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Week 4.1: Optimization and the Lagrangian Method



Logistics & Announcements



Lesson Overview

Optimization. Minimize an objective function  with the possible requirement that the minimizer 
 belongs to a constraint set . 

Lagrangian. For optimization problems with  defined by equalities/inequalities, the Lagrangian is a 
function  that “unconstrains” the problem.  

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a point 
 to be optimal, at least to all points close to it. 

Constrained local optima (Lagrangian and KKT). When  is represented by inequalities and equalities, we 
can use the method of Lagrange multipliers and the KKT Theorem to “unconstrain” the problem. 

Ridge regression and minimum norm solutions. By constraining the norm of  of least squares (i.e. 
), we obtain more “stable” solutions.

f : ℝd → ℝ
x* 𝒞 ⊆ ℝd

𝒞
L : ℝd × ℝm × ℝr → ℝ

x*

𝒞

w* ∈ ℝd

∥w*∥



Lesson Overview
Big Picture: Least Squares
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Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html


Optimization Problems 
Definition and examples



Motivation
Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization problems. 

In an optimization problem, we want to minimize an objective function  with respect 
to a set of constraints : 

f : ℝd → ℝ
𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞



Motivation
Components of an optimization problem

 

 is the objective function.  is the constraint/feasible set. 

 is an optimal solution (global minimum) if 

. 

The optimal value is . Our goal is to find  and . 

Note: to maximize , just minimize . So we’ll only focus on minimization problems.

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f : ℝd → ℝ 𝒞 ⊆ ℝd

x*

x* ∈ 𝒞 and f(x*) ≤ f(x), for all x ∈ 𝒞

f(x*) x* f(x*)

f(x) −f(x)



Motivation
Optimization in single-variable calculus
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Intermediary goal: Find the local 
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Now we will focus on constraints!



Motivation
Example: Linear Programming

Let , ,  be fixed.  

Let  be the decision/free variables. 

 

 is element-wise inequality:  for all .

c ∈ ℝd A ∈ ℝn×d b ∈ ℝn

x ∈ ℝd

minimize
x∈ℝd

c⊤x

subject to Ax ⪯ b

⪯ a⊤
i x ≤ bi i ∈ [n]



Motivation
Example: Linear Programming ( , )d = 3 n = 7

We’re cooking some NYC classics again. Suppose we have: 

 bacon,  egg,  cheese, and  (sandwich) rolls. 

Bacon egg and cheese (BEC) requires  bacon,  egg,  cheese, and  roll. 

Cost (including labor): $3 

Egg and cheese (EC) requires  bacon,  egg,  cheese, and  roll. 

Cost (including labor): $2 

Bacon egg omelette (BEO) requires  bacon,  egg,  cheese, and  roll. 

Cost (including labor): $1

100 120 150 300

1 1 1 1

0 2 1 1

1 3 1/2 0



Motivation
Example: Linear Programming ( , )d = 3 n = 7

We’re cooking some NYC classics again. Suppose we have: 

 bacon,  egg,  cheese, and  (sandwich) rolls. 

Bacon egg and cheese (BEC) requires  bacon,  egg,  cheese, and  roll. 

Cost (including labor): $3 

Egg and cheese (EC) requires  bacon,  egg,  cheese, and  roll. 

Cost (including labor): $2 

Bacon egg omelette (BEO) requires  bacon,  egg,  cheese, and  roll. 

Cost (including labor): $1

100 120 150 300

1 1 1 1

0 2 1 1

1 3 1/2 0

Decision variables? 

 

number of BEC,  

number of EC,  

 = number of BEO 

Constraints? 

Bacon: ,  

Egg: ,  

Cheese: ,  

Roll: ,  

Objective? 

x = (x1, x2, x3) ∈ ℝ3

x1 =

x2 =

x3

a1 = (1,0,1) b1 = 100

a2 = (1,2,3) b2 = 120

a3 = (1,1,1/2) b3 = 150

a4 = (1,1,0) b4 = 300

c⊤x = 3x1 + 2x2 + x3



Motivation
Example: Linear Programming ( , )d = 3 n = 7

Linear program: 

minimize 3x1 + 2x2 + x3

subject to x1 + x3 ≤ 100
x1 + 2x2 + 3x3 ≤ 120
x1 + x2 + 0.5x3 ≤ 150
x1 + x2 ≤ 300
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0
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x2 =

x3

a1 = (1,0,1) b1 = 100

a2 = (1,2,3) b2 = 120

a3 = (1,1,1/2) b3 = 150
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c⊤x = 3x1 + 2x2 + x3



Motivation
Example: Linear Programming ( , )d = 3 n = 7

minimize 3x1 + 2x2 + x3

subject to x1 + x3 ≤ 100
x1 + 2x2 + 3x3 ≤ 120
x1 + x2 + 0.5x3 ≤ 150
x1 + x2 ≤ 300
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

LP in matrix form: 

 
minimize 3x1 + 2x2 + x3

subject to Ax ⪯ b

A =

1 0 1
1 2 3
1 1 1

2

1 1 0
−1 0 0
0 −1 0
0 0 −1

b =

100
120
150
300

0
0
0



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  and 
. Let  be the least squares minimizer: 

 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Least Squares
OLS Theorem

Proof (Calculus proof of OLS). 

   

“First derivative test.” . 

 

    is invertible: 

. 

“Second derivative test.” . 

 

 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Local and global minima 
Definition of “locality” and different minima



Motivation
Optimization in single-variable calculus
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“Local” to a Point
Definition of an open ball/neighborhood

Let  be a point. For some real value , the open ball or neighborhood of radius  
around  is the set of all points: 

 

x ∈ ℝd δ > 0 δ
x

Bδ(x) := {a ∈ ℝd : ∥x − a∥ < δ} .



“Local” to a Point
Definition of an open ball/neighborhood

Example. Consider . What is the open ball of radius  around ? x = (1,1) ∈ ℝ2 δ = 1 x



“Local” to a Point
Definition of the interior of a set

 

Let  be a set. A point  is an interior point if there exists a neighborhood  
around  such that  (where  is proper subset). 

The interior of the set  is the set of all interior points of , i.e. 

Bδ(x) := {a ∈ ℝd : ∥x − a∥ < δ}

S ⊆ ℝd x ∈ S Bδ(x)
x Bδ(x) ⊂ S ⊂

int(S) S

int(S) := {x ∈ S : Nδ(x) ⊂ S} .



Types of Minima
Local and global minima
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Types of Minima
Local and global minima

 

 is a (constrained) local minimum if there is a 
neighborhood  around  such that  

 for all . 

 is a global minimum if  

 for all .

minimize f(x)
subject to x ∈ 𝒞

x̂ ∈ 𝒞
Bδ(x̂) x̂

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)

x* ∈ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5
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Types of Minima
Local and global minima

 

 is an unconstrained local minimum if there is 
a neighborhood  around  such that  

 for all . 

Unconstrained local minima are in . 

Constrained local minima can be on the “edge” of 
the constraint set.

minimize f(x)
subject to x ∈ 𝒞

x̂ ∈ 𝒞
Bδ(x̂) ⊂ 𝒞 x̂

f(x̂) ≤ f(x) x ∈ Bδ(x̂)

int(𝒞)
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Types of Minima
Which type of minima are each of these points?
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constrained local: 

 for all  

unconstrained local: 

 for all  and . 

global: 

 for all .

minimize f(x)
subject to x ∈ 𝒞

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)

f(x̂) ≤ f(x) x ∈ Bδ(x̂) Bδ(x̂) ⊂ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞



Types of Minima
Big picture
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Global minima could be either 
unconstrained local minima or 
constrained local minima.  

Without , global minima are just 
an unconstrained local minima. 

With , global minima may lie on 
the boundary of the constraint set. 

Find local minima, then test!

𝒞

𝒞



Finding local minima 
Big Picture



Necessary and sufficient conditions
Review

 

 is necessary for .  is sufficient for . 

sufficiency: If you assume this, you get your property. 

A sufficient (not necessary) condition to get an A in this class is to get  on every assignment. 

necessity: Your property cannot hold unless you assume this. 

A necessary (not sufficient) condition to get an A in this class is to turn in every assignment.

P ⟹ Q

Q P P Q

100



Unconstrained Minima
How do we find unconstrained minima?

 is an unconstrained local minimum if there is a neighborhood  around  s.t. 

 for all . 

From single-variable calculus, this is true if: 

 and .

x̂ ∈ 𝒞 Bδ(x̂) ⊂ 𝒞 x̂

f(x̂) ≤ f(x) x ∈ Bδ(x̂)

f′ (x) = 0 f′ ′ (x) ≥ 0



Unconstrained Minima
Intuition from Taylor series

Let  be a scalar increment.  

At , the second-order Taylor approximation tells us all we need to know: 

.

δ ∈ ℝ

x0 ∈ ℝ

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

f′ (x) = 0 f′ ′ (x) ≥ 0
f′ ′ (x) > 0



Second-order Taylor Approximation
Single-variable example

 

Second-order Taylor expansion at : 

f(x) = ex/2

x0 = 1

T2(x) = e1/2 +
e1/2(x − 1)

2
+

e1/2(x − 1)2

8
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Unconstrained Minima
Intuition from Taylor series

Let  be a scalar increment.  

At , the second-order Taylor approximation tells us all we need to know: 

. 

What are the necessary conditions for  to be a minimum? 

What are the sufficient conditions for  to be a minimum?

δ ∈ ℝ

x0 ∈ ℝ

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

x

x

f′ (x) = 0 f′ ′ (x) ≥ 0

f′ (x) = 0 f′ ′ (x) ≥ 0



Unconstrained Minima
Sufficient conditions met

 

Necessary conditions: , . 

Sufficient conditions: , . 

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

f′ (x0) = 0 f′ ′ (x0) ≥ 0

f′ (x0) = 0 f′ ′ (x0) > 0
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Unconstrained Minima
Necessary, not sufficient
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Necessary conditions: , . 

Sufficient conditions: , . 

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

f′ (x0) = 0 f′ ′ (x0) ≥ 0

f′ (x0) = 0 f′ ′ (x0) > 0



Taylor’s Theorem
Intuition

How much do we lose by approximating  with a Taylor approximation?  

Remainder: how much more Taylor series is left after “chopping it off” at order . 

First-order approximation: 

  

The remainder is: 

 

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

f(x) − ( f(x0) + ∇f(x0)⊤(x − x0))



Taylor’s Theorem
Intuition

How much do we lose by approximating  with a Taylor approximation?  

Remainder: how much more Taylor series is left after “chopping it off” at order . 

Second-order approximation: 

  

The remainder is: 

 

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) .

f(x) − (f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)) .



Remainder of Taylor Polynomial
Definition

The remainder of a function and its Taylor polynomial at  is the function: 

 

What behavior would we like?  

Ideally,  as  (the approximation gets better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0 x0



Remainder of Taylor Polynomial
Definition
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The remainder of a function and its Taylor 
polynomial at  is the function: 

 

What behavior would we like?  

Ideally,  as  (the approximation gets 
better as we approach ).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0



Taylor’s Theorem
Peano’s Form

Theorem (2nd Order Taylor’s Theorem: Peano’s Form). Let  be twice differentiable at 
 and let . For every , there exists a neighborhood  such that 

  

for all . 

However small you want the remainder ( ), as long as you are -close to , the remainder can 
get  small.

f : ℝd → ℝ
x0 d ∈ ℝd ϵ > 0 Bδ(0)

f(x0 + d) − (f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d) ≤ ϵ∥d∥2

d ∈ Bδ(0)

ϵ δ x0
ϵ∥d∥2



Unconstrained local minima 
Necessary conditions



Least Squares
OLS Theorem

Proof (Calculus proof of OLS). 

   

“First derivative test.” . 

 

    is invertible: 

. 

“Second derivative test.” . 

 

 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Necessary Conditions
Comparison to single variable

  

when  is small enough. 

Necessary conditions:  

, . 

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

δ

f′ (x0) = 0 f′ ′ (x0) ≥ 0

 

when  is small enough. 

Necessary conditions:  

,  is PSD. 

f(x0 + d) ≈ f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d

∥d∥

∇f(x0) = 0 ∇2f(x0)



Differential Calculus
Review: Derivative

If  is differentiable at … 

 

Throughout this section, .

f : ℝd → ℝ x0 ∈ ℝd

lim
x→x0

f(x) − ( f(x0) + ∇f(x0)⊤(x − x0))
∥x − x0∥

= 0

d = x − x0

at the point where we’re taking derivative…

as  gets closer to …x x0 …the function is closer and closer to its linear approximation!

linear approximation



Unconstrained Minima
Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum). 

 

Suppose  is an unconstrained local minimum. Then, 

First-order condition. If  is differentiable at , then . 

Second-order condition. If  is twice-differentiable at , then  is positive 
semidefinite, i.e.  for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd



Proof of first order necessary condition
Step 1: Use definition of gradient for αd

First-order condition. If  is differentiable at , then . 

Choose an arbitrary direction , where  is a unit vector and  is a scalar.  

 is differentiable, so… 

 

which is the same as stating: 

.

f x* ∇f(x*) = 0

αd ∈ ℝd ∥d∥ = 1 α > 0

f

lim
α→0

f(x* + αd) − f(x*) − α∇f(x*)⊤d
α∥d∥

= 0

lim
α→0

f(x* + αd) − f(x*)
α

= ∇f(x*)⊤d



Proof of first order necessary condition
Step 2: Use local optimality on difference f(x* + αd) − f(x*)

First-order condition. If  is differentiable at , then . 

From Step 1, 

. 

 is an unconstrained local minimum, so there exists a neighborhood  such that 
 for all . So if  (sufficiently small), 

  .

f x* ∇f(x*) = 0

lim
α→0

f(x* + αd) − f(x*)
α

= ∇f(x*)⊤d

x* Bδ(x*)
f(x) ≥ f(x*) x ∈ Bδ(x*) α < δ

f(x* + αd) ≥ f(x*) ⟹ ∇f(x*)⊤d ≥ 0



Proof of first order necessary condition
Step 3:  was an arbitrary direction.d ∈ ℝn

First-order condition. If  is differentiable at , then . 

From Step 2, if  (sufficiently small), . But  was an arbitrary direction with .  

 and  

 and  

 

 and  

Therefore, .

f x* ∇f(x*) = 0

α < δ ∇f(x*)⊤d ≥ 0 d ∈ ℝd ∥d∥ = 1

d = e1 ⟹ ∇f(x*)1 ≥ 0 d = − e1 ⟹ ∇f(x*)1 < 0

d = e2 ⟹ ∇f(x*)2 ≥ 0 d = − e2 ⟹ ∇f(x*)2 < 0

⋮

d = ed ⟹ ∇f(x*)d ≥ 0 d = − ed ⟹ ∇f(x*)d < 0

∇f(x*) = 0



Unconstrained Minima
Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum). 

 

Suppose  is an unconstrained local minimum. Then, 

First-order condition. If  is differentiable at , then . 

Second-order condition. If  is twice-differentiable at , then  is positive 
semidefinite, i.e.  for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd



Proof of second order necessary condition
Step 1: Use second-order Taylor approximation

Second-order condition. If  is twice-differentiable at , then  is PSD. 

Choose an arbitrary direction  where  is a scalar. By Taylor’s Theorem (Peano’s 
form) there exists  such that for all : 

.

f x* ∇2f(x*)

αd ∈ ℝd α > 0
δ > 0 d ∈ Bδ(0)

f(x* + αd) − (f(x*) + α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d) ≤ α∥d∥2



Proof of second order necessary condition
Step 2: Use first-order condition so α∇f(x*)⊤d = 0

Second-order condition. If  is twice-differentiable at , then  is PSD. 

 

 is an unconstrained local minimum, so by first-order condition (just proved): 

f x* ∇2f(x*)

f(x* + αd) − (f(x*) + α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d) ≤ α∥d∥2

x*

f(x* + αd) − f(x*) ≤
α2

2
d⊤ ∇2f(x*)d + α∥d∥2



Proof of second order necessary condition
Step 3: Divide by  and use local optimality: ∥d∥2 f(x* + αd) − f(x*) ≥ 0

Second-order condition. If  is twice-differentiable at , then  is PSD. 

. 

Divide by  everywhere and take the limit as : 

 

By local optimality of  and arbitrary : 

, so   is PSD (definition of PSD).

f x* ∇2f(x*)

f(x* + αd) − f(x*) ≤
α2

2
d⊤ ∇2f(x*)d + α∥d∥2

∥d∥2 α → 0

lim
α→0

f(x* + αd) − f(x*)
∥d∥2

−
α2

2∥d∥2
d⊤ ∇2f(x*)d = 0

x* d ∈ ℝd

0 ≤
f(x* + αd) − f(x*)

∥d∥2
0 ≤

1
2

(αd/∥d∥)⊤ ∇2f(x*)(αd/∥d∥) ⟹∇2f(x*)



Unconstrained Minima
Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum). 

 

Suppose  is an unconstrained local minimum. Then, 

First-order condition. If  is differentiable at , then . 

Second-order condition. If  is twice-differentiable at , then  is positive 
semidefinite, i.e.  for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd



Unconstrained local minima 
Sufficient conditions



Least Squares
OLS Theorem

Proof (Calculus proof of OLS). 

   

“First derivative test.” . 

 

    is invertible: 

. 

“Second derivative test.” . 

 

 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Sufficient Conditions
Comparison to single variable

  

when  is small enough. 

Necessary conditions:  

, . 

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

δ

f′ (x0) = 0 f′ ′ (x0) > 0

 

when  is small enough. 

Necessary conditions:  

,  is PD. 

f(x0 + d) ≈ f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d

∥d∥

∇f(x0) = 0 ∇2f(x0)



Unconstrained Minima
Sufficient conditions

Theorem (Sufficient Conditions for Unconstrained Local Minimum). 

 

Let . If  and 

 is positive definite, 

then  is a strict unconstrained local minimum.

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞) f ∈ 𝒞2

∇f(x*) = 0 and ∇2f(x*)

x*



Second-order condition. If  is PD, then  is an unconstrained local minimum. 

Choose an arbitrary direction  where  is a scalar. By Taylor’s Theorem (Peano’s 
form) there exists  such that for all : 

. 

Note: Used the negative direction of the statement (which is absolute value).

∇2f(x*) x*

αd ∈ ℝd α > 0
δ > 0 d ∈ Bδ(0)

f(x* + αd) − (f(x*) + α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d) ≥ − α∥d∥2

Proof of second order sufficient condition
Step 1: Use second-order Taylor approximation



Second-order condition. If  is PD, then  is an unconstrained local minimum. 

From Step 1, for any  with  and , 

. 

Let the eigenvalues of  be , and consider the smallest eigenvalue, 
 with unit eigenvector  with . 

.

∇2f(x*) x*

d ∈ ℝd ∥d∥ = 1 α > 0

f(x* + αd) − (f(x*) + α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d) ≥ − α∥d∥2

∇2f(x*) λ1 ≥ … ≥ λd > 0
λd > 0 vd ∥vd∥ = 1

⟹
α2

2
d⊤ ∇2f(x*)d ≥

α2

2
v⊤

d ∇f(x*)vd =
λdα2

2

Proof of second order sufficient condition
Step 2: Eigenvalues of PD matrix are positive



Proof of second order sufficient condition
Step 3:  from first-order conditionα∇f(x*)⊤d = 0

Second-order condition. If  is PD, then  is an unconstrained local minimum. 

Cancel out the first-order term  and plugin the eigenvalue lower bound 

 

so this simplifies to… 

.

∇2f(x*) x*

α∇f(x*)⊤d = 0

f(x* + αd) − f(x*) ≥ α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d

≥ λdα2

2

− α∥d∥2

f(x* + αd) − f(x*) ≥
λdα2

2
− α∥d∥2 = ( λd

2
−

∥d∥2

α ) α2



Proof of second order sufficient condition
Step 4: Divide by  and consider small enough ∥d∥2 d → 0

Second-order condition. If  is PD, then  is an unconstrained local minimum. 

Take our inequality 

. 

and divide by  to get: 

, and sufficiently small  makes the RHS positive.

∇2f(x*) x*

f(x* + αd) − f(x*) ≥
λdα2

2
− α∥d∥2 = ( λd

2
−

∥d∥2

α ) α2

∥d∥2

f(x* + αd) − f(x*)
∥d∥2

≥ ( λd

2∥d∥2
−

1
α ) α2 d → 0



Least Squares
OLS Theorem

Proof (Calculus proof of OLS). 

   

“First derivative test.” . 

 

    is invertible: 

. 

“Second derivative test.” . 

 

 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Finding global minima 
Introducing constraint sets



Types of Minima
Big picture

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minWe want to find global minima. 

Global minima could be either 
unconstrained local minima or 
constrained local minima.  

Without , global minima are just 
an unconstrained local minima. 

With , global minima may lie on 
the boundary of the constraint set. 

Find local minima, then test!

𝒞

𝒞



Unconstrained Minima
Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum). 

 

Suppose  is an unconstrained local minimum. Then, 

First-order condition. If  is differentiable at , then . 

Second-order condition. If  is twice-differentiable at , then  is positive 
semidefinite, i.e.  for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd



Finding global minima
Using necessary conditions with constraints

Necessary conditions for unconstrained local minima: 

. 

How do we find the global minimum from this? 

1. Find unconstrained local minima from first-order condition 
. 

2. Find the set of “boundary” points .  

3. The global minimum must be in the set , so evaluate  on all .

∇f(x*) = 0 and ∇2f(x*) ≥ 0

M := {x* ∈ int(𝒞) : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)}

M ∪ B f x ∈ M ∪ B



Finding global minima
Using necessary conditions with constraints

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minNecessary conditions for unconstrained local minima: 

. 

How do we find the global minimum from this? 

1. Find unconstrained local minima from first-order 
condition . 

2. Find the set of “boundary” points 
.  

3. The global minimum must be in the set , so 
evaluate  on all .

∇f(x*) = 0 and ∇2f(x*) ≥ 0

M := {x* ∈ int(𝒞) : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)}

M ∪ B
f x ∈ M ∪ B



Finding global minima
Using necessary conditions without constraints

Necessary conditions for unconstrained local minima: 

. 

How do we find the global minimum from this when ? 

1. Find unconstrained local minima from first-order condition . 

2. There are no boundary points! ( ) 

3. The global minimum must be in the set , so evaluate  on all .

∇f(x*) = 0 and ∇2f(x*) ≥ 0

𝒞 = ℝd

M := {x* ∈ ℝd : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)} = ∅

M f x ∈ M



Finding global minima

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minNecessary conditions for unconstrained local minima: 

. 

How do we find the global minimum from this when 
? 

1. Find unconstrained local minima from first-order 
condition . 

2. There are no boundary points! 
( ) 

3. The global minimum must be in the set , so evaluate  
on all .

∇f(x*) = 0 and ∇2f(x*) ≥ 0

𝒞 = ℝd

M := {x* ∈ ℝd : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)} = ∅

M f
x ∈ M

Using necessary conditions without constraints



Unconstrained Minima
Example

 

When  is one-dimensional on  and differentiable on . 

minimize x2

subject to x ∈ [1,3]

f : ℝ → ℝ 𝒞 = [a, b] int(𝒞) := (a, b)



Unconstrained Minima
Example

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

12
constrained min
unconstrained min

 

When  is one-dimensional on 
 and differentiable on . 

minimize x2

subject to x ∈ [1,3]

f : ℝ → ℝ
𝒞 = [a, b] int(𝒞) := (a, b)



Unconstrained Minima
Example: Why haven’t we solved optimization?

 

Need to evaluate  on the infinite number of points on the boundary of the circle, 
! 

How do we deal with the possible constrained local minima induced by ?

minimize f(x1, x2)
subject to x2

1 + x2
2 ≤ 1

f
𝒞∖int(𝒞) := {x ∈ ℝ2 : x2

1 + x2
2 = 1}

𝒞



Unconstrained Minima
Example: Why haven’t we solved optimization?

 

Need to evaluate  on the infinite number of points on the 
boundary of the circle, ! 

How do we deal with the possible constrained local minima 
induced by ?

minimize f(x1, x2)
subject to x2

1 + x2
2 ≤ 1

f
𝒞∖int(𝒞) := {x ∈ ℝ2 : x2

1 + x2
2 = 1}

𝒞
x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html


Unconstrained Minima
Example: Why haven’t we solved optimization?

 

Need to evaluate  on the infinite number of points on the 
boundary of the circle, ! 

How do we deal with the possible constrained local minima 
induced by ?

minimize f(x1, x2)
subject to x2

1 + x2
2 ≤ 1

f
𝒞∖int(𝒞) := {x ∈ ℝ2 : x2

1 + x2
2 = 1}

𝒞 −3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.
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10

15

20

25
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Constrained Minima 
Equality Constraints and the Lagrangian



Types of Minima
Which type of minima are each of these points?

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global min 

constrained local: 

 for all  

unconstrained local: 

 for all  and . 

global: 

 for all .

minimize f(x)
subject to x ∈ 𝒞

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)

f(x̂) ≤ f(x) x ∈ Bδ(x̂) Bδ(x̂) ⊂ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞



Constrained Local Minima
Minimum values on the “edge of the constraint set”
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constrained min
unconstrained min

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html


Constrained Minima
Equality constrained optimization

 

Objective function  like before. 

 are  functions  that form , the constraint set.

minimize f(x)
subject to h1(x) = 0

⋮
hm(x) = 0

f : ℝd → ℝ

h1, …, hm 𝒞1 hi : ℝd → ℝ 𝒞

objective function

equality constraints



Constrained Minima
Equality constrained optimization

 

The  constraint is without loss of generality:  

If we want  then we can always consider  instead. 

minimize f(x)
subject to h1(x) = 0

⋮
hm(x) = 0

= 0

hj(x) = c h′ j(x) = hj(x) − c = 0



Constrained Minima: Equality Constraints
Example: Maximum Volume Box

 

Objective function:   

Single equality constraint: , defined as .

minimize x1x2x3

subject to x1x2 + x2x3 + x1x3 − c/2 = 0

f(x) = x1x2x3

h : ℝ3 → ℝ h(x) = x1x2 + x2x3 + x1x3 − c/2



Constrained Minima: Equality Constraints
Idea

Convert constrained optimization problem into an unconstrained optimization problem. 

Then deal with unconstrained problem as we did before: 

. 

The unconstrained optimization problem will have  more variables (for each constraint  for 
), represented by a vector  (the Lagrange multipliers).

∇f(x) = 0 and ∇2f(x) ≥ 0

m hj
j ∈ [m] λ ∈ ℝm



Constrained Minima: Equality Constraints
Definition of the Lagrangian

 

The associated Lagrangian function  is 

.

minimize f(x)
subject to h1(x) = 0

⋮
hm(x) = 0

L : ℝd × ℝm → ℝ

L(x, λ) := f(x) +
m

∑
i=1

λihi(x)



Constrained Minima: Equality Constraints
Regularity Conditions

 

A point  is a regular point if: 

1.  is feasible, i.e. . 

2. The gradients  are linearly independent. 

Constraints are “non-redundant.” This is a property of how we write down our problem.

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

x ∈ ℝd

x h1(x) = 0,…, hm(x) = 0

∇h1(x), …, ∇hm(x)



Constrained Minima: Equality Constraints
Lagrange Multiplier Theorem: Necessary Conditions

Theorem (Lagrange Multiplier Theorem - Necessary). Let  be a local minimum that is a 
regular point. Then, there exists a unique vector  called a Lagrange multiplier such that 

x* ∈ ℝd

λ ∈ ℝm

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) = 0



Constrained Minima: Equality Constraints
Lagrange Multiplier Theorem: Necessary Conditions

Theorem (Lagrange Multiplier Theorem - Necessary). Let  be a local minimum that is a 
regular point. Then, there exists a unique vector  called a Lagrange multiplier such that 

 

 If, in addition,  and  are twice continuously differentiable, 

 

for all  such that  for all .

x* ∈ ℝd

λ ∈ ℝm

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) = 0

f h1, …, hm

d⊤ (∇2f(x*) +
m

∑
i=1

λi ∇2hi(x*)) d ≥ 0

d ∈ ℝd ∇hj(x*)⊤d = 0 j ∈ [m]



Constrained Minima: Equality Constraints
How to remember the Lagrange multiplier theorem

 

Remember the necessary conditions for unconstrained local minima: 

. 

Applying first-order necessary conditions for Lagrangian, so local minimum  must satisfy 

 and . 

Notice that  is the same as requiring feasibility:  for all .

∇f(x) +
m

∑
i=1

λi ∇hi(x) = 0

∇f(x) = 0 and ∇2f(x) ≥ 0

(x*, λ*)

∇xL(x*, λ*) = 0 ∇λL(x*, λ*) = 0

∇λL(x*, λ*) = 0 hj(x*) = 0 j ∈ [m]



Constrained Minima: Equality Constraints
Lagrange Multiplier Theorem: Sufficient Conditions

Theorem (Lagrange Multiplier Theorem - Sufficient Conditions). Let  and  be  functions, 
such that  and  satisfy 

 and  

 for all  such that  for all . 

Then,  is a local minimum.

f h 𝒞2

x* ∈ ℝd λ* ∈ ℝm

∇xL(x*, λ*) = 0 ∇λL(x*, λ*) = 0

d⊤ ∇2
x,xL(x*, λ*)d > 0, d ∈ ℝd ∇hj(x*)⊤d = 0 j ∈ [m]

x*



Constrained Minima: Equality Constraints
How do we use the Lagrangian?

 

Assuming a global minimum exists, to find it… 

1. Find the set  of regular points satisfying the first-order necessary conditions:  

 and . 

2. Find the set of all non-regular points. 

3. The global minima must be among the points in (1) or (2).

L(x, λ) = f(x) +
m

∑
i=1

λihi(x) .

(x*, λ*)

∇xL(x*, λ*) = 0 ∇λL(x*, λ*) = 0



Constrained Minima: Equality Constraints
Example: Maximum Volume Box

 
minimize x1x2x3

subject to x1x2 + x2x3 + x1x3 − c/2 = 0



Constrained Minima 
Inequality Constraints and the KKT Theorem



Constrained Minima
Inequality constrained optimization

 

Objective function  like before. 

 are  functions  that form , the constraint set. 

 are  functions  that form , the constraint set.

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0

f : ℝd → ℝ

h1, …, hm 𝒞1 hi : ℝd → ℝ 𝒞

g1, …, gr 𝒞1 gi : ℝd → ℝ 𝒞

objective function

equality constraints

inequality constraints



Constrained Minima
Inequality constrained optimization

 

To solve: Reduce to equality constrained optimization.  

The only difference is that each inequality constraint can either be active or not. 

A constraint  is active if .

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0

j ∈ [r] gj(x) = 0



Constrained Minima: Inequality Constraints
Definition of active constraints

For feasible  the set of active inequality constraints is 

 

A point  is a regular point if it is feasible and the gradients 

  

are linearly independent.

x ∈ ℝd

𝒜(x) := {j : gj(x) = 0} ⊆ [r] .

x ∈ ℝd

{∇h1(x), …, ∇hm(x)} ∪ {∇gj(x) : j ∈ 𝒜(x)}



Constrained Minima: Inequality Constraints
Lagrangian in Inequality Constrained Optimization

 

The Lagrangian function  is the function 

.

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0

L : ℝd × ℝm × ℝr → ℝ

L(x, λ, μ) := f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x)



Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

Theorem (KKT Theorem - Necessary Conditions). Let  be a local minimum that is a 
regular point. Then, there exists unique vectors  and  called Lagrange multipliers 
such that 

, 

where  for all  and  for all non-active constraints  (complementary 
slackness).

x* ∈ ℝd

λ ∈ ℝm μ ∈ ℝr

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) +
r

∑
j=1

μ*j ∇gj(x*) = 0

μ*j ≥ 0 j ∈ [r] μ*j = 0 j ∉ 𝒜(x*)



Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

Theorem (KKT Theorem - Necessary Conditions). Let  be a local minimum that is a regular point. Then, 
there exists unique vectors  and  called Lagrange multipliers such that 

, 

where  for all  and  for all non-active constraints  (complementary slackness). 

 If, in addition,  and the  are all twice continuously differentiable, 

 

for all  such that  for all .

x* ∈ ℝd

λ ∈ ℝm μ ∈ ℝr

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) +
r

∑
j=1

μ*j ∇gj(x*) = 0

μ*j ≥ 0 j ∈ [r] μ*j = 0 j ∉ 𝒜(x*)

f hi

d⊤ (∇2f(x*) +
m

∑
i=1

λi ∇2hi(x*)) d ≥ 0

d ∈ ℝd ∇hj(x*)⊤d = 0 j ∈ [m]



Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

 

Write the previous necessary conditions at the local optimum  as: 

 

where we also require the complementary slackness conditions: 

. 

L(x, λ, μ) := f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x),

(x*, λ*, μ*)

∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0

μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]



Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem: Sufficient Conditions

Theorem (KKT Theorem - Sufficient Conditions). Let , , and  be  functions, such that 
, ,  satisfy 

 

 

  

for all  such that  for all  and . 

Then,  is a local minimum.

f h g 𝒞2

x* ∈ ℝd λ ∈ ℝm μ* ∈ ℝr

∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0

μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]

d⊤ ∇2
x,xL(x*, λ*, μ*)d > 0,

d ∇hi(x*)⊤d = 0 i ∈ [m] ∇gj(x*)⊤d = 0, ∀j ∈ 𝒜(x*)

x*



Constrained Minima: Inequality Constraints
How do we use the Lagrangian?

 

Assuming a global minimum exists, to find a global minimum… 

1. Find the set  satisfying the necessary conditions: 

 (first-order conditions)  

 (complementary slackness) 

2. Find the set of all non-regular points. 

3. The global minima must be among the points in (1) or (2).

L(x, λ, μ) = f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x)

(x*, λ*, μ*)

∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0

μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]



Constrained Minima: Inequality Constraints
Example: Smallest point in a halfspace

minimize
1
2

∥x∥2
2

subject to x1 + x2 + x3 ≤ − 3



Least Squares Regression 
Regularization and Ridge Regression



Regression
Setup (Example View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Goal: For each , we predict: . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Regression
Setup (Feature View)

Observed: Matrix of training samples  and vector of training labels .  

, where . 

Unknown: Weight vector  with weights . 

Choose a weight vector that “fits the training data”:  such that  for , or: 

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .



Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  and 
. Let  be the least squares minimizer: 

 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Least Squares
Least norm exact solution

For  with , 

   

We already know how to solve this — use the pseudoinverse!

X ∈ ℝn×d rank(X) = n

minimize
w∈ℝd

∥w∥

subject to Xw = y



Least Squares
Least norm exact solution

For  with , 

   

Theorem (Minimum norm least squares solution). 
Let , let , and let . Then, 

 is the exact solution  
with smallest Euclidean norm: 

 for all .

X ∈ ℝn×d rank(X) = n

minimize
w∈ℝd

∥w∥

subject to Xw = y

X ∈ ℝn×d d ≥ n rank(X) = n
ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2
2 ≥ ∥ŵ∥2

2 w ∈ ℝd x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html


Least Squares
Least norm exact solution

   

Alternate proof (through Lagrangian). For Lagrange multipliers , 

 

First-order conditions:  and . 

Setting equal to zero:  and    and  

Solve for : . 

Plug  back in to solve for : . The pseudoinverse!

minimize
w∈ℝd

∥w∥

subject to Xw = y

λ ∈ ℝn

L(w, λ) = ∥w∥ + λ⊤(Xw − y)

∇wL(w, λ) = 2w + X⊤λ ∇λL(w, λ) = Xw − y

2w + X⊤λ = 0 Xw − y = 0 ⟹ w = −
1
2

X⊤λ Xw = y

λ Xw = −
1
2

XX⊤λ ⟹ −
1
2

(XX⊤)λ = y ⟹ λ = − 2(XX⊤)−1y

λ w w = −
1
2

X⊤λ = −
1
2

X⊤ (−2(XX⊤)−1y) ⟹ w = X⊤(XX⊤)−1y = X+y



Least Squares
Least norm exact solution

For  with , 

   

Theorem (Minimum norm least squares solution). Let , let , and let . 
Then,  is the exact solution  with smallest Euclidean norm: 

 for all .

X ∈ ℝn×d rank(X) = n

minimize
w∈ℝd

∥w∥

subject to Xw = y

X ∈ ℝn×d d ≥ n rank(X) = n
ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2
2 ≥ ∥ŵ∥2

2 w ∈ ℝd



Least Squares
Ridge Regression

Our goal will now be to minimize two objectives: 

 and . 

Writing this as an optimization problem: 

 

where  is a fixed tuning parameter.  

This optimization problem is known as ridge/Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2



Least Squares
Ridge Regression

Our goal will now be to minimize two objectives: 

 and . 

Writing this as an optimization problem: 

 

where  is a fixed tuning parameter.  

This optimization problem is known as ridge/
Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html


Least Squares
Ridge Regression

Our goal will now be to minimize two objectives: 

 and . 

Writing this as an optimization problem: 

 

where  is a fixed tuning parameter.  

This optimization problem is known as ridge/
Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2
−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.

0

5

10

15

20

25

30

For bigger , bigger “constraint” ball!γ



Ridge Regression
Property: PSD to PD matrices

 

How do we solve this using the first and second order conditions? 

Property (Perturbing PSD matrices). Let  be a positive semidefinite matrix. Then, for 
any , the matrix  is positive definite. 

Proof. Let  be any vector.  

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

A ∈ ℝd×d

γ > 0 A + γI

v ∈ ℝd v⊤(A + γI)v = v⊤(Av + γv) = v⊤Av + γv⊤v

= v⊤Av
⏟

≥0

+ γ∥v∥2

>0 unless v=0.



Ridge Regression
First-order conditions

 

Take the gradient and set to : 

 

 

By property (perturbing PSD matrices),  is PD, so: 

.

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

0

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2γw

2X⊤Xw − 2X⊤y + 2γw = 0 ⟹ (X⊤X + γI)w = X⊤y

X⊤X + γI

w* = (X⊤X + γI)−1X⊤y



Least Squares
Solving ridge regression

 

Candidate minimizer: . 

Gradient:  

Taking the Hessian, 

, which is positive definite.  

Sufficient condition for optimality applies!

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

w* = (X⊤X + γI)−1X⊤y

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2γw

∇2f(w) = X⊤X + γI



Ridge Regression
Theorem

Theorem (Ridge Regression). Let , , and . Then, 

 

has the form: 

 . 

To get predictions : 

. 

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y



Least Squares
Comparison with ridge solution

Theorem (Ridge Regression). Let , 
, and . Then, the ridge minimizer: 

 

has the form: 

 . 

To get predictions : 

. 

X ∈ ℝn×d

y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

Theorem (Ordinary Least Squares). Let 
 and . Let  be the least 

squares minimizer: 

 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y



Error in (OLS) Regression
Error using least squares model

Choose a weight vector that “fits the training data”:  such that  for , or: 

 

But  might not be a perfect fit to !  

Model this using a true weight vector  and an error term .  

 

ŵ ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xŵ = ŷ ≈ y .

ŷ y

w* ∈ ℝd ϵ = (ϵ1, …, ϵn) ∈ ℝn

yi = x⊤
i w* + ϵi for all i ∈ [n]

y = Xw* + ϵ



Error in (OLS) Regression
Error using least squares model

True labels: . 

What happens when we use the OLS weights ? 

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ



Error in (OLS) Regression
Error using least squares model

True labels: . 

What happens when we use the OLS weights ? 

 

When  (  is linearly related to ), this is perfect: !

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ = 0 y X ŵ = w*



Error in (OLS) Regression
Error using least squares model

True labels: . 

What happens when we use the OLS weights ? 

 

When , we are off by .

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ ≠ 0 ŵ − w* = (X⊤X)−1X⊤ϵ



Error in (OLS) Regression
Eigendecomposition perspective

Weight vector’s error: . 

We know that  (the covariance matrix) is PSD, so it is diagonalizable: 

 

The inverse of the diagonal matrix : 

, so if  is small, the entries of  blow up! 

ŵ − w* = (X⊤X)−1X⊤ϵ

X⊤X

X⊤X = VΛV⊤ ⟹ (X⊤X)−1 = V⊤Λ−1V .

Λ−1

Λ−1 =
1/λ1 … 0

⋮ ⋱ ⋮
0 … 1/λd

λi ŵ



Error in Regression
Error using ridge regression

True labels: . 

What happens when we use the ridge regression weights ? 

 

When  (  is linearly related to ), this is no longer perfect:  

, but…

y = Xw* + ϵ

ŵ = (X⊤X + γI)−1X⊤y

ŵ = (X⊤X + γI)−1X⊤y
= (X⊤X + γI)−1X⊤(Xw* + ϵ)
= (X⊤X + γI)−1X⊤Xw* + (X⊤X + γI)−1X⊤ϵ

ϵ = 0 y X

ŵ = (X⊤X + γI)−1X⊤Xw*



Error in Regression
Error using ridge regression

True labels: . 

What happens when we use the ridge regression weights ? 

 

When , we have more stable errors!

y = Xw* + ϵ

ŵ = (X⊤X + γI)−1X⊤y

ŵ = (X⊤X + γI)−1X⊤y
= (X⊤X + γI)−1X⊤(Xw* + ϵ)
= (X⊤X + γI)−1X⊤Xw* + (X⊤X + γI)−1X⊤ϵ

ϵ ≠ 0



Error in Ridge Regression
Eigendecomposition perspective

Ridge weights: . 

We know that  is positive semidefinite, so it is diagonalizable: 

 

The inverse of the diagonal matrix : 

, so  entries are never bigger than ! 

ŵ = (X⊤X + γI)−1X⊤y

X⊤X

X⊤X + γI = VΛV⊤ + V(γI)V⊤ ⟹ (X⊤X + γI)−1 = V⊤(Λ + γI)−1V .

(Λ + γI)−1

(Λ + γI)−1 =

1
λ1 + γ … 0

⋮ ⋱ ⋮
0 … 1

λd + γ

1
λi + γ

1
γ



Least Squares
Ridge Regression
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For bigger , bigger “constraint” ball!γ

Theorem (Ridge Regression). Let 
, , and . Then, 

 

has the form: 

 . 

To get predictions : 

. 

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html


Recap 



Lesson Overview

Optimization. Minimize an objective function  with the possible requirement that the minimizer 
 belongs to a constraint set . 

Lagrangian. For optimization problems with  defined by equalities/inequalities, the Lagrangian is a 
function  that “unconstrains” the problem.  

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a point 
 to be optimal, at least to all points close to it. 

Constrained local optima (Lagrangian and KKT). When  is represented by inequalities and equalities, we 
can use the method of Lagrange multipliers and the KKT Theorem to “unconstrain” the problem. 

Ridge regression and minimum norm solutions. By constraining the norm of  of least squares (i.e. 
), we obtain more “stable” solutions.

f : ℝd → ℝ
x* 𝒞 ⊆ ℝd

𝒞
L : ℝd × ℝm × ℝr → ℝ

x*

𝒞

w* ∈ ℝd

∥w*∥



Lesson Overview
Big Picture: Least Squares
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x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html


Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

