
By: Samuel Deng

Math for Machine Learning
Week 4.1: Optimization and the Lagrangian Method

Logistics & Announcements

Lesson Overview

Optimization. Minimize an objective function with the possible requirement that the minimizer
 belongs to a constraint set .

Lagrangian. For optimization problems with defined by equalities/inequalities, the Lagrangian is a
function that “unconstrains” the problem.

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a point
 to be optimal, at least to all points close to it.

Constrained local optima (Lagrangian and KKT). When is represented by inequalities and equalities, we
can use the method of Lagrange multipliers and the KKT Theorem to “unconstrain” the problem.

Ridge regression and minimum norm solutions. By constraining the norm of of least squares (i.e.
), we obtain more “stable” solutions.

f : ℝd → ℝ
x* 𝒞 ⊆ ℝd

𝒞
L : ℝd × ℝm × ℝr → ℝ

x*

𝒞

w* ∈ ℝd

∥w*∥

Lesson Overview
Big Picture: Least Squares

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.

0

5

10

15

20

25

30

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

Optimization Problems
Definition and examples

Motivation
Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an objective function with respect
to a set of constraints :

f : ℝd → ℝ
𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

Motivation
Components of an optimization problem

 is the objective function. is the constraint/feasible set.

 is an optimal solution (global minimum) if

.

The optimal value is . Our goal is to find and .

Note: to maximize , just minimize . So we’ll only focus on minimization problems.

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f : ℝd → ℝ 𝒞 ⊆ ℝd

x*

x* ∈ 𝒞 and f(x*) ≤ f(x), for all x ∈ 𝒞

f(x*) x* f(x*)

f(x) −f(x)

Motivation
Optimization in single-variable calculus

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minUltimate goal: Find the global

minimum of functions.

Intermediary goal: Find the local
minima.

Now we will focus on constraints!

Motivation
Example: Linear Programming

Let , , be fixed.

Let be the decision/free variables.

 is element-wise inequality: for all .

c ∈ ℝd A ∈ ℝn×d b ∈ ℝn

x ∈ ℝd

minimize
x∈ℝd

c⊤x

subject to Ax ⪯ b

⪯ a⊤
i x ≤ bi i ∈ [n]

Motivation
Example: Linear Programming (,)d = 3 n = 7

We’re cooking some NYC classics again. Suppose we have:

 bacon, egg, cheese, and (sandwich) rolls.

Bacon egg and cheese (BEC) requires bacon, egg, cheese, and roll.

Cost (including labor): $3

Egg and cheese (EC) requires bacon, egg, cheese, and roll.

Cost (including labor): $2

Bacon egg omelette (BEO) requires bacon, egg, cheese, and roll.

Cost (including labor): $1

100 120 150 300

1 1 1 1

0 2 1 1

1 3 1/2 0

Motivation
Example: Linear Programming (,)d = 3 n = 7

We’re cooking some NYC classics again. Suppose we have:

 bacon, egg, cheese, and (sandwich) rolls.

Bacon egg and cheese (BEC) requires bacon, egg, cheese, and roll.

Cost (including labor): $3

Egg and cheese (EC) requires bacon, egg, cheese, and roll.

Cost (including labor): $2

Bacon egg omelette (BEO) requires bacon, egg, cheese, and roll.

Cost (including labor): $1

100 120 150 300

1 1 1 1

0 2 1 1

1 3 1/2 0

Decision variables?

number of BEC,

number of EC,

 = number of BEO

Constraints?

Bacon: ,

Egg: ,

Cheese: ,

Roll: ,

Objective?

x = (x1, x2, x3) ∈ ℝ3

x1 =

x2 =

x3

a1 = (1,0,1) b1 = 100

a2 = (1,2,3) b2 = 120

a3 = (1,1,1/2) b3 = 150

a4 = (1,1,0) b4 = 300

c⊤x = 3x1 + 2x2 + x3

Motivation
Example: Linear Programming (,)d = 3 n = 7

Linear program:

minimize 3x1 + 2x2 + x3

subject to x1 + x3 ≤ 100
x1 + 2x2 + 3x3 ≤ 120
x1 + x2 + 0.5x3 ≤ 150
x1 + x2 ≤ 300
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

Decision variables?

number of BEC,

number of EC,

 = number of BEO

Constraints?

Bacon: ,

Egg: ,

Cheese: ,

Roll: ,

Objective?

x = (x1, x2, x3) ∈ ℝ3

x1 =

x2 =

x3

a1 = (1,0,1) b1 = 100

a2 = (1,2,3) b2 = 120

a3 = (1,1,1/2) b3 = 150

a4 = (1,1,0) b4 = 300

c⊤x = 3x1 + 2x2 + x3

Motivation
Example: Linear Programming (,)d = 3 n = 7

minimize 3x1 + 2x2 + x3

subject to x1 + x3 ≤ 100
x1 + 2x2 + 3x3 ≤ 120
x1 + x2 + 0.5x3 ≤ 150
x1 + x2 ≤ 300
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

LP in matrix form:

minimize 3x1 + 2x2 + x3

subject to Ax ⪯ b

A =

1 0 1
1 2 3
1 1 1

2

1 1 0
−1 0 0
0 −1 0
0 0 −1

b =

100
120
150
300

0
0
0

Regression
Setup (Example View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Goal: For each , we predict: .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Regression
Setup (Feature View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and
. Let be the least squares minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Least Squares
OLS Theorem

Proof (Calculus proof of OLS).

“First derivative test.” .

 is invertible:

.

“Second derivative test.” .

 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Local and global minima
Definition of “locality” and different minima

Motivation
Optimization in single-variable calculus

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minUltimate goal: Find the global

minimum of functions.

Intermediary goal: Find the local
minima.

“Local” to a Point
Definition of an open ball/neighborhood

Let be a point. For some real value , the open ball or neighborhood of radius
around is the set of all points:

x ∈ ℝd δ > 0 δ
x

Bδ(x) := {a ∈ ℝd : ∥x − a∥ < δ} .

“Local” to a Point
Definition of an open ball/neighborhood

Example. Consider . What is the open ball of radius around ? x = (1,1) ∈ ℝ2 δ = 1 x

“Local” to a Point
Definition of the interior of a set

Let be a set. A point is an interior point if there exists a neighborhood
around such that (where is proper subset).

The interior of the set is the set of all interior points of , i.e.

Bδ(x) := {a ∈ ℝd : ∥x − a∥ < δ}

S ⊆ ℝd x ∈ S Bδ(x)
x Bδ(x) ⊂ S ⊂

int(S) S

int(S) := {x ∈ S : Nδ(x) ⊂ S} .

Types of Minima
Local and global minima

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global min

Types of Minima
Local and global minima

 is a (constrained) local minimum if there is a
neighborhood around such that

 for all .

 is a global minimum if

 for all .

minimize f(x)
subject to x ∈ 𝒞

x̂ ∈ 𝒞
Bδ(x̂) x̂

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)

x* ∈ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global min

Types of Minima
Local and global minima

 is an unconstrained local minimum if there is
a neighborhood around such that

 for all .

Unconstrained local minima are in .

Constrained local minima can be on the “edge” of
the constraint set.

minimize f(x)
subject to x ∈ 𝒞

x̂ ∈ 𝒞
Bδ(x̂) ⊂ 𝒞 x̂

f(x̂) ≤ f(x) x ∈ Bδ(x̂)

int(𝒞)

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global min

Types of Minima
Which type of minima are each of these points?

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global min

constrained local:

 for all

unconstrained local:

 for all and .

global:

 for all .

minimize f(x)
subject to x ∈ 𝒞

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)

f(x̂) ≤ f(x) x ∈ Bδ(x̂) Bδ(x̂) ⊂ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞

Types of Minima
Big picture

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minWe want to find global minima.

Global minima could be either
unconstrained local minima or
constrained local minima.

Without , global minima are just
an unconstrained local minima.

With , global minima may lie on
the boundary of the constraint set.

Find local minima, then test!

𝒞

𝒞

Finding local minima
Big Picture

Necessary and sufficient conditions
Review

 is necessary for . is sufficient for .

sufficiency: If you assume this, you get your property.

A sufficient (not necessary) condition to get an A in this class is to get on every assignment.

necessity: Your property cannot hold unless you assume this.

A necessary (not sufficient) condition to get an A in this class is to turn in every assignment.

P ⟹ Q

Q P P Q

100

Unconstrained Minima
How do we find unconstrained minima?

 is an unconstrained local minimum if there is a neighborhood around s.t.

 for all .

From single-variable calculus, this is true if:

 and .

x̂ ∈ 𝒞 Bδ(x̂) ⊂ 𝒞 x̂

f(x̂) ≤ f(x) x ∈ Bδ(x̂)

f′ (x) = 0 f′ ′ (x) ≥ 0

Unconstrained Minima
Intuition from Taylor series

Let be a scalar increment.

At , the second-order Taylor approximation tells us all we need to know:

.

δ ∈ ℝ

x0 ∈ ℝ

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

f′ (x) = 0 f′ ′ (x) ≥ 0
f′ ′ (x) > 0

Second-order Taylor Approximation
Single-variable example

Second-order Taylor expansion at :

f(x) = ex/2

x0 = 1

T2(x) = e1/2 +
e1/2(x − 1)

2
+

e1/2(x − 1)2

8

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Unconstrained Minima
Intuition from Taylor series

Let be a scalar increment.

At , the second-order Taylor approximation tells us all we need to know:

.

What are the necessary conditions for to be a minimum?

What are the sufficient conditions for to be a minimum?

δ ∈ ℝ

x0 ∈ ℝ

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

x

x

f′ (x) = 0 f′ ′ (x) ≥ 0

f′ (x) = 0 f′ ′ (x) ≥ 0

Unconstrained Minima
Sufficient conditions met

Necessary conditions: , .

Sufficient conditions: , .

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

f′ (x0) = 0 f′ ′ (x0) ≥ 0

f′ (x0) = 0 f′ ′ (x0) > 0

−3 −2 −1 0 1 2 3 4 5−3

−2

−1

0

1

2

3

4

5

linearization at 2

linearization at 1

Unconstrained Minima
Necessary, not sufficient

−3 −2 −1 0 1 2 3 4 5−3

−2

−1

0

1

2

3

4

5

linearization at 2

linearization at 1

Necessary conditions: , .

Sufficient conditions: , .

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

f′ (x0) = 0 f′ ′ (x0) ≥ 0

f′ (x0) = 0 f′ ′ (x0) > 0

Taylor’s Theorem
Intuition

How much do we lose by approximating with a Taylor approximation?

Remainder: how much more Taylor series is left after “chopping it off” at order .

First-order approximation:

The remainder is:

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0)

f(x) − (f(x0) + ∇f(x0)⊤(x − x0))

Taylor’s Theorem
Intuition

How much do we lose by approximating with a Taylor approximation?

Remainder: how much more Taylor series is left after “chopping it off” at order .

Second-order approximation:

The remainder is:

f

n

f(x) ≈ f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0) .

f(x) − (f(x0) + ∇f(x0)⊤(x − x0) +
1
2

(x − x0)⊤ ∇2f(x0)(x − x0)) .

Remainder of Taylor Polynomial
Definition

The remainder of a function and its Taylor polynomial at is the function:

What behavior would we like?

Ideally, as (the approximation gets better as we approach).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0 x0

Remainder of Taylor Polynomial
Definition

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

The remainder of a function and its Taylor
polynomial at is the function:

What behavior would we like?

Ideally, as (the approximation gets
better as we approach).

x0

Rn(x) := f(x) − Tn
x0

(x)

Rn(x) → 0 x → x0
x0

Taylor’s Theorem
Peano’s Form

Theorem (2nd Order Taylor’s Theorem: Peano’s Form). Let be twice differentiable at
 and let . For every , there exists a neighborhood such that

for all .

However small you want the remainder (), as long as you are -close to , the remainder can
get small.

f : ℝd → ℝ
x0 d ∈ ℝd ϵ > 0 Bδ(0)

f(x0 + d) − (f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d) ≤ ϵ∥d∥2

d ∈ Bδ(0)

ϵ δ x0
ϵ∥d∥2

Unconstrained local minima
Necessary conditions

Least Squares
OLS Theorem

Proof (Calculus proof of OLS).

“First derivative test.” .

 is invertible:

.

“Second derivative test.” .

 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Necessary Conditions
Comparison to single variable

when is small enough.

Necessary conditions:

, .

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

δ

f′ (x0) = 0 f′ ′ (x0) ≥ 0

when is small enough.

Necessary conditions:

, is PSD.

f(x0 + d) ≈ f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d

∥d∥

∇f(x0) = 0 ∇2f(x0)

Differential Calculus
Review: Derivative

If is differentiable at …

Throughout this section, .

f : ℝd → ℝ x0 ∈ ℝd

lim
x→x0

f(x) − (f(x0) + ∇f(x0)⊤(x − x0))
∥x − x0∥

= 0

d = x − x0

at the point where we’re taking derivative…

as gets closer to …x x0 …the function is closer and closer to its linear approximation!

linear approximation

Unconstrained Minima
Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum).

Suppose is an unconstrained local minimum. Then,

First-order condition. If is differentiable at , then .

Second-order condition. If is twice-differentiable at , then is positive
semidefinite, i.e. for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd

Proof of first order necessary condition
Step 1: Use definition of gradient for αd

First-order condition. If is differentiable at , then .

Choose an arbitrary direction , where is a unit vector and is a scalar.

 is differentiable, so…

which is the same as stating:

.

f x* ∇f(x*) = 0

αd ∈ ℝd ∥d∥ = 1 α > 0

f

lim
α→0

f(x* + αd) − f(x*) − α∇f(x*)⊤d
α∥d∥

= 0

lim
α→0

f(x* + αd) − f(x*)
α

= ∇f(x*)⊤d

Proof of first order necessary condition
Step 2: Use local optimality on difference f(x* + αd) − f(x*)

First-order condition. If is differentiable at , then .

From Step 1,

.

 is an unconstrained local minimum, so there exists a neighborhood such that
 for all . So if (sufficiently small),

 .

f x* ∇f(x*) = 0

lim
α→0

f(x* + αd) − f(x*)
α

= ∇f(x*)⊤d

x* Bδ(x*)
f(x) ≥ f(x*) x ∈ Bδ(x*) α < δ

f(x* + αd) ≥ f(x*) ⟹ ∇f(x*)⊤d ≥ 0

Proof of first order necessary condition
Step 3: was an arbitrary direction.d ∈ ℝn

First-order condition. If is differentiable at , then .

From Step 2, if (sufficiently small), . But was an arbitrary direction with .

 and

 and

 and

Therefore, .

f x* ∇f(x*) = 0

α < δ ∇f(x*)⊤d ≥ 0 d ∈ ℝd ∥d∥ = 1

d = e1 ⟹ ∇f(x*)1 ≥ 0 d = − e1 ⟹ ∇f(x*)1 < 0

d = e2 ⟹ ∇f(x*)2 ≥ 0 d = − e2 ⟹ ∇f(x*)2 < 0

⋮

d = ed ⟹ ∇f(x*)d ≥ 0 d = − ed ⟹ ∇f(x*)d < 0

∇f(x*) = 0

Unconstrained Minima
Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum).

Suppose is an unconstrained local minimum. Then,

First-order condition. If is differentiable at , then .

Second-order condition. If is twice-differentiable at , then is positive
semidefinite, i.e. for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd

Proof of second order necessary condition
Step 1: Use second-order Taylor approximation

Second-order condition. If is twice-differentiable at , then is PSD.

Choose an arbitrary direction where is a scalar. By Taylor’s Theorem (Peano’s
form) there exists such that for all :

.

f x* ∇2f(x*)

αd ∈ ℝd α > 0
δ > 0 d ∈ Bδ(0)

f(x* + αd) − (f(x*) + α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d) ≤ α∥d∥2

Proof of second order necessary condition
Step 2: Use first-order condition so α∇f(x*)⊤d = 0

Second-order condition. If is twice-differentiable at , then is PSD.

 is an unconstrained local minimum, so by first-order condition (just proved):

f x* ∇2f(x*)

f(x* + αd) − (f(x*) + α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d) ≤ α∥d∥2

x*

f(x* + αd) − f(x*) ≤
α2

2
d⊤ ∇2f(x*)d + α∥d∥2

Proof of second order necessary condition
Step 3: Divide by and use local optimality: ∥d∥2 f(x* + αd) − f(x*) ≥ 0

Second-order condition. If is twice-differentiable at , then is PSD.

.

Divide by everywhere and take the limit as :

By local optimality of and arbitrary :

, so is PSD (definition of PSD).

f x* ∇2f(x*)

f(x* + αd) − f(x*) ≤
α2

2
d⊤ ∇2f(x*)d + α∥d∥2

∥d∥2 α → 0

lim
α→0

f(x* + αd) − f(x*)
∥d∥2

−
α2

2∥d∥2
d⊤ ∇2f(x*)d = 0

x* d ∈ ℝd

0 ≤
f(x* + αd) − f(x*)

∥d∥2
0 ≤

1
2

(αd/∥d∥)⊤ ∇2f(x*)(αd/∥d∥) ⟹∇2f(x*)

Unconstrained Minima
Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum).

Suppose is an unconstrained local minimum. Then,

First-order condition. If is differentiable at , then .

Second-order condition. If is twice-differentiable at , then is positive
semidefinite, i.e. for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd

Unconstrained local minima
Sufficient conditions

Least Squares
OLS Theorem

Proof (Calculus proof of OLS).

“First derivative test.” .

 is invertible:

.

“Second derivative test.” .

 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Sufficient Conditions
Comparison to single variable

when is small enough.

Necessary conditions:

, .

f(x0 + δ) ≈ f(x0) + f′ (x0)δ +
1
2

f′ ′ (x0)δ2

δ

f′ (x0) = 0 f′ ′ (x0) > 0

when is small enough.

Necessary conditions:

, is PD.

f(x0 + d) ≈ f(x0) + ∇f(x0)⊤d +
1
2

d⊤ ∇2f(x0)d

∥d∥

∇f(x0) = 0 ∇2f(x0)

Unconstrained Minima
Sufficient conditions

Theorem (Sufficient Conditions for Unconstrained Local Minimum).

Let . If and

 is positive definite,

then is a strict unconstrained local minimum.

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞) f ∈ 𝒞2

∇f(x*) = 0 and ∇2f(x*)

x*

Second-order condition. If is PD, then is an unconstrained local minimum.

Choose an arbitrary direction where is a scalar. By Taylor’s Theorem (Peano’s
form) there exists such that for all :

.

Note: Used the negative direction of the statement (which is absolute value).

∇2f(x*) x*

αd ∈ ℝd α > 0
δ > 0 d ∈ Bδ(0)

f(x* + αd) − (f(x*) + α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d) ≥ − α∥d∥2

Proof of second order sufficient condition
Step 1: Use second-order Taylor approximation

Second-order condition. If is PD, then is an unconstrained local minimum.

From Step 1, for any with and ,

.

Let the eigenvalues of be , and consider the smallest eigenvalue,
 with unit eigenvector with .

.

∇2f(x*) x*

d ∈ ℝd ∥d∥ = 1 α > 0

f(x* + αd) − (f(x*) + α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d) ≥ − α∥d∥2

∇2f(x*) λ1 ≥ … ≥ λd > 0
λd > 0 vd ∥vd∥ = 1

⟹
α2

2
d⊤ ∇2f(x*)d ≥

α2

2
v⊤

d ∇f(x*)vd =
λdα2

2

Proof of second order sufficient condition
Step 2: Eigenvalues of PD matrix are positive

Proof of second order sufficient condition
Step 3: from first-order conditionα∇f(x*)⊤d = 0

Second-order condition. If is PD, then is an unconstrained local minimum.

Cancel out the first-order term and plugin the eigenvalue lower bound

so this simplifies to…

.

∇2f(x*) x*

α∇f(x*)⊤d = 0

f(x* + αd) − f(x*) ≥ α∇f(x*)⊤d +
α2

2
d⊤ ∇2f(x*)d

≥ λdα2

2

− α∥d∥2

f(x* + αd) − f(x*) ≥
λdα2

2
− α∥d∥2 = (λd

2
−

∥d∥2

α) α2

Proof of second order sufficient condition
Step 4: Divide by and consider small enough ∥d∥2 d → 0

Second-order condition. If is PD, then is an unconstrained local minimum.

Take our inequality

.

and divide by to get:

, and sufficiently small makes the RHS positive.

∇2f(x*) x*

f(x* + αd) − f(x*) ≥
λdα2

2
− α∥d∥2 = (λd

2
−

∥d∥2

α) α2

∥d∥2

f(x* + αd) − f(x*)
∥d∥2

≥ (λd

2∥d∥2
−

1
α) α2 d → 0

Least Squares
OLS Theorem

Proof (Calculus proof of OLS).

“First derivative test.” .

 is invertible:

.

“Second derivative test.” .

 is positive definite!

f(w) = ∥Xw − y∥2 ⟺ f(w) = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇w f(w) = 2(X⊤X)w − 2X⊤y

2(X⊤X)w − 2X⊤y = 0 ⟹ X⊤Xw = X⊤y

rank(X) = d ⟹ rank(X⊤X) = d ⟹X⊤X

ŵ = (X⊤X)−1X⊤y

∇2
w f(w) = 2X⊤X

rank(X) = d ⟹ rank(X⊤X) = d ⟹ λ1, …, λd > 0

⟹ X⊤X
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Finding global minima
Introducing constraint sets

Types of Minima
Big picture

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minWe want to find global minima.

Global minima could be either
unconstrained local minima or
constrained local minima.

Without , global minima are just
an unconstrained local minima.

With , global minima may lie on
the boundary of the constraint set.

Find local minima, then test!

𝒞

𝒞

Unconstrained Minima
Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum).

Suppose is an unconstrained local minimum. Then,

First-order condition. If is differentiable at , then .

Second-order condition. If is twice-differentiable at , then is positive
semidefinite, i.e. for all .

minimize f(x)
subject to x ∈ 𝒞

x* ∈ int(𝒞)

f x* ∇f(x*) = 0

f x* ∇2f(x*)
v⊤ ∇2f(x*)v ≥ 0 v ∈ ℝd

Finding global minima
Using necessary conditions with constraints

Necessary conditions for unconstrained local minima:

.

How do we find the global minimum from this?

1. Find unconstrained local minima from first-order condition
.

2. Find the set of “boundary” points .

3. The global minimum must be in the set , so evaluate on all .

∇f(x*) = 0 and ∇2f(x*) ≥ 0

M := {x* ∈ int(𝒞) : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)}

M ∪ B f x ∈ M ∪ B

Finding global minima
Using necessary conditions with constraints

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minNecessary conditions for unconstrained local minima:

.

How do we find the global minimum from this?

1. Find unconstrained local minima from first-order
condition .

2. Find the set of “boundary” points
.

3. The global minimum must be in the set , so
evaluate on all .

∇f(x*) = 0 and ∇2f(x*) ≥ 0

M := {x* ∈ int(𝒞) : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)}

M ∪ B
f x ∈ M ∪ B

Finding global minima
Using necessary conditions without constraints

Necessary conditions for unconstrained local minima:

.

How do we find the global minimum from this when ?

1. Find unconstrained local minima from first-order condition .

2. There are no boundary points! ()

3. The global minimum must be in the set , so evaluate on all .

∇f(x*) = 0 and ∇2f(x*) ≥ 0

𝒞 = ℝd

M := {x* ∈ ℝd : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)} = ∅

M f x ∈ M

Finding global minima

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global minNecessary conditions for unconstrained local minima:

.

How do we find the global minimum from this when
?

1. Find unconstrained local minima from first-order
condition .

2. There are no boundary points!
()

3. The global minimum must be in the set , so evaluate
on all .

∇f(x*) = 0 and ∇2f(x*) ≥ 0

𝒞 = ℝd

M := {x* ∈ ℝd : ∇f(x*) = 0}

B := 𝒞∖int(𝒞) = {x ∈ 𝒞 : x ∉ int(𝒞)} = ∅

M f
x ∈ M

Using necessary conditions without constraints

Unconstrained Minima
Example

When is one-dimensional on and differentiable on .

minimize x2

subject to x ∈ [1,3]

f : ℝ → ℝ 𝒞 = [a, b] int(𝒞) := (a, b)

Unconstrained Minima
Example

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

12
constrained min
unconstrained min

When is one-dimensional on
 and differentiable on .

minimize x2

subject to x ∈ [1,3]

f : ℝ → ℝ
𝒞 = [a, b] int(𝒞) := (a, b)

Unconstrained Minima
Example: Why haven’t we solved optimization?

Need to evaluate on the infinite number of points on the boundary of the circle,
!

How do we deal with the possible constrained local minima induced by ?

minimize f(x1, x2)
subject to x2

1 + x2
2 ≤ 1

f
𝒞∖int(𝒞) := {x ∈ ℝ2 : x2

1 + x2
2 = 1}

𝒞

Unconstrained Minima
Example: Why haven’t we solved optimization?

Need to evaluate on the infinite number of points on the
boundary of the circle, !

How do we deal with the possible constrained local minima
induced by ?

minimize f(x1, x2)
subject to x2

1 + x2
2 ≤ 1

f
𝒞∖int(𝒞) := {x ∈ ℝ2 : x2

1 + x2
2 = 1}

𝒞
x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Unconstrained Minima
Example: Why haven’t we solved optimization?

Need to evaluate on the infinite number of points on the
boundary of the circle, !

How do we deal with the possible constrained local minima
induced by ?

minimize f(x1, x2)
subject to x2

1 + x2
2 ≤ 1

f
𝒞∖int(𝒞) := {x ∈ ℝ2 : x2

1 + x2
2 = 1}

𝒞 −3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.

0

5

10

15

20

25

30

Constrained Minima
Equality Constraints and the Lagrangian

Types of Minima
Which type of minima are each of these points?

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5
local min
global min

constrained local:

 for all

unconstrained local:

 for all and .

global:

 for all .

minimize f(x)
subject to x ∈ 𝒞

f(x̂) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x̂)

f(x̂) ≤ f(x) x ∈ Bδ(x̂) Bδ(x̂) ⊂ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞

Constrained Local Minima
Minimum values on the “edge of the constraint set”

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

12
constrained min
unconstrained min

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Constrained Minima
Equality constrained optimization

Objective function like before.

 are functions that form , the constraint set.

minimize f(x)
subject to h1(x) = 0

⋮
hm(x) = 0

f : ℝd → ℝ

h1, …, hm 𝒞1 hi : ℝd → ℝ 𝒞

objective function

equality constraints

Constrained Minima
Equality constrained optimization

The constraint is without loss of generality:

If we want then we can always consider instead.

minimize f(x)
subject to h1(x) = 0

⋮
hm(x) = 0

= 0

hj(x) = c h′ j(x) = hj(x) − c = 0

Constrained Minima: Equality Constraints
Example: Maximum Volume Box

Objective function:

Single equality constraint: , defined as .

minimize x1x2x3

subject to x1x2 + x2x3 + x1x3 − c/2 = 0

f(x) = x1x2x3

h : ℝ3 → ℝ h(x) = x1x2 + x2x3 + x1x3 − c/2

Constrained Minima: Equality Constraints
Idea

Convert constrained optimization problem into an unconstrained optimization problem.

Then deal with unconstrained problem as we did before:

.

The unconstrained optimization problem will have more variables (for each constraint for
), represented by a vector (the Lagrange multipliers).

∇f(x) = 0 and ∇2f(x) ≥ 0

m hj
j ∈ [m] λ ∈ ℝm

Constrained Minima: Equality Constraints
Definition of the Lagrangian

The associated Lagrangian function is

.

minimize f(x)
subject to h1(x) = 0

⋮
hm(x) = 0

L : ℝd × ℝm → ℝ

L(x, λ) := f(x) +
m

∑
i=1

λihi(x)

Constrained Minima: Equality Constraints
Regularity Conditions

A point is a regular point if:

1. is feasible, i.e. .

2. The gradients are linearly independent.

Constraints are “non-redundant.” This is a property of how we write down our problem.

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

x ∈ ℝd

x h1(x) = 0,…, hm(x) = 0

∇h1(x), …, ∇hm(x)

Constrained Minima: Equality Constraints
Lagrange Multiplier Theorem: Necessary Conditions

Theorem (Lagrange Multiplier Theorem - Necessary). Let be a local minimum that is a
regular point. Then, there exists a unique vector called a Lagrange multiplier such that

x* ∈ ℝd

λ ∈ ℝm

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) = 0

Constrained Minima: Equality Constraints
Lagrange Multiplier Theorem: Necessary Conditions

Theorem (Lagrange Multiplier Theorem - Necessary). Let be a local minimum that is a
regular point. Then, there exists a unique vector called a Lagrange multiplier such that

 If, in addition, and are twice continuously differentiable,

for all such that for all .

x* ∈ ℝd

λ ∈ ℝm

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) = 0

f h1, …, hm

d⊤ (∇2f(x*) +
m

∑
i=1

λi ∇2hi(x*)) d ≥ 0

d ∈ ℝd ∇hj(x*)⊤d = 0 j ∈ [m]

Constrained Minima: Equality Constraints
How to remember the Lagrange multiplier theorem

Remember the necessary conditions for unconstrained local minima:

.

Applying first-order necessary conditions for Lagrangian, so local minimum must satisfy

 and .

Notice that is the same as requiring feasibility: for all .

∇f(x) +
m

∑
i=1

λi ∇hi(x) = 0

∇f(x) = 0 and ∇2f(x) ≥ 0

(x*, λ*)

∇xL(x*, λ*) = 0 ∇λL(x*, λ*) = 0

∇λL(x*, λ*) = 0 hj(x*) = 0 j ∈ [m]

Constrained Minima: Equality Constraints
Lagrange Multiplier Theorem: Sufficient Conditions

Theorem (Lagrange Multiplier Theorem - Sufficient Conditions). Let and be functions,
such that and satisfy

 and

 for all such that for all .

Then, is a local minimum.

f h 𝒞2

x* ∈ ℝd λ* ∈ ℝm

∇xL(x*, λ*) = 0 ∇λL(x*, λ*) = 0

d⊤ ∇2
x,xL(x*, λ*)d > 0, d ∈ ℝd ∇hj(x*)⊤d = 0 j ∈ [m]

x*

Constrained Minima: Equality Constraints
How do we use the Lagrangian?

Assuming a global minimum exists, to find it…

1. Find the set of regular points satisfying the first-order necessary conditions:

 and .

2. Find the set of all non-regular points.

3. The global minima must be among the points in (1) or (2).

L(x, λ) = f(x) +
m

∑
i=1

λihi(x) .

(x*, λ*)

∇xL(x*, λ*) = 0 ∇λL(x*, λ*) = 0

Constrained Minima: Equality Constraints
Example: Maximum Volume Box

minimize x1x2x3

subject to x1x2 + x2x3 + x1x3 − c/2 = 0

Constrained Minima
Inequality Constraints and the KKT Theorem

Constrained Minima
Inequality constrained optimization

Objective function like before.

 are functions that form , the constraint set.

 are functions that form , the constraint set.

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0

f : ℝd → ℝ

h1, …, hm 𝒞1 hi : ℝd → ℝ 𝒞

g1, …, gr 𝒞1 gi : ℝd → ℝ 𝒞

objective function

equality constraints

inequality constraints

Constrained Minima
Inequality constrained optimization

To solve: Reduce to equality constrained optimization.

The only difference is that each inequality constraint can either be active or not.

A constraint is active if .

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0

j ∈ [r] gj(x) = 0

Constrained Minima: Inequality Constraints
Definition of active constraints

For feasible the set of active inequality constraints is

A point is a regular point if it is feasible and the gradients

are linearly independent.

x ∈ ℝd

𝒜(x) := {j : gj(x) = 0} ⊆ [r] .

x ∈ ℝd

{∇h1(x), …, ∇hm(x)} ∪ {∇gj(x) : j ∈ 𝒜(x)}

Constrained Minima: Inequality Constraints
Lagrangian in Inequality Constrained Optimization

The Lagrangian function is the function

.

minimize f(x)
subject to h1(x) = 0,…, hm(x) = 0

g1(x) ≤ 0,…, gr(x) ≤ 0

L : ℝd × ℝm × ℝr → ℝ

L(x, λ, μ) := f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x)

Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

Theorem (KKT Theorem - Necessary Conditions). Let be a local minimum that is a
regular point. Then, there exists unique vectors and called Lagrange multipliers
such that

,

where for all and for all non-active constraints (complementary
slackness).

x* ∈ ℝd

λ ∈ ℝm μ ∈ ℝr

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) +
r

∑
j=1

μ*j ∇gj(x*) = 0

μ*j ≥ 0 j ∈ [r] μ*j = 0 j ∉ 𝒜(x*)

Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

Theorem (KKT Theorem - Necessary Conditions). Let be a local minimum that is a regular point. Then,
there exists unique vectors and called Lagrange multipliers such that

,

where for all and for all non-active constraints (complementary slackness).

 If, in addition, and the are all twice continuously differentiable,

for all such that for all .

x* ∈ ℝd

λ ∈ ℝm μ ∈ ℝr

∇f(x*) +
m

∑
i=1

λi ∇hi(x*) +
r

∑
j=1

μ*j ∇gj(x*) = 0

μ*j ≥ 0 j ∈ [r] μ*j = 0 j ∉ 𝒜(x*)

f hi

d⊤ (∇2f(x*) +
m

∑
i=1

λi ∇2hi(x*)) d ≥ 0

d ∈ ℝd ∇hj(x*)⊤d = 0 j ∈ [m]

Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem

Write the previous necessary conditions at the local optimum as:

where we also require the complementary slackness conditions:

.

L(x, λ, μ) := f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x),

(x*, λ*, μ*)

∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0

μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]

Constrained Minima: Inequality Constraints
Karush-Kuhn-Tucker (KKT) Theorem: Sufficient Conditions

Theorem (KKT Theorem - Sufficient Conditions). Let , , and be functions, such that
, , satisfy

for all such that for all and .

Then, is a local minimum.

f h g 𝒞2

x* ∈ ℝd λ ∈ ℝm μ* ∈ ℝr

∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0

μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]

d⊤ ∇2
x,xL(x*, λ*, μ*)d > 0,

d ∇hi(x*)⊤d = 0 i ∈ [m] ∇gj(x*)⊤d = 0, ∀j ∈ 𝒜(x*)

x*

Constrained Minima: Inequality Constraints
How do we use the Lagrangian?

Assuming a global minimum exists, to find a global minimum…

1. Find the set satisfying the necessary conditions:

 (first-order conditions)

 (complementary slackness)

2. Find the set of all non-regular points.

3. The global minima must be among the points in (1) or (2).

L(x, λ, μ) = f(x) +
m

∑
i=1

λihi(x) +
r

∑
j=1

μjgj(x)

(x*, λ*, μ*)

∇xL(x*, λ*, μ*) = 0, h(x*) = 0, g(x*) ≤ 0

μ* ≥ 0 and μ*j gj(x*) = 0, ∀j ∈ [r]

Constrained Minima: Inequality Constraints
Example: Smallest point in a halfspace

minimize
1
2

∥x∥2
2

subject to x1 + x2 + x3 ≤ − 3

Least Squares Regression
Regularization and Ridge Regression

Regression
Setup (Example View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Goal: For each , we predict: .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
← x⊤

1 →
⋮

← x⊤
n →

y =
y1
⋮
yn

x1, …, xn ∈ ℝd

w ∈ ℝd w1, …, wd

i ∈ [n] ̂yi = w⊤xi = w1xi1 + … + wdxid ∈ ℝ

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Regression
Setup (Feature View)

Observed: Matrix of training samples and vector of training labels .

, where .

Unknown: Weight vector with weights .

Choose a weight vector that “fits the training data”: such that for , or:

X ∈ ℝn×d y ∈ ℝn

X =
↑ ↑
x1 … xd

↓ ↓
y =

y1
⋮
yn

x1, …, xd ∈ ℝn

w ∈ ℝd w1, …, wd

w ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xw = ŷ ≈ y .

Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let and
. Let be the least squares minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html

Least Squares
Least norm exact solution

For with ,

We already know how to solve this — use the pseudoinverse!

X ∈ ℝn×d rank(X) = n

minimize
w∈ℝd

∥w∥

subject to Xw = y

Least Squares
Least norm exact solution

For with ,

Theorem (Minimum norm least squares solution).
Let , let , and let . Then,

 is the exact solution
with smallest Euclidean norm:

 for all .

X ∈ ℝn×d rank(X) = n

minimize
w∈ℝd

∥w∥

subject to Xw = y

X ∈ ℝn×d d ≥ n rank(X) = n
ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2
2 ≥ ∥ŵ∥2

2 w ∈ ℝd x1 x2 u1 u2 y

https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html

Least Squares
Least norm exact solution

Alternate proof (through Lagrangian). For Lagrange multipliers ,

First-order conditions: and .

Setting equal to zero: and and

Solve for : .

Plug back in to solve for : . The pseudoinverse!

minimize
w∈ℝd

∥w∥

subject to Xw = y

λ ∈ ℝn

L(w, λ) = ∥w∥ + λ⊤(Xw − y)

∇wL(w, λ) = 2w + X⊤λ ∇λL(w, λ) = Xw − y

2w + X⊤λ = 0 Xw − y = 0 ⟹ w = −
1
2

X⊤λ Xw = y

λ Xw = −
1
2

XX⊤λ ⟹ −
1
2

(XX⊤)λ = y ⟹ λ = − 2(XX⊤)−1y

λ w w = −
1
2

X⊤λ = −
1
2

X⊤ (−2(XX⊤)−1y) ⟹ w = X⊤(XX⊤)−1y = X+y

Least Squares
Least norm exact solution

For with ,

Theorem (Minimum norm least squares solution). Let , let , and let .
Then, is the exact solution with smallest Euclidean norm:

 for all .

X ∈ ℝn×d rank(X) = n

minimize
w∈ℝd

∥w∥

subject to Xw = y

X ∈ ℝn×d d ≥ n rank(X) = n
ŵ = X+y = VΣ+U⊤y Xŵ = y

∥w∥2
2 ≥ ∥ŵ∥2

2 w ∈ ℝd

Least Squares
Ridge Regression

Our goal will now be to minimize two objectives:

 and .

Writing this as an optimization problem:

where is a fixed tuning parameter.

This optimization problem is known as ridge/Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2

Least Squares
Ridge Regression

Our goal will now be to minimize two objectives:

 and .

Writing this as an optimization problem:

where is a fixed tuning parameter.

This optimization problem is known as ridge/
Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Least Squares
Ridge Regression

Our goal will now be to minimize two objectives:

 and .

Writing this as an optimization problem:

where is a fixed tuning parameter.

This optimization problem is known as ridge/
Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2
−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.

0

5

10

15

20

25

30

For bigger , bigger “constraint” ball!γ

Ridge Regression
Property: PSD to PD matrices

How do we solve this using the first and second order conditions?

Property (Perturbing PSD matrices). Let be a positive semidefinite matrix. Then, for
any , the matrix is positive definite.

Proof. Let be any vector.

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

A ∈ ℝd×d

γ > 0 A + γI

v ∈ ℝd v⊤(A + γI)v = v⊤(Av + γv) = v⊤Av + γv⊤v

= v⊤Av
⏟

≥0

+ γ∥v∥2

>0 unless v=0.

Ridge Regression
First-order conditions

Take the gradient and set to :

By property (perturbing PSD matrices), is PD, so:

.

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

0

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2γw

2X⊤Xw − 2X⊤y + 2γw = 0 ⟹ (X⊤X + γI)w = X⊤y

X⊤X + γI

w* = (X⊤X + γI)−1X⊤y

Least Squares
Solving ridge regression

Candidate minimizer: .

Gradient:

Taking the Hessian,

, which is positive definite.

Sufficient condition for optimality applies!

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

w* = (X⊤X + γI)−1X⊤y

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2γw

∇2f(w) = X⊤X + γI

Ridge Regression
Theorem

Theorem (Ridge Regression). Let , , and . Then,

has the form:

 .

To get predictions :

.

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

Least Squares
Comparison with ridge solution

Theorem (Ridge Regression). Let ,
, and . Then, the ridge minimizer:

has the form:

 .

To get predictions :

.

X ∈ ℝn×d

y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

Theorem (Ordinary Least Squares). Let
 and . Let be the least

squares minimizer:

If and , then:

 .

To get predictions :

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y

Error in (OLS) Regression
Error using least squares model

Choose a weight vector that “fits the training data”: such that for , or:

But might not be a perfect fit to !

Model this using a true weight vector and an error term .

ŵ ∈ ℝd yi ≈ ̂yi i ∈ [n]

Xŵ = ŷ ≈ y .

ŷ y

w* ∈ ℝd ϵ = (ϵ1, …, ϵn) ∈ ℝn

yi = x⊤
i w* + ϵi for all i ∈ [n]

y = Xw* + ϵ

Error in (OLS) Regression
Error using least squares model

True labels: .

What happens when we use the OLS weights ?

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

Error in (OLS) Regression
Error using least squares model

True labels: .

What happens when we use the OLS weights ?

When (is linearly related to), this is perfect: !

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ = 0 y X ŵ = w*

Error in (OLS) Regression
Error using least squares model

True labels: .

What happens when we use the OLS weights ?

When , we are off by .

y = Xw* + ϵ

ŵ = (X⊤X)−1X⊤y

ŵ = (X⊤X)−1X⊤y
= (X⊤X)−1X⊤(Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ

ϵ ≠ 0 ŵ − w* = (X⊤X)−1X⊤ϵ

Error in (OLS) Regression
Eigendecomposition perspective

Weight vector’s error: .

We know that (the covariance matrix) is PSD, so it is diagonalizable:

The inverse of the diagonal matrix :

, so if is small, the entries of blow up!

ŵ − w* = (X⊤X)−1X⊤ϵ

X⊤X

X⊤X = VΛV⊤ ⟹ (X⊤X)−1 = V⊤Λ−1V .

Λ−1

Λ−1 =
1/λ1 … 0

⋮ ⋱ ⋮
0 … 1/λd

λi ŵ

Error in Regression
Error using ridge regression

True labels: .

What happens when we use the ridge regression weights ?

When (is linearly related to), this is no longer perfect:

, but…

y = Xw* + ϵ

ŵ = (X⊤X + γI)−1X⊤y

ŵ = (X⊤X + γI)−1X⊤y
= (X⊤X + γI)−1X⊤(Xw* + ϵ)
= (X⊤X + γI)−1X⊤Xw* + (X⊤X + γI)−1X⊤ϵ

ϵ = 0 y X

ŵ = (X⊤X + γI)−1X⊤Xw*

Error in Regression
Error using ridge regression

True labels: .

What happens when we use the ridge regression weights ?

When , we have more stable errors!

y = Xw* + ϵ

ŵ = (X⊤X + γI)−1X⊤y

ŵ = (X⊤X + γI)−1X⊤y
= (X⊤X + γI)−1X⊤(Xw* + ϵ)
= (X⊤X + γI)−1X⊤Xw* + (X⊤X + γI)−1X⊤ϵ

ϵ ≠ 0

Error in Ridge Regression
Eigendecomposition perspective

Ridge weights: .

We know that is positive semidefinite, so it is diagonalizable:

The inverse of the diagonal matrix :

, so entries are never bigger than !

ŵ = (X⊤X + γI)−1X⊤y

X⊤X

X⊤X + γI = VΛV⊤ + V(γI)V⊤ ⟹ (X⊤X + γI)−1 = V⊤(Λ + γI)−1V .

(Λ + γI)−1

(Λ + γI)−1 =

1
λ1 + γ … 0

⋮ ⋱ ⋮
0 … 1

λd + γ

1
λi + γ

1
γ

Least Squares
Ridge Regression

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.

0

5

10

15

20

25

30

For bigger , bigger “constraint” ball!γ

Theorem (Ridge Regression). Let
, , and . Then,

has the form:

 .

To get predictions :

.

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Recap

Lesson Overview

Optimization. Minimize an objective function with the possible requirement that the minimizer
 belongs to a constraint set .

Lagrangian. For optimization problems with defined by equalities/inequalities, the Lagrangian is a
function that “unconstrains” the problem.

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a point
 to be optimal, at least to all points close to it.

Constrained local optima (Lagrangian and KKT). When is represented by inequalities and equalities, we
can use the method of Lagrange multipliers and the KKT Theorem to “unconstrain” the problem.

Ridge regression and minimum norm solutions. By constraining the norm of of least squares (i.e.
), we obtain more “stable” solutions.

f : ℝd → ℝ
x* 𝒞 ⊆ ℝd

𝒞
L : ℝd × ℝm × ℝr → ℝ

x*

𝒞

w* ∈ ℝd

∥w*∥

Lesson Overview
Big Picture: Least Squares

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.

0

5

10

15

20

25

30

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

