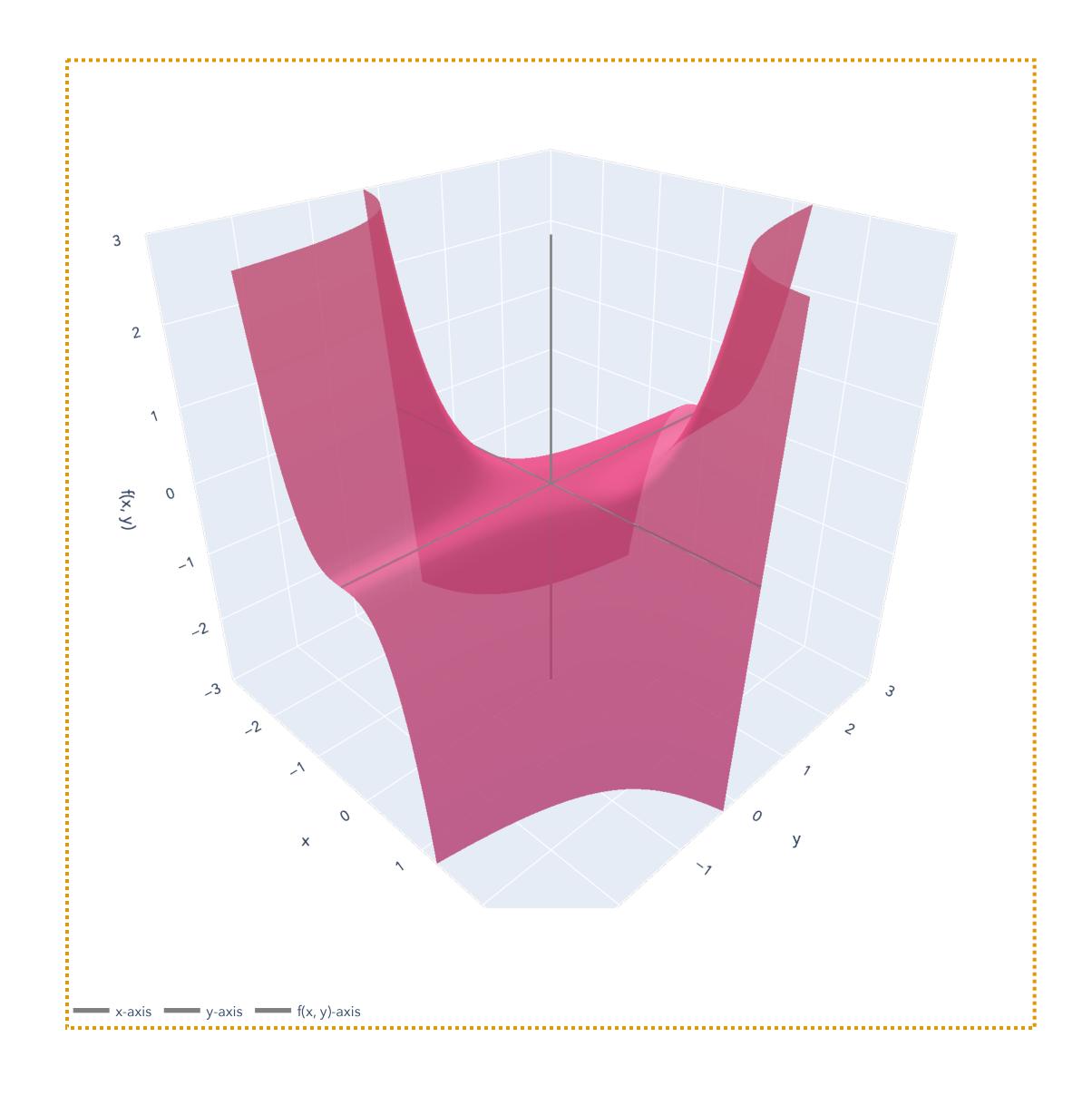
Theorem (Gradient and direction of steepest ascent). Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \mathbb{R}^d$. If $\mathbf{v} \in \mathbb{R}^d$ is a *unit* vector making angle θ with the gradient $\nabla f(\mathbf{x}_0)$, then:

$$\nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{v} = \|\nabla f(\mathbf{x}_0)\| \cos \theta.$$

Gradient is the direction of steepest ascent at the rate $\|\nabla f(\mathbf{x}_0)\|$!

Example: $f(x, y) = (1/2)x^3y$





Big picture: how do all these objects connect?

Big picture: how do all these objects connect?

The <u>total derivative</u> is a linear transformation that maps "changes in inputs" to "changes in outputs."

Big picture: how do all these objects connect?

The <u>total derivative</u> is a linear transformation that maps "changes in inputs" to "changes in outputs."

When we apply a total derivative to a vector, think of mapping the "change" represented by that vector to a "change" in output space.

Big picture: how do all these objects connect?

The <u>total derivative</u> is a linear transformation that maps "changes in inputs" to "changes in outputs."

When we apply a total derivative to a vector, think of mapping the "change" represented by that vector to a "change" in output space.

The <u>partial derivative</u> tells us how our function changes in each basis vector direction. The <u>directional derivative</u> tells us change in any direction.

Big picture: how do all these objects connect?

The <u>total derivative</u> is a linear transformation that maps "changes in inputs" to "changes in outputs."

When we apply a total derivative to a vector, think of mapping the "change" represented by that vector to a "change" in output space.

The <u>partial derivative</u> tells us how our function changes in each basis vector direction. The <u>directional derivative</u> tells us change in any direction.

For all the "smooth" <u>continuously differentiable</u> functions we care about, the total derivative is given by the <u>Jacobian</u> matrix (the <u>gradient</u> for scalar-valued functions).

Big picture: how do all these objects connect?

The <u>total derivative</u> is a linear transformation that maps "changes in inputs" to "changes in outputs."

When we apply a total derivative to a vector, think of mapping the "change" represented by that vector to a "change" in output space.

The <u>partial derivative</u> tells us how our function changes in each basis vector direction. The <u>directional derivative</u> tells us change in any direction.

For all the "smooth" <u>continuously differentiable</u> functions we care about, the total derivative is given by the <u>Jacobian</u> matrix (the <u>gradient</u> for scalar-valued functions).

Applying the Jacobian/gradient to a vector is the same as matrix-vector multiplication!

Big picture: how do all these objects connect?

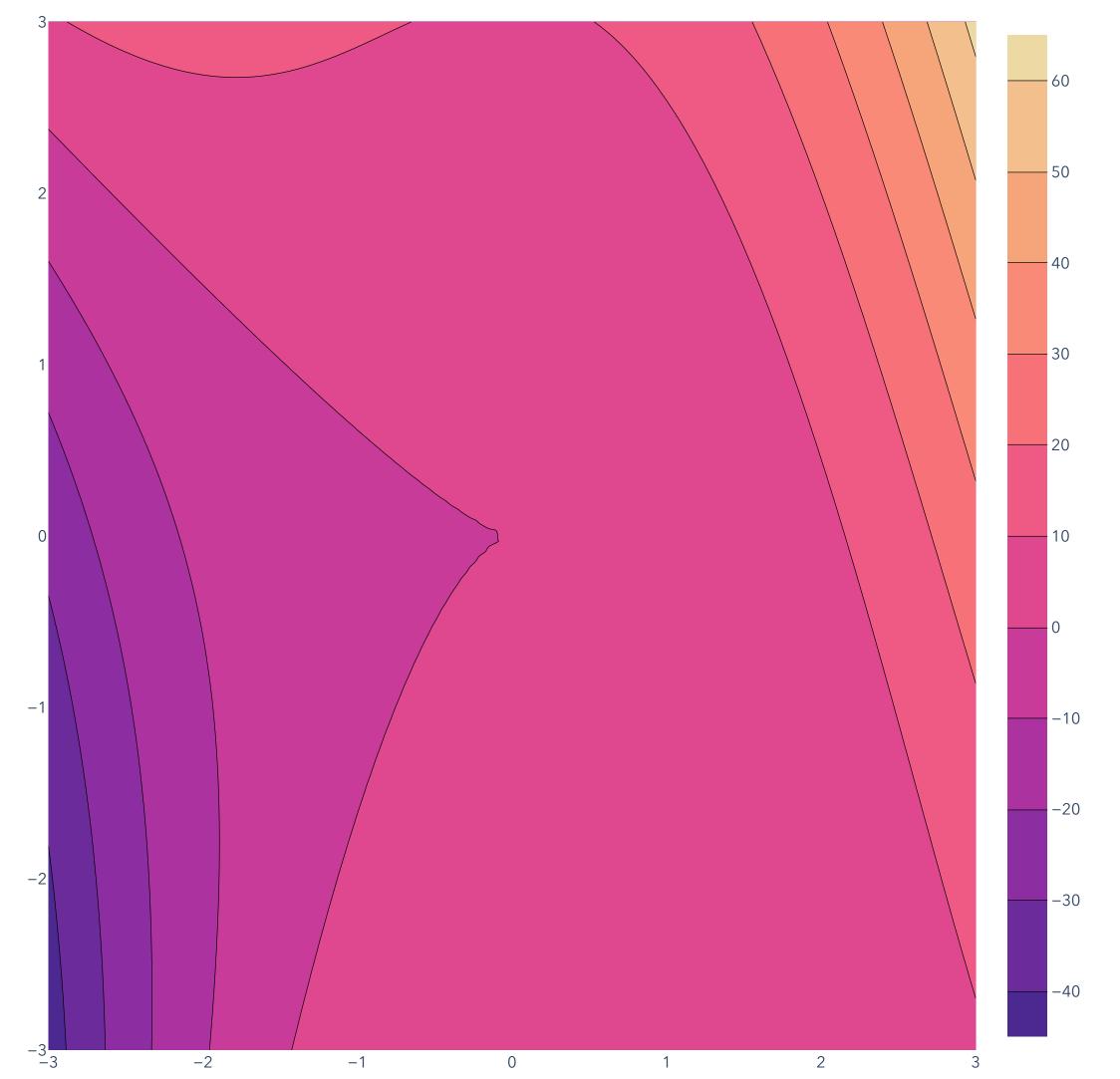
 \mathscr{C}^1 function \Longrightarrow total derivative is the Jacobian/gradient

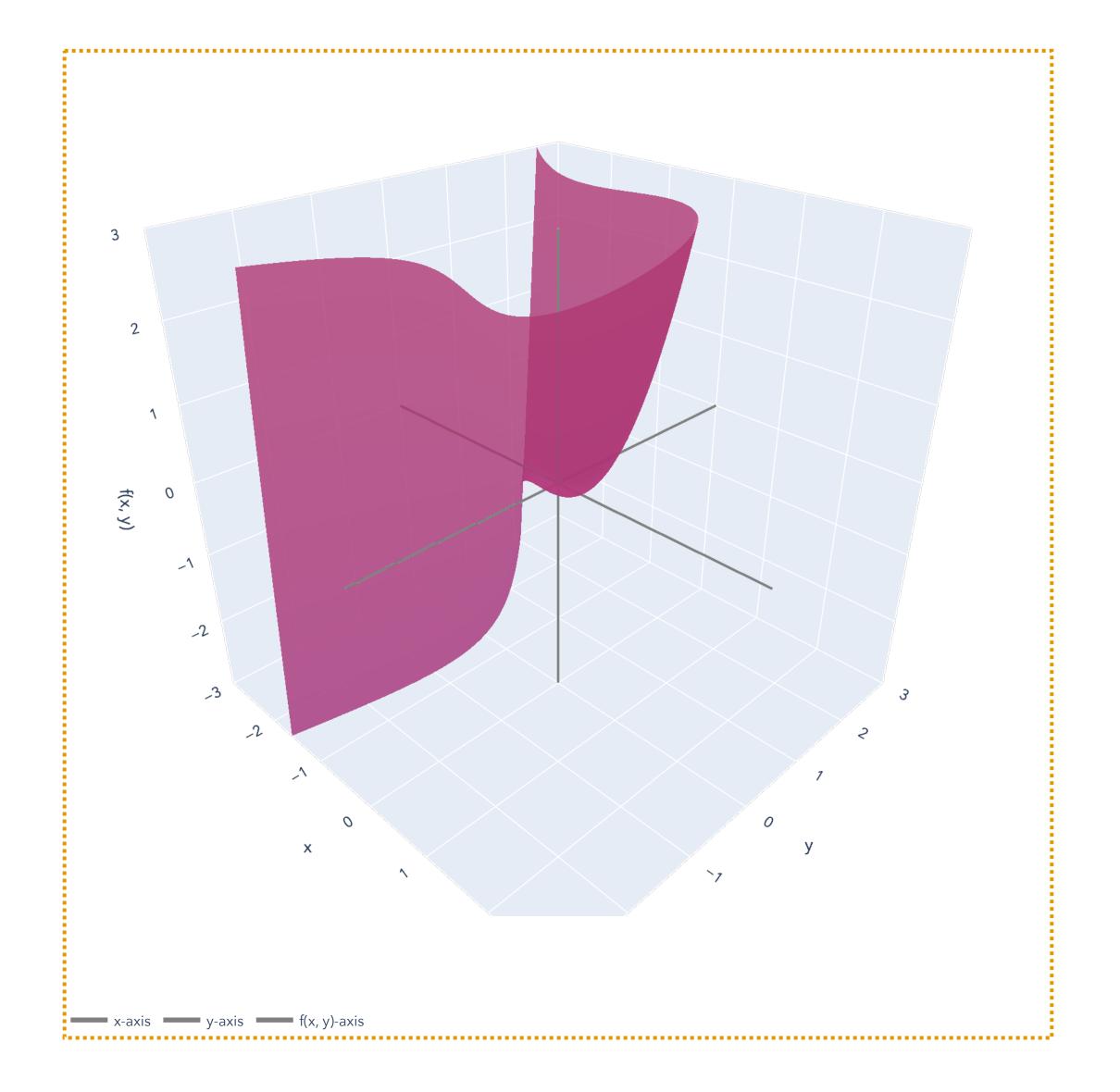
⇒ all directional/partial derivatives from matrix-vector product!

 $\nabla \mathbf{f}(\mathbf{x}_0)\mathbf{v}$ for Jacobian ($\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$)

 $\nabla f(\mathbf{x}_0)^\mathsf{T} \mathbf{v}$ for gradient $(f: \mathbb{R}^d \to \mathbb{R})$

Example: $f(x, y) = x^3 + x^2y + y^2$





The Hessian and the "Second Derivative"

Hessian matrix

The <u>Hessian</u> is the "second derivative" for scalar-valued multivariable functions $f: \mathbb{R}^d \to \mathbb{R}$.

It is a matrix. For *really* smooth functions, it is symmetric.

The Hessian contains the local "second-order" information, or *curvature* of the function It describes how "bowl-shaped" the function is around a point.

Hessian matrix

The <u>Hessian</u> is the "second derivative" for <u>scalar-valued</u> multivariable functions $f: \mathbb{R}^d \to \mathbb{R}$.

It is a matrix. For *really* smooth functions, it is symmetric.

The Hessian contains the local "second-order" information, or *curvature* of the function. It describes how "bowl-shaped" the function is around a point.

Hessian matrix for $f: \mathbb{R}^2 \to \mathbb{R}$

The <u>Hessian</u> matrix for $f: \mathbb{R}^2 \to \mathbb{R}$ is the 2×2 matrix of all second-order partial derivatives:

$$\nabla^2 f(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

 $\frac{\partial^2 f}{\partial x_i^2}$ is the second partial derivative of f with respect to x_i .

 $\frac{\partial^2 f}{\partial x_i \partial x_j}$ is the partial derivative from differentiating w.r.t. x_j first and then differentiating w.r.t. x_i .

Hessian matrix for $f: \mathbb{R}^d \to \mathbb{R}$

The <u>Hessian</u> matrix for $f: \mathbb{R}^d \to \mathbb{R}$ is the $d \times d$ matrix of all second-order partial derivatives.

Equality of mixed partials

Equality of mixed partials

Theorem (Equality of mixed partials). If $f: \mathbb{R}^d \to \mathbb{R}$ is a twice continuously differentiable function (i.e., in class \mathscr{C}^2), then, for all pairs (i,j):

Equality of mixed partials

Theorem (Equality of mixed partials). If $f: \mathbb{R}^d \to \mathbb{R}$ is a twice continuously differentiable function (i.e., in class \mathscr{C}^2), then, for all pairs (i,j):

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Equality of mixed partials

Theorem (Equality of mixed partials). If $f: \mathbb{R}^d \to \mathbb{R}$ is a twice continuously differentiable function (i.e., in class \mathscr{C}^2), then, for all pairs (i,j):

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

This means that for \mathscr{C}^2 functions, the Hessian is a symmetric matrix.

Equality of mixed partials

Theorem (Equality of mixed partials). If $f: \mathbb{R}^d \to \mathbb{R}$ is a twice continuously differentiable function (i.e., in class \mathscr{C}^2), then, for all pairs (i,j):

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

This means that for \mathscr{C}^2 functions, the Hessian is a symmetric matrix.

Theorem (Equality of mixed partials). If $f: \mathbb{R}^d \to \mathbb{R}$ is a twice continuously differentiable function (i.e., in class \mathscr{C}^2), then, for all pairs (i,j):

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

This means that for \mathscr{C}^2 functions, the Hessian is a symmetric matrix.

 \mathscr{C}^2 , the class of <u>twice continuously differentiable</u> functions, is the collection of all functions whose second-order partial derivatives all exist and are continuous.

Wrap-up example

Consider the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{f}(x,y) := \left(\frac{1}{2}x^3y \quad 2x^2y^2 \quad xy\right).$$

Is \mathbf{f} smooth (i.e. in \mathscr{C}^1)?

How about \mathscr{C}^2 ?

What does that tell us?

Wrap-up example

Consider the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{f}(x,y) := \left(\frac{1}{2}x^3y \ 2x^2y^2 \ xy\right).$$

What's the formula for the Jacobian of f?

What's the formula for the gradient of $f_1(x, y) = \frac{1}{2}x^3y$?

What is the Jacobian/gradient at $\mathbf{x}_0 = (1,2)$?

Wrap-up example

Consider the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{f}(x,y) := \left(\frac{1}{2}x^3y \quad 2x^2y^2 \quad xy\right).$$

What's the total derivative of \mathbf{f} at $\mathbf{x}_0 = (1,0)$?

Wrap-up example

Consider the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{f}(x,y) := \left(\frac{1}{2}x^3y \quad 2x^2y^2 \quad xy\right).$$

What's the directional derivative of \mathbf{f} at \mathbf{x}_0 in the direction $\mathbf{v} = (1,1)$?

How about in the direction e_1 ?

Common Derivative Rules

Basic derivative rules

Same as single-variable differentiation rules, but we need to "type-check" dimensions.

Let
$$\frac{\partial}{\partial \mathbf{x}}$$
 be the differentiation "operator."

Derivatives of $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ from reasoning about each scalar-valued $f_1, ..., f_n$.

Sum Rule

For $f: \mathbb{R}^d \to \mathbb{R}$ and $g: \mathbb{R}^d \to \mathbb{R}$:

$$\frac{\partial}{\partial \mathbf{x}}(f(\mathbf{x}) + g(\mathbf{x})) = \frac{\partial f}{\partial \mathbf{x}} + \frac{\partial g}{\partial \mathbf{x}}$$

Product Rule

For $f: \mathbb{R}^d \to \mathbb{R}$ and $g: \mathbb{R}^d \to \mathbb{R}$:

$$\frac{\partial}{\partial \mathbf{x}}(f(\mathbf{x})g(\mathbf{x})) = \frac{\partial f}{\partial \mathbf{x}}g(\mathbf{x}) + f(\mathbf{x})\frac{\partial g}{\partial \mathbf{x}}$$

Chain Rule

For
$$f: \mathbb{R}^d \to \mathbb{R}$$
 and $g: \mathbb{R} \to \mathbb{R}$:
$$\frac{\partial}{\partial \mathbf{x}} (g \circ f)(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} g(f(\mathbf{x})) = \frac{\partial g}{\partial f} \frac{\partial f}{\partial \mathbf{x}}$$

Example of chain rule

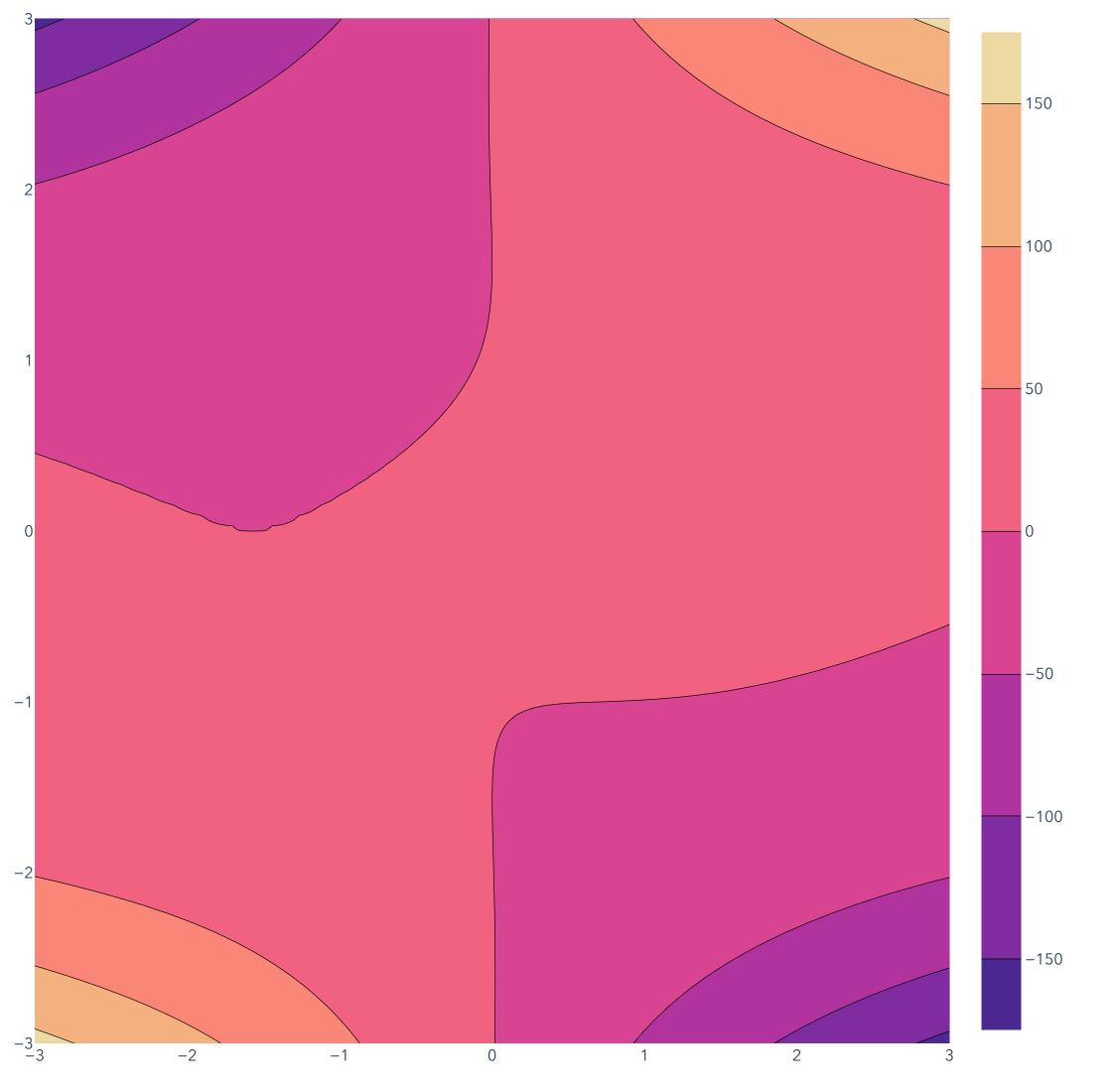
Example. Let $g : \mathbb{R}^2 \to \mathbb{R}$ be defined as $g(y_1, y_2) = y_1^2 + 2y_2$. Let $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ be defined as $\mathbf{f}(x_1, x_2) := (\sin(x_1) + \cos(x_2) \ x_1 x_2^3)$.

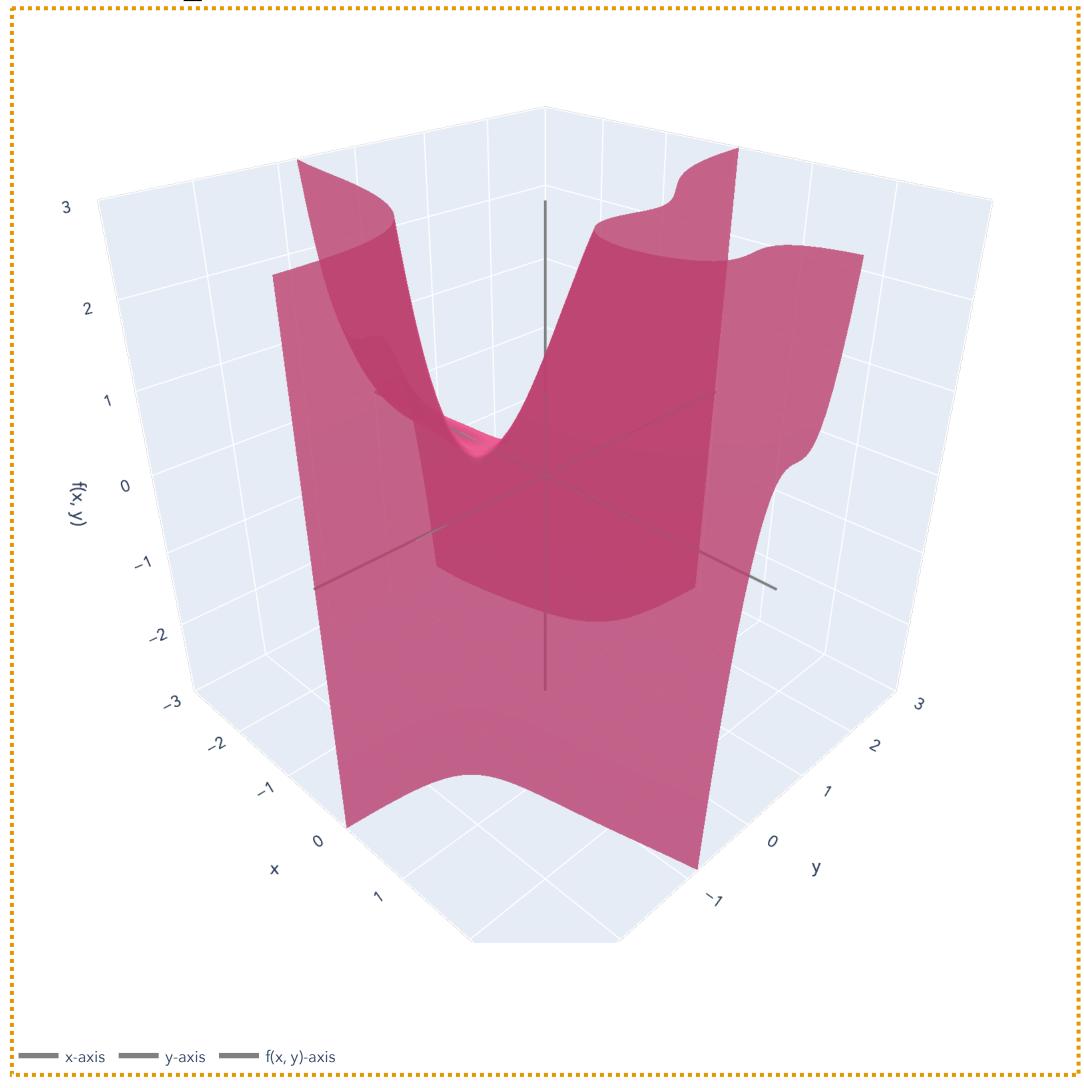
We can also write this as:

$$g(\mathbf{f}(\mathbf{x})) = (g \circ \mathbf{f})(x_1, x_2) = (\sin(x_1) + \cos(x_2))^2 + 2(x_1 x_2^3)$$

What is
$$\frac{\partial (g \circ \mathbf{f})}{\partial \mathbf{x}}$$
?

 $g(\mathbf{f}(\mathbf{x})) = (g \circ \mathbf{f})(x_1, x_2) = (\sin(x_1) + \cos(x_2))^2 + 2(x_1x_2^3)$





"Matrix Calculus"

Useful identities in machine learning

$$\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}$$

$$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$$

$$\frac{\partial}{\partial \vec{x}} (a^{T}\vec{x})$$

$$\frac{\partial}{\partial x} x^2 = 2x$$

$$\frac{\partial}{\partial x} = (1+1) x$$

More in The Matrix Cookbook.

"Matrix Calculus"

Example

Why
$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$$
?

Why do we get
$$\frac{\partial \mathbf{a}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}}$$
 "for free?"

Least Squares Optimization Perspective

Regression

Setup (Example View)

Observed: Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^n$.

$$\mathbf{X} = \begin{bmatrix} \leftarrow \mathbf{x}_1^\top \to \\ \vdots \\ \leftarrow \mathbf{x}_n^\top \to \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d.$$

<u>Unknown:</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1, ..., w_d$.

<u>Goal:</u> For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$$
.

Regression

Setup (Feature View)

<u>Observed</u>: Matrix of training samples $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of training labels $\mathbf{y} \in \mathbb{R}^n$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \dots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ where } \mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n.$$

<u>Unknown:</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1, ..., w_d$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$$
.

Regression

Setup

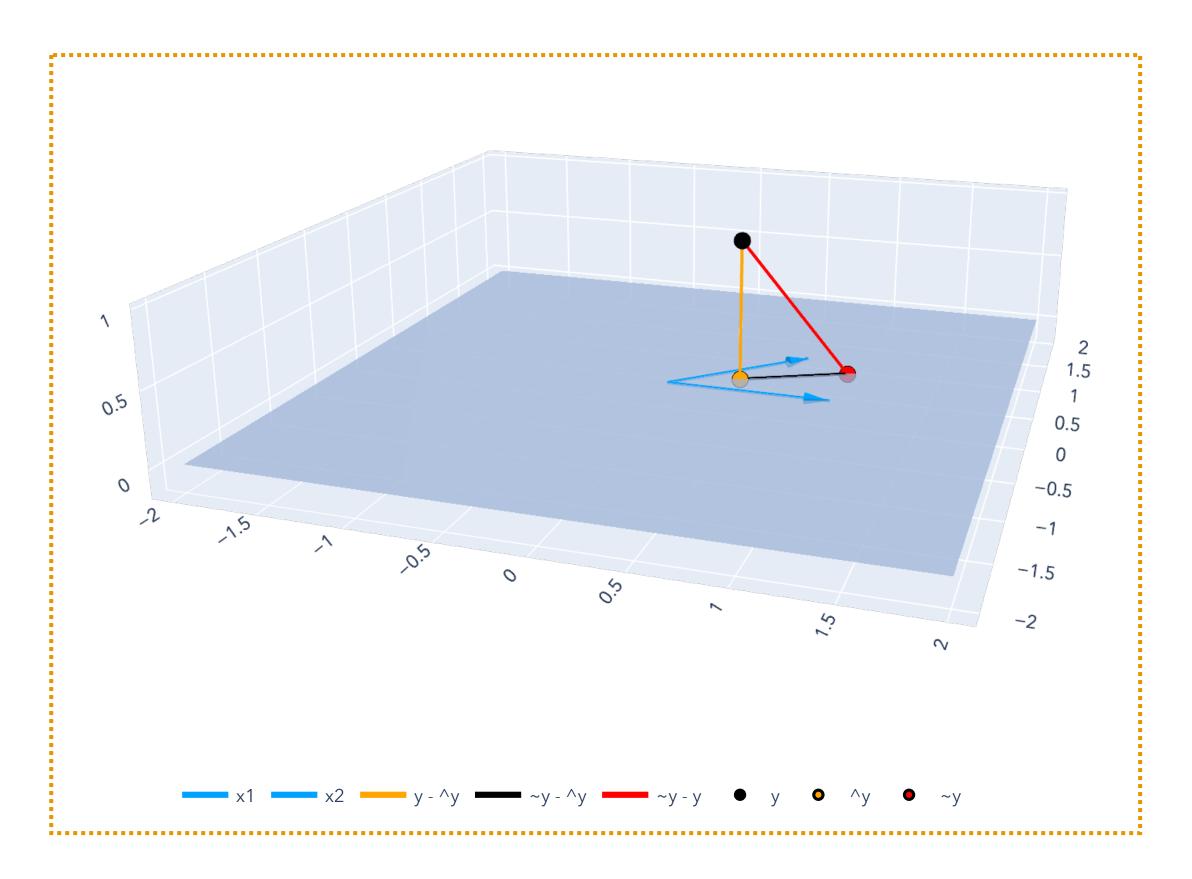
To find $\hat{\mathbf{w}}$, we follow the principle of least squares.

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

This gives the predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$ that are close in a least squares sense:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}}$$
 such that $\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$

(for $\tilde{\mathbf{y}} = \mathbf{X}\mathbf{w}$ from any other $\mathbf{w} \in \mathbb{R}^d$).



OLS Theorem

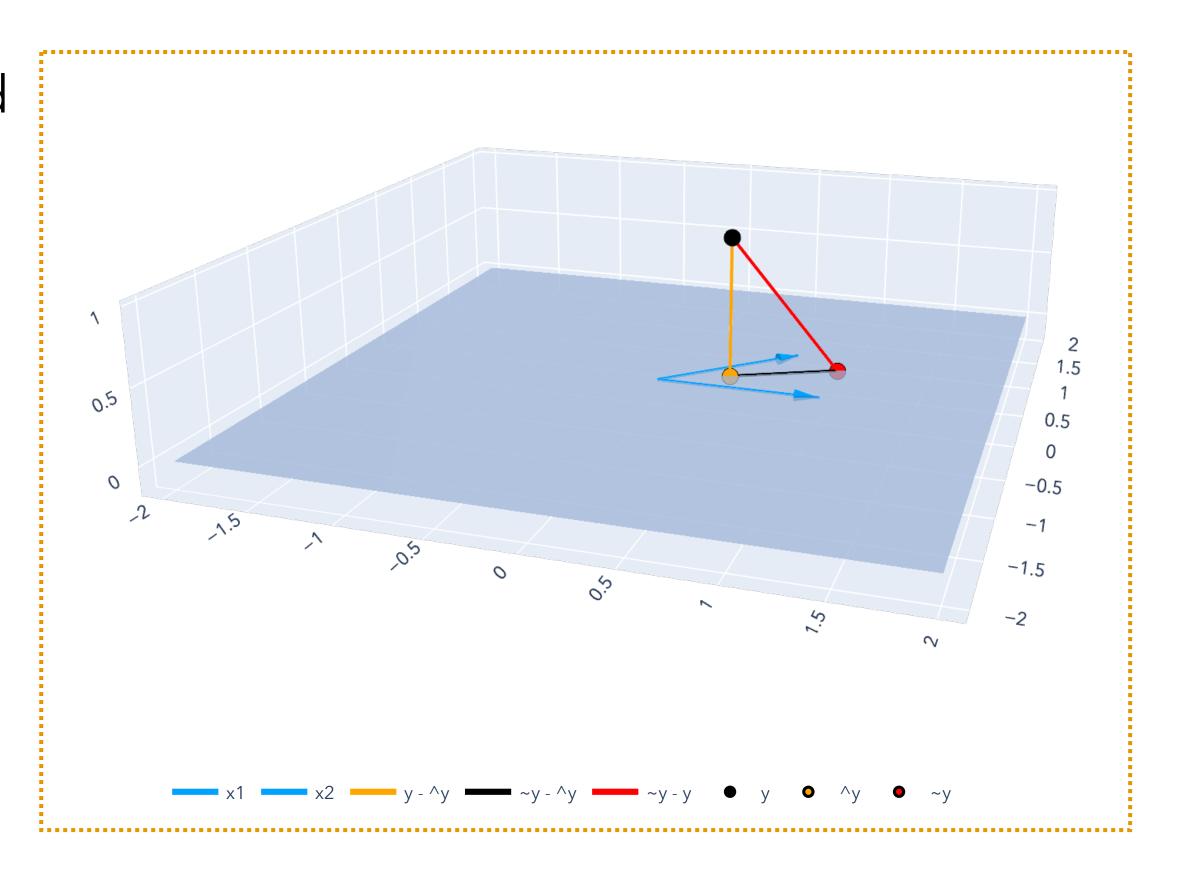
Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$



OLS Theorem

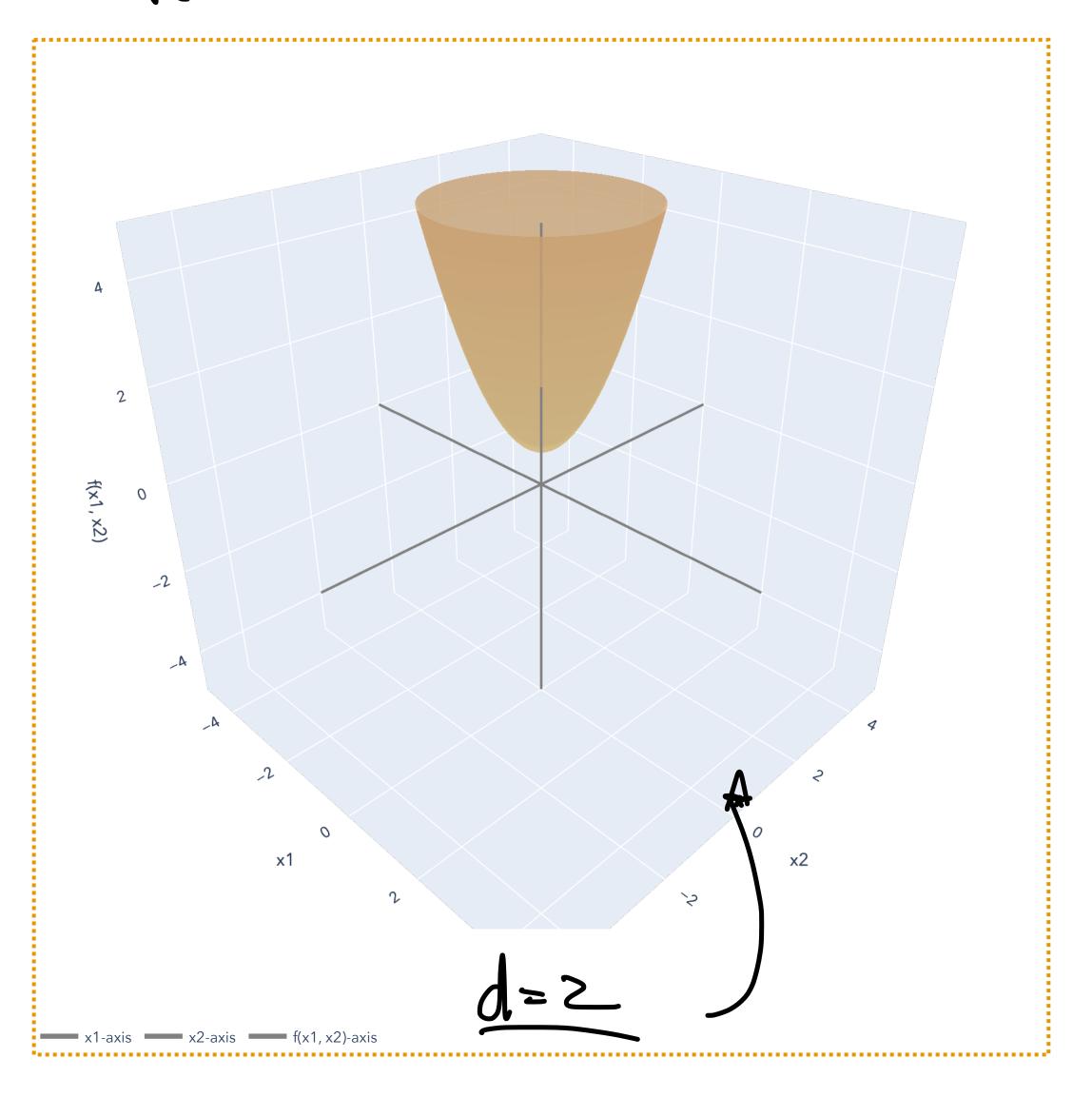
Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$



OLS Theorem

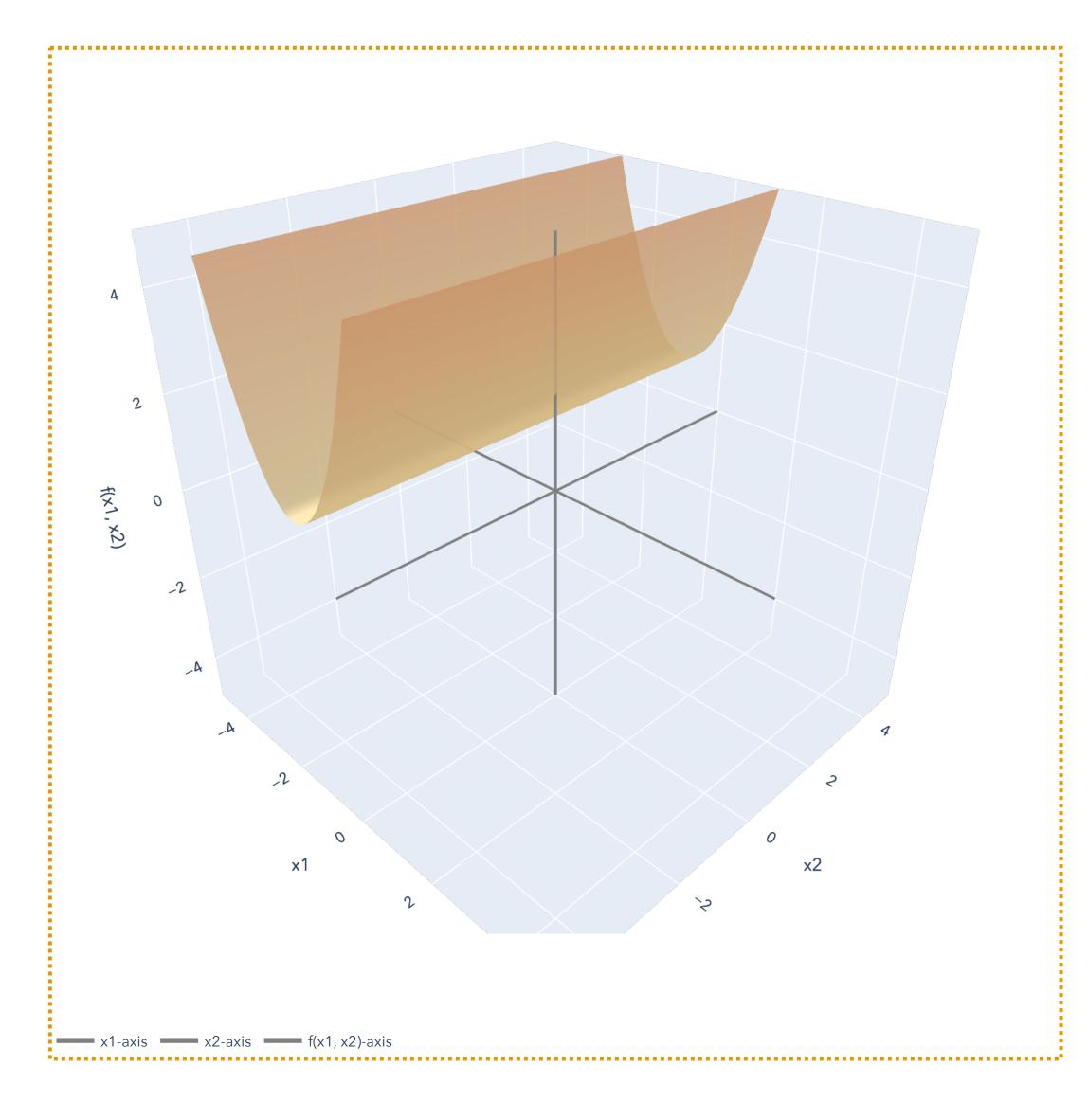
Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$



Optimization Problem

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Minimize
$$\| \times \vec{w} - \gamma \|^2$$
Subsect to $\vec{w} \in \mathbb{R}^d$ — No constraints.

Optimization Problem

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Optimization Problem

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Optimization Problem

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

tion problem instead?
$$f\colon \mathbb{R}^d \to \mathbb{R}$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \sum_{i=1}^{n} \left(\mathbf{w}^{T}\mathbf{x}_{i} - \mathbf{y}_{i}^{T} \right)^2$$

Motivation

Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an <u>objective function</u> $f: \mathbb{R}^d \to \mathbb{R}$ with respect to a set of constraints $\mathscr{C} \subseteq \mathbb{R}^d$:

minimize
$$f(x)$$
 x
subject to $x \in \mathscr{C}$

Least Squares Objective

Before, we called this the <u>squared error</u> or <u>sum of squared residuals</u>...

$$f: \mathbb{R}^d \to \mathbb{R}$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

This is also the objective function of an optimization problem: the least squares objective.

Least Squares Objective in R

$$f: \mathbb{R} \to \mathbb{R}$$

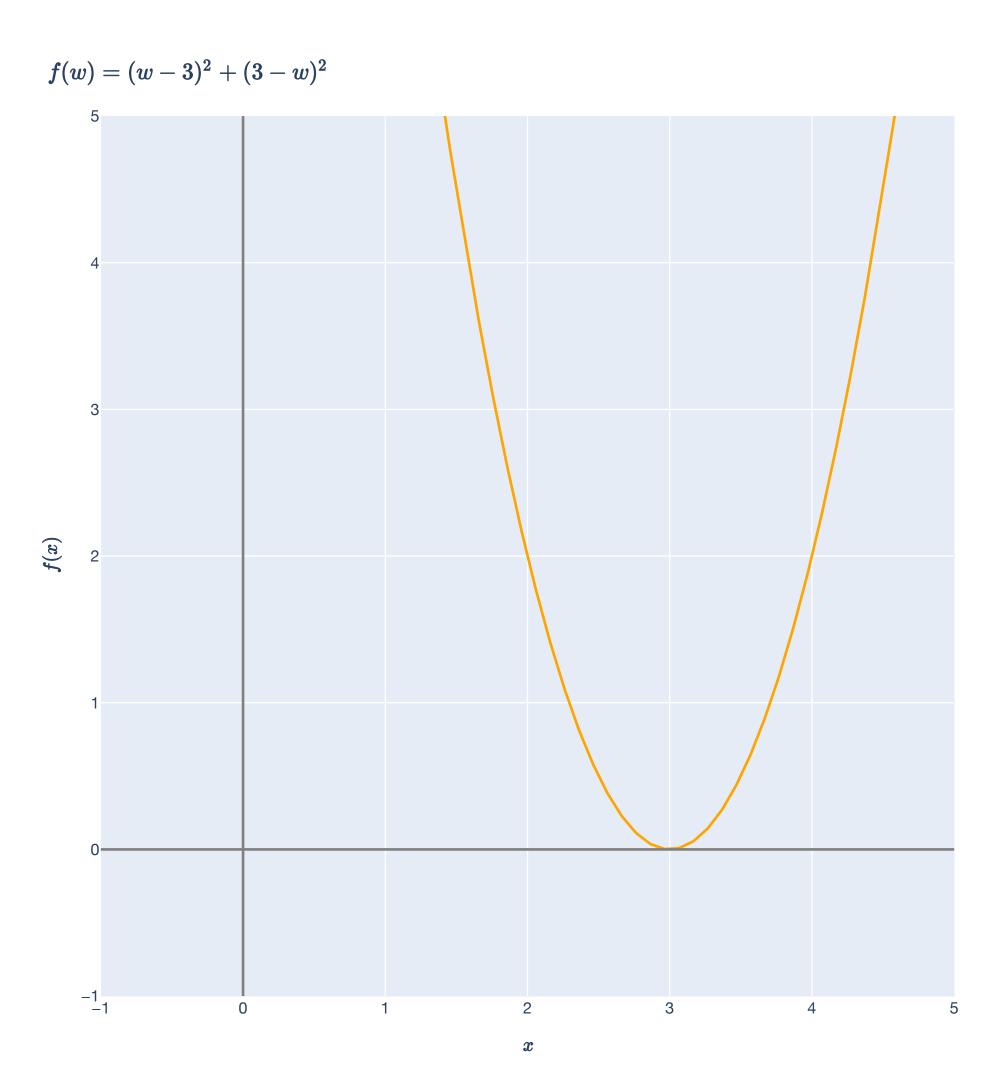
$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \implies f(w) = \|w\mathbf{x} - \mathbf{y}\|^2$$

Least Squares Objective in ${\mathbb R}$

Consider the dataset $\mathbf{x} = (1, -1)$ and $\mathbf{y} = (3, -3)$, where n = 2, d = 1.

$$f(w) = \|w\mathbf{x} - \mathbf{y}\|^2$$

$$x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$



Least Squares Objective in \mathbb{R}^2

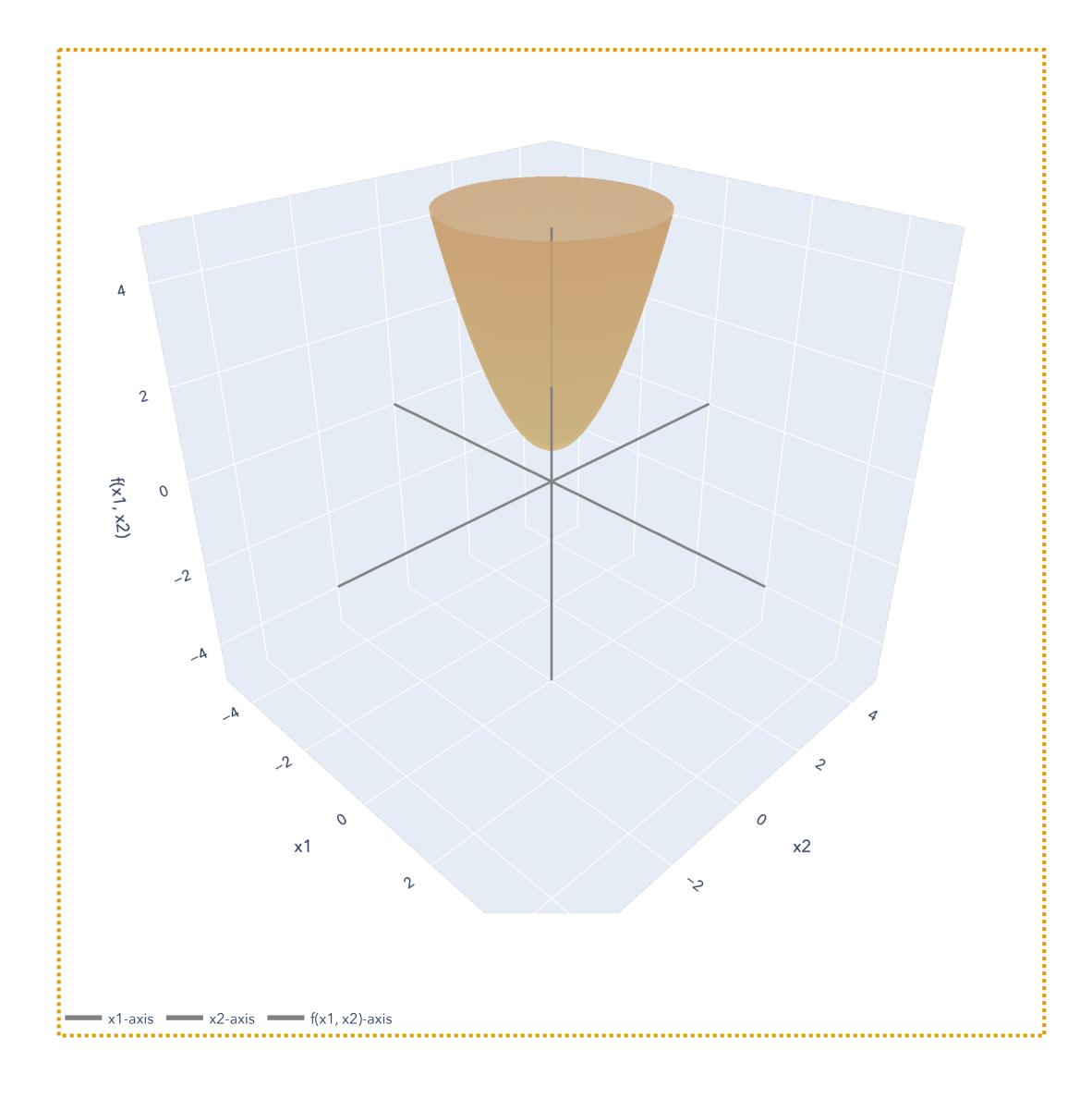
$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Least Squares Objective in \mathbb{R}^2

Consider the dataset $\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} +1 \\ 1 \end{bmatrix}$, where n = 2, d = 2.

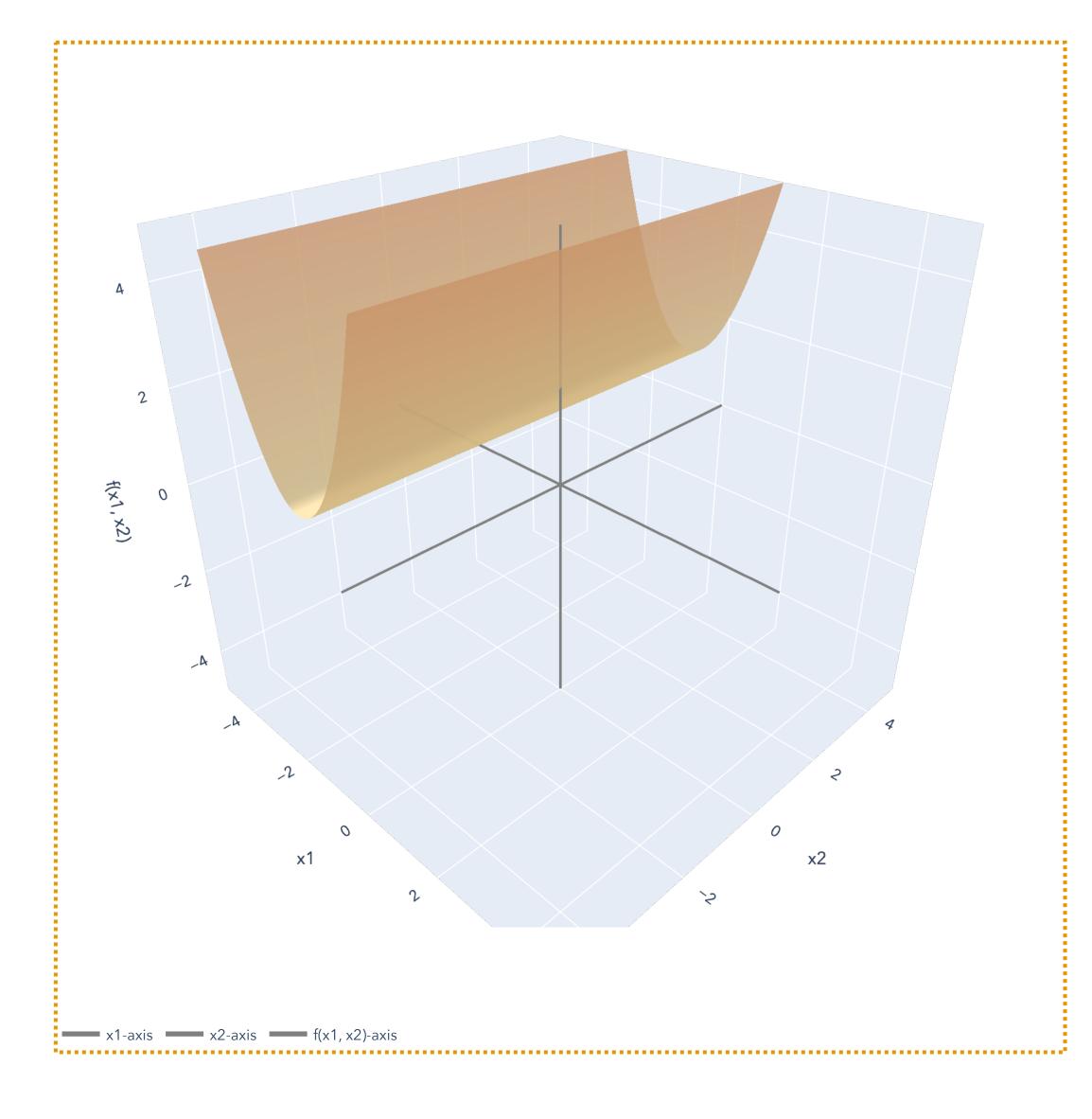
$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$



Least Squares Objective in \mathbb{R}^2

Consider the dataset $\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, where n = 2, d = 2.

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$



OLS Theorem

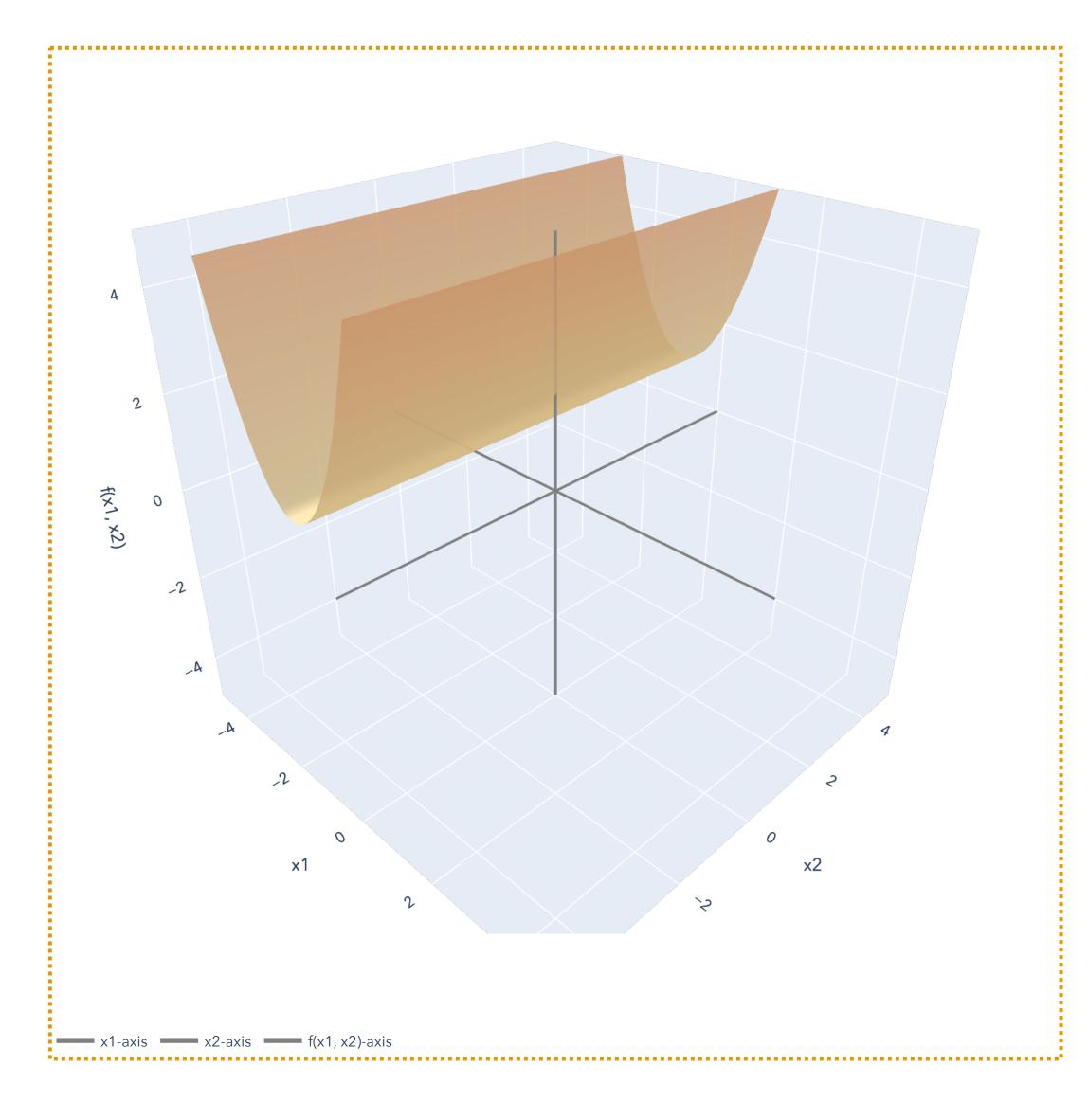
Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$



OLS from Optimization

Theorem (Full rank and eigenvalues). Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a square matrix with all real eigenvalues $\lambda_1, ..., \lambda_d \in \mathbb{R}$.

 $rank(\mathbf{A}) = d \iff \lambda_i > 0 \text{ for all } i \in [d].$

There is no nector that gets marked to 2

There is no nector that gets marked to 2

ALS (A) = {63} (=>) dim(cs(A)) = d.

Review: How did we optimize in 1D?

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

$$f(w) = 4w^{2} - 4w + 1?$$

$$f'(w) = 8w - 4$$

$$0 = 8w - 4$$

$$\sqrt{w = 4}$$

$$\sqrt{w} = 4$$

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

$$f(w) = 4w^2 - 4w + 1?$$

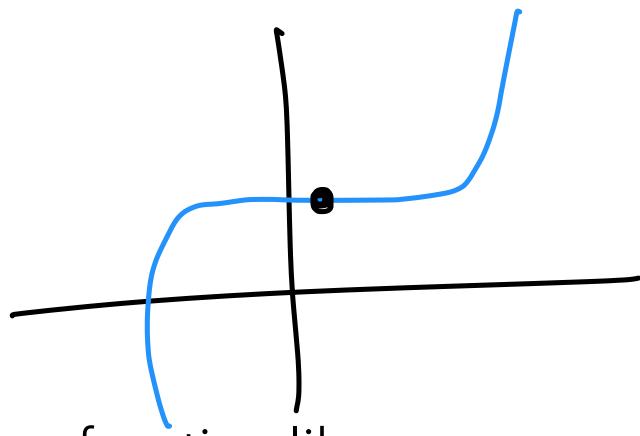
Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

$$f(w) = 4w^2 - 4w + 1?$$

First derivative test. Take derivative f'(w) and set equal to 0 to find candidates for optima, \hat{w} .

Review: How did we optimize in 1D?



Recall from single variable calculus: how did we optimize a function like:

$$f(w) = 4w^2 - 4w + 1?$$

First derivative test. Take derivative f'(w) and set equal to 0 to find candidates for optima, \hat{w} .

Second derivative test. Check $f''(\hat{w}) > 0$ for minimum; check $f''(\hat{w}) < 0$ for maximum.

Step 1: Expand the squared norm

Step 1: Expand the squared norm

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f: \mathbb{R}^d \to \mathbb{R}$,

Step 1: Expand the squared norm

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f: \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Step 1: Expand the squared norm

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f: \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Step 1: Expand the squared norm

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^{2}$$

$$= (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

Step 1: Expand the squared norm

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^{2}$$

$$= (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

Quadratic Forms

Review

A function $f: \mathbb{R}^2 \to \mathbb{R}$ is a quadratic form if it is a polynomial with terms of all degree two:

$$f(x) = ax^2 + 2bxy + cy^2.$$

We can rewrite this in matrix form:

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$

Step 2: Recognize quadratic form

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Step 2: Recognize quadratic form

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Step 2: Recognize quadratic form

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} \qquad \qquad \left(\mathbf{x}^{\mathsf{T}}\mathbf{x} \right)^{\mathsf{T}} = \mathbf{x}^{\mathsf{T}}\mathbf{x}$$

Step 2: Recognize quadratic form

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}$$

Step 2: Recognize quadratic form

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

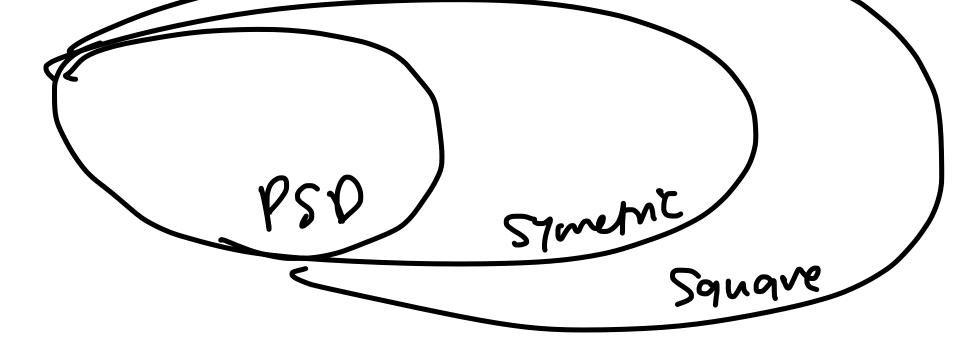
$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}$$

Positive Semidefinite (PSD) Matrices

Review

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is positive semidefinite (PSD) if...



there exists $\mathbf{X} \in \mathbb{R}^{n \times d}$ such that $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X}$.

 \uparrow

all eigenvalues of **A** are nonnegative: $\lambda_1 \geq 0, ..., \lambda_d \geq 0$.

 \downarrow

 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \geq 0$ for any $\mathbf{x} \in \mathbb{R}^d$.

Step 2: Recognize quadratic form

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

This is a quadratic function, with the leading quadratic form:

$$\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}$$

We know that this is positive semidefinite.

Step 2: Recognize quadratic form

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

This is a quadratic function, with the leading quadratic form:

$$\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}$$

Even better: $\operatorname{rank}(\mathbf{X}) = d$, so $\operatorname{rank}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d$ and therefore $\lambda_1, \ldots, \lambda_d > 0$ and $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive definite!

"Matrix Calculus"

Useful identities in machine learning

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{a}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}$$

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \mathbf{x}$$

More in The Matrix Cookbook.

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Step 3: Take first derivative (gradient)

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Step 3: Take first derivative (gradient)

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

Step 3: Take first derivative (gradient)

$$\frac{\lambda}{\lambda} \times 2 = 2x$$

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

$$\nabla_{\mathbf{w}}(\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} \text{ because } \frac{\partial \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}})\mathbf{x}$$

Step 3: Take first derivative (gradient)

$$\frac{\partial}{\partial w} - 2bw = -2b$$

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

$$\nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} \text{ because } \frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \mathbf{x}$$

$$\nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{y} \text{ because } \frac{\partial \mathbf{a}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

Step 3: Take first derivative (gradient)

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\top} \mathbf{y} \text{ (sum rule)}$$

$$\nabla_{\mathbf{w}} (\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}) = 2(\mathbf{X}^{\top} \mathbf{X}) \mathbf{w} \text{ because } \frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$$

$$\nabla_{\mathbf{w}} (2\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}) = 2\mathbf{X}^{\top} \mathbf{y} \text{ because } \frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\nabla_{\mathbf{w}} \mathbf{y}^{\top} \mathbf{y} = 0 \implies \nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\top} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\top} \mathbf{y}$$

Step 3: Take first derivative (gradient)

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

$$\nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} \text{ because } \frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \mathbf{x}$$

$$\nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{y} \text{ because } \frac{\partial \mathbf{a}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} = 0 \implies \nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}$$

OLS from Optimization

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

We have again obtained the <u>normal equations!</u>

Obtaining normal equations from linear algebra

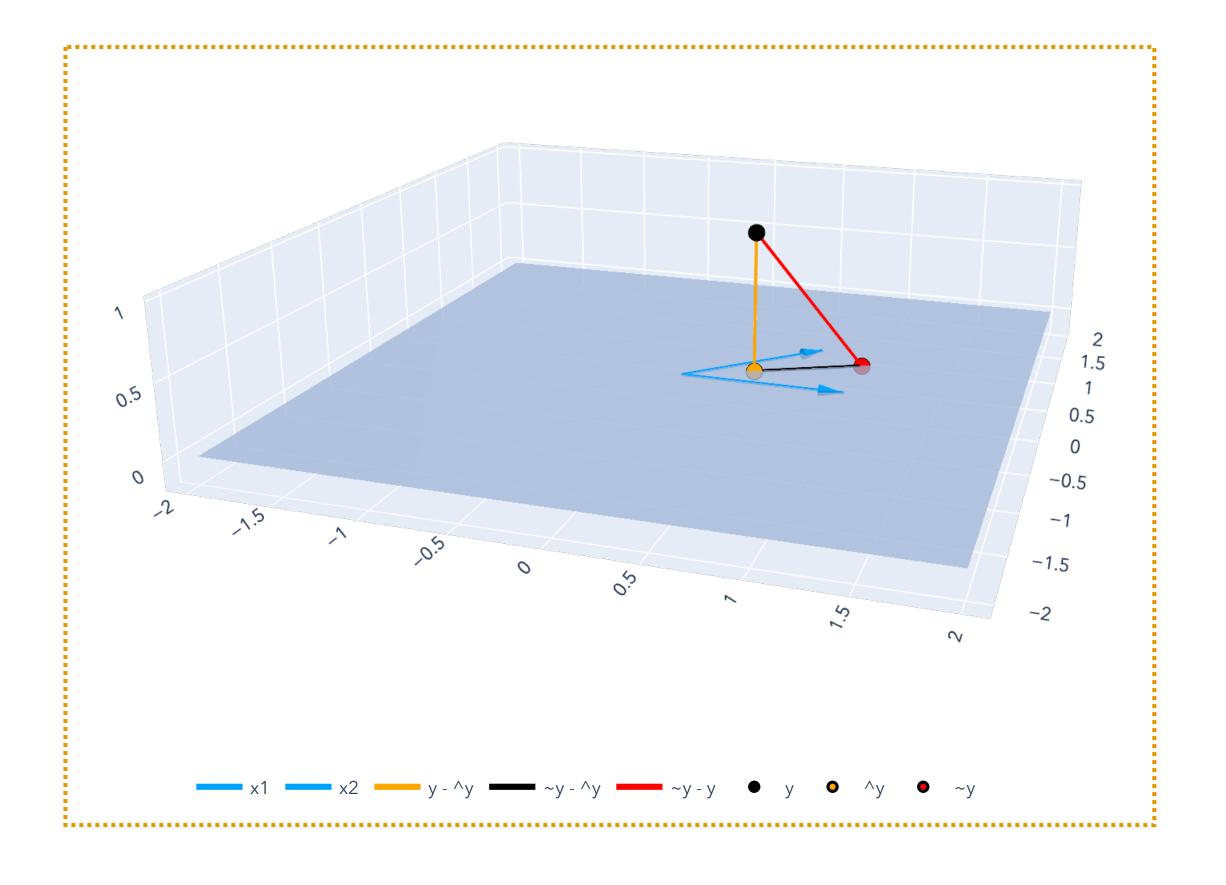
Because $\hat{y} - y$ is perpendicular to CS(X), we obtain the *normal equations*:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

$$\mathbf{X}^{\mathsf{T}}(\mathbf{Y} - \mathbf{Y}) = \mathbf{0}$$

$$\mathbf{X}^{\mathsf{T}}(\mathbf{Y} - \mathbf{Y}) = \mathbf{0}$$

$$\mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{Y}) = \mathbf{0}$$



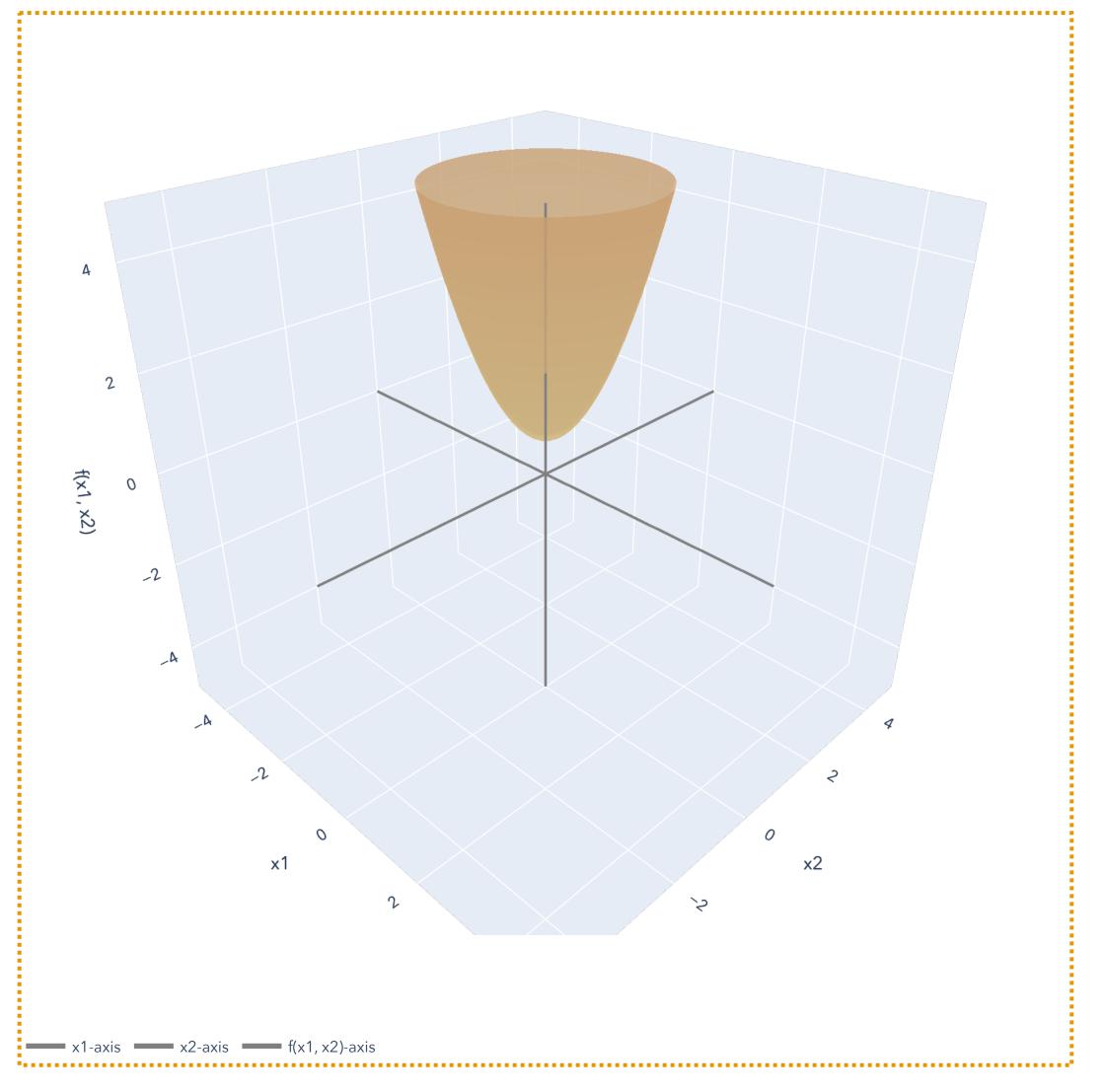
Obtaining normal equations from optimization

Because the gradient is

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y},$$

setting it equal to $\mathbf{0}$, we obtain the *normal* equations:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$



Step 4: Solve the normal equations using PD matrix

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to $\mathbf{0}$.

Step 4: Solve the normal equations using PD matrix

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to $\mathbf{0}$.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Step 4: Solve the normal equations using PD matrix

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to $\mathbf{0}$.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Because $rank(\mathbf{X}) = d$, we know $rank(\mathbf{X}^T\mathbf{X}) = d$ and $\mathbf{X}^T\mathbf{X}$ is invertible. Solve the normal equations to get a *candidate* for the minimizer:

Step 4: Solve the normal equations using PD matrix

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to $\mathbf{0}$.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Because $rank(\mathbf{X}) = d$, we know $rank(\mathbf{X}^T\mathbf{X}) = d$ and $\mathbf{X}^T\mathbf{X}$ is invertible. Solve the normal equations to get a *candidate* for the minimizer:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Step 4: Solve the normal equations using PD matrix

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to $\mathbf{0}$.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Because $rank(\mathbf{X}) = d$, we know $rank(\mathbf{X}^T\mathbf{X}) = d$ and $\mathbf{X}^T\mathbf{X}$ is invertible. Solve the normal equations to get a *candidate* for the minimizer:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Step 5: Take second derivative (Hessian)

Objective:
$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Gradient:
$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}$$
.

Candidate minimizer:
$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$
.

"Second derivative test." Take the Hessian of $f(\mathbf{w})$.

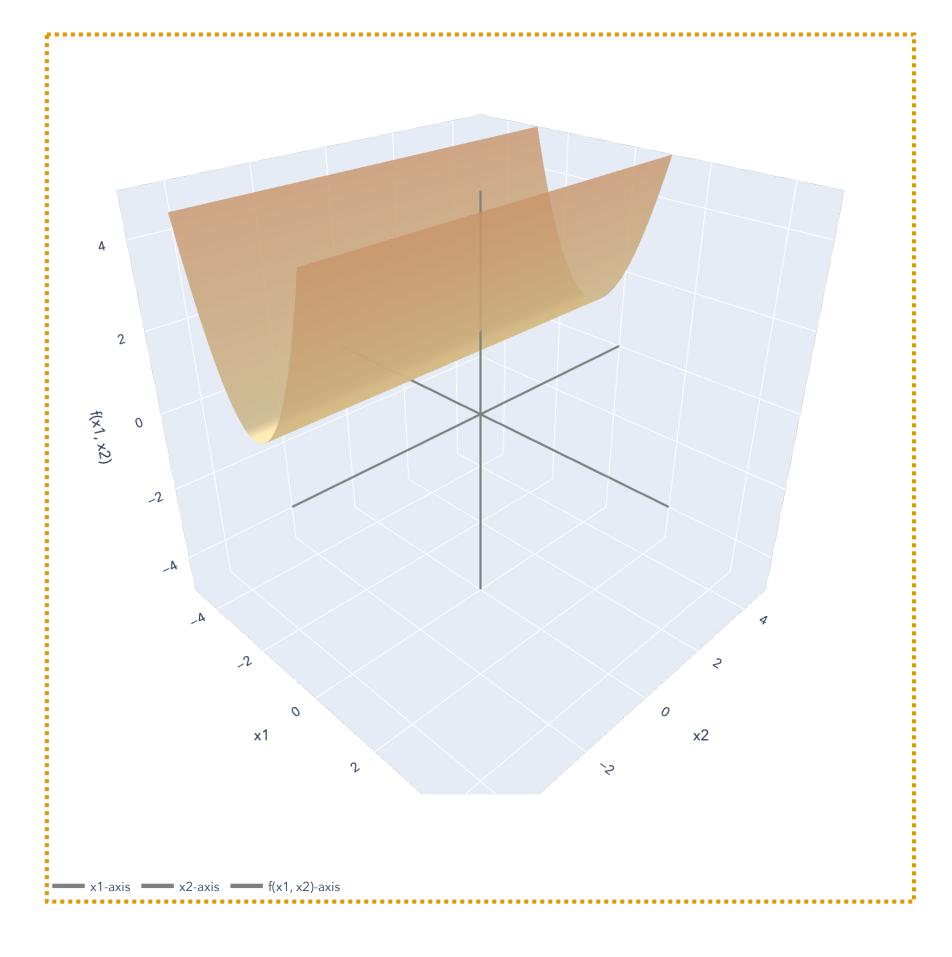
$$\nabla_{\mathbf{w}}^2 f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X}.$$

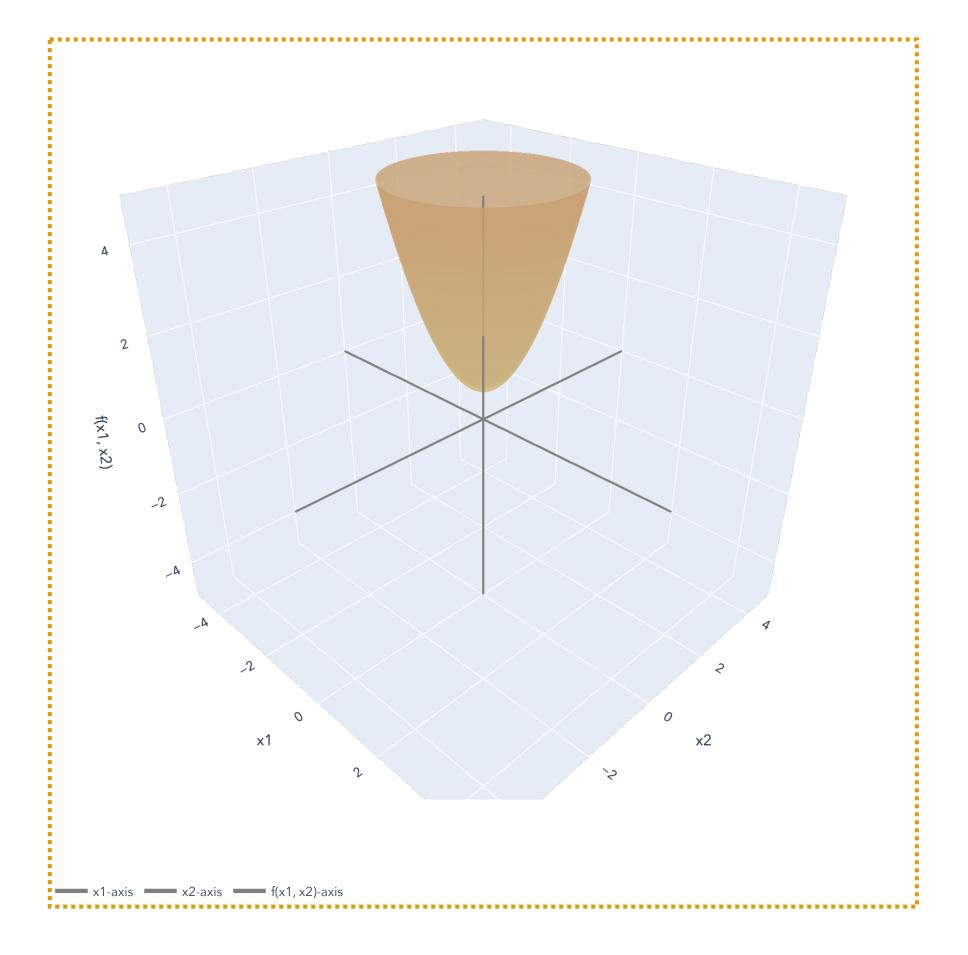
$$rank(\mathbf{X}) = d \implies rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \implies \lambda_1, ..., \lambda_d > 0$$

 \Longrightarrow $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive definite!

PSD and PD Quadratic Forms

"Proof by graph"





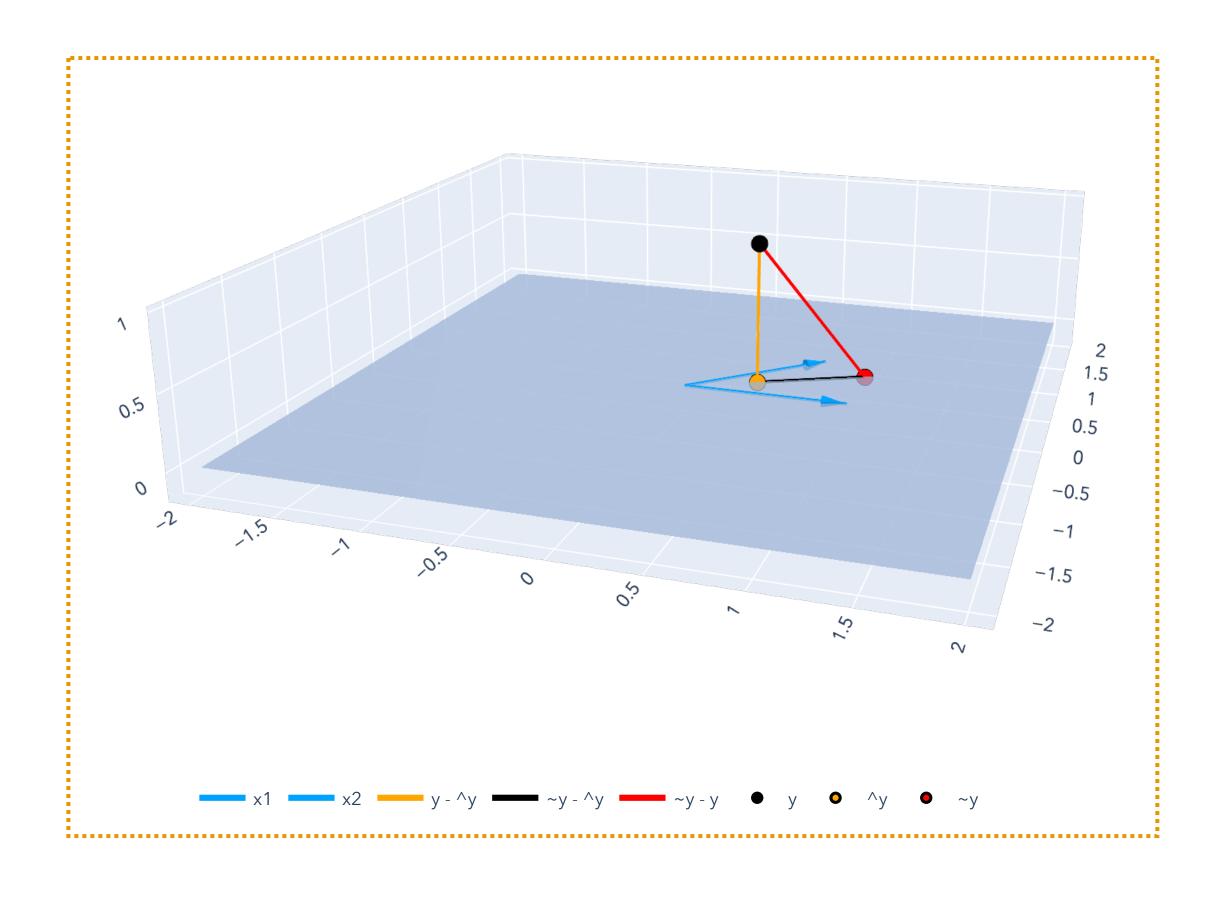
$$\lambda_1, \ldots, \lambda_d \geq 0$$

$$\lambda_1, \dots, \lambda_d > 0$$

Showing $\hat{\mathbf{w}}$ is the minimizer from linear algebra

By Pythagorean Theorem, any other vector $\tilde{\mathbf{y}} \in \mathbf{CS}(\mathbf{X})$ gives a larger error:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$



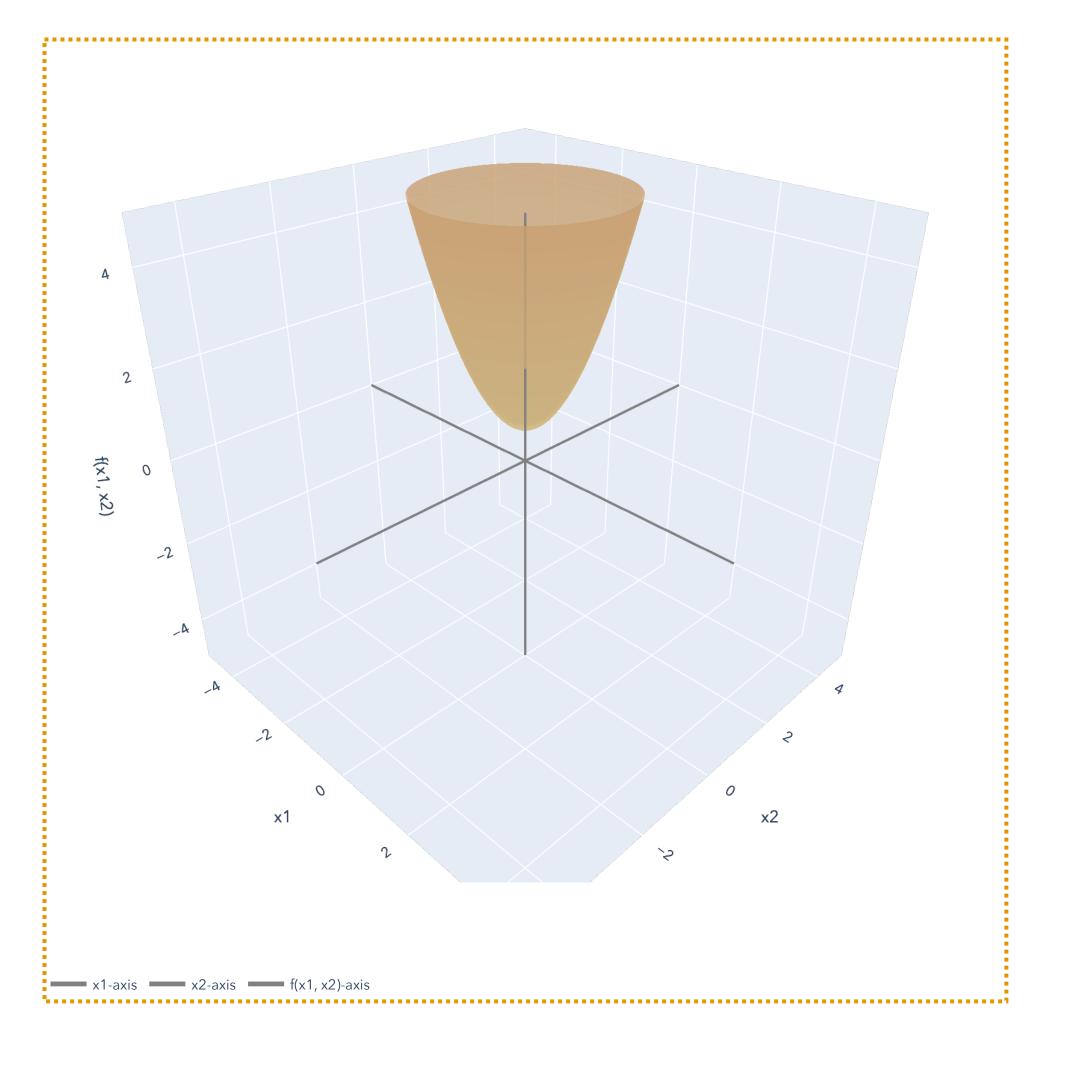
Least Squares

Showing $\hat{\mathbf{w}}$ is the minimizer from optimization

Because the Hessian of $f(\mathbf{w})$ is

$$\nabla_{\mathbf{w}}^2 f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X},$$

and we assumed $rank(\mathbf{X}) = d$, the matrix $\mathbf{X}^T\mathbf{X}$ must be positive definite, and $f(\mathbf{w})$ therefore has a "positive" second derivative (Hessian).



Least Squares

OLS Theorem

Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

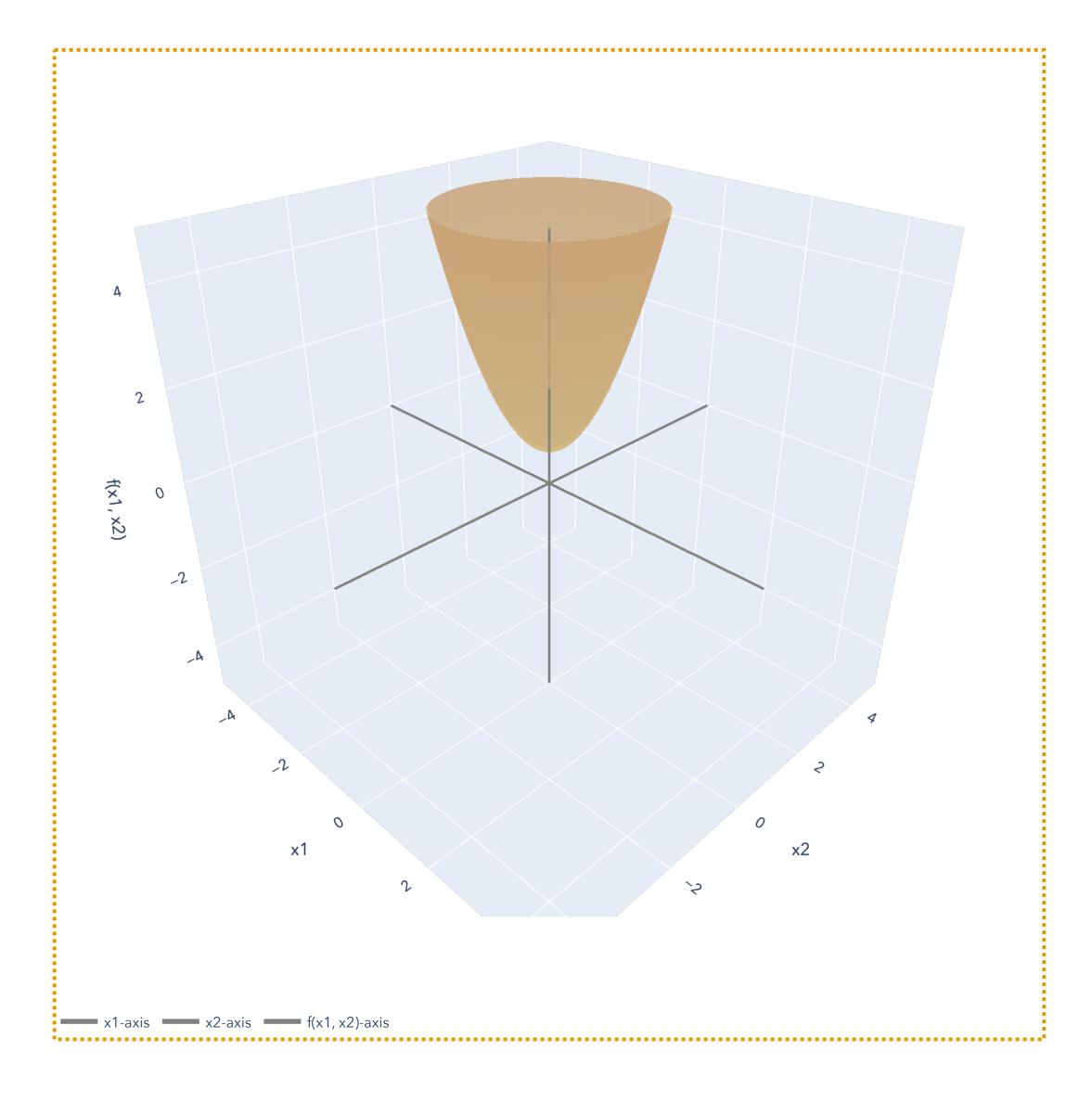
$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$



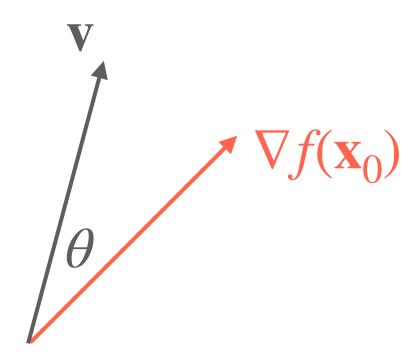
Gradient Descent Preview of the Algorithm

Multivariable Differentiation

Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \mathbb{R}^d$. If $\mathbf{v} \in \mathbb{R}^d$ is a *unit* vector making angle θ with the gradient $\nabla f(\mathbf{x}_0)$, then:

$$\nabla f(\mathbf{x}_0)^{\mathsf{T}}\mathbf{v} = \|\nabla f(\mathbf{x}_0)\|\cos\theta.$$



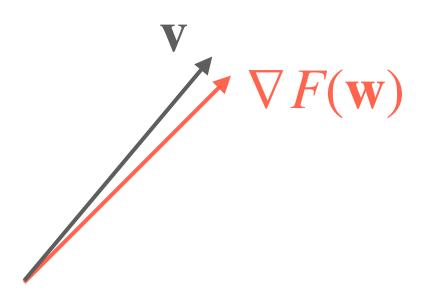
Gradient is the direction of steepest ascent at the rate $\|\nabla f(\mathbf{x}_0)\|$!

Multivariable Differentiation

Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \mathbb{R}^d$. If $\mathbf{v} \in \mathbb{R}^d$ is a *unit* vector making angle θ with the gradient $\nabla f(\mathbf{x}_0)$, then:

$$\nabla f(\mathbf{x}_0)^{\mathsf{T}}\mathbf{v} = \|\nabla f(\mathbf{x}_0)\|\cos\theta.$$



Gradient is the direction of steepest ascent at the rate $\|\nabla f(\mathbf{x}_0)\|$!

Gradient Descent

Algorithm

Input: Function $f: \mathbb{R}^d \to \mathbb{R}$. Initial point $\mathbf{x}_0 \in \mathbb{R}^d$. Step size $\eta \in \mathbb{R}$.

Initialize at a randomly chosen $\mathbf{x}^{(0)} \in \mathbb{R}^d$.

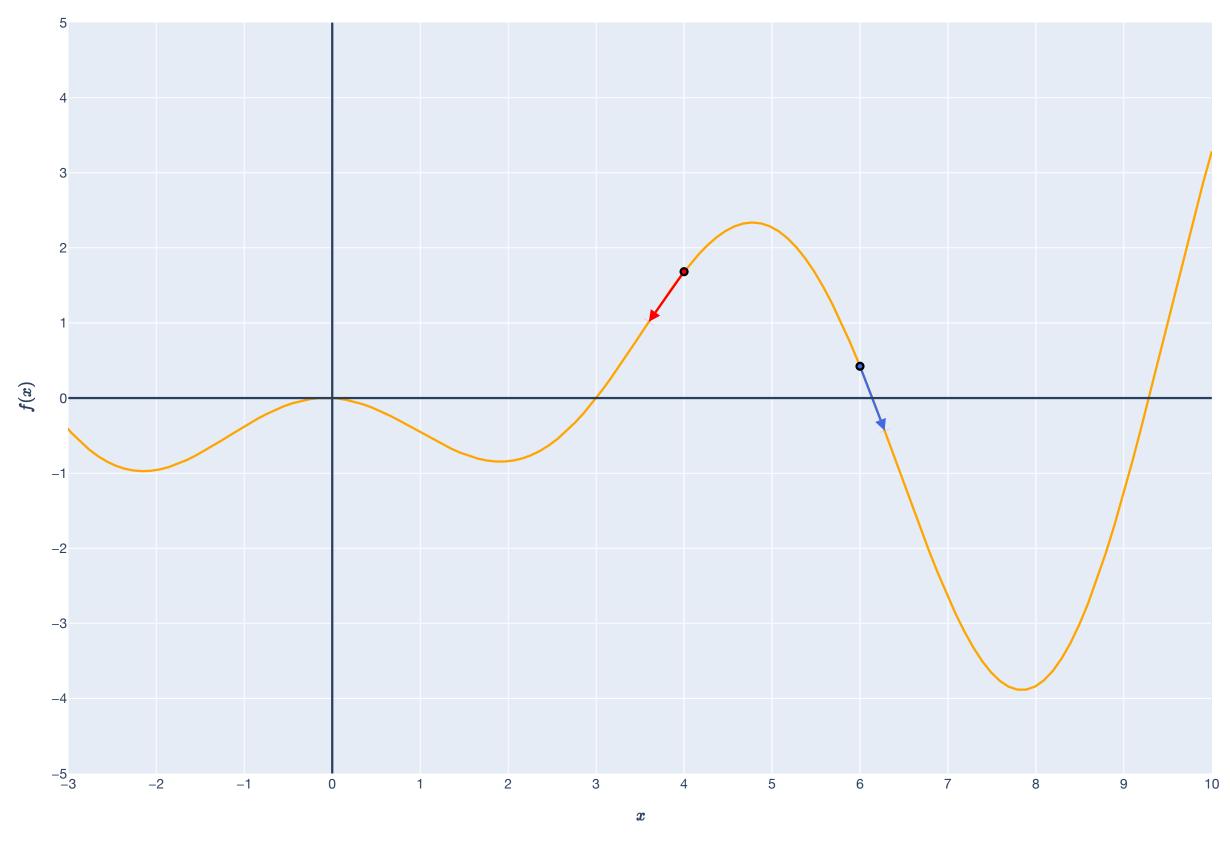
For iteration t = 1, 2, ... (until "stopping condition" satisfied):

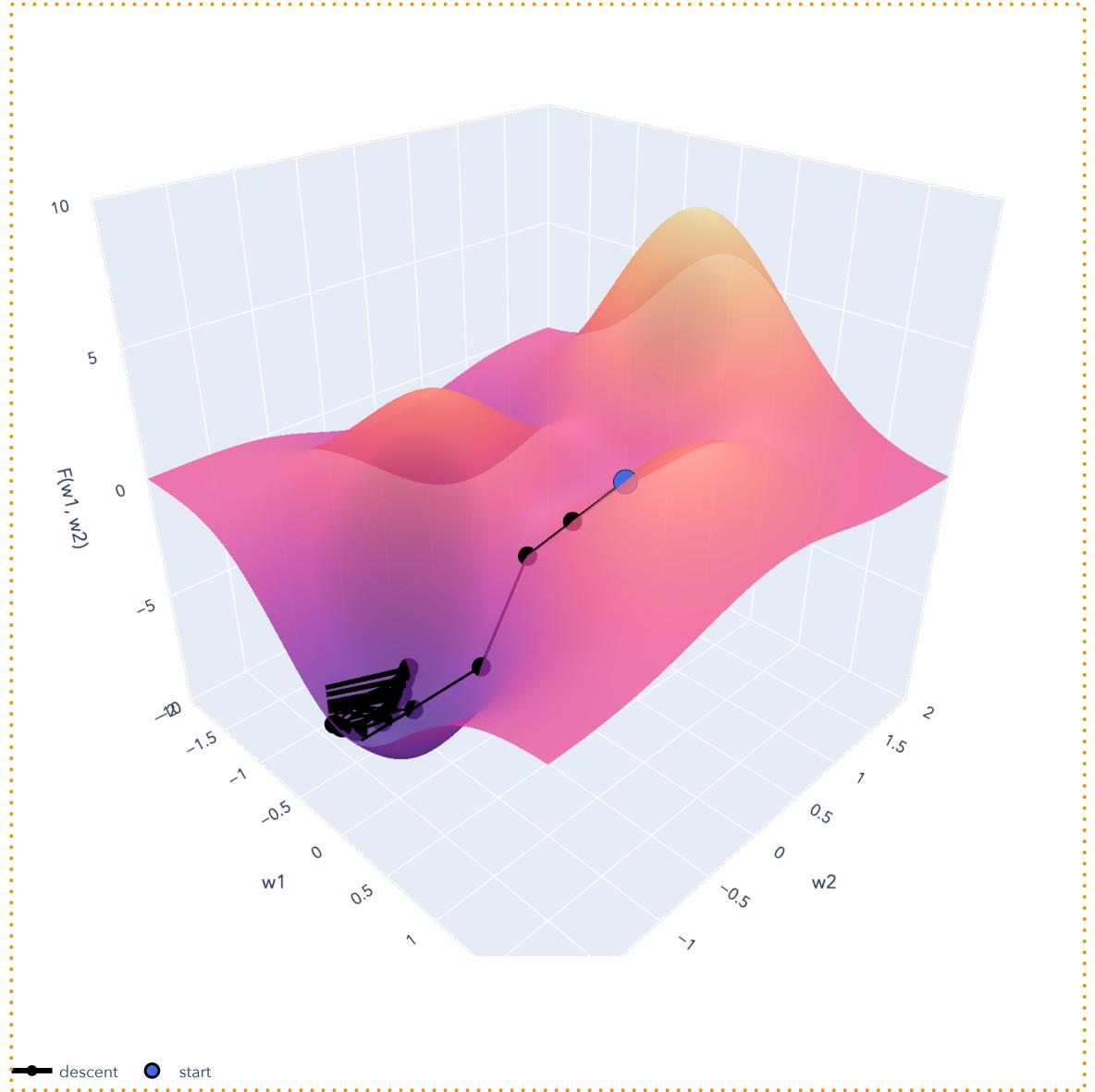
$$\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} - \eta \, \nabla F(\mathbf{x}^{(t-1)})$$

Return final $\mathbf{x}^{(t)}$.

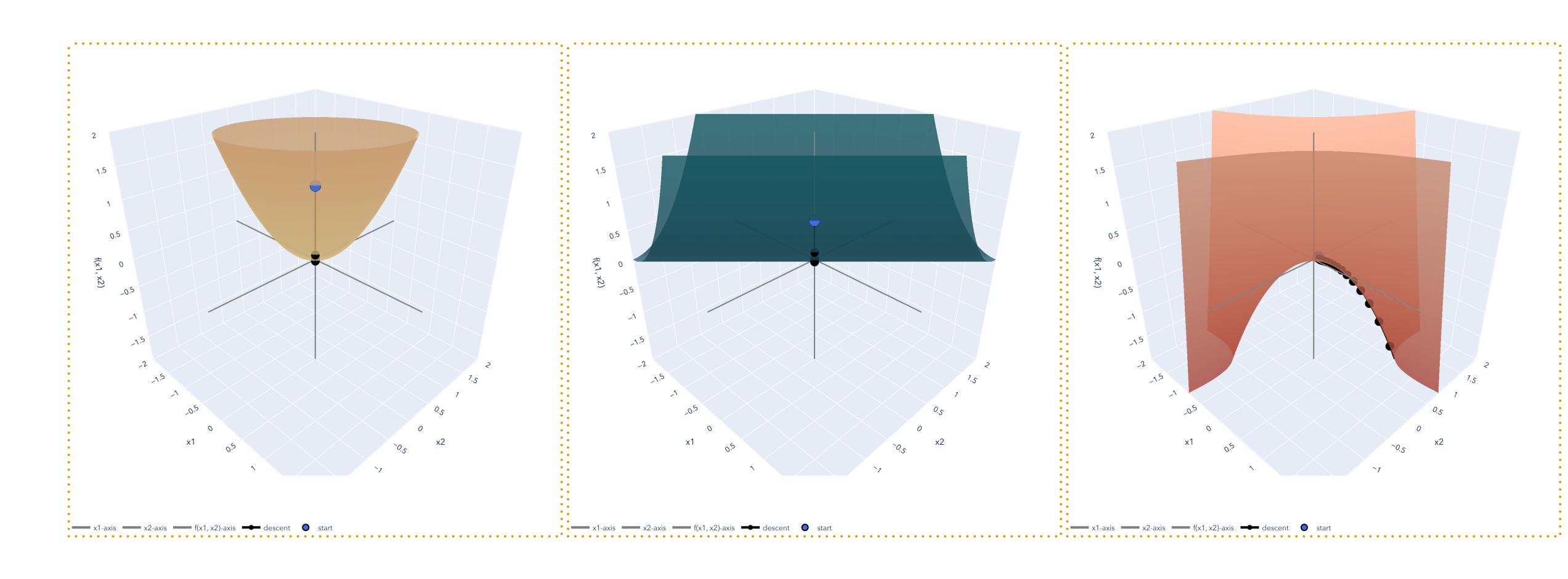
Gradient Descent

Preview





Preview



Recap

Motivation for differential calculus. We ultimately want to solve optimization problems, which require finding global minima.

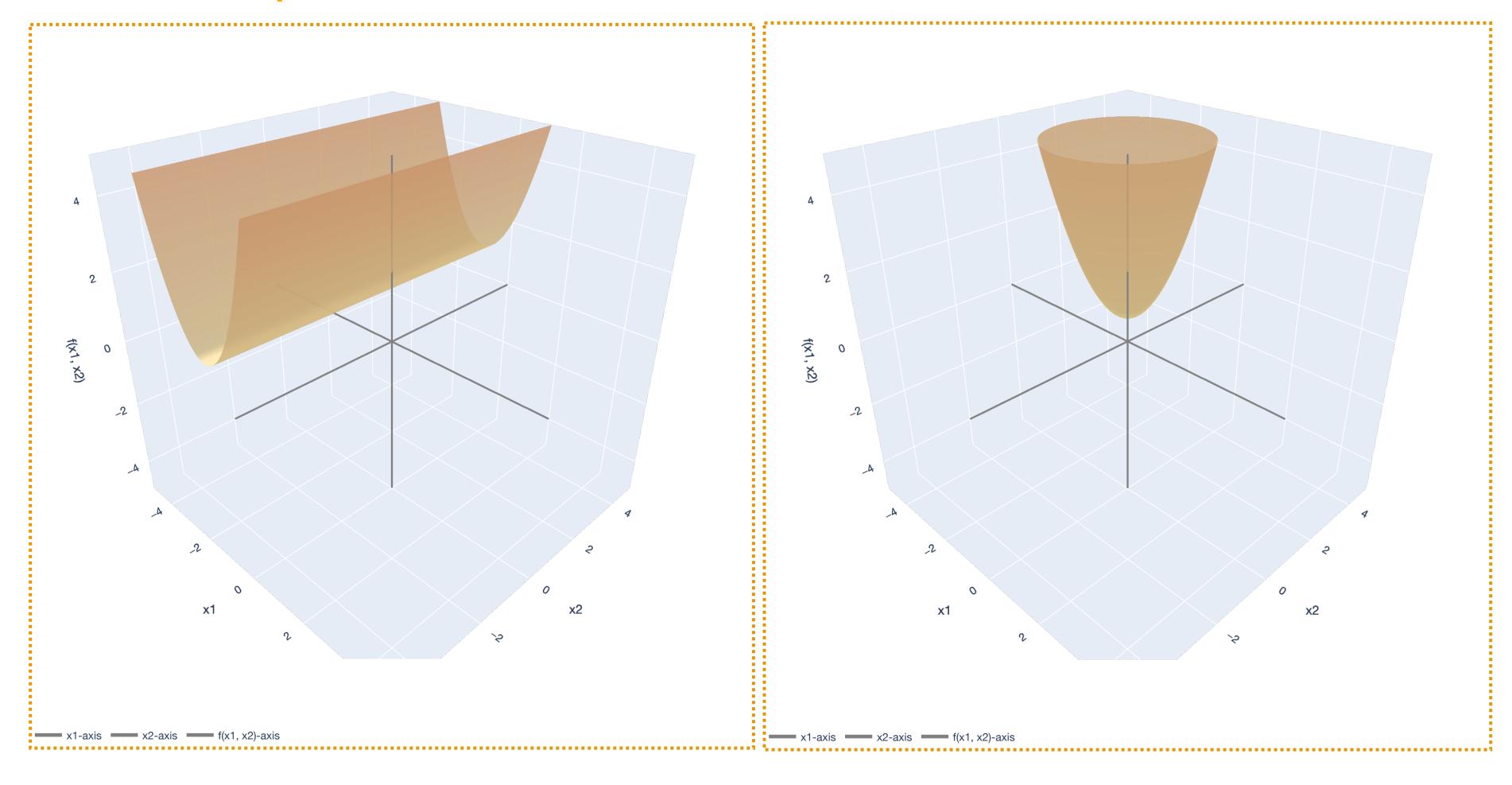
Single-variable differentiation review. In single-variable differentiation, the <u>derivative</u> is still a 1×1 "matrix" mapping change in input to change in output.

Multivariable differentiation. Derivatives in multiple variables become harder because we can approach from an infinite number of directions, not just two.

Total, directional, and partial derivatives. When a function is <u>smooth</u> it has a <u>total derivative</u> (it is <u>differentiable</u>). In this case, the <u>directional derivative</u> and <u>partial derivative</u> comes directly from the total derivative (Jacobian/gradient).

OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear algebra. We provide a heuristic derivation of the OLS estimator again.

Big Picture: Least Squares



$$\lambda_1, \dots, \lambda_d \geq 0$$

$$\lambda_1, \dots, \lambda_d > 0$$

Big Picture: Gradient Descent

