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Math for Machine Learning
Week 3.2: Linearization, Gradient Descent, and Taylor Series



Logistics & Announcements



Lesson Overview

Linearization for approximation. We explore using the linearization of a function to approximate 
it. This is also called a “first-order approximation.” 

Gradient descent. We write down the full algorithm for gradient descent, the second “story” of 
our course. First, we prove the informal descent lemma. Then, we use Taylor series to formalize it. 

Taylor series. We define the Taylor series of a function, which is an “infinite polynomial” that 
approximates a function at a point. 

First-order and second-order Taylor approximation. The Taylor polynomial allows us to 
approximate a function by “chopping it off” at a certain degree. 

Taylor’s Theorem. To quantify how bad our approximations are, we can use Taylor’s Theorem.



Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html


Linearization 
Derivatives to find linear approximations



Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems. 

Goal: minimize an objective function  

 

Given an objective function , find the  that makes  as small as possible. 

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f w f(w)



Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems. 

Goal: minimize an objective function  

 

 

Given an objective function , find the  that makes  as small as possible. 

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f(3,2,1,…,0) = 48

f w f(w)



Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems. 

Goal: minimize an objective function  

 

 

Given an objective function , find the  that makes  as small as possible. 

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f(1,1,1,…,1) = 10.2

f w f(w)



Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems. 

Goal: minimize an objective function  

 

 

Given an objective function , find the  that makes  as small as possible. 

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f(−3,1,0,…,1) = 0.24

f w f(w)



Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems. 

Goal: minimize an objective function  

 

Given an objective function , find the  that makes  as small as possible. 

Assume:  is unconstrained.

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f w f(w)

w ∈ ℝd



Optimization Problem
Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems. 

Goal: minimize an objective function  

 

Given an objective function , find the  that makes  as small as possible. 

Assume:  is unconstrained. 

Assume:  is differentiable.

f : ℝd → ℝ

minimize
w∈ℝd

f(w)

f w f(w)

w ∈ ℝd

f : ℝd → ℝ



Motivation
Optimization in single-variable calculus
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global minUltimate goal: Find the global 

minimum of functions. 

Intermediary goal: Find the local 
minima. 

Derivatives will give us descent 
directions!



Multivariable Differentiation
Total Derivative for f : ℝd → ℝ

 

Approaching  from any direction , the change  is approximated by .

lim
⃗δ→0

1

∥ ⃗δ∥ ((f(x0 + ⃗δ) − f(x0)) − Dfx0
( ⃗δ)) = 0,

x0 ⃗δ f(x0 + ⃗δ) − f(x0) Dfx0

x1

x2

x0

⃗δ x0 + δ

x1

x2

x0 ⃗δ
x0 + δ

x1

x2

x0

⃗δ
x0 + δ



Let  and  is the th standard basis vector in . The th partial derivative of  at  is 

 

This is the derivative of  when keeping all but one variable constant.

f : ℝd → ℝ ei i ℝd i f x0

∂
∂xi

f(x0) := lim
δ→0

f(x0 + δei) − f(x0)
δ

f

Partial Derivative
Multivariable Differentiation
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x0

δe2

x1
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x0

δe2
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δe2



Multivariable Differentiation
Gradient

Let . The gradient of  at  is the vector  composed of all the partial 
derivatives of  at : 

f : ℝd → ℝ f x0 ∇f(x0) ∈ ℝd

f x0

∇f(x0) :=

∂
∂x1

f(x0)

⋮
∂

∂xn
f(x0)



Slogan: Derivatives are linear transformations
Linearity and differentiation

The derivative is a linear transformation that maps changes in  to changes in . 

For , a scalar-valued function… 

 

 

equivalent to: 

 

An affine function that approximates .

x f

f : ℝd → ℝ

T : change in x → change in f

∇f(x0)⊤(x − x0) ≈ f(x) − f(x0)

∇f(x0)⊤(x − x0) + f(x0) ≈ f(x)

f



Differential Calculus
Review: Derivative

If  is differentiable at … 

 

is equivalent to: 

f : ℝd → ℝ x0 ∈ ℝd

lim
⃗δ→0

1

∥ ⃗δ∥ ((f(x0 + ⃗δ) − f(x0)) − Dfx0
( ⃗δ)) = 0

lim
x→x0

f(x) − ( f(x0) + ∇f(x0)⊤(x − x0))
∥x − x0∥

= 0



Differential Calculus
Review: Derivative

If  is differentiable at … 

 

The linear approximation of  at  is the function: 

  

One use of differential calculus: Analyze nonlinear functions with their linear approximations!

f : ℝd → ℝ x0 ∈ ℝd

lim
x→x0

f(x) − ( f(x0) + ∇f(x0)⊤(x − x0))
∥x − x0∥

= 0

f x0

Ax0
(x) := f(x0) + ∇f(x0)⊤(x − x0)

at the point where we’re taking derivative…

as  gets closer to …x x0 …the function is closer and closer to its linear approximation!

linear approximation



Differential Calculus
Review: Derivative

If  is differentiable at … 

 

One use of differential calculus: Analyze nonlinear functions with their linear approximations! 

At any point ,  for all  close to 

f : ℝd → ℝ x0 ∈ ℝd

lim
x→x0

f(x) − ( f(x0) + ∇f(x0)⊤(x − x0))
∥x − x0∥

= 0

x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

at the point where we’re taking derivative…

as  gets closer to …x x0 …the function is closer and closer to its linear approximation!

linear approximation



Linear Approximations
Our main slogan

At any point ,  for all  close to x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0



Linear Approximations
Our main slogan

At any point ,  for all  close to x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0
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Linear Approximations
Our main slogan

At any point ,  for all  close to x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane_alt.html


Example: f : ℝ → ℝ

 at  

What is the linear approximation? 

f(x) = x2 x0 = 1
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Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0
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Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ



 at  

What is the linear approximation? 

f(x) = x2 x0 = 1

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)
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Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ
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What is the linear approximation? 

f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)
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Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ



 at  

What is the linear approximation? 

 

How good is the approximation at ?

f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 2
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Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ



 at  

What is the linear approximation? 

 

How good is the approximation at ?

f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 1.5
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Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ



 at  

What is the linear approximation? 

 

How good is the approximation at ?

f(x) = x2 x0 = 1

f(x) ≈ 1 + 2(x − 1)

x = 1.1
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Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ → ℝ



Example: f : ℝ2 → ℝ

 at  

What is the linear approximation? 

F(x1, x2) = x2
1 + x2

2 + 1 x0 = (1, 0.5)

Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html


 at  

What is the linear approximation? 

F(x1, x2) = x2
1 + x2

2 + 1 x0 = (1, 0.5)

Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ2 → ℝ

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html


 at  

What is the linear approximation? 

F(x1, x2) = x2
1 + x2

2 + 1 x0 = (1, 0.5)

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ2 → ℝ

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html


 at  

What is the linear approximation? 

F(x1, x2) = x2
1 + x2

2 + 1 x0 = (1, 0.5)

F(w1, w2) ≈ 2x1 + x2 − 0.25

Linear Approximations

 for all  close to f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0

Example: f : ℝ2 → ℝ

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html


Gradient Descent 
Designing a “candidate algorithm”



Moving in steepest descent direction

minimize
w∈ℝ

f(w)
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Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at .

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2
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Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f
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Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?  

If slope is negative, go right. 

If slope is positive, go left.

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f
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Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?  

Follow the derivative (slope at a point)! 

Repeat over and over to minimize.

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f
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Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?  

Follow the derivative (slope at a point)! 

Repeat over and over to minimize.

minimize
w∈ℝ

f(w)
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Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?  

Follow the derivative (slope at a point)! 

Repeat over and over to minimize.
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Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?  

Follow the derivative (slope at a point)! 

Repeat over and over to minimize.

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2
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Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?  

Follow the derivative (slope at a point)! 

Repeat over and over to minimize. 

Eventually, we might reach a minimum!

minimize
w∈ℝ

f(w)

w = − 0.5

w = 2

f
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Moving in steepest descent direction

 

But we can also just minimize in one shot! 

 

(first order condition)

minimize
w∈ℝ

f(w)

f′￼(w) = 0
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Moving in steepest descent direction

 

But we can also just minimize in one shot! 

 

(first order condition) 

Not always possible, so need an iterative 
algorithm.

minimize
w∈ℝ

f(w)

f′￼(w) = 0
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Moving in steepest descent direction

 

 

minimize
w∈ℝd

f(w)

f(w1, w2)

A candidate algorithm



Moving in steepest descent direction

 

 

From two directions to infinitely many 
directions to go in…

minimize
w∈ℝd

f(w)

f(w1, w2)

A candidate algorithm



Moving in steepest descent direction

 

 

From two directions to infinitely many 
directions to go in…

minimize
w∈ℝd

f(w)

f(w1, w2)

A candidate algorithm

w1

w2



Moving in steepest descent direction

 

 

But still can go in the “steepest decrease” 
direction!

minimize
w∈ℝd

f(w)

f(w1, w2)

A candidate algorithm

w1

w2

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_gdT1.html


Moving in steepest descent direction
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But still can go in the “steepest decrease” 
direction!

minimize
w∈ℝd

f(w)

f(w1, w2)

w1

w2



Moving in steepest descent direction

 

 

This “myopic” strategy works for 
arbitrarily complex functions.

minimize
w∈ℝd

f(w)

f(w1, w2)

descent start

A candidate algorithm

w1

w2



Moving in steepest descent direction
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w1

w2

 

 

This “myopic” strategy works for 
arbitrarily complex functions.

minimize
w∈ℝd

f(w)

f(w1, w2)



Moving in steepest descent direction
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Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮



Moving in steepest descent direction

descent start

A candidate algorithm

Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮

https://samuel-deng.github.io/math4ml_su25/assets/figs/nonconvex_surface_gd.html


Moving in steepest descent direction

descent start

A candidate algorithm

Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮



Moving in steepest descent direction
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Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮



Moving in steepest descent direction
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Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮
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Gradient Descent 
Algorithm



Gradient
The direction of steepest ascent

Steepest increase direction?

w1

w2



Gradient
The direction of steepest ascent

Steepest increase direction?

w1

w2

∇f(w)



Gradient
The direction of steepest ascent

Steepest increase direction?

w1

w2

∇f(w)
Recall: HW problem on directional derivatives!



Negative Gradient
The direction of steepest ascent

Steepest decrease direction?

w1

w2

−∇f(w)

∇f(w)



Differential Calculus
Review: Gradient

w1

w2

∇f(u)

u



Differential Calculus
Review: Gradient

w2

∇f(v)

v

w1



Algorithm

Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

f(w)

f(w)

⋮

Gradient Descent

descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example.html


Algorithm

Initialize at a randomly chosen . 

For iteration (until “stopping 
condition” satisfied): 

 

Return final .

w(0) ∈ ℝd

t = 1,2,…

w(t) ← w(t−1) − η∇f(w(t−1))

w(t)

Gradient Descent

descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example.html


Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  (until “stopping condition” is satisfied): 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…

w(t) ← w(t−1) − η∇f(w(t−1))

w(t) f(w(t))



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  (until “stopping condition” is satisfied): 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…

w(t) ← w(t−1) − η∇f(w(t−1))

w(t) f(w(t))



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  : 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))

stopping condition



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  : 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  : 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))
learning rate



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  : 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))
learning rate ( )η > 0



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  : 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  : 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))

update rule



Gradient Descent 
Update rule and descent lemma



Gradient Descent
Two questions

  

1. Which direction to step in? 

2. How big of a step? 

w(t) ← w(t−1)− η∇f(w(t−1))



Gradient Descent
Two questions

  

1. Which direction to step in? 

Close to , the objective  “looks linear!” 

2. How big of a step?

w(t) ← w(t−1)− η∇f(w(t−1))

w(t−1) f



Gradient Descent
Two questions

  

1. Which direction to step in? 

Close to , the objective  “looks linear!” 

2. How big of a step? 

Make  “small enough” for linear approximation to be accurate!

w(t) ← w(t−1)− η∇f(w(t−1))

w(t−1) f

η



Descent Lemma
Setup and goal

 

As long as  is close enough to , this is a good approximation.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Setup and goal

 

As long as  is close enough to , this is a good approximation.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Setup and goal

 

As long as  is close enough to , this is a good approximation. 

At time , we are at the point .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Setup and goal

 

As long as  is close enough to , this is a good approximation. 

At time , we are at the point . 

Goal: move in a direction  such that .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Setup and goal

 

As long as  is close enough to , this is a good approximation. 

At time , we are at the point . 

Goal: move in a direction  such that .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

w1

w2

d

w(t−1)



Descent Lemma
Setup and goal

 

As long as  is close enough to , this is a good approximation. 

At time , we are at the point . 

Goal: move in a direction  such that .

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

w1

w2 w(t−1) + d



Descent Lemma
Setup and goal

 

As long as  is close enough to , this is a good approximation. 

At time , we are at the point . 

Goal: move in a direction  such that . 

How about: ?

f(w) ≈ f(u)+ ∇f(u)⊤(w−u)

w u

t w(t−1) ∈ ℝd

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

d = −η∇f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Setup and goal

 for  close to  

Goal: move in a direction  such that . 

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Step 1: Take linear approximation

 for  close to  

Goal: move in a direction  such that . 

If  is small enough, then    is close to , and: 

.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1)) + ∇f(w(t−1))⊤(w(t−1)−η∇f(w(t−1))−w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Step 1: Take linear approximation (make sure  is small)η

If  is small enough, then    is close to , and: 

.

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1)) + ∇f(w(t−1))⊤(w(t−1)−η∇f(w(t−1))−w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

w1

w2

−η∇f(w(t−1))

w1

w2

−η∇f(w(t−1))



Descent Lemma
Step 2: Simplify using linear algebra

 for  close to  

Goal: move in a direction  such that . 

If  is small enough, then    is close to , and: 

.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1)) + ∇f(w(t−1))⊤(w(t−1)−η∇f(w(t−1))−w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Step 2: Simplify using linear algebra

 for  close to  

Goal: move in a direction  such that . 

If  is small enough, then    is close to , and: 

.

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1)) + ∇f(w(t−1))⊤(−η∇f(w(t−1)))

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Step 3: Non-negativity of squared norm

 for  close to  

Goal: move in a direction  such that . 

If  is small enough, then    is close to , and: 

. 

Therefore, 

!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t−1)−η∇f(w(t−1))) ⪅ f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))

recall: η > 0



Descent Lemma
Step 4: Gradient descent definition

 for  close to  

Goal: move in a direction  such that . 

If  is small enough, then    is close to , and: 

. 

Therefore, 

!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t−1)−η∇f(w(t−1))) ⪅ f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Step 4: Gradient descent definition

 for  close to  

Goal: move in a direction  such that . 

If  is small enough, then    is close to , and: 

. 

Therefore, 

!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t)) ⪅ f(w(t−1))

 w(t) ← w(t−1)− η∇f(w(t−1))



Descent Lemma
Conclusion

 for  close to  

Goal: move in a direction  such that . 

If  is small enough, then    is close to , and: 

. 

Therefore, 

 as long as  is sufficiently small!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t)) ≤ f(w(t−1)) η

 w(t) ← w(t−1)− η∇f(w(t−1))



Gradient Descent
Two questions

  

1. Which direction to step in? 

Close to , the objective  “looks linear” so we can follow the gradient! 

2. How big of a step? 

Make  “small enough” for linear approximation to be accurate!

w(t) ← w(t−1)− η∇f(w(t−1))

w(t−1) f

η



Q2: How big of a step?

If  is small enough, then: 

    is close to  

and our linear approximation is good…

η

w(t−1) − η∇f(w(t−1)) w(t−1)

−1 0 1 2 3 4 5
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approximation at 1

Descent Lemma



Q2: How big of a step?

If  is small enough, then: 

    is close to  

and our linear approximation is good…

η

w(t−1) − η∇f(w(t−1)) w(t−1)

Descent Lemma



Q1: Which direction to step in?

…so we can “replace” 

 

and instead reason about 

 

to conclude 

 as long as  is small!

f(w(t−1)−η∇f(w(t−1)))

f(w(t−1)) + ∇f(w(t−1))⊤(w(t−1)−η∇f(w(t−1))−w(t−1))

f(w(t)) ≤ f(w(t−1)) η

descent start

Descent Lemma



Descent Lemma
Guarantee (Informal)

If  is small enough, then the gradient descent update rule 

  

has the property: 

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2



Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

  

has the property: 

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma



Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

  

has the property: 

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

−η∥∇f(w(t−1))∥2



Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

  

has the property: 

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

∥∇f(w(t−1))∥ = 0



Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

  

has the property: 

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

Descent Lemma

descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html


Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If  is “smooth enough,” then there is a choice of  such that, 
for any , 

. 

“Smooth enough” :  is a -smooth function. 

Taylor’s Theorem: makes the  rigorous!

f η > 0
w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅



Taylor Series 
In one variable



 functions and “smoothness”𝒞p

Review of smooth functions

Smooth functions are functions that have (several) continuous derivatives. 

A function  is continuously differentiable if all of the partial derivatives of  exist and 
are continuous. We call such functions  functions, and the collection of all such functions are 
the class . 

The class  are the infinitely differentiable functions — these have derivatives of any order. 

“Smooth” varies in context. It usually denotes a function being “sufficiently differentiable.”

f : ℝd → ℝ f
𝒞1

𝒞1

𝒞∞



 functions and “smoothness”𝒞p

Review of smooth functions

Example. .f(x) = ex



 functions and “smoothness”𝒞p

Review of smooth functions

Example. .f(x) = sin x



 functions and “smoothness”𝒞p

Review of smooth functions

Example. .  

Polynomials, in general.

f(x1, x2) = x2
1 + x2

2



Polynomials
Single-variable definition

A single-variable polynomial function of degree  is a function  that can be written in 
the form: 

, 

where  are the coefficients of the polynomial.  

Example: .

m f : ℝ → ℝ

amxm + am−1xm−1 + … + a2x2 + a1x + a0

am, …, a0 ∈ ℝ

f(x) = 4x3 + 2x − 1



Polynomials
Single-variable definition

f(x) = x2 f(x) = x3
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f(x) = x



Polynomials
Multivariable definition

A monomial function is a function  of the form 

 with integer exponents . 

A polynomial function is a function  is a finite sum of monomials with real 
coefficients. 

Example: .

f : ℝd → ℝ

xk1
1 …xkd

d k1, …, kd ≥ 0

f : ℝd → ℝ

f(x1, x2, x3) := x2
1 x2 + 3x1x3



Polynomials
Multivariable definition

f(x1, x2) = x3
1 + x1x2 − x2

2

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

f(x1, x2) = x2
1 + 2x2

2

https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d2.html


Taylor Series
Intuition

We like polynomials — they’re easy to perform calculus on and analyze. 

 

A Taylor series at some point  is the representation of “smooth” functions as an “infinite 
polynomial,” expanded around . 

Canonical example (at ): 

f(x) = x5 + 3x3 − 2x2 + 3x − 1

x0
x0

x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …



Taylor Series
Intuition

 

“Cutting off” the Taylor series at some order  of derivatives gives us the th-order Taylor 
approximation. 

The first-order Taylor approximation is just the linearization! 

The second-order Taylor approximation is just a quadratic function!

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …

p p



Taylor Series
Example: f(x) = ex

Taylor series at : x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …
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Taylor Series
Example: f(x) = ex

Taylor series at : x0 = 0

ex = 1 + x +
x2

2
+

x3
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+

x4
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+ …
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Taylor Series
Example: f(x) = ex

Taylor series at : x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …
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Taylor Series
Example: f(x) = ex

Taylor series at : x0 = 0

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ …
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Taylor Series
Example: f(x) = cos x

Taylor series at : 

 

x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …
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Taylor Series
Example: f(x) = cos x

Taylor series at : 

 

x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …
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Taylor Series
Example: f(x) = cos x

Taylor series at : 

 

x0 = 0

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− …
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Taylor Series
Single-variable definition (  )f : ℝ → ℝ

For a function  (  has derivatives of all orders), the Taylor series of  at  is defined as: 

 

The Taylor polynomial of degree  of  at  is defined as: 

  

Note: It only make sense to talk about a Taylor series/polynomial at a point!

f ∈ 𝒞∞ f f x0

Tx0
(x) :=

∞

∑
k=0

f (k)(x0)
k!

(x − x0)k .

n f x0

Tn
x0

(x) :=
n

∑
k=0

f (k)(x0)

k!
(x − x0)k .



Taylor Series
When is the Taylor series the function?

A function that is equal to its Taylor series at  in a neighborhood around  is called analytic. 

For all intents and purposes, 

 

for all  that are sufficiently close to  and sufficiently large  (we’ll usually study ). 

x0 x0

f(x) ≈ Tn
x0

(x) =
n

∑
k=0

f (k)(x0)
k!

(x − x0)k = f(x0) + f′￼(x0)(x − x0) +
f′￼′￼(x0)

2!
(x − x0)2

usually already pretty good!

+ …

x x0 n n ≤ 2



Taylor Series
Example

All polynomials are in  and have exact Taylor series representations. 

Consider the Taylor series of .

𝒞∞

f(x) = 2x3 + x2 − x + 1



Taylor Series
Example

Many of the “nice” functions of calculus are infinitely differentiable. 

Consider the Taylor series of .f(x) = sin x + cos x



Taylor Series
Example

Many of the “nice” functions of calculus are infinitely differentiable. 

Consider the Taylor series of .f(x) = ex



Taylor Series 
In multiple variables



Taylor Series
Multivariable definition (  )f : ℝd → ℝ

Let . The Taylor series of  at  is given by: 

 

Thankfully, we won’t ever need to use this in full generality. At most, we’ll use the second-order 
Taylor approximation of a function in multiple variables.

f ∈ 𝒞∞ f x0 = (x01, …, x0d) ∈ ℝd

T(x1, …, xd) :=
∞

∑
k1=0

…
∞

∑
kd=0

(x1 − x01)k1…(xn − x0d)kd

k1!…kd! ( ∂k1+…+kdf
∂xk1

1 …∂xkd
n )(x01, …, x0d) .



Hessian
The multivariable second derivative

The Hessian for  at  is the  matrix of all second-order partial derivatives: 

  

The Hessian for general  is given by the  matrix constructed similarly. 

For twice-continuously differentiable , the Hessian is symmetric.

f : ℝ2 → ℝ x0 2 × 2

∇2f(x0) =

∂2

∂x2
1

f(x0)
∂2

∂x1∂x2
f(x0)

∂2

∂x2∂x1
f(x0)

∂2

∂x2
2

f(x0)

f : ℝd → ℝ d × d

f ∈ 𝒞2



Taylor Series
Just the second-order terms

For , the second-order terms of the Taylor series of  at  are: 

.

f : ℝd → ℝ f x0

T2
x0

(x) = f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)
linear function! quadratic form!



Linear Approximations
Our main slogan

At any point ,  for all  close to x0 ∈ ℝd f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) x x0
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First-order Taylor Approximation
Just linear approximation

For a function , the Taylor series at  is 

 

For , the Taylor series at  is 

 

Linear approximation of  at . This is just taking the first-order terms of the Taylor series!

f : ℝ → ℝ x0

Tx0
(x) = f(x0) +

f′￼(x0)
1!

(x − x0)

first-order terms

+
f′￼′￼(x0)

2!
(x − x0)2 + …

f : ℝd → ℝ x0

Tx0
(x) = f(x0) + ∇f(x0)⊤(x − x0)

first-order terms

+
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) + …

f x0



First-order Taylor Approximation
Single-variable example

 

First-order Taylor expansion at : 

f(x) = ex/2

x0 = 1

T1(x) = e1/2 +
e1/2(x − 1)

2
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Second-order Taylor Approximation
Approximation by a quadratic

For , 

 

For , 

f : ℝ → ℝ

T(x) = x0 +
f′￼(x0)

1!
(x − x0) +

f′￼′￼(x0)
2!

(x − x0)2

second-order terms

+
f′￼′￼′￼(x0)3

3!
(x − x0)3 + …

f : ℝd → ℝ

Tx0
(x) = f(x0) + ∇f(x0)⊤(x − x0) +

1
2

(x − x0)⊤ ∇2f(x0)(x − x0)

second-order terms

+ …



Second-order Taylor Approximation
Single-variable example

 

Second-order Taylor expansion at : 

f(x) = ex/2

x0 = 1

T2(x) = e1/2 +
e1/2(x − 1)

2
+

e1/2(x − 1)2

8
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Taylor Approximations
Summary

The first-order Taylor approximation (linear approximation) of a function at  is: 

 

The second-order Taylor approximation of a function at  is: 

 

A natural question to ask is: how good are these approximations?

x0

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) .

x0

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) .



Taylor’s Theorem 
Quantifying the approximation



Taylor’s Theorem
Intuition

How much do we lose by approximating  with a Taylor approximation?  

Remainder: how much more Taylor series is left after “chopping it off” at order . 

First-order approximation: 

  

The remainder is: 

 

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

f(x) − ( f(x0) + ∇f(x0)⊤(x − x0))



Taylor’s Theorem
Intuition

How much do we lose by approximating  with a Taylor approximation?  

Remainder: how much more Taylor series is left after “chopping it off” at order . 

Second-order approximation: 

  

The remainder is: 

 

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) .

f(x) − (f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)) .



Remainder of Taylor Polynomial
Definition

The remainder of a function and its Taylor polynomial at  is the function: 

 

What behavior would we like?  

Ideally,  as  (the approximation gets better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0 x0



Remainder of Taylor Polynomial
Definition
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The remainder of a function and its Taylor 
polynomial at  is the function: 

 

What behavior would we like?  

Ideally,  as  (the approximation gets 
better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0



Remainder of Taylor Polynomial
Definition
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The remainder of a function and its Taylor 
polynomial at  is the function: 

 

What behavior would we like?  

Ideally,  as  (the approximation gets 
better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0



Taylor’s Theorem
Single variable theorem

Theorem (Taylor’s Theorem, single variable). Let  be a  function on the closed 
interval between  and . Then, there exists some number  between  and  such that 

 

Or, in terms of the remainder: 

f : ℝ → ℝ 𝒞k+1

x0 x z ∈ ℝ x0 x

f(x) = Tn(x) +
f (n+1)(z)
(n + 1)!

(x − x0)n+1 .

Rn(x) =
f (n+1)(z)
(n + 1)!

(x − x0)n+1 .



Taylor’s Theorem
Multivariable (and first order) theorem

Theorem (Taylor’s Theorem, multivariable). Let  be a  function. For , 
there exists  such that for  on the line segment between  and  

 

Or, in terms of the remainder: 

.

f : ℝd → ℝ 𝒞2 x0, d ∈ ℝn

λ ∈ (0,1) x̃ = x0 + λd x0 x0 + d

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d

R1(x0 + d) =
1
2

d⊤ ∇2f(x̃)d



Gradient Descent 
Formalizing the descent lemma



Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If  is “smooth enough,” then there is a choice of  such that, 
for any , 

. 

“Smooth enough” :  is a -smooth function. 

Taylor’s Theorem: makes the  rigorous!

f η > 0
w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅



Descent Lemma
Conclusion

 for  close to  

Goal: move in a direction  such that . 

If  is small enough, then    is close to , and: 

. 

Therefore, 

 as long as  is sufficiently small!

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

η w(t−1) − η∇f(w(t−1)) w(t−1)

f(w(t−1)−η∇f(w(t−1))) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

f(w(t)) ≤ f(w(t−1)) η

 w(t) ← w(t−1)− η∇f(w(t−1))



Taylor’s Theorem
Multivariable (and first order) theorem

Theorem (Taylor’s Theorem, multivariable). Let  be a  function. For , 
there exists  such that for  on the line segment between  and  

 

Or, in terms of the remainder: 

.

f : ℝd → ℝ 𝒞2 x0, d ∈ ℝd

λ ∈ (0,1) x̃ = x0 + λd x0 x0 + d

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d

R1(x0 + d) =
1
2

d⊤ ∇2f(x̃)d



Descent Lemma
Applying Taylor’s Theorem

 for  close to  

Goal: move in a direction  such that . 

For  and , there exists  such that for   
on the line segment between  and , 

 

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

f(w(t−1)−η∇f(w(t−1))) = f(w(t−1))−η∇f(w(t−1))⊤ ∇f(w(t−1))+
1
2

(−η∇f(w(t−1)))⊤ ∇2f(w̃)(−η∇f(w(t−1)))

f(w(t−1)−η∇f(w(t−1))) = f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2

2
∇f(w(t−1))⊤ ∇2f(w̃)∇f(w(t−1))

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem



Bounding change in gradients
-smoothnessβ

For a matrix , the largest eigenvalue of  is . 

A symmetric matrix  is a -smooth matrix if its eigenvalues are at most : 

A ∈ ℝd×d A λmax(A)

A ∈ ℝd×d β β

λmax(A) ≤ β .



Bounding change in gradients
-smoothnessβ

A twice-differentiable function  is a -smooth function if the eigenvalues of its 
Hessian at any point  are at most . That is: 

f : ℝd → ℝ β
x ∈ ℝd β

λmax(∇2f(x)) ≤ β .



Bounding change in gradients
-smoothnessβ

Prop (Smoothness & Quad. Forms). If  is -smooth, then for any unit vector , 

. 

A ∈ ℝd×d β v ∈ ℝd

|v⊤Av | ≤ β



Bounding change in gradients
-smoothnessβ

Λ = [5 0
0 1]
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Bounding change in gradients
-smoothnessβ

Λ = [1 0
0 1]

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

2

4

6

8

10

12

14

16

18

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nogd.html


Descent Lemma
Applying Taylor’s Theorem

 for  close to  

Goal: move in a direction  such that . 

For  and , there exists  such that for   
on the line segment between  and , 

 

 

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

f(w(t−1)−η∇f(w(t−1))) = f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2

2
∇f(w(t−1))⊤ ∇2f(w̃)∇f(w(t−1))

= f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
(∇f(w(t−1))/∥∇f∥)⊤ ∇2f(w̃)(∇f(w(t−1))/∥∇f∥)

Scale to unit vectors to apply smoothness property!

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem



Descent Lemma
Applying Taylor’s Theorem

 for  close to  

Goal: move in a direction  such that . 

For  and , there exists  such that for   
on the line segment between  and , 

 

 

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

f(w(t−1)−η∇f(w(t−1))) = f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2

2
∇f(w(t−1))⊤ ∇2f(w̃)∇f(w(t−1))

= f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
(∇f(w(t−1))/∥∇f∥)⊤ ∇2f(w̃)(∇f(w(t−1))/∥∇f∥)

Apply  smoothness to the quadratic form!β

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem



Descent Lemma
Applying Taylor’s Theorem

 for  close to  

Goal: move in a direction  such that . 

For  and , there exists  such that for   
on the line segment between  and , 

  

 

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

= f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
(∇f(w(t−1))/∥∇f∥)⊤ ∇2f(w̃)(∇f(w(t−1))/∥∇f∥)

≤ f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
β

Apply  smoothness to the quadratic form!β

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem



Descent Lemma
Applying Taylor’s Theorem

 for  close to  

Goal: move in a direction  such that . 

For  and , there exists  such that for   
on the line segment between  and , 

  

  

f(w) ≈ f(u)+ ∇f(u)⊤(w−u) w u

d ∈ ℝd f(w(t−1) + d) < f(w(t−1))

w(t−1) d = −η∇f(w(t−1)) λ ∈ (0,1) w̃ = w(t−1) − λ η∇f(w(t−1))
w(t−1) w(t−1)−η∇f(w(t−1))

= f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
(∇f(w(t−1))/∥∇f∥)⊤ ∇2f(w̃)(∇f(w(t−1))/∥∇f∥)

≤ f(w(t−1))−η∥∇f(w(t−1))∥2 +
η2∥∇f(w(t−1))∥2

2
β ≤ f(w(t−1)) −

∥∇f(w(t−1))∥2

2β

Apply  smoothness to the quadratic form!β

Letting , we get the best possible bound.η = 1/β

f(x0 + d) = f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x̃)d
Taylor’s Theorem



Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If  is “smooth 
enough,” then there is a choice of  such 
that, for any , 

. 

“Smooth enough” :  is a -smooth function. 

Taylor’s Theorem: makes the  rigorous!

f
η > 0

w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth_nogd.html


Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If  is “smooth 
enough,” then there is a choice of  such 
that, for any , 

. 

“Smooth enough” :  is a -smooth function. 

Taylor’s Theorem: makes the  rigorous!

f
η > 0

w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅
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Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma). If  is “smooth 
enough,” then there is a choice of  such 
that, for any , 

. 

“Smooth enough” :  is a -smooth function. 

Taylor’s Theorem: makes the  rigorous!

f
η > 0

w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
η
2

∥∇f(w)∥2

f β

⪅
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Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If  and is -smooth, then with , for any , 

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2
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Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If  and is -smooth, then with , for any , 

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2

descent start descent start

Λ = [1 0
0 1]

η = 0.1 η = 1.1

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html


Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If  and is -smooth, then with , for any , 

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2

η = 0.3

descent start Λ = [1 0
0 1] descent start Λ = [5 0

0 1]

https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_compare.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_compare.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth.html


Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If  and is -smooth, then with , for any , 

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2



Gradient Descent 
Preview of convexity



Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

  

has the property: 

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html


Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

  

has the property: 

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

descent start

Descent Lemma

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html


Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

  

has the property: 

.

η

w(t) ← w(t−1)− η∇f(w(t−1))

f(w(t)) ≈ f(w(t−1))−η∥∇f(w(t−1))∥2

Descent Lemma
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Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If  is convex and “smooth enough,” then 
there is a choice of  such that for any initial , the iterates of gradient descent 

 satisfy 

.

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)



Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If  is convex and “smooth enough,” then 
there is a choice of  such that for any initial , the iterates of gradient descent 

 satisfy 

.

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)



Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If  is convex and “smooth enough,” then 
there is a choice of  such that for any initial , the iterates of gradient descent 

 satisfy 

.

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)

we’ll eventually reach a global minimum!



Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If  is convex and “smooth enough,” then 
there is a choice of  such that for any initial , the iterates of gradient descent 

 satisfy 

. 

Convex: the “bowl-shaped” functions!

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)



Gradient Descent Guarantees
Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). If  is convex and “smooth enough,” then 
there is a choice of  such that for any initial , the iterates of gradient descent 

 satisfy 

. 

Convex: the “bowl-shaped” functions!

f
η > 0 w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)



A preview

If  is convex and “smooth enough,” then 
there is a choice of  such that for any 
initial , the iterates of gradient 
descent  satisfy 

.

f
η > 0

w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)
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A preview

If  is convex and “smooth enough,” then 
there is a choice of  such that for any 
initial , the iterates of gradient 
descent  satisfy 

.

f
η > 0

w(0) ∈ ℝd

w(1), w(2), …

lim
t→∞

f(w(t)) = min
w∈ℝd

f(w)
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Recap



Lesson Overview

Linearization for approximation. We explore using the linearization of a function to approximate 
it. This is also called a “first-order approximation.” 

Gradient descent. We write down the full algorithm for gradient descent, the second “story” of 
our course. First, we prove the informal descent lemma. Then, we use Taylor series to formalize it. 

Taylor series. We define the Taylor series of a function, which is an “infinite polynomial” that 
approximates a function at a point. 

First-order and second-order Taylor approximation. The Taylor polynomial allows us to 
approximate a function by “chopping it off” at a certain degree. 

Taylor’s Theorem. To quantify how bad our approximations are, we can use Taylor’s Theorem.



Lesson Overview
Big Picture: Least Squares

λ1, …, λd ≥ 0 λ1, …, λd > 0

x1-axis x2-axis f(x1, x2)-axis x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html


Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

