
By: Samuel Deng

Math for Machine Learning
Week 3.2: Linearization, Gradient Descent, and Taylor Series

Logistics & Announcements

Lesson Overview

Linearization for approximation. We explore using the linearization of a function to approximate
it. This is also called a “first-order approximation.”

Gradient descent. We write down the full algorithm for gradient descent, the second “story” of
our course. First, we prove the informal descent lemma. Then, we use Taylor series to formalize it.

Taylor series. We define the Taylor series of a function, which is an “infinite polynomial” that
approximates a function at a point.

First-order and second-order Taylor approximation. The Taylor polynomial allows us to
approximate a function by “chopping it off” at a certain degree.

Taylor’s Theorem. To quantify how bad our approximations are, we can use Taylor’s Theorem.

Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

Linearization
Derivatives to find linear approximations

Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.

Goal: minimize an objective function

Given an objective function , find the that makes as small as possible.

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f w f(w)

Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.

Goal: minimize an objective function

Given an objective function , find the that makes as small as possible.

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f(3,2,1,…,0) = 48

f w f(w)

Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.

Goal: minimize an objective function

Given an objective function , find the that makes as small as possible.

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f(1,1,1,…,1) = 10.2

f w f(w)

Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.

Goal: minimize an objective function

Given an objective function , find the that makes as small as possible.

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f(−3,1,0,…,1) = 0.24

f w f(w)

Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.

Goal: minimize an objective function

Given an objective function , find the that makes as small as possible.

Assume: is unconstrained.

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f w f(w)

w ∈ ℝd

Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.

Goal: minimize an objective function

Given an objective function , find the that makes as small as possible.

Assume: is unconstrained.

Assume: is differentiable.

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f w f(w)

w ∈ ℝd

f : ℝd → ℝ

Motivation
Optimization in single-variable calculus

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minUltimate goal: Find the global

minimum of functions.

Intermediary goal: Find the local
minima.

Derivatives will give us descent
directions!

Multivariable Differentiation
Total Derivative for f : ℝd → ℝ

Approaching from any direction , the change is approximated by .

lim
⃗δ→0

1

∥ ⃗δ∥ ((f(x0 + ⃗δ) − f(x0)) − Dfx0
(⃗δ)) = 0,

x0 ⃗δ f(x0 + ⃗δ) − f(x0) Dfx0

x1

x2

x0

⃗δ x0 + δ

x1

x2

x0 ⃗δ
x0 + δ

x1

x2

x0

⃗δ
x0 + δ

Let and is the th standard basis vector in . The th partial derivative of at is

This is the derivative of when keeping all but one variable constant.

f : ℝd → ℝ ei i ℝd i f x0

∂
∂xi

f(x0) := lim
δ→0

f(x0 + δei) − f(x0)
δ

f

Partial Derivative
Multivariable Differentiation

x1

x2

x0

δe2

x1

x2

x0

δe2

x1

x2

x0

δe2

Multivariable Differentiation
Gradient

Let . The gradient of at is the vector composed of all the partial
derivatives of at :

f : ℝd → ℝ f x0 ∇f(x0) ∈ ℝd

f x0

∇f(x0) :=

∂
∂x1

f(x0)

⋮
∂

∂xn
f(x0)

Slogan: Derivatives are linear transformations
Linearity and differentiation

The derivative is a linear transformation that maps changes in to changes in .

For , a scalar-valued function…

equivalent to:

An affine function that approximates .

x f

f : ℝd → ℝ

T : change in x → change in f

∇f(x0)⊤(x − x0) ≈ f(x) − f(x0)

∇f(x0)⊤(x − x0) + f(x0) ≈ f(x)

f

Differential Calculus
Review: Derivative

If is differentiable at …

is equivalent to:

f : ℝd → ℝ x0 ∈ ℝd

lim
⃗δ→0

1

∥ ⃗δ∥ ((f(x0 + ⃗δ) − f(x0)) − Dfx0
(⃗δ)) = 0

lim
x→x0

f(x) − (f(x0) + ∇f(x0)⊤(x − x0))
∥x − x0∥

= 0

Differential Calculus
Review: Derivative

If is differentiable at …

The linear approximation of at is the function:

One use of differential calculus: Analyze nonlinear functions with their linear approximations!

f : ℝd → ℝ x0 ∈ ℝd

lim
x→x0

f(x) − (f(x0) + ∇f(x0)⊤(x − x0))
∥x − x0∥

= 0

f x0

Ax0
(x) := f(x0) + ∇f(x0)⊤(x − x0)

at the point where we’re taking derivative…

as gets closer to …x x0 …the function is closer and closer to its linear approximation!

linear approximation

Differential Calculus
Review: Derivative

If is differentiable at …

One use of differential calculus: Analyze nonlinear functions with their linear approximations!

At any point , for all close to

f : ℝd → ℝ x0 ∈ ℝd

lim
x→x0

f(x) − (f(x0) + ∇f(x0)⊤(x − x0))
∥x − x0∥

= 0

x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

at the point where we’re taking derivative…

as gets closer to …x x0 …the function is closer and closer to its linear approximation!

linear approximation

Linear Approximations
Our main slogan

At any point , for all close to x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Linear Approximations
Our main slogan

At any point , for all close to x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

approximation at 1

approximation at -1/2

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Linear Approximations
Our main slogan

At any point , for all close to x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane_alt.html

Example: f : ℝ → ℝ

 at

What is the linear approximation?

f(x) = x2 x0 = 1

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

 at

What is the linear approximation?

f(x) = x2 x0 = 1

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ

 at

What is the linear approximation?

f(x) = x2 x0 = 1

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ

 at

What is the linear approximation?

f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ

 at

What is the linear approximation?

How good is the approximation at ?

f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 2

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ

 at

What is the linear approximation?

How good is the approximation at ?

f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 1.5

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ

 at

What is the linear approximation?

How good is the approximation at ?

f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 1.1

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ

Example: f : ℝ2 → ℝ

 at

What is the linear approximation?

F(x1, x2) = x2
1 + x2

2 + 1 x0 = (1, 0.5)

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html

 at

What is the linear approximation?

F(x1, x2) = x2
1 + x2

2 + 1 x0 = (1, 0.5)

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ2 → ℝ

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html

 at

What is the linear approximation?

F(x1, x2) = x2
1 + x2

2 + 1 x0 = (1, 0.5)

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ2 → ℝ

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html

 at

What is the linear approximation?

F(x1, x2) = x2
1 + x2

2 + 1 x0 = (1, 0.5)

F(w1, w2) ≈ 2x1 + x2 − 0.25

Linear Approximations

 for all close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ2 → ℝ

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html

Gradient Descent
Designing a “candidate algorithm”

Moving in steepest descent direction

minimize
w∈ℝ

f(w)

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

If slope is negative, go right.

If slope is positive, go left.

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

Follow the derivative (slope at a point)!

Repeat over and over to minimize.

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

Follow the derivative (slope at a point)!

Repeat over and over to minimize.

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

Follow the derivative (slope at a point)!

Repeat over and over to minimize.

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

Follow the derivative (slope at a point)!

Repeat over and over to minimize.

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

Follow the derivative (slope at a point)!

Repeat over and over to minimize.

Eventually, we might reach a minimum!

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

But we can also just minimize in one shot!

(first order condition)

minimize
w∈ℝ

f(w)

f′￼(w) = 0

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

But we can also just minimize in one shot!

(first order condition)

Not always possible, so need an iterative
algorithm.

minimize
w∈ℝ

f(w)

f′￼(w) = 0

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

minimize
w∈ℝd

f(w)

f(w1, w2)

A candidate algorithm

Moving in steepest descent direction

From two directions to infinitely many
directions to go in…

minimize
w∈ℝd

f(w)

f(w1, w2)

A candidate algorithm

Moving in steepest descent direction

From two directions to infinitely many
directions to go in…

minimize
w∈ℝd

f(w)

f(w1, w2)

A candidate algorithm

w1

w2

Moving in steepest descent direction

But still can go in the “steepest decrease”
direction!

minimize
w∈ℝd

f(w)

f(w1, w2)

A candidate algorithm

w1

w2

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_gdT1.html

Moving in steepest descent direction

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

descent start

2

4

6

8

10

12

14

16

18A candidate algorithm

But still can go in the “steepest decrease”
direction!

minimize
w∈ℝd

f(w)

f(w1, w2)

w1

w2

Moving in steepest descent direction

This “myopic” strategy works for
arbitrarily complex functions.

minimize
w∈ℝd

f(w)

f(w1, w2)

descent start

A candidate algorithm

w1

w2

Moving in steepest descent direction

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

descent start

−6

−4

−2

0

2

4

6

8A candidate algorithm

w1

w2

This “myopic” strategy works for
arbitrarily complex functions.

minimize
w∈ℝd

f(w)

f(w1, w2)

Moving in steepest descent direction

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

descent start

−6

−4

−2

0

2

4

6

8A candidate algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮

Moving in steepest descent direction

descent start

A candidate algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮

https://samuel-deng.github.io/math4ml_su25/assets/figs/nonconvex_surface_gd.html

Moving in steepest descent direction

descent start

A candidate algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮

Moving in steepest descent direction

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

descent start

2

4

6

8

10

12

14

16

18A candidate algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮

Moving in steepest descent direction

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

descent start

2

4

6

8

10

12

14

16

18A candidate algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

descent start

2

4

6

8

10

12

14

16

18

Gradient Descent
Algorithm

Gradient
The direction of steepest ascent

Steepest increase direction?

w1

w2

Gradient
The direction of steepest ascent

Steepest increase direction?

w1

w2

∇f(w)

Gradient
The direction of steepest ascent

Steepest increase direction?

w1

w2

∇f(w)
Recall: HW problem on directional derivatives!

Negative Gradient
The direction of steepest ascent

Steepest decrease direction?

w1

w2

−∇f(w)

∇f(w)

Differential Calculus
Review: Gradient

w1

w2

∇f(u)

u

Differential Calculus
Review: Gradient

w2

∇f(v)

v

w1

Algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮

Gradient Descent

descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example.html

Algorithm

Initialize at a randomly chosen .

For iteration (until “stopping
condition” satisfied):

Return final .

w(0) ∈ ℝd

t = 1,2,…

w(t) ← w(t−1) − η∇f(w(t−1))

w(t)

Gradient Descent

descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example.html

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration (until “stopping condition” is satisfied):

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…

w(t) ← w(t−1) − η∇f(w(t−1))

w(t) f(w(t))

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration (until “stopping condition” is satisfied):

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…

w(t) ← w(t−1) − η∇f(w(t−1))

w(t) f(w(t))

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration :

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))

stopping condition

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration :

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration :

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))
learning rate

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration :

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))
learning rate ()η > 0

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration :

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration :

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))

update rule

Gradient Descent
Update rule and descent lemma

Gradient Descent
Two questions

1. Which direction to step in?

2. How big of a step?

w(t) ← w(t−1)− η∇f(w(t−1))

Gradient Descent
Two questions

1. Which direction to step in?

Close to , the objective “looks linear!”

2. How big of a step?

w(t) ← w(t−1)− η∇f(w(t−1))

w(t−1) f

Gradient Descent
Two questions

1. Which direction to step in?

Close to , the objective “looks linear!”

2. How big of a step?

Make “small enough” for linear approximation to be accurate!

w(t) ← w(t−1)− η∇f(w(t−1))

w(t−1) f

η

Descent Lemma
Setup and goal

As long as is close enough to , this is a good approximation.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Setup and goal

As long as is close enough to , this is a good approximation.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Setup and goal

As long as is close enough to , this is a good approximation.

At time , we are at the point .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Setup and goal

As long as is close enough to , this is a good approximation.

At time , we are at the point .

Goal: move in a direction such that .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Setup and goal

As long as is close enough to , this is a good approximation.

At time , we are at the point .

Goal: move in a direction such that .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

w1

w2

d

w(t−1)

Descent Lemma
Setup and goal

As long as is close enough to , this is a good approximation.

At time , we are at the point .

Goal: move in a direction such that .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

w1

w2 w(t−1) + d

Descent Lemma
Setup and goal

As long as is close enough to , this is a good approximation.

At time , we are at the point .

Goal: move in a direction such that .

How about: ?

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

d = −η∇f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Setup and goal

 for close to

Goal: move in a direction such that .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Step 1: Take linear approximation

 for close to

Goal: move in a direction such that .

If is small enough, then is close to , and:

.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1)) + ∇f(w(t−1))⊤(w(t−1)−η∇f(w(t−1))−w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Step 1: Take linear approximation (make sure is small)η

If is small enough, then is close to , and:

.

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1)) + ∇f(w(t−1))⊤(w(t−1)−η∇f(w(t−1))−w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

w1

w2

−η∇f(w(t−1))

w1

w2

−η∇f(w(t−1))

Descent Lemma
Step 2: Simplify using linear algebra

 for close to

Goal: move in a direction such that .

If is small enough, then is close to , and:

.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1)) + ∇f(w(t−1))⊤(w(t−1)−η∇f(w(t−1))−w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Step 2: Simplify using linear algebra

 for close to

Goal: move in a direction such that .

If is small enough, then is close to , and:

.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1)) + ∇f(w(t−1))⊤(−η∇f(w(t−1)))

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Step 3: Non-negativity of squared norm

 for close to

Goal: move in a direction such that .

If is small enough, then is close to , and:

.

Therefore,

!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t−1)−η∇f(w(t−1))) ⪅ f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

recall: η > 0

Descent Lemma
Step 4: Gradient descent definition

 for close to

Goal: move in a direction such that .

If is small enough, then is close to , and:

.

Therefore,

!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t−1)−η∇f(w(t−1))) ⪅ f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Step 4: Gradient descent definition

 for close to

Goal: move in a direction such that .

If is small enough, then is close to , and:

.

Therefore,

!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t)) ⪅ f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

Descent Lemma
Conclusion

 for close to

Goal: move in a direction such that .

If is small enough, then is close to , and:

.

Therefore,

 as long as is sufficiently small!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t)) ≤ f(w(t−1)) η

 w(t) ← w(t−1)− η∇f(w(t−1))

Gradient Descent
Two questions

1. Which direction to step in?

Close to , the objective “looks linear” so we can follow the gradient!

2. How big of a step?

Make “small enough” for linear approximation to be accurate!

w(t) ← w(t−1)− η∇f(w(t−1))

w(t−1) f

η

Q2: How big of a step?

If is small enough, then:

 is close to

and our linear approximation is good…

η

w(t−1) − η∇f(w(t−1)) w(t−1)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Descent Lemma

Q2: How big of a step?

If is small enough, then:

 is close to

and our linear approximation is good…

η

w(t−1) − η∇f(w(t−1)) w(t−1)

Descent Lemma

Q1: Which direction to step in?

…so we can “replace”

and instead reason about

to conclude

 as long as is small!

f(w(t−1)−η∇f(w(t−1)))

f(w(t−1)) + ∇f(w(t−1))⊤(w(t−1)−η∇f(w(t−1))−w(t−1))

f(w(t)) ≤ f(w(t−1)) η

descent start

Descent Lemma

Descent Lemma
Guarantee (Informal)

If is small enough, then the gradient descent update rule

has the property:

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

−η∥∇f(w(t−1))∥2

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

∥∇f(w(t−1))∥ = 0

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

Descent Lemma

descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If is “smooth enough,” then there is a choice of such that,
for any ,

.

“Smooth enough” : is a -smooth function.

Taylor’s Theorem: makes the rigorous!

f η > 0
w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅

Taylor Series
In one variable

 functions and “smoothness”𝒞p

Review of smooth functions

Smooth functions are functions that have (several) continuous derivatives.

A function is continuously differentiable if all of the partial derivatives of exist and
are continuous. We call such functions functions, and the collection of all such functions are
the class .

The class are the infinitely differentiable functions — these have derivatives of any order.

“Smooth” varies in context. It usually denotes a function being “sufficiently differentiable.”

f : ℝd → ℝ f
𝒞1

𝒞1

𝒞∞

 functions and “smoothness”𝒞p

Review of smooth functions

Example. .f(x) = ex

 functions and “smoothness”𝒞p

Review of smooth functions

Example. .f(x) = sin x

 functions and “smoothness”𝒞p

Review of smooth functions

Example. .

Polynomials, in general.

f(x1, x2) = x2
1 + x2

2

Polynomials
Single-variable definition

A single-variable polynomial function of degree is a function that can be written in
the form:

,

where are the coefficients of the polynomial.

Example: .

m f : ℝ → ℝ

amxm + am−1xm−1 + … + a2x2 + a1x + a0

am, …, a0 ∈ ℝ

f(x) = 4x3 + 2x − 1

Polynomials
Single-variable definition

f(x) = x2 f(x) = x3

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

f(x) = x

Polynomials
Multivariable definition

A monomial function is a function of the form

 with integer exponents .

A polynomial function is a function is a finite sum of monomials with real
coefficients.

Example: .

f : ℝd → ℝ

xk1
1 …xkd

d k1, …, kd ≥ 0

f : ℝd → ℝ

f(x1, x2, x3) := x2
1 x2 + 3x1x3

Polynomials
Multivariable definition

f(x1, x2) = x3
1 + x1x2 − x2

2

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

f(x1, x2) = x2
1 + 2x2

2

https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d2.html

Taylor Series
Intuition

We like polynomials — they’re easy to perform calculus on and analyze.

A Taylor series at some point is the representation of “smooth” functions as an “infinite
polynomial,” expanded around .

Canonical example (at):

f(x) = x5 + 3x3 − 2x2 + 3x − 1

x0
x0

x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …

Taylor Series
Intuition

“Cutting off” the Taylor series at some order of derivatives gives us the th-order Taylor
approximation.

The first-order Taylor approximation is just the linearization!

The second-order Taylor approximation is just a quadratic function!

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …

p p

Taylor Series
Example: f(x) = ex

Taylor series at : x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Taylor Series
Example: f(x) = ex

Taylor series at : x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Taylor Series
Example: f(x) = ex

Taylor series at : x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Taylor Series
Example: f(x) = ex

Taylor series at : x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Taylor Series
Example: f(x) = cos x

Taylor series at :

x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Taylor Series
Example: f(x) = cos x

Taylor series at :

x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Taylor Series
Example: f(x) = cos x

Taylor series at :

x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Taylor Series
Single-variable definition ()f : ℝ → ℝ

For a function (has derivatives of all orders), the Taylor series of at is defined as:

The Taylor polynomial of degree of at is defined as:

Note: It only make sense to talk about a Taylor series/polynomial at a point!

f ∈ 𝒞∞ f f x0

Tx0
(x) :=

∞

∑
k=0

f (k)(x0)
k!

(x − x0)k .

n f x0

Tn
x0

(x) :=
n

∑
k=0

f (k)(x0)

k!
(x − x0)k .

Taylor Series
When is the Taylor series the function?

A function that is equal to its Taylor series at in a neighborhood around is called analytic.

For all intents and purposes,

for all that are sufficiently close to and sufficiently large (we’ll usually study).

x0 x0

f(x) ≈ Tn
x0

(x) =
n

∑
k=0

f (k)(x0)
k!

(x − x0)k = f(x0) + f′￼(x0)(x − x0) +
f′￼′￼(x0)

2!
(x − x0)2

usually already pretty good!

+ …

x x0 n n ≤ 2

Taylor Series
Example

All polynomials are in and have exact Taylor series representations.

Consider the Taylor series of .

𝒞∞

f(x) = 2x3 + x2 − x + 1

Taylor Series
Example

Many of the “nice” functions of calculus are infinitely differentiable.

Consider the Taylor series of .f(x) = sin x + cos x

Taylor Series
Example

Many of the “nice” functions of calculus are infinitely differentiable.

Consider the Taylor series of .f(x) = ex

Taylor Series
In multiple variables

Taylor Series
Multivariable definition ()f : ℝd → ℝ

Let . The Taylor series of at is given by:

Thankfully, we won’t ever need to use this in full generality. At most, we’ll use the second-order
Taylor approximation of a function in multiple variables.

f ∈ 𝒞∞ f x0 = (x01, …, x0d) ∈ ℝd

T(x1, …, xd) :=
∞

∑
k1=0

…
∞

∑
kd=0

(x1 − x01)k1…(xn − x0d)kd

k1!…kd! (∂k1+…+kdf
∂xk1

1 …∂xkd
n)(x01, …, x0d) .

Hessian
The multivariable second derivative

The Hessian for at is the matrix of all second-order partial derivatives:

The Hessian for general is given by the matrix constructed similarly.

For twice-continuously differentiable , the Hessian is symmetric.

f : ℝ2 → ℝ x0 2 × 2

∇2f(x0) =

∂2

∂x2
1

f(x0)
∂2

∂x1∂x2
f(x0)

∂2

∂x2∂x1
f(x0)

∂2

∂x2
2

f(x0)

f : ℝd → ℝ d × d

f ∈ 𝒞2

Taylor Series
Just the second-order terms

For , the second-order terms of the Taylor series of at are:

.

f : ℝd → ℝ f x0

T2
x0

(x) = f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)
linear function! quadratic form!

Linear Approximations
Our main slogan

At any point , for all close to x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

approximation at 1

approximation at -1/2

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

First-order Taylor Approximation
Just linear approximation

For a function , the Taylor series at is

For , the Taylor series at is

Linear approximation of at . This is just taking the first-order terms of the Taylor series!

f : ℝ → ℝ x0

Tx0
(x) = f(x0) +

f′￼(x0)
1!

(x − x0)

first-order terms

+
f′￼′￼(x0)

2!
(x − x0)2 + …

f : ℝd → ℝ x0

Tx0
(x) = f(x0) + ∇f(x0)⊤(x − x0)

first-order terms

+
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) + …

f x0

First-order Taylor Approximation
Single-variable example

First-order Taylor expansion at :

f(x) = ex/2

x0 = 1

T1(x) = e1/2 +
e1/2(x − 1)

2

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Second-order Taylor Approximation
Approximation by a quadratic

For ,

For ,

f : ℝ → ℝ

T(x) = x0 +
f′￼(x0)

1!
(x − x0) +

f′￼′￼(x0)
2!

(x − x0)2

second-order terms

+
f′￼′￼′￼(x0)3

3!
(x − x0)3 + …

f : ℝd → ℝ

Tx0
(x) = f(x0) + ∇f(x0)⊤(x − x0) +

1
2

(x − x0)⊤ ∇2f(x0)(x − x0)

second-order terms

+ …

Second-order Taylor Approximation
Single-variable example

Second-order Taylor expansion at :

f(x) = ex/2

x0 = 1

T2(x) = e1/2 +
e1/2(x − 1)

2
+

e1/2(x − 1)2

8

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Taylor Approximations
Summary

The first-order Taylor approximation (linear approximation) of a function at is:

The second-order Taylor approximation of a function at is:

A natural question to ask is: how good are these approximations?

x0

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) .

x0

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) .

Taylor’s Theorem
Quantifying the approximation

Taylor’s Theorem
Intuition

How much do we lose by approximating with a Taylor approximation?

Remainder: how much more Taylor series is left after “chopping it off” at order .

First-order approximation:

The remainder is:

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

f(x) − (f(x0) + ∇f(x0)⊤(x − x0))

Taylor’s Theorem
Intuition

How much do we lose by approximating with a Taylor approximation?

Remainder: how much more Taylor series is left after “chopping it off” at order .

Second-order approximation:

The remainder is:

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) .

f(x) − (f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)) .

Remainder of Taylor Polynomial
Definition

The remainder of a function and its Taylor polynomial at is the function:

What behavior would we like?

Ideally, as (the approximation gets better as we approach).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0 x0

Remainder of Taylor Polynomial
Definition

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

The remainder of a function and its Taylor
polynomial at is the function:

What behavior would we like?

Ideally, as (the approximation gets
better as we approach).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0

Remainder of Taylor Polynomial
Definition

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

The remainder of a function and its Taylor
polynomial at is the function:

What behavior would we like?

Ideally, as (the approximation gets
better as we approach).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0

Taylor’s Theorem
Single variable theorem

Theorem (Taylor’s Theorem, single variable). Let be a function on the closed
interval between and . Then, there exists some number between and such that

Or, in terms of the remainder:

f : ℝ → ℝ 𝒞k+1

x0 x z ∈ ℝ x0 x

f(x) = Tn(x) +
f (n+1)(z)
(n + 1)!

(x − x0)n+1 .

Rn(x) =
f (n+1)(z)
(n + 1)!

(x − x0)n+1 .

Taylor’s Theorem
Multivariable (and first order) theorem

Theorem (Taylor’s Theorem, multivariable). Let be a function. For ,
there exists such that for on the line segment between and

Or, in terms of the remainder:

.

f : ℝd → ℝ 𝒞2 x0, d ∈ ℝn

λ ∈ (0,1) x̃ = x0 + λd x0 x0 + d

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d

R1(x0 + d) =
1
2

d⊤ ∇2f(x̃)d

Gradient Descent
Formalizing the descent lemma

Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If is “smooth enough,” then there is a choice of such that,
for any ,

.

“Smooth enough” : is a -smooth function.

Taylor’s Theorem: makes the rigorous!

f η > 0
w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅

Descent Lemma
Conclusion

 for close to

Goal: move in a direction such that .

If is small enough, then is close to , and:

.

Therefore,

 as long as is sufficiently small!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t)) ≤ f(w(t−1)) η

 w(t) ← w(t−1)− η∇f(w(t−1))

Taylor’s Theorem
Multivariable (and first order) theorem

Theorem (Taylor’s Theorem, multivariable). Let be a function. For ,
there exists such that for on the line segment between and

Or, in terms of the remainder:

.

f : ℝd → ℝ 𝒞2 x0, d ∈ ℝd

λ ∈ (0,1) x̃ = x0 + λd x0 x0 + d

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d

R1(x0 + d) =
1
2

d⊤ ∇2f(x̃)d

Descent Lemma
Applying Taylor’s Theorem

 for close to

Goal: move in a direction such that .

For and , there exists such that for
on the line segment between and ,

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

f(w(t−1)−η∇f(w(t−1))) = f(w(t−1))−η∇f(w(t−1))⊤ ∇f(w(t−1))+
1
2

(−η∇f(w(t−1)))⊤ ∇2f(w̃)(−η∇f(w(t−1)))

f(w(t−1)−η∇f(w(t−1))) = f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2

2
∇f(w(t−1))⊤ ∇2f(w̃)∇f(w(t−1))

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem

Bounding change in gradients
-smoothnessβ

For a matrix , the largest eigenvalue of is .

A symmetric matrix is a -smooth matrix if its eigenvalues are at most :

A ∈ ℝd×d A λmax(A)

A ∈ ℝd×d β β

λmax(A) ≤ β .

Bounding change in gradients
-smoothnessβ

A twice-differentiable function is a -smooth function if the eigenvalues of its
Hessian at any point are at most . That is:

f : ℝd → ℝ β
x ∈ ℝd β

λmax(∇2f(x)) ≤ β .

Bounding change in gradients
-smoothnessβ

Prop (Smoothness & Quad. Forms). If is -smooth, then for any unit vector ,

.

A ∈ ℝd×d β v ∈ ℝd

|v⊤Av | ≤ β

Bounding change in gradients
-smoothnessβ

Λ = [5 0
0 1]

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

5

10

15

20

25

30

35

40

45

50

55

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth_nogd.html

Bounding change in gradients
-smoothnessβ

Λ = [1 0
0 1]

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

2

4

6

8

10

12

14

16

18

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nogd.html

Descent Lemma
Applying Taylor’s Theorem

 for close to

Goal: move in a direction such that .

For and , there exists such that for
on the line segment between and ,

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

f(w(t−1)−η∇f(w(t−1))) = f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2

2
∇f(w(t−1))⊤ ∇2f(w̃)∇f(w(t−1))

= f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
(∇f(w(t−1))/∥∇f∥)⊤ ∇2f(w̃)(∇f(w(t−1))/∥∇f∥)

Scale to unit vectors to apply smoothness property!

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem

Descent Lemma
Applying Taylor’s Theorem

 for close to

Goal: move in a direction such that .

For and , there exists such that for
on the line segment between and ,

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

f(w(t−1)−η∇f(w(t−1))) = f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2

2
∇f(w(t−1))⊤ ∇2f(w̃)∇f(w(t−1))

= f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
(∇f(w(t−1))/∥∇f∥)⊤ ∇2f(w̃)(∇f(w(t−1))/∥∇f∥)

Apply smoothness to the quadratic form!β

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem

Descent Lemma
Applying Taylor’s Theorem

 for close to

Goal: move in a direction such that .

For and , there exists such that for
on the line segment between and ,

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

= f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
(∇f(w(t−1))/∥∇f∥)⊤ ∇2f(w̃)(∇f(w(t−1))/∥∇f∥)

≤ f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
β

Apply smoothness to the quadratic form!β

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem

Descent Lemma
Applying Taylor’s Theorem

 for close to

Goal: move in a direction such that .

For and , there exists such that for
on the line segment between and ,

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

= f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
(∇f(w(t−1))/∥∇f∥)⊤ ∇2f(w̃)(∇f(w(t−1))/∥∇f∥)

≤ f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
β ≤ f(w(t−1)) −

∥∇f(w(t−1))∥2

2β

Apply smoothness to the quadratic form!β

Letting , we get the best possible bound.η = 1/β

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem

Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If is “smooth
enough,” then there is a choice of such
that, for any ,

.

“Smooth enough” : is a -smooth function.

Taylor’s Theorem: makes the rigorous!

f
η > 0

w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth_nogd.html

Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If is “smooth
enough,” then there is a choice of such
that, for any ,

.

“Smooth enough” : is a -smooth function.

Taylor’s Theorem: makes the rigorous!

f
η > 0

w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

5

10

15

20

25

30

35

40

45

50

55

Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If is “smooth
enough,” then there is a choice of such
that, for any ,

.

“Smooth enough” : is a -smooth function.

Taylor’s Theorem: makes the rigorous!

f
η > 0

w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If and is -smooth, then with , for any ,

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth_nogd.html

Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If and is -smooth, then with , for any ,

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2

descent start descent start

Λ = [1 0
0 1]

η = 0.1 η = 1.1

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If and is -smooth, then with , for any ,

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2

η = 0.3

descent start Λ = [1 0
0 1] descent start Λ = [5 0

0 1]

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_compare.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_compare.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth.html

Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If and is -smooth, then with , for any ,

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2

Gradient Descent
Preview of convexity

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

Descent Lemma

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5

Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If is convex and “smooth enough,” then
there is a choice of such that for any initial , the iterates of gradient descent

 satisfy

.

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If is convex and “smooth enough,” then
there is a choice of such that for any initial , the iterates of gradient descent

 satisfy

.

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If is convex and “smooth enough,” then
there is a choice of such that for any initial , the iterates of gradient descent

 satisfy

.

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

we’ll eventually reach a global minimum!

Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If is convex and “smooth enough,” then
there is a choice of such that for any initial , the iterates of gradient descent

 satisfy

.

Convex: the “bowl-shaped” functions!

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If is convex and “smooth enough,” then
there is a choice of such that for any initial , the iterates of gradient descent

 satisfy

.

Convex: the “bowl-shaped” functions!

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

A preview

If is convex and “smooth enough,” then
there is a choice of such that for any
initial , the iterates of gradient
descent satisfy

.

f
η > 0

w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5Convex Functions

A preview

If is convex and “smooth enough,” then
there is a choice of such that for any
initial , the iterates of gradient
descent satisfy

.

f
η > 0

w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5Convex Functions

A preview

If is convex and “smooth enough,” then
there is a choice of such that for any
initial , the iterates of gradient
descent satisfy

.

f
η > 0

w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

descent start

Convex Functions

A preview

If is convex and “smooth enough,” then
there is a choice of such that for any
initial , the iterates of gradient
descent satisfy

.

f
η > 0

w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

descent start

Convex Functions

Convex Functions
A preview

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5

descent start

Recap

Lesson Overview

Linearization for approximation. We explore using the linearization of a function to approximate
it. This is also called a “first-order approximation.”

Gradient descent. We write down the full algorithm for gradient descent, the second “story” of
our course. First, we prove the informal descent lemma. Then, we use Taylor series to formalize it.

Taylor series. We define the Taylor series of a function, which is an “infinite polynomial” that
approximates a function at a point.

First-order and second-order Taylor approximation. The Taylor polynomial allows us to
approximate a function by “chopping it off” at a certain degree.

Taylor’s Theorem. To quantify how bad our approximations are, we can use Taylor’s Theorem.

Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html

Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

