Math for Machine Learning



Logistics & Announcements



Lesson Overview

Linearization for approximation. We explore using the of a function to approximate
it. This is also called a "first-order approximation.”

Gradient descent. We write down the full algorithm for , the second “story” of
our course. First, we prove the informal . Then, we use Taylor series to formalize it.
Taylor series. We define the of a function, which is an “infinite polynomial” that

approximates a function at a point.

First-order and second-order Taylor approximation. The Taylor polynomial allows us to
approximate a function by “chopping it oft” at a certain degree.

Taylor’'s Theorem. To quantity how bad our approximations are, we can use



Lesson Overview

Big Picture: Least Squares



https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Lesson Overview
Big Picture: Gradient Descent
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https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

| Inearization
Derivatives to find linear approximations



Optimization Problem

Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.
Goal: minimize an f:RY> R

minimize f(w)
weR¢

Given an objective function f, find the w that makes f(w) as small as possible.
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Given an objective function f, find the w that makes f(w) as small as possible.



Optimization Problem

Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.
Goal: minimize an f:RY> R

minimize f(w)
weR¢

Given an objective function f, find the w that makes f(w) as small as possible.

Assume: w € R is unconstrained.



Optimization Problem

Review: Basic Goal

In much of machine learning, we solve well-defined optimization problems.
Goal: minimize an f:RY> R

minimize f(w)
weR¢

Given an objective function f, find the w that makes f(w) as small as possible.

Assume: w € R4 is unconstrained.

Assume: f: RY - R is differentiable.



Motivation

Optimization in single-variable calculus

C @® |ocal min

@ global min

Ultimate goal: Find the global
minimum of functions.

Intermediary goal: Find the local .
minima.




Multivariable Differentiation
Total Derivative for f: RY — R

1 S S
lim —; ((f(xo + 0) —f(Xo)) — D];O(5)> = 0,
o-0 [[]]

Approaching X, from any direction 5, the change f(x, + 5) — f(Xy) is approximated by Df, .
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Multivariable Differentiation

Partial Derivative

Let f: RY - R and e, is the ith standard basis vector in RY. The ith partial derivative of f at x, is

0 f(x,) = lim J(Xo + oe;) — f(X)
; 5—0 0

This is the derivative of f when keeping all but one variable constant.

Xy X2 X2




Multivariable Differentiation
Gradient

Letf: RY > R. The of fat x, is the vector Vf(x,) € R composed of all the partial
derivatives of f at X:

aixlf (X0)

V(Xq) := :
aixnf (Xp)



Slogan: Derivatives are linear transformations

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in f.
For f: RY —» R, a scalar-valued function...
T : change in X — changeinf
VAxy)' (X = Xg) = f(x) — f(X)
equivalent to:
V(xp) ' (x = Xp) + f(Xg) = f(x)

An affine function that approximates f.



Differential Calculus

Review: Derivative

f f: RY — R is differentiable at x, € RY...

1 B} .
lim —; ((f(xo +8) — f(XO)) _ DfXO(é)) —0
-0 ||5]|

is equivalent to:

. f(x) = (f(xp) + V£(xp) ' (x = X)) -
im = ()

X—Xp HX o XOH




Differential Calculus

Review: Derivative

at the point where we're taking derivative...

f f: RY — R is differentiable at x, € RY...

0 J(x) — (f(xg) + Vf(Xo)T(X — X)) _

I1 0
S HX _ XO”
as X gets closer to x,... ...the function is closer and closer to its linear approximation!

The of fat X, is the function:

Ay (X) 1= f(Xp) + Vi (o) ' (x — X)

One use of differential calculus: Analyze nonlinear functions with their linear approximations!



Differential Calculus

Review: Derivative

at the point where we're taking derivative...

f f: RY — R is differentiable at x, € RY...

0 J(x) — (f(xg) + Vf(Xo)T(X — X)) _

I1 0
S HX _ XO”
as X gets closer to x,... ...the function is closer and closer to its linear approximation!

One use of differential calculus: Analyze nonlinear functions with their linear approximations!

At any point X, € R? f(x) ~ f(Xq) + Vf(XO)T(X — X) for all X close to X



Linear Approximations

Our main slogan

At any point X, € R? f(x) ~ f(Xq) + Vf(XO)T(X — X for all X close to X



Linear Approximations

Our main slogan

At any point X, € R? f(x) ~ f(Xq) + Vf(XO)T(X — X for all X close to X

f(z) = 2? f(z) = 2*

approximation at 1

f(z)
f(z)




Linear Approximations

Our main slogan

At any point X, € c RY f(x) f(XO) + Vf(XO)T(X X,) for all X close to X,
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https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane_alt.html

Linear Approximations
Example: f: R - R

approximation at 1

f(x) = x? at Xog =1

What is the linear approximation?

f(=)

N

fx) =~ f(xg) +V f(XO)T(X — X for all X close to X
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Linear Approximations
Example: f: R - R

approximation at 1

f(x) = x? at Xog =1

What is the linear approximation?

f(=)

f(x) = f(xg) + Vf (Xo)T(X — X))

fx) =~ f(xg) +V f(XO)T(X — X for all X close to X




Linear Approximations
Example: f: R - R

approximation at 1

f(x) = x? at Xog =1

What is the linear approximation?

f(=)

)~ 1+2(x—1)

fx) =~ f(xg) +V f(XO)T(X — X for all X close to X




Linear Approximations
Example: f: R - R

f(x) = x? at Xog =1
What is the linear approximation?
)~ 1+2(x—-1)

How good is the approximation atx = 27

1 3 4

fx) =~ f(xg) +V f(XO)T(X — X for all X close to X



Linear Approximations
Example: f: R - R

f(x) = x? at Xog =1

What is the linear approximation?

f(=)

)~ 1+2(x—1)

How good is the approximation at x = 1.57 1\\/

1
-1 0 1 2 3 4

fx) =~ f(xg) +V f(XO)T(X — X for all X close to X



Linear Approximations
Example: f: R - R

f(x) = x? at Xog =1

What is the linear approximation?

f(=)

)~ 1+2(x—1)

How good is the approximation atx = 1.17 1\\/

1
-1 0 1 2 3 4

fx) =~ f(xg) +V f(XO)T(X — X for all X close to X
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Linear Approximations
Example: f: R* — |

F(x;, %) = xi +x; + 1 atx, = (1, 0.5)

What is the linear approximation?

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

fx) = f(xy)) +V f(XO)T(X — X)) for all X close to x|,


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html
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Linear Approximations
Example: f: R* — |

F(x;, %) = xi +x; + 1 atx, = (1, 0.5)

What is the linear approximation?

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

fx) = f(xy)) + V f(XO)T(X — X, for all X close to x|,


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html

Linear Approximations
Example: f: R* — |

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

F(x;,%,) = x> +x2 + 1 atxy = (1, 0.5) |

What is the linear approximation?

“(‘z;("i’m”‘“ ..

f(x) = f(xg) + Vf (Xo)T(X — X))
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fx) = f(xy)) +V f(XO)T(X — X)) for all X close to x|,


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html

Linear Approximations
Example: f: R* — |

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

F(x;,x) = x> +x2+ L atx, = (1, 0.5) |

What is the linear approximation?

“(‘z;("i’m””“ ..

Fwy,wy) = 2x; + x5, — 0.25

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

fx) = f(xy)) +V f(XO)T(X — X)) for all X close to x|,


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html

Gradient Descent
Designing a “candidate algorithm”



A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR

F(w)
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Moving in steepest descent direction
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A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR

Suppose | drop you off at w = — 0.5.
Oratw = 2.

Which direction to go in to decrease f?
it slope is negative, go right.

It slope is positive, go left.

F(w)




A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR

Suppose | drop you off at w = — 0.5.
Oratw = 2.

Which direction to go in to decrease f?
Follow the derivative (slope at a point)!

Repeat over and over to minimize.

F(w)
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A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR

Suppose | drop you off at w = — 0.5.
Oratw = 2.

Which direction to go in to decrease f?
Follow the derivative (slope at a point)!

Repeat over and over to minimize.




A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR

Suppose | drop you off at w = — 0.5.
Oratw = 2.

Which direction to go in to decrease f?
Follow the derivative (slope at a point)!
Repeat over and over to minimize.

Eventually, we might reach a minimum!

F(w)




A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR

But we can also just minimize in one shot!

o) =0

(first order condition)

F(w)




A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR

But we can also just minimize in one shot!

o) =0

(first order condition)

Not always possible, so need an iterative
algorithm.

F(w)




A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR¢

f(wla W2)

wi

w2



A candidate algorithm

Moving in steepest descent direction
minimize f(w)
weR?

f(wla W2)

From two directions to infinitely many
directions to go in...

wi

w2



A candidate algorithm

Moving in steepest descent direction
minimize f(w)
weR?

f(wl ’ W2)

From two directions to infinitely many %
directions to go in...

wi



A candidate algorithm

Moving in steepest descent direction
minimize f(w)
weR?

f(wl ’ W2)

But still can go in the

direction!
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https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_gdT1.html

A candidate algorithm

Moving in steepest descent direction

minimize f(w)

weR4

f(wl ’ W2)

But still can go in the "steepest decrease’

direction!
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A candidate algorithm

Moving in steepest descent direction

10

minimize f(w)
weR¢

f(wla W2) j\ﬁ; 0
2

This “myopic” strategy works for
arbitrarily complex tunctions.

A
Q 0
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A candidate algorithm

Moving in steepest descent direction

minimize f(w)
weR¢

f(wl ’ W2)

This “myopic” strategy works for
arbitrarily complex tunctions.

%

1)




A candidate algorithm

Moving in steepest descent direction

Start at some arbitrary point w) € R4

Step in the direction of steepest decrease

for f(w)...

Take another step in the direction of
steepest decrease for f(w)...

Repeat until satistied.



0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
L]

A candidate algorithm

Moving in steepest descent direction

Start at some arbitrary point w” € R<. o
Step in the direction of steepest decrease .
for f(w)... A

Take another step in the direction of
steepest decrease for f(w)...

Repeat until satistied.

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000


https://samuel-deng.github.io/math4ml_su25/assets/figs/nonconvex_surface_gd.html

A candidate algorithm

Moving in steepest descent direction

Start at some arbitrary point w) € R4

Step in the direction of steepest decrease

for f(w)...

Take another step in the direction of
steepest decrease for f(w)...

Repeat until satisfied.

w1 w2



A candidate algorithm

Moving in steepest descent direction

Start at some arbitrary point w) € R4

Step in the direction of steepest decrease

for f(w)...

Take another step in the direction of
steepest decrease for f(w)...

Repeat until satistied.



A candidate algorithm

Moving in steepest descent direction

Start at some arbitrary point w) € R4

Step in the direction of steepest decrease

for f(w)...

Take another step in the direction of
steepest decrease for flw)...

Repeat until satistied.



Gradient Descent
Algorithm



Gradient

The direction of steepest ascent

Steepest increase direction?




Gradient

The direction of steepest ascent

Steepest increase direction?




Gradient

The direction of steepest ascent

Steepest increase direction?

Recall: HW problem on directional derivatives!

T V(w)

— )—




Negative Gradient

The direction of steepest ascent

Steepest decrease direction?




Differential Calculus

Review: Gradient




Differential Calculus

Review: Gradient

VHv)




Gradient Descent
Algorithm

Start at some arbitrary point w) € R4

Step in the

for f(w)...

Take another step in the

for f(w)...

Repeat until satisfied.

w

w2


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example.html

Gradient Descent
Algorithm

Initialize at a randomly chosen w) € R4

For iteration t = 1,2,...(until “stopping
condition” satistied):

Return final w.

(g W

0
w w2


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example.html

Gradient Descent
Algorithm

Initialize at a randomly chosen w) € R4
For iteration t = 1,2,... (until “stopping condition” is satistied):
w® — wi=D _ p v Awi=D)

Return final w®, with objective value fiw).
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w® — wi=D _ p v Awi=D)

Return final w®, with objective value fiw).
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Gradient Descent
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Initialize at a randomly chosen w) € R4
For iterationt = 1,2,...,T:
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Return final w', with objective value filw'").



Gradient Descent
Algorithm

Initialize at a randomly chosen w) € R4
For iterationt = 1,2,...,T:
w® — W=D _ v wi-D)

Return final w', with objective value filw'").



Gradient Descent
Update rule and descent lemma



Gradient Descent

Two questions

W(t) «— W(t_l)_ Vf(w(t_l))
1. Which direction to step in?

2. How big of a step?
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Gradient Descent

Two questions

W(t) — W(t_l)_ Vf(w(t_l))
1. Which direction to step in?

Close to w1, the objective f “looks linear!”

2. How big of a step?



Descent Lemma W0 o =D
Setup and goal

fiw) ~ f(u)+ H(w—u)

As long as w is close enough to u, this is a good approximation.



Descent Lemma w® — w=D_ v fw )
Setup and goal
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As long as w is close enough to u, this is a good approximation.



Descent Lemma w® — W=D v fwD)
Setup and goal

fiw) ~ f(u)+ H(w—u)

As long as w is close enough to u, this is a good approximation.

At time t, we are at the point w1 € R4



Descent Lemma w® — w=D_ v fw )
Setup and goal

fiw) & f(u)+ V /() (w=u)
As long as w is close enough to u, this is a good approximation.

At time t, we are at the point w1 € R4

Goal: move in a direction d € R such that Aiw D + d) < fiw\"=1).




Descent Lemma w® — w=D_ v fw )

Setup and goal

fiw) & f(u)+ V /() (w=u)
As long as w is close enough to u, this is a good approximation.

At time t, we are at the point w1 € R4

Goal: move in a direction d € R such that Aiw D + d) < fiw\"=1).
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Descent Lemma w® — w=D_ v fw )
Setup and goal

fiw) ~ f(u)+ H(w—u)

As long as w is close enough to u, this is a good approximation.

At time t, we are at the point wi—D e R4 T O

Goal: move in a direction d € R? such that Aiw'/""D + d) < fAiw'"™D). <—%\—>




Descent Lemma 0 o =D
Setup and goal

fiw) & f(u)+ V /() (w=u)
As long as w is close enough to u, this is a good approximation.

At time t, we are at the point w1 € R4

Goal: move in a direction d € R such that Aiw D + d) < fiw\"=1).

How about: d = —; V/(w'")?



Descent Lemma w® — w=D_ v fw )
Setup and goal

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).



Descent Lemma w® — w=D_ v fw )

Step 1: Take linear approximation

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:

AW VAW ) ~ AwD) + Vf(w(t—l))T(W(t—l)_ Vf(w(t—l))_w(t—l)).



Descent Lemma w® — wi=D_ ;v w1

Step 1: Take linear approximation (make sure 7 is small)

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:

f(w(t—l)_ Vf(w(t—l))) %f(W(t_l)) 4 Vf(w(l‘—l))T(W(t—l)_ Vf(W(t_l))—W(t_l)).

14%9) 14%9)
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Descent Lemma w® — w=D_ v fw )
Step 2: Simplify using linear algebra

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:

AW VAW ) ~ AwD) + Vf(w(t—l))T(W(t—l)_ Vf(w(t—l))_w(t—l)).



Descent Lemma w® — w=D_ v fw )
Step 2: Simplify using linear algebra

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:

fWED—y VAW D)) & Aw=D) + VAW T (= VAW ).



Descent Lemma w® — w=D_ v fw )

Step 3: Non-negativity of squared norm

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:

fW=D—y VAW & AWD) =y || VAW D)2

recall: n > 0
Therefore,

FOWED= V= 1)) § fwt D)



Descent Lemma w® — w=D_ v (D)
Step 4: Gradient descent definition

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:
FOWED = VAW s fw D)= |V A D)
Therefore,

D= Vw1 $ fwtD)



Descent Lemma w® — w=D_ v (D)
Step 4: Gradient descent definition

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:
FOWED = VAW s fw D)= |V A D)

Therefore,

fw®) 3 Awt=D)!



Descent Lemma w® — w=D_ v fw )

Conclusion

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:
FOWED = VAW s fw D)= |V A D)
Therefore,

AwD) < fiw D) as long as 7 is sufficiently smalll



Gradient Descent

Two questions

w® — wiD_ ) VAwD)
1. Which direction to step in?

Close to w1 the objective f “looks linear” so we can follow the gradient!

2. How big of a step?



Descent Lemma
Q2: How big of a step?

It 17 is small enough, then:
wl=D —  VAw" D) is close to w1

and our linear approximation is good...

F(w)




Descent Lemma
Q2: How big of a step?

1t 17 is small enough, then:

wl=D —  VAw" D) is close to w1

and our linear approximation is good...

w1




Descent Lemma
Q1: Which direction to step in?

...s0 we can “replace”

W= D—y Vfw = ))
and instead reason about
f(w(t—l))_l_ Vf(w(t—l))_l'(w(t—l)_ Vf(w(t—l))_w(t—l))

to conclude

AwD) < fiw" Yy as long as 17 is smalll

wi

w2



Descent Lemma

Guarantee (Informal)

It 17 is small enough, then the gradient descent update rule
w® — wiD_ ) v Awi-D)

has the property:

FOWO) & fWED) = [V e )|



Descent Lemma

Guarantee (Informal)

It 17 is small enough, then the gradient
descent update rule

W(t) «— W(t_l)_ Vf(w(t_l))

has the property:

Fw0) 2 fWED) |V fow )12

w

w2



Descent Lemma

Guarantee (Informal)

It 17 is small enough, then the gradient

descent update rule 2 VAW
W(r) — W(t—l)_ Vf(w(t—l)) gé \5
has the property: e

FwW0) 2 fW D)= |V D)2 + 4 e

wi w2



Descent Lemma

Guarantee (Informal)

It 17 is small enough, then the gradient
descent update rule

W(t) «— W(t_l)_ Vf(w(t_l))

has the property:

Fw0) 2 fWED) |V fow )12

eeeeee

IVAW=D) =0

w2



Descent Lemma

Guarantee (Informal)

It 17 is small enough, then the gradient
descent update rule

W(t) «— W(t_l)_ Vf(w(t_l))

has the property:

Fw0) 2 fWED) |V fow )12

w2


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

Gradient Descent Guarantees

Theorem 1: Descent Lemma

Theorem (Descent Lemma). It fis “smooth enough,” then there is a choice of # > 0 such that,
forany w € R¢,

AW — VW) < fiw) — gu v w)||.

"Smooth enough” : fis a function.

: makes the S rigorous!



Taylor Series
In one variable



€P functions and “smoothness”

Review of smooth functions

Smooth functions are functions that have (several) continuous derivatives.

A function f: R? — R is it all of the partial derivatives of f exist and
are continuous. We call such functions €' functions, and the collection of all such functions are

the class €.

The class € are the functions — these have derivatives of any order.

"Smooth” varies in context. It usually denotes a function being “sufficiently differentiable.”



€P functions and “smoothness”

Review of smooth functions

Example. f(x) = e”.



€P functions and “smoothness”

Review of smooth functions

Example. f(x) = sin x.



€P functions and “smoothness”

Review of smooth functions

Example. f(x;,x,) = x{ + x5.

Polynomials, in general.



Polynomials

Single-variable definition

A single-variable of degree m is a function f : R — R that can be written in
the form:

m m—1 2
a, X +a, (X + ... T X+ aX T+ A,

wherea,, ...,a, € R are the coefficients of the polynomial.

Example: f(x) = 4x> + 2x — 1.



Polynomials

Single-variable definition

Jx) = x

fle) ==

f(z)

f(z) =

flx) = x°

f(z)

f(z) =

fx) = x°

f(z)




Polynomials

Multivariable definition

A is a function f: RY - R of the form
xfl...xgd with integer exponents ky, ..., k; > 0.
A is a function f: RY - R is a finite sum of monomials with real

coefficients.

Example: f(x;, Xy, X3) = x7x, + 3x,%;3.



Polynomials

Multivariable definition

0000000000000000000000000000000000000000000000000000000000000000000000000
°

P =
X X
— -t
b X
N n
X1 X2 1
— — — ( ) ° — F—
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

°
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo


https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3.2/poly3d2.html

Taylor Series

Intuition

We like polynomials — they're easy to perform calculus on and analyze.
fx) =x>+3x° = 2x>+3x -1

A at some point x;, is the representation of “smooth” functions as an “infinite
polynomial,” expanded around x,,.

Canonical example (at xy = 0):

e*=1+4+x



Taylor Series

Intuition

2 6 24

"Cutting oft” the Taylor series at some order p of derivatives gives us the

The first-order Taylor approximation is just the linearization!

The second-order Taylor approximation is just a quadratic function!



Taylor Series
Example: f(x) = e*

Taylor series at x, = O:




Taylor Series
Example: f(x) = e*

Taylor series at x, = O:




Taylor Series
Example: f(x) = e*

Taylor series at x, = O:




Taylor Series

flz)=e
Example: f(x) = e* T—
Taylor series at x, = O:
N x* xd Xt
e*=1+x- | | | 1
2 6 24




Taylor Series

Example: f(x) = cosx

Taylor series at x, = O:

X
cosx = 1 |




Taylor Series

Example: f(x) = cosx

Taylor series at x, = O:

X
cosx =1 |

f(z)




Taylor Series

Example: f(x) = cosx ) p—

Taylor series at x, = O:

X X
cosx = 1 | |

f(z)




Taylor Series
Single-variable definition (f: R - R )

For a function f € € ( f has derivatives of all orders), the is defined as:

oo (k)
TXO(x) — Z G (x — xo)k .

— k!
The of fat x is defined as:
L L f(k)(xo) .
Iy (x) 1= ]E) x (x — xp)" .

Note: It only make sense to talk about a Taylor series/polynomial at a point!



Taylor Series

When is the Taylor series the function?

A tunction that is equal to its Taylor series at x; in a neighborhood around x is called

For all intents and purposes,

fo) & T = Y

for all x that are su

= f (k)(xo)
k!

1 (xp)
2!

(x—xo)2+

(x — xo)k = flxp) + 1 (xp)(x — Xxp)

k=0

usually a\readgl pretty good!

ticiently close to x, and sufficiently large n (we'll usually study n < 2).



Taylor Series

Example

All polynomials are in €% and have exact Taylor series representations.

Consider the Taylor series of f(x) = 2x> + x* —x + 1.



Taylor Series

Example

Many of the “nice” functions of calculus are infinitely differentiable.

Consider the Taylor series of f(x) = sin x + cos x.



Taylor Series

Example

Many of the “nice” functions of calculus are infinitely differentiable.

Consider the Taylor series of f(x) = e”.



Taylor Series
In multiple variables



Taylor Series
Multivariable definition (f: RY - R )

Letf € €. The is given by:
(xl _ xOl)kl ()C _ de)kd 6k1+°”+kdf
T(xy, ..., x ) = k; IZ E ()xfl...ax,lfd (X5 -+ > Xog) -

Thankfully, we won't ever need to use this in full generality. At most, we'll use the second-order
Taylor approximation ot a function in multiple variables.



Hesslan

The multivariable second derivative

The for f: R* = R at X, is the 2 X 2 matrix of all second-order partial derivatives:

0 0
2l Xo) 551 (Xo)

s J(Xp) %222][ (Xp)

0X,0X1

sz (Xp) =

The Hessian for general f: R? = R is given by the d X d matrix constructed similarly.

For twice-continuously differentiable f € €7, the Hessian is symmetric.



Taylor Series

Just the second-order terms

For f: RY — R, the second-order terms of the Taylor series of fat x, are:

2 _ T(v — l — w2 _
I (x) = f(Xg) + V/(Xp) (X —Xp) + 2(X Xg) V(X)X — X).

linear function! :
quadratic form!



Linear Approximations

Our main slogan

At any point X, € R? f(x) ~ f(Xq) + Vf(XO)T(X — X for all X close to X

f(z) = 2? f(z) = 2*

approximation at 1

f(z)
f(z)




First-order Taylor Approximation

Just linear approximation

For a function f: R = R, the Taylor series at x; is

J'(xp) I (x0)

TXO(x) = f(xp) - (X — Xp) > (x—x0)2+...

first-order terms

For f: R - R the laylor series at X is

1
I, (x) = [(Xp) + Vi (Xo) ' (X = Xg) + E(X —Xo) ' V2 f(Xp)(X — Xp) + ...

first-order terms

Linear approximation of f at X,,. This is just taking the first-order terms ot the Taylor series!



First-order Taylor Approximation

Single-variable example 1o

ea:/2

—— =1

fx) = e

First-order Taylor expansion at x, = 1:

12 |
T'(x) = e'* 4 e w-1) _ /

2 :
P




Second-order Taylor Approximation
Approximation by a quadratic

Forf: R - R,

J' (%) /(%)

T(x) = xy + T (x — Xxp) + > (x—x0)2+ (x—x0)3+...

f m(xo)g
|

second-order terms

Forf: RY - R,

1
T, (x) = f(xy) + Vf(xy) ' (x — X() + E(X — X)) VA(x)(X — Xg) + ...

second-order terms



Second-order Taylor Approximation

Single-variable example
f@) = e

fx) = e

Second-order Taylor expansion at xy = 1:

Tz(x) _ 81/2 | 61/2()C - 1) | 61/2()6 - 1)2 1 /
2 8 |

f(z)




Taylor Approximations

Summary

The first-order Taylor approximation (linear approximation) ot a function at X, is:

J(x) = f(xy) + Vi (Xo)T(X — Xp) -

he second-order Taylor approximation of a function at X, is:

1
f(x) ~ f(xg) + Vf(xp) ' (x — x¢) + 5 (X = Xo) ' VZf(Xp)(X = Xp) .

A natural question to ask is: how good are these approximations?



Taylor's Theorem
Quantitying the approximation



Taylor's Theorem

Intuition

How much do we lose by approximating f with a Taylor approximation?

Remainder: how much more Taylor series is left after “chopping it off” at order n.

First-order approximation:

J(x) = f(xg) + Vf (Xo)T(X — X))

The remainder is:

f(x) = (f(xg) + Vf(%p) ' (x = X))



Taylor's Theorem

Intuition

How much do we lose by approximating f with a Taylor approximation?
Remainder: how much more Taylor series is left after “chopping it off” at order n.

Second-order approximation:
1
f(x) & f(xg) + Vf(xp)' (x = X) + E(X —Xo) ' VAA(Xp)(X = Xy) .

The remainder is:

1
J(X) = (f (%) + Vf(x) ' (x = Xp) + E(X ~Xp)" V2f(xp)(x = Xo)> -



Remainder of Taylor Polynomial

Definition

The of a function and its Taylor polynomial at X, is the function:

R'(X) = f(x) = T,(%)
What behavior would we like?

Ideally, R"(x) = 0 as X = X, (the approximation gets better as we approach Xx).



Remainder of Taylor Polynomial

Definition

The of a function and its Taylor
polynomial at X is the function:

R"(x) = f(x) — T (x)

What behavior would we like?

Ideally, R"(x) — 0 as X — X, (the approximation gets
better as we approach X;).




Remainder of Taylor Polynomial

Definition

f(@) = e ~T'(z)

The of a function and its Taylor
polynomial at X is the function:

R"(x) = f(x) — T (x)

What behavior would we like?

Ideally, R"(x) — 0 as X — X, (the approximation gets
better as we approach X;).




Taylor's Theorem

Single variable theorem

Theorem (Taylor's Theorem, single variable). Let f: R = R be a €**! function on the closed
interval between x, and x. Then, there exists some number z € R between x; and x such that

F"Q

o) = T+ =g
Or, in terms of the remainder:
(n+1)
Rn()(f) — f (Z) ()C — Xo)n+1
(n+1)!



Taylor's Theorem

Multivariable (and first order) theorem

Theorem (Taylor’'s Theorem, multivariable). Let f: R? - R be a €* function. For Xy, d € R”,
there exists 4 € (0,1) such that for X = x, + Ad on the line segment between x, and x, + d

1 .
f(xg+d) = f(xg) + VfA(xy) 'd + EdT V2A(X)d

Or, in terms of the remainder:

1
Ri(xg+d) = EdT V2A(X)d.



Gradient Descent
Formalizing the descent lemma



Gradient Descent Guarantees

Theorem 1: Descent Lemma

Theorem (Descent Lemma). It fis “smooth enough,” then there is a choice of # > 0 such that,
forany w € R¢,

AW — VW) < fiw) — gu v w)||.

"Smooth enough” : fis a function.

: makes the S rigorous!



Descent Lemma w® — w=D_ v fw )

Conclusion

f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

If 17 is small enough, then w1 — » VAiw'" V) is close to w1, and:
FOWED = VAW s fw D)= |V A D)
Therefore,

AwD) < fiw D) as long as 7 is sufficiently smalll



Taylor's Theorem

Multivariable (and first order) theorem

Theorem (Taylor’'s Theorem, multivariable). Let f: R? - R be a €* function. For Xg, d € R4
there exists 4 € (0,1) such that for X = x, + Ad on the line segment between x, and x, + d

1 .
f(xg+d) = f(xg) + VfA(xy) 'd + EdT V2A(X)d

Or, in terms of the remainder:

1
Ri(xg+d) = EdT V2A(X)d.



Taylor’'s Theorem

|
Descent Lemma g+ d) = flxy) + Vfixy) d + —d" Vsod
Applying Taylor’s Theorem
f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

For w/Dandd = —/ VAW ), there exists A € (0,1) such that for w = w/=D — 4, VAw' D)
on the line segment between w1V and w/=D—;, Vw1,

W= VAWTD)) = AwWED) = VAW D) TV w0 ;( VAW TN TVEAW) (= VWD)

fWED—y VWD) = AwD)—p || VAW D)2 > VAWD) VRAW) VAW D)




Bounding change in gradients

f-smoothness

For a matrix A € R the largest eigenvalue of Ais 1. (A).

max

A symmetric matrix A € R s a it its eigenvalues are at most f:

/ImaX(A) S ﬁ *



Bounding change in gradients

f-smoothness

A twice-differentiable function f: R - R is a it the eigenvalues of its
Hessian at any point x € R? are at most 3. That is:

Amax( V(X)) < B



Bounding change in gradients

f-smoothness

Prop (Smoothness & Quad. Forms). It A € R ig f-smooth, then for any unit vectorv € R4

vIAv <p.



Bounding change in gradients
f-smoothness s 0

A
0 1
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https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth_nogd.html

Bounding change in gradients

f-smoothness



https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nogd.html

Taylor’'s Theorem

|
Descent Lemma g+ d) = flxy) + Vfixy) d + —d" Vsod
Applying Taylor’s Theorem
f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

For w/Dandd = —/ VAW ), there exists A € (0,1) such that for w = w/=D — 4, VAw' D)
on the line segment between w1V and w/=D—;, Vw1,

SWED—y VAW D))y = AW D)= | VAW D)2 + > v (W) VAW VAw )

IV AW D)|)?
2

= AW |V WD) A (VAW INIVADNT VARV A D NIVAD

Scale to unit vectors to apply smoothness property!



Taylor’'s Theorem

|
Descent Lemma g+ d) = flxy) + Vfixy) d + —d" Vsod
Applying Taylor’s Theorem
f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

For w/Dandd = —/ VAW ), there exists A € (0,1) such that for w = w/=D — 4, VAw' D)
on the line segment between w1V and w/=D—;, Vw1,

SWED—y VAW D))y = AW D)= | VAW D)2 + > v (W) VAW VAw )

|V AW D)|)?
2

= AW |V WD) A (VAW I NIVADNT VARV =D NIVAD

Apply f smoothness to the quadratic form!



Taylor’'s Theorem

|
Descent Lemma g+ d) = flxy) + Vfixy) d + —d" Vsod
Applying Taylor’s Theorem
f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

For w/Dandd = —/ VAW ), there exists A € (0,1) such that for w = w/=D — 4, VAw' D)
on the line segment between w1V and w/=D—;, Vw1,

Apply f smoothness to the quadratic form!

v Aw=D)||12
O 0§ =0y v ADT V2R o =) IV A

2

= fOWCD) = |V w2+

|V AW D))?

< AW = |V A2+ —




Taylor’'s Theorem

|
Descent Lemma g+ d) = flxy) + Vfixy) d + —d" Vsod
Applying Taylor’s Theorem
f(w) ~ + "(w—u) for w close to

Goal: move in a direction d € R? such that Aiw D + d) < f(w\=1).

For w/Dandd = —/ VAW ), there exists A € (0,1) such that for w = w/=D — 4, VAw' D)
on the line segment between w1V and w/=D—;, Vw1,

Apply f smoothness to the quadratic form!

v Aw=D)||12
O W 5 =0y v ADT V2R o =) IV A

2

|V w1 e VD)
——F < fW) >

Letting 7 = 1/f, we get the best possible bound.

= fOWCD) = |V w2+

< AW = |V A2+



Gradient Descent Guarantees

Theorem 1: Descent Lemma

Theorem (Descent Lemma). If fis “smooth
enough,” then there is a choice of 7 > 0 such
that, for any w € R,

AW = nVAw) < fiw) — gu v iw)||.

"“Smooth enough” : fis a function.

: makes the S rigorous!


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth_nogd.html

Gradient Descent Guarantees

Theorem 1: Descent Lemma

Theorem (Descent Lemma). If fis “smooth
enough,” then there is a choice of 7 > 0 such
that, for any w € R,

AW = n VAW)) < fiw) — gu v iw)||2.

“Smooth enough” : fis a /-smooth function.

Taylor's Theorem: makes the S rigorous!




Gradient Descent Guarantees

Theorem 1: Descent Lemma

Theorem (Descent Lemma). If fis “smooth
enough,” then there is a choice of 7 > 0 such
that, for any w € R,

AW = nVAw) < fiw) — gu v iw)||.

"Smooth enough” : fis a function.

: makes the S rigorous!




Gradient Descent

Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If f € €* and is f-smooth, then with # = 1/8, for any w € R¢,

1
Jw =nViw)) < f(w) 2 VAW

4
o = 1
Tl
R(-1)

3 R(-1/2)
R(0)
R(2)

1 —
1"

bty

f(z)



https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth_nogd.html

Gradient Descent

Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If f € €* and is f-smooth, then with # = 1/8, for any w € R¢,

1
Jw =nViw)) < f(w) 2 VAW
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https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

Gradient Descent

Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If f € €* and is f-smooth, then with # = 1/8, for any w € R¢,

1
Jw =nViw)) < f(w) 2 VAW
0.3

N
|

IHOI

IO U]I


https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_compare.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_compare.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_nonsmooth.html

Gradient Descent

Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If f € €* and is f-smooth, then with # = 1/8, for any w € R¢,

1
Jw =nViw)) < f(w) 2 VAW



Gradient Descent
Preview ot convexity



000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Descent Lemma

Guarantee (Informal)

It 17 is small enough, then the gradient 5
descent update rule
WO W=D v AwD) L

has the property:

few®y & AW =y || VAW D)1

..............................................................................................


https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html
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Descent Lemma

Guarantee (Informal)

It 17 is small enough, then the gradient 5
descent update rule
WO W=D v AwD) L

has the property:

few®y & AW =y || VAW D)1

..............................................................................................


https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html

Descent Lemma

Guarantee (Informal)

It 17 is small enough, then the gradient
descent update rule

W(t) «— W(t_l)_ Vf(w(t_l))

has the property:

Fw0) 2 fWED) |V fow )12

F(w)




Gradient Descent Guarantees

Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). It fis convex and “smooth enoug

there is a choice of # > 0 such that for any initial w\) €
wlh w®) | satisfy

RY the iterates of gradient c

lim fiw'Y) = min f(w).

I— 00 weR?

n," then

escent



Gradient Descent Guarantees

Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). It fis convex and “smooth enoug

there is a choice of # > 0 such that for any initial ') €
wlh w®) | satisfy

RY the iterates of gradient c

lim fiw'Y) = min f(w).

I— 00 weR?

n," then

escent



Gradient Descent Guarantees

Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). It fis convex and “smooth enoug

there is a choice of # > 0 such that for any initial w\) €
wlh w®) | satisfy

RY the iterates of gradient c

lim fiw'Y) = min f(w).

— 00 weR4

we'll eventually reach a global minimum!

n," then

escent



Gradient Descent Guarantees

Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). It fis convex and “smooth enough,” then

there is a choice of # > 0 such that for any initial W\») € R, the iterates of gradient descent
wlh w®) | satisfy

lim fiw'Y) = min f(w).

[— 00 weR?

Convex: the “bowl-shaped” functions!



Gradient Descent Guarantees

Theorem 2: GD on Convex Functions

Theorem (Gradient descent on convex functions). It fis convex and “smooth enough,” then

there is a choice of # > 0 such that for any initial W\») € R, the iterates of gradient descent
wlh w®) | satisfy

lim fiw'Y) = min f(w).

[— 00 weR?

Convex: the “bowl-shaped” functions!



Convex Functions

A preview

It fis convex and “smooth enough,” then
there is a choice of 7 > 0 such that for any
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Lesson Overview

Linearization for approximation. We explore using the of a function to approximate
it. This is also called a "first-order approximation.”

Gradient descent. We write down the full algorithm for , the second “story” of
our course. First, we prove the informal . Then, we use Taylor series to formalize it.
Taylor series. We define the of a function, which is an “infinite polynomial” that

approximates a function at a point.

First-order and second-order Taylor approximation. The Taylor polynomial allows us to
approximate a function by “chopping it oft” at a certain degree.

Taylor’'s Theorem. To quantity how bad our approximations are, we can use



Lesson Overview

Big Picture: Least Squares



https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html
https://samuel-deng.github.io/math4ml_su24/assets/figs/pd_ls.html

Lesson Overview
Big Picture: Gradient Descent
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https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

