Math for Machine Learning



Logistics & Announcements



Lesson Overview

Optimization. Minimize an f: R? = R with the possible requirement that the minimizer
x* belongs to a constraint set € C R¢.

Lagrangian. For optimization problems with € defined by equalities/inequalities, the IS a
function L : RY X R™ X R” — R that “unconstrains” the problem.

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a point
x* to be optimal, at least to all points close to it.

Constrained local optima (Lagrangian and KKT). When € is represented by inequalities and equalities, we
can use the method of and the to “unconstrain” the problem.

Ridge regression and minimum norm solutions. By constraining the norm of w* € R of least squares (i.e.
lw™[|), we obtain more “stable” solutions.



Lesson Overview
Big Picture: Least Squares
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https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Lesson Overview
Big Picture: Gradient Descent
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Optimization Problems
Definition and examples



Motivation

Optimization in calculus

In much of machine learning, we design algorithms tor well-defined optimization problems.

In an optimization problem, we want to minimize an f: R? > R with respect
to a set of constraints € C R%:

minimize f(X)
xeR?

subject to x € 6



Motivation

Components of an optimization problem

minimize f(Xx)
xeR¢

subject to X € €

f:RY > Ris the € C R%is the
X* is an it

x* e ¢ and f(x*)<f(x), forallxe .
The is f(x*). Our goal is to find x* and f(x*).

Note: to maximize f(X), just minimize —f(x). So we'll only focus on minimization problems.



Motivation

Optimization in single-variable calculus

C @® |ocal min

@ global min

Ultimate goal: Find the global
minimum of functions.

Intermediary goal: Find the local .
minima.




Motivation

Example: Linear Programming

letc € R A € R b € R" be fixed.

Let X € R? be the

minimize c¢'x

xR
subject to Ax<Db

<is element-wise inequality: a; x < b;for all i € [n].



Motivation

Example: Linear Programming (d =3, n = 7)

We're cooking some NYC classics again. Suppose we have:
100 bacon,120 egg, 150 cheese, and 300 (sandwich) rolls.
Bacon egg and cheese (BEC) requires 1 bacon, 1 egg, 1 cheese, and 1 roll.

Cost (including labor): $3

Egg and cheese (EC) requires 0 bacon, 2 egg, 1 cheese, and 1 roll.
Cost (including labor): $2
Bacon egg omelette (BEO) requires 1 bacon, 3 egg, 1/2 cheese, and 0 roll.

Cost (including labor): $1



Motivation

Example: Linear Programming (d =3, n = 7)

We're cooking some NYC classics again. Suppose we have:
100 bacon,120 egg, 150 cheese, and 300 (sandwich) rolls.
Bacon egg and cheese (BEC) requires 1 bacon, 1 egg, 1 cheese, and 1 roll.

Cost (including labor): $3

Egg and cheese (EC) requires 0 bacon, 2 egg, 1 cheese, and 1 roll.
Cost (including labor): $2
Bacon egg omelette (BEO) requires 1 bacon, 3 egg, 1/2 cheese, and 0 roll.

Cost (including labor): $1

Decision variables?
X = (X[, Xy, X3) € R’
x; = number of BEC,
X, = number of EC,

X3 = number of BEO
Constraints?
Bacon:a, = (1,0,1), b; = 100
Egg: a, = (1,2,3), b, = 120
Cheese: a; = (1,1,1/2), by = 150
Roll: a, = (1,1,0), b, = 300
Objective?

¢'x = 3x; + 2x, + x5



Motivation

Example: Linear Programming (d =3, n = 7)

Decision variables?
X = (X[, Xy, %3) € R’
x; = number of BEC,
X, = number of EC,

X3 = number of BEO
Constraints?
Bacon:a, = (1,0,1), b, = 100
Egg: a, = (1,2,3), b, = 120
Cheese: a; = (1,1,1/2), by = 150
Roll: a, = (1,1,0), b, = 300
Objective?

¢'x = 3x; + 2x, + x;3

Linear program:

minimize

subject to

3x;1 + 2x, + X3

x; +x; < 100

x|+ 2xy + 3x3 £ 120
X+ x,+0.5x; < 150
X, +x, <300

x; =0

X, >0

x; > 0



Motivation

Example: Linear Programming (d =3, n = 7)

minimize 3x; + 2x, + X3 LP in matrix form:
subject to x; +x3 < 100 minimize 3x; + 2x, + Xx;
X1+ 2x, + 3x3 < 120 subject to Ax <b
X+ x,+0.5x; < 150
Lo 1 100
x| +x, < 300
1 2 3 120
%129 1 1 = 150
X 20 A = | b= 300
-0 =11 1 0 =
3= 1 0 0 0
0 —1 0 0

0 0 -1 0



Regression
Setup (Example View)

Observed: Matrix of training samples X € R™? and vector of training labels y € R".

‘_XlT_’ Y1

X = : y=|: ,Wherexl,...,anIRd.
T
n

«— X - In

Unknown: Weight vector w € R? with weights wy, ..., w,,

T

Goal: Foreachi € [n], we predict: y. = w' X, =wx;; + ... + wix, € R.

Choose a weight vector that “fits the training data”: w € R? such that y, ~ $; fori € [n], or:

Xw=y~rYy.



Regression
Setup (Feature View)

Observed: Matrix of training samples X € R™“ and vector of training labels y € R".

) ) Y1
X=X ... Xy y=1: |, wherex,,...,x, € R".
i} ! Vn

Unknown: Weight vector w € RY with weights wy, ..., w,.
Choose a weight vector that “fits the training data”: w € R such that y; x~ 9, fori € [n], or:

XwW=yRrRY.



Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let X € R™? and
y € R". Let W € R be the least squares minimizer:

Va\

W = arg min || Xw — y||?
weR¢

(o LX)

It n > d and rank(X) = d, then:
w=X"X)"X'y.
To get predictionsy € R™: a

¥ =Xw=XX"X)"X'y.



https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Least Squares
OLS Theorem

Proof (Calculus proof of OLS).

fw) = |IXw—y|* = f(w) = w'X'Xw-2w' X"y +y'y L‘
“First derivative test” V_ f(w) = 2(X'X)w — 2Xy. :
2X"X)yw-2X'y=0 = X'Xw=Xl'y :
rank(X) = d = rank(X'X) = d =X X is invertible: d
w=X"X)"XTy.
“Second derivative test.” V2 f(w) = 2X'X.
rank(X) =d = rankX'X)=d = 1,,...,4,> 0

—> X'X is positive definite!



https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

| ocal and global minima
Detinition of “locality” and different minima



Motivation

Optimization in single-variable calculus

C @® |ocal min

@ global min

Ultimate goal: Find the global
minimum of functions.

Intermediary goal: Find the local .
minima.




"Local” to a Point
Definition of an open ball/neighborhood

Let x € R be a point. For some real value § > 0, the or
around X is the set of all points:

Bs(x) := {a € RY: ||x —al| < &) .



"Local” to a Point
Definition of an open ball/neighborhood

Example. Consider x = (1,1) € R?. What is the open ball of radius § = 1 around x?



"Local” to a Point

Definition of the interior of a set

By(x) := {a € RY: ||x — al| < &)

Let S C R%be a set. A pointx € Sis an if there exists a neighborhood Bs(x)
around X such that Bs(x) C § (where C is proper subset).

The int(S) is the set of all interior points of §, i.e.

int(S) ;= {x € 5 : Ny(x) C S}.



Types of Minima

Local and global minima

f(z)




Types of Minima

Local and global minima

minimize f(Xx)
subject to X € 6@

XE Gisa if there is a
neighborhood By(X) around X such that

f(X) < f(x) for all x € € N B4«(X).
X* € € isa if

fx*) < f(x)forallx € 6.

f(z)




Types of Minima

Local and global minima

minimize f(Xx)
subject to X € 6@

X € € is an if there is
a neighborhood B,(X) C € around X such that

f(X) < f(x) for all x € B4«(X).
Unconstrained local minima are in 1nt(6).

Constrained local minima can be on the “edge” of
the constraint set.

f(z)




Types of Minima

Which type of minima are each of these points?

minimize f(X) 5 C
subject to X € €

f(X) < f(x) for all x € € N By«(X)

f(X) < f(x) for all x € By(X) and B4s(X) C 6.

f(x*) < f(x)forallx € 6.



Types of Minima

Big picture

We want to find

Global minima could be either
or

Without €, global minima are just
an unconstrained local minima.

With €, global minima may
the boundary of the constra

le on

INt set.

Find local minima, then test!

f(z)

10

® |ocal min
@ global min



Finding local minima
Big Picture



Necessary and sufficient conditions

Review

0 is for P. P is tor Q.
sufficiency: If you assume this, you get your property.
A sufficient (not necessary) condition to get an A in this class is to get 100 on every assignment.

necessity: Your property cannot hold unless you assume this.

A necessary (not sufficient) condition to get an A in this class is to turn in every assignment.



Unconstrained Minima

How do we find unconstrained minima?

X € € is an if there is a neighborhood B4(X) C € around X s.t.
f(X) < f(x) for all x € B4(X).
From single-variable calculus, this is true if:

f(x) = 0and f'(x) > 0.



Unconstrained Minima

Intuition from Taylor series

Let 0 € R be a scalar increment.

At x, € R, the second-order Taylor approximation tells us all we need to know:

|
J(xg + 0) = flxg) + [ (xp)0 + Ef "(x0)5”
FO=0 <=0
£) > 0



Second-order Taylor Approximation

Single-variable example
f@) = e

fx) = e

Second-order Taylor expansion at xy = 1:

Tz(x) _ 81/2 | 61/2()C - 1) | 61/2()6 - 1)2 1 /
2 8 |

f(z)




Unconstrained Minima

Intuition from Taylor series

Let 0 € R be a scalar increment.
At x, € R, the second-order Taylor approximation tells us all we need to know:

|
J(xp +0) = flxg) +f(x)0 + 5][ "(x0)5°.

fG=0  f(x)=0
What are the necessary conditions for x to be a minimum?

What are the sufficient conditions for x to be a minimum?



Unconstrained Minima

Sufficient conditions met

|
J(Xg + 0) = f(xp) + f(x9)0 + Ef "(x0)8”
Necessary conditions: f(xy) = 0, f"(xy) = O.

Sufficient conditions: f'(xy) = 0, f"(xy) > O.

f(z)




Unconstrained Minima

Necessary, not sufficient

|
J(Xg + 0) = f(xp) + f(x9)0 + Ef "(x0)8”
Necessary conditions: f(xy) = 0, f"(xy) = O.

Sufficient conditions: f'(xy) = 0, f"(xy) > O.

f(z)




Taylor's Theorem

Intuition

How much do we lose by approximating f with a Taylor approximation?

Remainder: how much more Taylor series is left after “chopping it off” at order n.

First-order approximation:

J(x) = f(xg) + Vf (Xo)T(X — X))

The remainder is:

f(x) = (f(xg) + Vf(%p) ' (x = X))



Taylor's Theorem

Intuition

How much do we lose by approximating f with a Taylor approximation?
Remainder: how much more Taylor series is left after “chopping it off” at order n.

Second-order approximation:
1
f(x) & f(xg) + Vf(xp)' (x = X) + E(X —Xo) ' VAA(Xp)(X = Xy) .

The remainder is:

1
J(X) = (f (%) + Vf(x) ' (x = Xp) + E(X ~Xp)" V2f(xp)(x = Xo)> -



Remainder of Taylor Polynomial

Definition

The of a function and its Taylor polynomial at X, is the function:

R'(X) = f(x) = T,(%)
What behavior would we like?

Ideally, R"(x) = 0 as X = X, (the approximation gets better as we approach Xx).



Remainder of Taylor Polynomial

Definition

The of a function and its Taylor
polynomial at X is the function:

R"(x) = f(x) — T (x)

What behavior would we like?

Ideally, R"(x) — 0 as X — X, (the approximation gets
better as we approach X;).




Taylor's Theorem

Peano’s Form

Theorem (2nd Order Taylor's Theorem: Peano’s Form). Let f: R — R be twice differentiable at
Xy and letd € RY. For every € > 0, there exists a neighborhood B5(0) such that

1
J(Xg+d) - (f(Xo) T V]C(X())Td T EdT sz(xo)d) < e||d||?

for all d € B5(0).

However small you want the remainder (€), as long as you are é-close to X, the remainder can
get e||d||* small



Unconstrained local minima
Necessary conditions



Least Squares
OLS Theorem

Proof (Calculus proof of OLS).

fow) = IXw—y[I? <= f(w) =w'X'Xw-2w'X"y +y'y L‘
“First derivative test” V_ f(w) = 2(X'X)w — 2Xy. :
2X'X)w—-2X'y =0 = X'Xw=X'y z
rank(X) = d = rank(X'X) = d =X X is invertible:
w=X"X)"XTy.
“Second derivative test.” V2 f(w) = 2X'X.
rank(X) =d = rankX'X)=d = 1,,...,4,> 0

—> X'X is positive definite!



https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Necessary Conditions

Comparison to single variable

1
J(xp +0) = flxp) + f'(x9)0 + Ef ()5

when 6 is small enough.

Necessary conditions:

J'(xp) =0, f(xg) =2 0.

T L
J(Xg+d) = (X)) + Vf(X) d+5d V7f(xp)d

when [|d]| is small enough.

Necessary conditions:

Vi(xy) =0, V>f(x,) is PSD.



Differential Calculus

Review: Derivative

at the point where we're taking derivative...

f f: RY — R is differentiable at x, € RY...

00 — (%) + V) (= X)) _

I1 0
S HX _ XO”
as X gets closer to x,... ...the function is closer and closer to its linear approximation!

Throughout this section, d = X — X,



Unconstrained Minima

Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum).

minimize f(X)
subject to X € €

Suppose x* € Int(%) is an . Then,

First-order condition. If fis differentiable at x*, then Vf(x*) = 0.

Second-order condition. If fis twice-differentiable at x*, then V*f(x*) is positive
semidefinite, i.e. v V*f(x*)v > 0 for all v € R



Prooft of first order necessary condition
Step 1: Use definition of gradient for ad

First-order condition. If fis differentiable at x*, then Vf(x*) = 0.
Choose an arbitrary direction ad € R¢ where ||d|| = 1 is a unit vector and @ > 0 is a scalar.

fis differentiable, so...

. f(xX* 4+ ad) — f(x*) — an(X*)Td
Iim =0
a—0 alld]|

which is the same as stating:

o SO+ ad) — X
im

a—0 04

— Vfx*)Td.



Prooft of first order necessary condition
Step 2: Use local optimality on difference f(x* + ad) — f(x*)

First-order condition. If fis differentiable at x*, then Vf(x*) = 0.

From Step 1,
* 4 ad) — A(x*
lim 22D~ _ g rxnTa
a—0 a
X* is an , SO there exists a neighborhood Bs(x*) such that

f(x) > f(x*) for all x € Bs(x*). So it & < o (sufficiently small),

f(x* + ad) > f(x*) = Vfx*)Td > 0.



Prooft of first order necessary condition
Step 3: d € R" was an arbitrary direction.

First-order condition. If fis differentiable at x*, then Vf(x*) = 0.
From Step 2, if a < & (sufficiently small), Vf(x*)'d > 0. Butd € R? was an arbitrary direction with ||d|| = 1.
d — el —> Vf(X*)l Z O and d —_— = el —> Vf(X*)l < O

d=e, = Vf(x*),>0andd=—e, => Vf(x*), <0

d = ed —> Vf(X*)d Z O and d = — ed —> Vf(X*)d < O

Theretore, Vf(x*) = 0.



Unconstrained Minima

Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum).

minimize f(X)
subject to X € €

Suppose x* € Int(%) is an . Then,

First-order condition. If fis differentiable at x*, then Vf(x*) = 0.

Second-order condition. If fis twice-differentiable at x*, then V*f(x*) is positive
semidefinite, i.e. v V*f(x*)v > 0 for all v € R



Proot ot second order necessary condition

Step 1: Use second-order Taylor approximation

Second-order condition. If fis twice-differentiable at x*, then V*f(x*) is PSD.

Choose an arbitrary direction ad € RY where a > 0 is a scalar. By Taylor's Theorem (Peano's
form) there exists 6 > 0 such that for all d € B,(0):

2
Ax* + ad) — <f(x*) +aVAx*)d A 0; d’ sz(x*)d> < alld||*



Proot ot second order necessary condition
Step 2: Use first-order condition so a Vf(x*)'d = 0

Second-order condition. If fis twice-differentiable at x*, then V*f(x*) is PSD.

(12

JX* +ad) - (f(X*) aVjx®) d+—-d sz(X*)d> < alld||*

x* is an unconstrained local minimum, so by first-order condition (just proved):

2

AX* + ad) — f(x*) < %dT V2f(x*)d + al|d|)?




Proot ot second order necessary condition
Step 3: Divide by ||d||* and use local optimality: f(x* + ad) — f(x*) > 0

Second-order condition. If fis twice-differentiable at x*, then V?f(x*) is PSD.

2

Ax* + ad) — f(x¥) < %dT V2f(x*)d + al|d||>

Divide by ||d||* everywhere and take the limit as a — 0:

Cf(x* 4+ ad) — f(x¥) o’
Iim

d' Vf(x*)d =0
a—0 |d]| 2|d||

By local optimality of x* and arbitrary d € R¥:

) < JO* +ad) — fix)
|d]?

1
,s00 < E(Ozd/HdH)T V2 f(x*)(ad/||d||) = V?f(x*) is PSD (definition of PSD).



Unconstrained Minima

Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum).

minimize f(X)
subject to X € €

Suppose x* € Int(%) is an . Then,

First-order condition. If fis differentiable at x*, then Vf(x*) = 0.

Second-order condition. If fis twice-differentiable at x*, then V*f(x*) is positive
semidefinite, i.e. v V*f(x*)v > 0 for all v € R



Unconstrained local minima
Sufficient conditions



Least Squares
OLS Theorem

Proof (Calculus proof of OLS).

fow) = IXw—y[I? <= f(w) =w'X'Xw-2w'X"y +y'y L‘
“First derivative test.” V f(w) = 2(X"X)w — 2Xy. 2
2X"X)yw-2X'y=0 = X'Xw=Xl'y :
rank(X) = d = rank(X'X) = d =X X is invertible:
w=X"X)"XTy.
“Second derivative test.” V2 f(w) = 2X'X.
rank(X) =d = rankX'X)=d = 1,,...,4,> 0

—> X'X is positive definite!



https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Sufficient Conditions

Comparison to single variable

1
J(xp +0) = flxp) + f'(x9)0 + Ef ()5

when 6 is small enough.

Necessary conditions:

' (xp) =0, f(xg) > 0.

T L
J(Xg+d) = (X)) + Vf(X) d+5d V7f(xp)d

when [|d]| is small enough.

Necessary conditions:

Vf(xy) =0, V*f(x,) is PD.



Unconstrained Minima

Sufficient conditions

Theorem (Sufficient Conditions for Unconstrained Local Minimum).

minimize f(Xx)
subject to X € €

Let x* € int(B). If f € €? and
VAx*) =0 and V?f(x*)is positive definite,

then X* is a strict unconstrained local minimum.



Proof of second order sufficient condition

Step 1: Use second-order Taylor approximation

Second-order condition. If V*f(x*) is PD, then x* is an unconstrained local minimum.

Choose an arbitrary direction ad € RY where a > 0 is a scalar. By Taylor's Theorem (Peano's
form) there exists 6 > 0 such that for all d € B,(0):

2
f(x* + ad) — (f(x*) +aVAx*)'d A 0; d' V2f(x*)d> > — af|d]|*

Note: Used the negative direction of the statement (which is absolute value).



Proof of second order sufficient condition

Step 2: Eigenvalues of PD matrix are positive

Second-order condition. If V*f(x*) is PD, then x* is an unconstrained local minimum.

From Step 1, foranyd € R4 with ||d|| = 1 and a > 0,

2
f(x* + ad) — (f(x*) +aVAx*)'d A 0; d' sz(x*)d> > — al|d||*.

Let the eigenvalues of VZf(x*) be Ay > ... 2 A;> 0, and consider the smallest eigenvalue,
A, > 0 with unit eigenvector v, with ||v || = 1.

2 2

0/ 5 01

ﬂ«da
) :




Proof of second order sufficient condition
Step 3: a Vf(x*)'d = 0 from first-order condition

Second-order condition. If V*f(x*) is PD, then x* is an unconstrained local minimum.

Cancel out the first-order term a Vf(x*)'d = 0 and plugin the eigenvalue lower bound

2
Ax* + ad) — fx*) > a V/x*) Td A 0; d7 V2f(x*)d — a|d|?

—

> ﬂdaz
- 2

so this simplifies to...

2 2
JX* + ad) — f(x*¥) 2 /ld; alld||* = (/;d n > -



Proof of second order sufficient condition
Step 4: Divide by ||d||* and consider small enoughd = 0

Second-order condition. If V*f(x*) is PD, then x* is an unconstrained local minimum.

Take our inequality

2 2
J(xX* + ad) — f(X*) > i alld||® = (ld " )0‘2-
2 2 04

and divide by ||d||* to get:

fx* + ad) — f(x*) >< by 1
e ~\21d?  «

) a? and sufficiently small d — 0 makes the RHS positive.



Least Squares
OLS Theorem

Proof (Calculus proof of OLS).

fow) = IXw—y[I? <= f(w) =w'X'Xw-2w'X"y +y'y L‘
“First derivative test.” V f(w) = 2(X"X)w — 2Xy. 2
2X"X)yw-2X'y=0 = X'Xw=Xl'y :
rank(X) = d = rank(X'X) = d =X X is invertible:
w=X"X)"XTy.
“Second derivative test.” V2 f(w) = 2X'X.
rank(X) =d = rankX'X)=d = 1,,...,4,> 0

—> X'X is positive definite!



https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Finding global minima
Introducing constraint sets



Types of Minima

Big picture

We want to find

Global minima could be either
or

Without €, global minima are just
an unconstrained local minima.

With €, global minima may
the boundary of the constra

le on

INt set.

Find local minima, then test!

f(z)

10

® |ocal min
@ global min



Unconstrained Minima

Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum).

minimize f(Xx)
subject to X € €

Suppose x* € 1nt(€) is an . Then,

First-order condition. If fis differentiable at x*, then Vf(x*) = 0.

Second-order condition. If fis twice-differentiable at x*, then V*f(x*) is positive
semidefinite, i.e. v V*f(x*)v > 0 for all v € R



Finding global minima

Using necessary conditions with constraints

Necessary conditions for unconstrained local minima:
Vix*) =0 and V?f(x*)>0.
How do we find the global minimum from this?

1. Find unconstrained local minima from first-order condition

M = {x* € int(6€) : VI(x*) = 0}.
2. Find the set of “boundary” points B := €\int(¢) = {x € € : x € int(6)}.

3. The global minimum must be in the set M U B, so evaluate fon all x € MU B.



Finding global minima

Using necessary conditions with constraints

Necessary conditions for unconstrained local minima: S,
Vix*)=0 and V?*f(x*)>0.

How do we find the global minimum from this?

f(z)

1. Find unconstrained local minima tfrom first-order
condition M := {x* € mt(€) : Vf(x*) = 0}.

2. Find the set of "boundary” points
B:=6\int(6) ={x€ 6 :x & int(6)}.

3. The global minimum must be in the set M U B, so
evaluate fonallx e MU B.



Finding global minima

Using necessary conditions constraints

Necessary conditions for unconstrained local minima:
Vix*) =0 and V?f(x*)>0.
How do we find the global minimum from this ?
1. Find unconstrained local minima from first-order condition
2. (B:=@6\Iint(6) ={x € :x & int(6)} = @)

3. The global minimum must be in the set M, so evaluate f on all



Finding global minima

Using necessary conditions constraints

Necessary conditions for unconstrained local minima: o o
Vix*)=0 and V?*f(x*)>0.

How do we find the global minimum from this
?

f(x)

1. Find unconstrained local minima from first-order
condition

(B:=6G\int(6) ={x € :x& int(6)} = &)

3. The global minimum must be in the set /7, so evaluate f
on all



Unconstrained Minima

Example

minimize x?2

subject to x € [1,3]

When f: R — R is one-dimensional on € = [a, b] and differentiable on int(¢) := (a, b).



Unconstrained Minima

Example

unconstrained min

minimize x2

subject to x € [1,3]

f(z)

Whenf: R - R is one-dimensional on

G = [a, b] and differentiable on int(€) := (a, b).



Unconstrained Minima

Example: Why haven’t we solved optimization?

minimize f(x, X,)

subject to x12 + x22 <1

Need to evaluate f on the infinite number of points on the boundary of the circle,
&\int(¥) := {x € R?*: xl2 +)c22 = 1}

How do we deal with the possible constrained local minima induced by €7



Unconstrained Minima

Example: Why haven’t we solved optimization?

minimize f(x, X,)

subject to x12 + x22 <1

Need to evaluate f on the infinite number of points on the
boundary of the circle, €\int(¥) := {x € R*: xl2 +x22 =1}

How do we deal with the possible constrained local minima

induced by €7
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Unconstrained Minima

Example: Why haven’t we solved optimization?

minimize f(x;, X,)

subject to xl2 + x22 <l

Need to evaluate f on the infinite number of points on the
boundary of the circle, €\int(¥) := {x € R*: x12 +)c22 =1}

How do we deal with the possible constrained local minima

induced by 67



Constrained Minima
Equality Constraints and the Lagrangian



Types of Minima

Which type of minima are each of these points?

minimize f(X) 5 C
subject to X € €

f(X) < f(x) for all x € € N By«(X)

f(X) < f(x) for all x € By(X) and B4s(X) C 6.

f(x*) < f(x)forallx € 6.



f(z)

Constrained Local Minima

Minimum values on the “edge of the constraint set”

unconstrained min



https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
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Constrained Minima

Equality constrained optimization

minimize f(x)
subject to  h(x) =0

B (xX) =0

Obijective function f: R — R like before.

hy,...,h,6 are &' functions h : R4 — R that form €, the constraint set.



Constrained Minima

Equality constrained optimization

minimize f(Xx)
subject to  h(x) =0

B (xX) =0

The = 0 constraint is without loss of generality:

It we want h{(x) = c¢ then we can always consider h]f(X) = h{(x) — ¢ = O instead.



Constrained Minima: Equality Constraints

Example: Maximum Volume Box

MINIMIZE  X;X,X;

subject to XX, + Xx3 + x1x3 — /2 =0
Objective function: f(X) = x;x,X;

Single equality constraint: 4 : R? — R, defined as A(X) = x;x, + X,X; + X, X3 — ¢/2.



Constrained Minima: Equality Constraints
ldea

Convert constrained optimization problem into an unconstrained optimization problem.

Then deal with unconstrained problem as we did before:

Vix)=0 and V?%f(x)>0.

The unconstrained optimization problem will have m more variables (tor each constraint 4, for
j € [m]), represented by a vector 4 € R™ (the ).




Constrained Minima: Equality Constraints

Definition of the Lagrangian

minimize f(Xx)
subject to  h(x) =0

h;,n(x) —(

The associated L:-RIXR"™ > Ris

L(x,2) = f(x) + Y A}(x).
=1



Constrained Minima: Equality Constraints
Regularity Conditions

minimize f(Xx)
subject to  h;(x) =0,...,h (x) =0

A pointx € R%is a if:
1.x is feasible, i.e. hy(x) = 0,..., 1, (x) = 0.

2. The gradients Vh(X), ..., Vh (X) are linearly independent.

Constraints are “non-redundant.” This is a property of how we write down our problem.



Constrained Minima: Equality Constraints

Lagrange Multiplier Theorem: Necessary Conditions

Theorem (Lagrange Multiplier Theorem - Necessary). Let x* € R? be a local minimum that is a
regular point. Then, there exists a unique vector A € R" called a such that

VAx®) + Y A Vh(x*¥) =0
=1



Constrained Minima: Equality Constraints

Lagrange Multiplier Theorem: Necessary Conditions

Theorem (Lagrange Multiplier Theorem - Necessary). Let x* € R? be a local minimum that is a
regular point. Then, there exists a unique vector A € R" called a such that

VAx®) + Y A Vh(x*¥) =0
=1

f, in addition, fand hy, ..., h are twice continuously differentiable,

d’ (sz(x*) + ) /Il-Vzhi(x*)) d>0

=1

for alld € R? such that th(x*)Td = 0 forallj € [m].



Constrained Minima: Equality Constraints

How to remember the Lagrange multiplier theorem

Vx)+ Y 4 Vh(x) =0
=1

Remember the necessary conditions for unconstrained local minima:
V£(x) =0 and V*f(x) > 0.
Applying first-order necessary conditions for Lagrangian, so local minimum (x*, 1*) must satisfy
V. L(x*,A*) =0 and V,L(x*,4*) = 0.

Notice that V,L(x*, 1*) = 0 is the same as requiring feasibility: 4(x*) = O tor all j € [m].



Constrained Minima: Equality Constraints

Lagrange Multiplier Theorem: Sufficient Conditions

Theorem (Lagrange Multiplier Theorem - Sufficient Conditions). Let fand h be &? functions,
such that x* € R? and A* € R" satisfy

V. L(x*,A*) =0and V,L(x*,1*) =0
d' V,ZK,XL(X*,/I*)d > 0, for all d € R? such that th(x*)Td = O forallj € [m].

Then, x* is a local minimum.



Constrained Minima: Equality Constraints

How do we use the Lagrangian?

L(x,2) = f(x) + ) Ah(x).
=1

Assuming a global minimum exists, to find it...
1. Find the set (x*, A*) of satistying the first-order necessary conditions:
V. L(x*,A*) =0and V,L(x*,4*) = 0.

2. Find the set of all non-regular points.

3. The global minima must be among the pointsin (1) or (2).



Constrained Minima: Equality Constraints

Example: Maximum Volume Box

MINIMIZE  X;X,X;

subject to XX, + Xx3 + x1x3 — /2 =0



Constrained Minima
Inequality Constraints and the KKT Theorem



Constrained Minima

Inequality constrained optimization

minimize f(x)
subject to  h(x) =0,..., 4 (x) =0

Objective function f: R? = R like before.

hy,....h, are €' functions i : RY - R that form &, the constraint set.

g, ...,8, are €' functions g; : RY = R that form &, the constraint set.



Constrained Minima

Inequality constrained optimization

minimize f(Xx)
subject to  h;(x) =0,...,h (x) =0

To solve: Reduce to equality constrained optimization.

The only difference is that each inequality constraint can either be or not.

A constraintj € [r] is if gi(x) =0.



Constrained Minima: Inequality Constraints

Definition of active constraints

For feasible x € R4 the set of IS

A(x) = {j: g(x) =0} C[r].

A pointx € R%is a it it is feasible and the gradients
LV (X), ..., Vh,(X)} U{Vgi(X):j€ d(X)}

are linearly independent.



Constrained Minima: Inequality Constraints

Lagrangian in Inequality Constrained Optimization

minimize f(Xx)
subject to  h;(x) =0,...,h (x) =0

The L:RIxR"%xR"— R isthe function

L(X, 2, 1) 1= fX) + ) Ah(X) + ) 1igi(X).
i=1 j=1



Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

Theorem (KKT Theorem - Necessary Conditions). Let X* & R% be a local minimum that is a
. Then, there exists unique vectors 4 € R™ and u € R’ called

such that
VA + ) 4 V() + ) pVg(x*) =0,
i=1 i=1

where //tj>I< > (0 forallj € [r] and ﬂj?k = 0 for all non-active constraints j & &/ (x*) (
).



Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

Theorem (KKT Theorem - Necessary Conditions). Let x* & R4 be a local minimum that is a . Then,
there exists unique vectors 4 € R" and y € R’ called such that

VA + Y L VR + ) WV gi(x*) = 0,
i=1 i=1

where /4]* > 0 forallj € [r] and //tjfk = O for all non-active constraints j & &/ (x*) ( ).

f, in addition, fand the h; are all twice continuously differentiable,

d’ (sz(x*) + ) /livzhi(x*)) d>0

=1

for alld € R? such that th(x*)Td = 0 forallj € [m].



Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

L(X, 2, 1) 1= fX) + ) Ah(X) + ) 1;g(X),
i=1 j=1

Write the previous necessary conditions at the local optimum (x*, A*, u*) as:
V_ L(x* A*, u*) =0, h(x*) =0, g(x*) <0
where we also require the conditions:

u* >0 and //tﬁgj(X*) =0, Vj € [r].



Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem: Sufficient Conditions

Theorem (KKT Theorem - Sufficient Conditions). Let £, h, and g be €? functions, such that
x* € RY 1 € R™ u* € R” satisfy

V. L(x*, A%, u*) =0, h(x*) =0, g(x*) <0
u* > 0and //t]?kgj(x*) =0, Vj € [r]
d' V}%,XL(X*,/I*,//t*)d > 0,
for all d such that Vhl-(x*)Td = O forall i € [m] and ng(x*)Td =0, Vj € d(x*).

Then, x* is a local minimum.



Constrained Minima: Inequality Constraints

How do we use the Lagrangian?

Lx, A p) = fX) + ) Ah(x) + ) uigi(x)
i=1 j=1

Assuming a global minimum exists, to find a global minimum...
1. Find the set (xX*, A*, u*) satistying the necessary conditions:
VLK%, 2%, %) = 0, h(x*) = 0, g(x*) < 0 )
p* 2 0and prg(x*) =0, Vj € [r]( )
2. Find the set of all non-regular points.

3. The global minima must be among the pointsin (1) or (2).



Constrained Minima: Inequality Constraints

Example: Smallest point in a halfspace

minimize > ”XH%

subject to  x; +x, +x3 < — 3



| east Squares Regression
Reqgularization and Ridge Regression



Regression
Setup (Example View)

Observed: Matrix of training samples X € R™? and vector of training labels y € R".

‘_XlT_’ Y1

X = : y=|: ,Wherexl,...,anIRd.
T
n

«— X - In

Unknown: Weight vector w € R? with weights wy, ..., w,,

T

Goal: Foreachi € [n], we predict: y. = w' X, =wx;; + ... + wix, € R.

Choose a weight vector that “fits the training data”: w € R? such that y, ~ $; fori € [n], or:

Xw=y~rYy.



Regression
Setup (Feature View)

Observed: Matrix of training samples X € R™“ and vector of training labels y € R".

) ) Y1
X=X ... Xy y=1: |, wherex,,...,x, € R".
i} ! Vn

Unknown: Weight vector w € RY with weights wy, ..., w,.
Choose a weight vector that “fits the training data”: w € R such that y; x~ 9, fori € [n], or:

XwW=yRrRY.



Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let X € R™? and
y € R". Let W € R be the least squares minimizer:

Va\

W = arg min || Xw — y||?
weR¢

(o LX)

It n > d and rank(X) = d, then:
w=X"X)"X'y.
To get predictionsy € R™: a

¥ =Xw=XX"X)"X'y.



https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Least Squares

Least norm exact solution

For X € R™“ with rank(X) = n,

minimize ||w]|
weR?

subject to Xw =Yy

We already know how to solve this — use the pseudoinverse!



Least Squares

Least norm exact solution

For X € R™“ with rank(X) = n,

minimize ||w]| -
weR? z”;

subject to Xw =Yy

Theorem (Minimum norm least squares solution).:
Let X € R™ |etd > n, and let rank(X) = n. Then, SR

w = Xty = VZ*U'y is the exact solution Xw =y .

with smallest Euclidean norm:

HWH% > HWH%]COF all w € R¢. — i —— ——l —.2 e


https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Least Squares

Least norm exact solution

minimize ||w||
weR?

subject to Xw =y

Alternate proof (through Lagrangian). For Lagrange multipliers 4 € R”,
L(w,2) = [[w]| + 1" (Xw —y)

First-order conditions: V ,L(w,A) = 2w + X'l and V,L(w,1) = Xw —y.
1
Setting equalto zero: 2w+ X' A =0and Xw —y =0 = w = — EXT/I and Xw =y
I T I T Ty—1
Solve for A: Xw = _EXX I = _E(XX M=y = A=-2XX")"y.

1 1
Plug A back in to solve for w: w = — EXT/I = — EXT (—Z(XXT)_ly) — w = X' (XX ly = X*y. The pseudoinverse!



Least Squares

Least norm exact solution

For X € R™“ with rank(X) = n,

minimize ||w]|
weR?

subject to Xw =Yy

Theorem (Minimum norm least squares solution). Let X & R™4 et d > n, a

nd let rank(X) = n.

Then, w = X'y = VX*U'y is the exact solution XW = y with smallest Euclic

HWH% > HVAVH%for all w € R4

€an Nnorm.



Least Squares
Ridge Regression

Our goal will now be to minimize two objectives:
2 2
[ Xw —y||“and [[w]]~.
Writing this as an optimization problem:

minimize || Xw — sz + g/Hsz
weR?

where y > 0 is a fixed tuning parameter.

This optimization problem is known as



Least Squares
Ridge Regression

Our goal will now be to minimize two objectives:

2 2
[ Xw —y|[“and [[w]]*.
Writing this as an optimization problem:

minimize ||Xw — sz + }/HWH2
weR?

where y > 0 is a fixed tuning parameter.

This optimization problem is known as
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Least Squares
Ridge Regression

Our goal will now be to minimize two objectives: ’

2 2
[Xw —y||” and ||w]|".
Writing this as an optimization problem:

minimize || Xw — y||% + y||w]|?
weR?

where y > 0 is a fixed tuning parameter.

This optimization problem is known as ridge/
Tikhonov/?,-regularized regression.

For bigger y, bigger “constraint” ball!



Ridge Regression

Property: PSD to PD matrices

minimize ||Xw — sz + waHz
weR4

How do we solve this using the first and second order conditions?

Property (Perturbing PSD matrices). Let A € R%“ be a positive semidefinite matrix. Then, for
any y > 0, the matrix A + ylI is positive definite.

Proof. Let v € R? be any vector. V(A + YDV = v (Av+yv) = VI Av 4+ yv'v

=vAv+  ylvl®

>0 >0 unless v=0.



Ridge Regression

First-order conditions

minimize ||Xw — sz + waHz
weR4

Take the gradient and set to 0:
V. IXw=y|? + V_|w|]* = 2X"Xw — 2X Ty + 2yw

2X'Xw-2X'y+2yw=0 = X'X+yDhw=Xy

By property (perturbing PSD matrices), X'X + yI is PD, so:

wt = (X'X+ D)Xy



Least Squares

Solving ridge regression

minimize ||Xw — sz + waHz
weR4

Candidate minimizer: w* = (X'X 4+ 7I)"'Xy.

Gradient: V,[IXw — y||2 + V,[w|12 = 2X"Xw — 2XTy + 2yw

Taking the Hessian,
VZf(w) = XX + 71, which is positive definite.

Sufficient condition for optimality applies!



Ridge Regression

Theorem

Theorem (Ridge Regression). Let X & R7>d y € R", andy > 0. Then,

A : 9) 9)
w = arg min || Xw —y||“ + y||lw||
weR?

has the form:
w=X"X+yD)"'Xy.
To get predictionsy € R™:

y=Xw=XX"X+y)"Xy.



Least Squares

Comparison with ridge solution

Theorem (Ridge Regression). Let X € R™¢,

y € R", andy > 0.

A . 2 2
W =arg min || Xw —y||” + y|/w]|

weR?

has the form:

w=X"X+yD)"Xy.

To get predictionsy € R™:

§=Xw=XXX+y)"Xy.

hen, the ridge minimizer:

Theorem (Ordinary Least Squares). Let

X € R andy € R" Let W € R? be the least
squares minimizer:

Vo N

W = arg min || Xw — y||?
weR¢

It n > d and rank(X) = d, then:
w=X"X)"X"y.
To get predictionsy € R":

¥y =Xw=XX"X)"'XTy.



Error in (OLS) Regression

Error using least squares model

A\

Choose a weight vector that “fits the training data”: W € R such that y, ~ $; fori € [n], or:

Xw=y~rYy.
But y might not be a perfect fit to y!
Model this using a true weight vector w* € R% and an error term € = (€1,...,€,) € R".

y; = x; W¥ + ¢; forall i € [n]

y = XwW* + ¢



Error in (OLS) Regression

Error using least squares model

True labels: y = Xw* + €.

What happens when we use the OLS weights w = (X'X)" !X Ty?

w=X"X) X"y
= (X"X) " IXT(XW* + ¢)

= (X"X)"X"Xw* + (X'X)"IX
=w* + (X' X) ' X"e




Error in (OLS) Regression

Error using least squares model

True labels: y = Xw* + €.

What happens when we use the OLS weights w = (X'X)" !X Ty?

w=X"X) X"y
= (X"X) " IXT(XW* + ¢)

= (X"X)"X"Xw* + (X'X)"IX
=w* + (X' X) ' X"e

When € = 0 (y is linearly related to X), this is perfect: w = w*!




Error in (OLS) Regression

Error using least squares model|

True labels: y = Xw* + €.

What happens when we use the OLS weights w = (X'X)" !X Ty?

w=X"X) X"y
= (X"X) " IXT(XW* + ¢)

= (X"X)"X"Xw* + (X'X)"IX
=w* + (X' X)"'X'e
When € # 0, we are off by w — w* = X"X)XTe.




Error in (OLS) Regression

Eigendecomposition perspective

Weight vector's error: w — w* = (X' X)X 'e.

We know that X' X (the covariance matrix) is PSD, so it is diagonalizable:
X'X=VAV' = X'X)"'=V'A~'V.

The inverse of the diagonal matrix A~ ':

/4, ... 0
Al=1 . |,soif 4;is small, the entries of w blow up!
0 ... 1/4



Error In Regression

Error using ridge regression

True labels: y = Xw* + €.

What happens when we use the w=X"X+ )" X"y?

w=X"X+yD X"y
= (X'X + yD X" (Xw* + ¢)
= (X'X+ /D X"Xw* + XX + v XTe

When € = 0 (y is linearly related to X), this is no longer perfect:

w = (X'X + 7D~ X"Xw*, but...



Error In Regression

Error using ridge regression

True labels: y = Xw* + €.

What happens when we use the w=X"X+ )" X"y?

w=X"X+yD X"y
= (X'X + yD X" (Xw* + ¢)
= (X'X+ /D X"Xw* + XX + v XTe

When ¢ # 0, we have more stable errors!



Error in Ridge Regression

Eigendecomposition perspective

Ridge weights: w = (XX + yI)~ Xy,
We know that X'X is positive semidefinite, so it is diagonalizable:
XX+ I=VAV + VGDVT = X' X+yD'=VTA+7I)'V.

The inverse of the diagonal matrix (A + yI)~ "

1
0
I . 1 |
(A+yD) " = : : |, so entries are never bigger than —!
0 | /Ii + vy Y

Ag+y



Least Squares
Ridge Regression

Theorem (Ridge Regression). Let
X € R™4 y € R" andy > 0. Then,

A . 2 2
w = arg min [[Xw —y||*+ y[w]|
weR4

has the form:
w=(X"X+ yI)_lXTy.

To get predictionsy € R™:

§=Xw=XXX+7D"X'y.

For bigger y, bigger “constraint” ball!


https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Recap



Lesson Overview

Optimization. Minimize an f: R? = R with the possible requirement that the minimizer
x* belongs to a constraint set € C R¢.

Lagrangian. For optimization problems with € defined by equalities/inequalities, the IS a
function L : RY X R™ X R” — R that “unconstrains” the problem.

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a point
x* to be optimal, at least to all points close to it.

Constrained local optima (Lagrangian and KKT). When € is represented by inequalities and equalities, we
can use the method of and the to “unconstrain” the problem.

Ridge regression and minimum norm solutions. By constraining the norm of w* € R of least squares (i.e.
lw™[|), we obtain more “stable” solutions.



Lesson Overview
Big Picture: Least Squares
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Lesson Overview
Big Picture: Gradient Descent
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