Math for ML Week 4.2: Basics of Convex Optimization

By: Samuel Deng

Logistics & Announcements

Lesson Overview

completely in the set.

the function.

local optima are global optima.

Gradient descent for convex problems. GD on convex functions is guaranteed to find a global min.

Gradient descent for OLS. We unite the two stories of this class and analyze GD applied to OLS!

- **Convexity.** A property of sets and functions that affords us a lot of nice "linearity-like" properties.
- **Convex set.** A convex is a set that has no holes. The line segment between any two points lies
- Convex function. A function that is bowl-shaped. Between any two points, the line segment is above
- Convex optimization. Optimization problems with convex objectives and convex constraint sets. All

Lesson Overview Big Picture: Least Squares

Lesson Overview

Big Picture: Gradient Descent

Convex Optimization Motivation

Motivation

Components of an optimization problem

 $\mathbf{x} \in \mathbb{R}^d$

 $f: \mathbb{R}^d \to \mathbb{R}$ is the <u>objective function</u>. $\mathscr{C} \subseteq \mathbb{R}^d$ is the <u>constraint/feasible set</u>.

x* is an <u>optimal solution (global minimum)</u> if

The <u>optimal value</u> is $f(\mathbf{x}^*)$. Our goal is to find \mathbf{x}^* and $f(\mathbf{x}^*)$.

- minimize $f(\mathbf{x})$
- subject to $x \in \mathscr{C}$

- $\mathbf{x}^* \in \mathscr{C}$ and $f(\mathbf{x}^*) \leq f(\mathbf{x})$, for all $\mathbf{x} \in \mathscr{C}$.
- Note: to maximize $f(\mathbf{x})$, just minimize $-f(\mathbf{x})$. So we'll only focus on minimization problems.

Global Minima Local vs. global minima

Last lesson, we only developed methods for finding local optima.

Types of Minima Big picture

We want to find **global minima**.

Global minima could be either unconstrained local minima or constrained local minima.

Without *C*, global minima are just an *unconstrained local minima*.

f(x)

With *C*, global minima may lie on the boundary of the constraint set.

Find local minima, then test!

Convexity Non-example (d = 1)

Functions that have many "hills/ valleys" are deceptive.

Local minima look like global minima when we're sufficiently close.

f(x)

-2

-5 -3

Convexity Non-example (d = 2)

Functions that have many "hills/valleys" are deceptive.

Local minima look like global minima when we're sufficiently close.

Convexity Example (d = 1)

A convex function is a function that is "bowl-shaped."

Their local minima are global minima.

 \boldsymbol{x}

Convexity Example (d = 2)

A convex function is a function that is "bowl-shaped."

Their local minima are global minima.

Convexity Example (d = 2)

A convex function is a function that is "bowl-shaped."

Their local minima are global minima.

Goal: We will use gradient descent to solve convex optimization problems!

Convex Optimization Problem Definition

A <u>convex optimization problem</u> (also known as *convex program*) is an optimization problem:

where $f(\mathbf{x})$ is a <u>convex function</u> and \mathscr{C} is a <u>convex set</u>.

 $f(\mathbf{x})$ is "bowl-shaped" and \mathscr{C} has "no holes" or "gaps"

- minimize $f(\mathbf{x})$
- subject to $\mathbf{x} \in \mathscr{C}$

Convexity Line segments

Line segments are very important to the study of convexity. For any two points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, the <u>line segment</u> between \mathbf{x} and \mathbf{y} is the set of points: $[\mathbf{x}, \mathbf{y}] := \{(1 - \alpha)\mathbf{x} + \alpha\mathbf{y} : \alpha \in [0, 1]\}$

Sometimes, we'll denote the line segment as [x, y].

Convexity Line segments

Example. Line segment between x = 1 and y = 3.

Convexity Line segments

Example. Line segment between $\mathbf{x} = (1,1)$ and $\mathbf{y} = (2,3)$.

Convex Sets Intuition, Definition, and "Algebra"

Convex Sets Idea

A convex set is a "set with no holes or gaps."

We can draw a line between any two points and stay inside the set.

Convex Sets Definition

A set $S \subseteq \mathbb{R}^d$ is a <u>convex set</u> if, for any $\mathbf{x}, \mathbf{y} \in S$, the point $(1 - \alpha)\mathbf{x} + \alpha \mathbf{y} \in S$ for $\alpha \in [0, 1]$.

That is, the line segment between any two points is completely in S.

Examples of Convex Sets \mathbb{R}^d

Why is \mathbb{R}^d a convex set?

Examples of Convex Sets Line

Perhaps the most basic nontrivial example of a convex set is a *line*. For any two points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, the <u>line</u> passing through \mathbf{x} and \mathbf{y} is the set of all points

for any $\alpha \in \mathbb{R}$.

 $(1 - \alpha)\mathbf{x} + \alpha \mathbf{y}$

Examples of Convex Sets Hyperplane

A <u>hyperplane</u> is the set of points

 $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{w}^{\mathsf{T}}\mathbf{x} = b\},\$

where $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$ are fixed, and $\mathbf{w} \neq \mathbf{0}$. Why is this convex?

Examples of Convex Sets Halfspace

A <u>halfspace</u> is the set of points

 $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{w}^\mathsf{T} \mathbf{x} \le b\},\$

where $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$ are fixed, and $\mathbf{w} \neq \mathbf{0}$. Why is this convex?

Examples of Convex Sets Neighborhoods

The <u>neighborhood</u> centered at $\mathbf{c} \in \mathbb{R}^d$ with radius $\delta > 0$ is the set:

 $B_{\delta}(\mathbf{c}) := \{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{c}\| \le \delta \}.$

Why is this convex?

Closure of Convex Sets The "Algebra" of Convex Sets

We can combine convex sets by using operations that preserve convexity: Intersection. The *intersection* of (possibly infinite) convex sets is convex. Scalar multiplication. If $C \subseteq \mathbb{R}^d$ is a convex set, then so is **Translation.** If $C \subseteq \mathbb{R}^d$ is a convex set, then so is

See Boyd and Vandenberghe Section 2.3 for reference and more rules.

- $\alpha C := \{ \alpha \mathbf{x} : \mathbf{x} \in C \} \text{ for } \alpha \in \mathbb{R}.$
- $C + \mathbf{a} := \{ \mathbf{x} + \mathbf{a} \in \mathbb{R}^d : \mathbf{x} \in C \}$ for any $\mathbf{a} \in \mathbb{R}^d$.

Convex Functions Intuition, Definition, and "Algebra"

Convex Function Idea

A <u>convex function</u> is a function that is "bowl-shaped."

All line segments through any two points lie above the function. If differentiable, all tangents are *below* the function.

Convex Function Definition

That is, the (secant) line segment between any two points lies *above* the function.

Concave functions are negative convex functions.

A function $f : \mathbb{R}^d \to \mathbb{R}$ is a <u>convex function</u> if, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, and for any scalar $\alpha \in \mathbb{R}$ with $0 \le \alpha \le 1$, $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$

Convex FunctionDefinition

A function $f : \mathbb{R}^d \to \mathbb{R}$ is a <u>convex function</u> if, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, and for any scalar $\alpha \in \mathbb{R}$ with $0 \le \alpha \le 1$,

 $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$

That is, the (secant) line segment between any two points lies *above* the function.

Concave functions are negative convex functions.

 \boldsymbol{x}

Convex Function Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ is a <u>convex function</u> if, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, and for any scalar $\alpha \in \mathbb{R}$ with $0 \le \alpha \le 1$,

 $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$

That is, the (secant) line segment between any two points lies above the function.

Concave functions are negative convex functions.

Convex Functions First-Order Definition of Convexity

A differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is a <u>convex function</u> if, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

The linearization at any **x** lies below the function.

 $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}).$

Convex Functions First-Order Definition of Convexity

A differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is a <u>convex</u> <u>function</u> if, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

 $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}).$

The linearization at any **x** lies *below* the function.

Convex Functions First-Order Definition of Convexity

A differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is a <u>convex function</u> if, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

 $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \,.$

The linearization at any **x** lies below the function.

Convex Functions Second-Order Definition of Convexity

 $\nabla_{\mathbf{x}}^{2} f(\mathbf{x})$ is positive semidefinite:

The function has a nonnegative "second derivative."

A twice-differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is a <u>convex function</u> if, for any $\mathbf{x} \in \mathbb{R}^d$, the Hessian

$\mathbf{d}^{\mathsf{T}} \nabla^2_{\mathbf{x}} f(\mathbf{x}) \mathbf{d} \ge 0$ for all $\mathbf{d} \in \mathbb{R}^d$.
Convex Functions Three characterizations

 $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$

If differentiable: $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$

If twice-differentiable: $\mathbf{d}^{\top} \nabla_{\mathbf{x}}^2 f(\mathbf{x}) \mathbf{d} \ge 0$ for all $\mathbf{d} \in \mathbb{R}^d$.

Examples of Convex Functions Quadratic Functions

Always keep this canonical "bowl-shaped" example $f : \mathbb{R} \to \mathbb{R}$ in mind:

 $f(x) = x^2$

Examples of Convex Functions Quadratic Forms

More generally, always keep quadratic forms $f : \mathbb{R}^d \to \mathbb{R}$ in mind:

 $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ for symmetric $d \times d$ matrix \mathbf{A} .

Examples of Convex Functions Affine Functions

Let $\mathbf{w} \in \mathbb{R}^d$ be some vector and let $b \in \mathbb{R}$ be some scalar.

- $f(\mathbf{x}) := \mathbf{w}^{\mathsf{T}} \mathbf{x} + b.$

Examples of Convex Functions Other examples of convex functions on \mathbb{R}

Exponential. e^{ax} is convex for any $a \in \mathbb{R}$.

Powers. x^a is convex on $(0,\infty)$ for any $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$.

Powers of absolute values. x^{p} is convex on \mathbb{R} , for any $p \ge 1$.

Logarithm. $\log x$ is concave on $(0,\infty)$.

Negative entropy. $x \log x$ is convex on $(0,\infty)$, or convex on $[0,\infty)$ if we define $0 \log 0 := 0$.

Examples of Convex Functions Other examples of convex functions on \mathbb{R}^d

Norms. Any norm $\|\cdot\|$ on \mathbb{R}^d is convex. This includes the Euclidean/ ℓ_2 norm:

Max function. The function $f(\mathbf{x}) := \max\{x_1, \dots, x_d\}$ is convex. Log-sum-exp. The function $f(\mathbf{x}) := \log (e^{x_1} + ... + e^{x_d})$ is convex.

Closure of Convex Functions The "Algebra" of Convex Functions

We can also combine convex functions with operations that preserve convexity: Nonnegative weighted sum. If f_1, \ldots, f_n convex, then $g(\mathbf{x}) := \lambda_1 f_1(\mathbf{x}) + \ldots + \lambda_n f_n(\mathbf{x})$ is convex. Extends to infinite sums and integrals. **Pre-composition with affine function.** If f is convex, so is $f(\mathbf{Ax} + \mathbf{b})$. Maximum. If f_1, \ldots, f_n are convex, then $g(\mathbf{x}) := \max\{f_1(\mathbf{x}), \ldots, f_n(\mathbf{x})\}$ is convex. Extends to pointwise supremum. See Boyd and Vandenberghe Section 3.2 for comprehensive reference.

Verifying Convexity In order of preference...

To verify that $f : \mathbb{R}^d \to \mathbb{R}$ is convex:

- properties.
- of convexity.
- 3. Restrict to a line: $f: C \to \mathbb{R}$ is convex if and only if, for every $\mathbf{x}, \mathbf{y} \in C$, if the function $g(\alpha) := f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})$ is convex for $\alpha \in [0, 1]$.
- 4. Directly verify using the definition of convexity: $f(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y})$.

Construct function from known convex functions (e.g. exponential, affine, etc.) and closure

2. If differentiable/twice-differentiable: Use first-order or second-order equivalent definitions

Convex Optimization Local minima are global minima

Convex Optimization Optimality condition

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \mathbf{x} \in \mathbb{R}^d & \mathbf{x} \in \mathscr{C} \\ \text{subject to} & \mathbf{x} \in \mathscr{C} \end{array}$

where f is a convex function and \mathscr{C} is a convex set.

The most important property of these optimization problems is:

All local minima are global minima!

Convex Optimization Optimality condition

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \mathbf{x} \in \mathbb{R}^d & \\ \text{subject to} & \mathbf{x} \in \mathscr{C} \end{array}$

where f is a convex function and \mathscr{C} is a convex set.

The most important property of these optimization problems is:

All local minima are global minima!

Convex Optimization Optimality condition

minimize $f(\mathbf{X})$ $\mathbf{x} \in \mathbb{R}^d$ subject to $\mathbf{x} \in \mathscr{C}$

where f is a convex function and \mathscr{C} is a convex set.

The most important property of these optimization problems is:

All local minima are global minima!

Convex Optimization Main Optimality Theorem

set $\mathscr{C} \subseteq \mathbb{R}^d$, consider the optimization problem:

 $\mathbf{x} \in \mathbb{R}^d$

Then, if $\mathbf{x}^* \in C$ is a local minimum, it must also be a global minimum:

- Theorem (Optimality for convex optimization). For a convex function $f : \mathbb{R}^d \to \mathbb{R}$ and a convex
 - minimize $f(\mathbf{x})$
 - subject to $\mathbf{x} \in \mathscr{C}$
 - $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C}$.

Convex Optimization Step 1: Use definition of local minimum

Because \mathbf{x}^* is a local minimum, there is a neighborhood $B_{\delta}(\mathbf{x}^*)$ around \mathbf{x}^* such that

This allows us to move in all (*feasible*) directions from **x***.

- Goal: $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C}$.
- $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C} \cap B_{\delta}(\mathbf{x}^*)$.

Convex Optimization Step 2: Consider line segment to another point

- From Step 1, $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C} \cap B_{\delta}(\mathbf{x}^*)$.

Goal: $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C}$.

Choose any $y \in \mathcal{C}$, not necessarily in $B_{\delta}(x^*)$, and consider the line segment $[x^*, y]$ defined by:

 $[\mathbf{x}^*, \mathbf{y}] := \{ (1 - \alpha)\mathbf{x}^* + \alpha \mathbf{y} : \alpha \in [0, 1] \}.$

Convex Optimization Step 3: Take a small step in line segment direction

- From Step 1, we got a neighborhood, $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C} \cap B_{\delta}(\mathbf{x}^*)$.

From Step 2, we got the line segment:

For $\alpha < \delta$ (sufficiently small), we're still in the neighborhood, so:

Goal: $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C}$.

 $[\mathbf{x}^*, \mathbf{y}] := \{ (1 - \alpha)\mathbf{x}^* + \alpha \mathbf{y} : \alpha \in [0, 1] \}.$

 $f(\mathbf{x}^*) \le f((1 - \alpha)\mathbf{x}^* + \alpha \mathbf{y}).$

Convex Optimization

Step 4: Use convexity to extrapolate outside of the neighborhood

For $\alpha < \delta$ (sufficiently small), we're still in the neighborhood, so:

Using the definition of convexity,

Rearranging, we get:

- Goal: $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C}$.

 - $f(\mathbf{x}^*) \leq f((1 \alpha)\mathbf{x}^* + \alpha \mathbf{y}).$

 $f(\mathbf{x}^*) \le f((1 - \alpha)\mathbf{x}^* + \alpha \mathbf{y})$ $\leq (1 - \alpha)f(\mathbf{x}^*) + \alpha f(\mathbf{y})$

 $f(\mathbf{x}^*) \leq f(\mathbf{y})$, where we chose $\mathbf{y} \in \mathscr{C}$ arbitrarily.

Convex Optimization Main Optimality Theorem

Theorem (Optimality for convex optimization). For a convex function $f : \mathbb{R}^d \to \mathbb{R}$ and a convex set $\mathscr{C} \subseteq \mathbb{R}^d$, consider the optimization problem:

minimize
$$\mathbf{x} \in \mathbb{R}^d$$
 $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathscr{C}$

Then, if $\mathbf{x}^* \in C$ is a *local minimum*, it must also be a global minimum:

 $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C}$.

Convex Optimization Optimality Theorem for Differentiable Functions

Theorem (Optimality for convex optimization for differentiable functions). For a convex, differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ and a convex set $\mathscr{C} \subseteq \mathbb{R}^d$

 $\mathbf{x} \in \mathbb{R}^d$

Then, $\mathbf{x}^* \in \mathscr{C}$ is a global minimum if and only if:

- minimize $f(\mathbf{x})$
- subject to $x \in \mathscr{C}$
- $\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} \mathbf{x}^*) \ge 0$ for all $\mathbf{x} \in \mathscr{C}$.

Convex Optimization **Optimality Theorem for Differentiable Functions**

Theorem (Optimality for convex optimization for differentiable functions). For a convex, differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ and a convex set $\mathscr{C} \subseteq \mathbb{R}^d$

> minimize $f(\mathbf{X})$ $\mathbf{x} \in \mathbb{R}^d$ subject to $\mathbf{x} \in \mathscr{C}$

Then, $\mathbf{x}^* \in \mathscr{C}$ is a global minimum if and only if:

 $\nabla f(\mathbf{x}^*)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}^*) \ge 0$ for all $\mathbf{x} \in \mathscr{C}$.

Theorem Statement and Proof

Gradient Descent and Convexity

Types of Minima Big picture

We want to find **global minima**.

Global minima could be either unconstrained local minima or constrained local minima.

Without *C*, global minima are just an *unconstrained local minima*.

f(x)

With *C*, global minima may lie on the boundary of the constraint set.

Often hard to do analytically!

Gradient Descent Algorithm

Initialize at a randomly chosen $\mathbf{w}^{(0)} \in \mathbb{R}^d$. For iteration t = 1, 2, ..., T:

Return final $\mathbf{w}^{(T)}$, with objective value $f(\mathbf{w}^{(T)})$.

 $\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \nabla f(\mathbf{w}^{(t-1)})$

Gradient Descent Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If $f \in \mathscr{C}^2$ and is β -smooth, then with $\eta = 1/\beta$, for any $\mathbf{w} \in \mathbb{R}^d$,

 $f(\mathbf{w} - \eta \nabla f(\mathbf{w})) \leq$

$$\leq f(\mathbf{w}) - \frac{1}{2\beta} \|\nabla f(\mathbf{w})\|^2.$$

Gradient Descent

Behavior for d = 1 "Bowl-shaped" Functions

trace trace 2 trace 3 trace 4

Gradient Descent

Behavior for d = 2 "Bowl-shaped" Functions

Gradient Descent

Behavior for d = 2 "Bowl-shaped" Functions

Gradient Descent Theorem 1: Descent Lemma (Formal)

This theorem does NOT guarantee that we'll reach a global minimum!

Theorem (Descent Lemma). If $f \in \mathscr{C}^2$ and is β -smooth, then with $\eta = 1/\beta$, for any $\mathbf{w} \in \mathbb{R}^d$, $f(\mathbf{w} - \eta \nabla f(\mathbf{w})) \le f(\mathbf{w}) - \frac{1}{2\beta} \|\nabla f(\mathbf{w})\|^2.$

Gradient Descent Theorem 2: GD on convex, smooth functions

Theorem (Convergence of GD for smooth, convex functions). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a \mathscr{C}^2, β

If we run gradient desce

nt with step size
$$\eta = \frac{1}{\beta}$$
 and initial point $\mathbf{x}_0 \in \mathbb{R}^d$,
 $f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \|\mathbf{x}_T - \mathbf{x}^*\|^2 \right)$,

after T iterations of our algorithm.

-smooth, and convex function. Let \mathbf{x}^* be the global min. of f, i.e. $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^d$.

Gradient Descent Theorem 2: GD on convex, smooth functions

Gradient Descent Theorem 2: GD on convex, smooth functions

Gradient Descent Proof of GD Theorem for Convex, β -smooth functions

We want to show:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \|\mathbf{x}_T - \mathbf{x}^*\|^2 \right), \text{ after } T \text{ iterations of GD.}$$

Descent lemma. For any iteration t = 1, 2, ...,

$$f(\mathbf{x}_{t-1}) \leq f(\mathbf{x}_t) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_t)\|^2.$$

First-order definition of convexity. For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

 $\nabla f(\mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}) + f(\mathbf{x}) \leq f(\mathbf{y}).$

Gradient Descent Step 1: Define "potential function"

Goal:
$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^* \| \mathbf{x}_0 - \mathbf{x}^* \right)$$

Fix the optimal $\mathbf{x}^* \in \mathbb{R}^d$. Consider the "potential" function $\Phi : \mathbb{R}^d \to \mathbb{R}$:

$$\Phi(\mathbf{x}) =$$

This tracks our distance from the minimum, \mathbf{x}^* . At \mathbf{x}_{t-1} , our potential is:

$$\Phi(\mathbf{x}_{t-1}) = \frac{\beta}{2} \|\mathbf{x}_{t-1} - \mathbf{x}^*\|$$

 $|\mathbf{x}^*||^2 - ||\mathbf{x}_T - \mathbf{x}^*||^2)$, after *T* iterations of GD.

$$\Phi(\mathbf{x}) = \frac{1}{2\eta} \|\mathbf{x} - \mathbf{x}^*\|^2.$$

*||², where we chose $\eta = 1/\beta$.

Gradient Descent Step 2: Analyze drop in potential from \mathbf{x}_{t-1} to \mathbf{x}_t

$$\operatorname{Goal}: f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}\| \right)$$

Make sure that the the potential "drops" by a positive amount in each step: $\Phi(\mathbf{x}_{t-1}) - \Phi(\mathbf{x}_t) \ge 0$.

Analyz

$$\begin{aligned} &\text{vze this quantity, plugging in the GD step: } \mathbf{x}_{t} = \mathbf{x}_{t-1} - \frac{1}{\beta} \nabla f(\mathbf{x}_{t-1}). \\ &\Phi(\mathbf{x}_{t-1}) - \Phi(\mathbf{x}_{t}) = \frac{\beta}{2} \|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{\beta}{2} \|\mathbf{x}_{t-1} - \frac{1}{\beta} \nabla f(\mathbf{x}_{t-1}) - \mathbf{x}^{*}\|^{2} \\ &= \frac{\beta}{2} \|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{\beta}{2} \left(\|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{2}{\beta} (\mathbf{x}_{t-1} - \mathbf{x}^{*})^{\top} \nabla f(\mathbf{x}_{t-1}) + \frac{1}{\beta^{2}} \|\nabla f(\mathbf{x}_{t-1})\|^{2} \right) \\ &= (\mathbf{x}_{t-1} - \mathbf{x}^{*})^{\top} \nabla f(\mathbf{x}_{t-1}) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_{t-1})\|^{2}. \end{aligned}$$

 $\mathbf{x}^* \|^2 - \|\mathbf{x}_T - \mathbf{x}^* \|^2$, after *T* iterations of GD.

Gradient Descent Step 3: Deal with $(\mathbf{x}_{t-1} - \mathbf{x}^*)^\top \nabla f(\mathbf{x}_{t-1})$ using first-order def. of convexity

Goal:
$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^* \| \mathbf{x}_0 - \mathbf{x}^* \right)$$

For any $\mathbf{x}_{t-1} \in \mathbb{R}^d$ and $\mathbf{x}^* \in \mathbb{R}^d$,

$$\nabla f(\mathbf{x}_{t-1})^{\mathsf{T}}(\mathbf{x}^* -$$

Rearranging, we get a *lower bound*:

$$\nabla f(\mathbf{x}_{t-1})^{\mathsf{T}}(\mathbf{x}_{t-1} - \mathbf{x}^*) \ge f(\mathbf{x}_{t-1}) - f(\mathbf{x}^*)$$

 $\mathbf{x}^* \|^2 - \|\mathbf{x}_T - \mathbf{x}^* \|^2$, after *T* iterations of GD.

$$\mathbf{x}_{t-1}) + f(\mathbf{x}_{t-1}) \le f(\mathbf{x}^*).$$

Gradient Descent Step 2: Analyze drop in potential from \mathbf{x}_{t-1} to \mathbf{x}_t

$$\operatorname{Goal}: f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}\| \right)$$

Make sure that the the potential "drops" by a positive amount in each step: $\Phi(\mathbf{x}_{t-1}) - \Phi(\mathbf{x}_t) \ge 0$.

Analyz

ze this quantity, plugging in the GD step:
$$\mathbf{x}_{t} = \mathbf{x}_{t-1} - \frac{1}{\beta} \nabla f(\mathbf{x}_{t-1}).$$

$$\Phi(\mathbf{x}_{t-1}) - \Phi(\mathbf{x}_{t}) = \frac{\beta}{2} \|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{\beta}{2} \|\mathbf{x}_{t-1} - \frac{1}{\beta} \nabla f(\mathbf{x}_{t-1}) - \mathbf{x}^{*}\|^{2}$$

$$= \frac{\beta}{2} \|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{\beta}{2} \left(\|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{2}{\beta} (\mathbf{x}_{t-1} - \mathbf{x}^{*})^{\mathsf{T}} \nabla f(\mathbf{x}_{t-1}) + \frac{1}{\beta^{2}} \|\nabla f(\mathbf{x}_{t-1})\|^{2} \right)$$

$$= (\mathbf{x}_{t-1} - \mathbf{x}^{*})^{\mathsf{T}} \nabla f(\mathbf{x}_{t-1}) - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_{t-1})\|^{2}.$$

$$\geq f(\mathbf{x}_{t-1}) - f(\mathbf{x}^{*})$$

 $\mathbf{x}^* \|^2 - \|\mathbf{x}_T - \mathbf{x}^* \|^2$, after *T* iterations of GD.
Gradient Descent Step 4: Deal with $(1/2\beta) \|\nabla f(\mathbf{x}_{t-1})\|^2$ using descent lemma

Goal:
$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^*\| \right)$$

By descent lemma for β -smooth functions:

 $f(\mathbf{x}_{t-1}) \le f(\mathbf{x}_{t-1})$

Rearranging, we can lower bound:

$$-\frac{1}{2\beta} \|\nabla f(\mathbf{x}_t)\|^2 \ge f(\mathbf{x}_t) - f(\mathbf{x}_{t-1}).$$

 $\mathbf{x}^* \|^2 - \|\mathbf{x}_T - \mathbf{x}^* \|^2$, after *T* iterations of GD.

$$\mathbf{x}_t - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_t)\|^2$$

Gradient Descent Step 5: Lower bound drop in potential

$$\operatorname{Goal}: f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}\| \right)$$

Make sure that the the potential "drops" by a positive amount in each step: $\Phi(\mathbf{x}_{t-1}) - \Phi(\mathbf{x}_t) \ge 0$.

Analyz

ze this quantity, plugging in the GD step:
$$\mathbf{x}_{t} = \mathbf{x}_{t-1} - \frac{1}{\beta} \nabla f(\mathbf{x}_{t-1}).$$

$$\Phi(\mathbf{x}_{t-1}) - \Phi(\mathbf{x}_{t}) = \frac{\beta}{2} \|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{\beta}{2} \|\mathbf{x}_{t-1} - \frac{1}{\beta} \nabla f(\mathbf{x}_{t-1}) - \mathbf{x}^{*}\|^{2}$$

$$= \frac{\beta}{2} \|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{\beta}{2} \left(\|\mathbf{x}_{t-1} - \mathbf{x}^{*}\|^{2} - \frac{2}{\beta} (\mathbf{x}_{t-1} - \mathbf{x}^{*})^{\top} \nabla f(\mathbf{x}_{t-1}) + \frac{1}{\beta^{2}} \|\nabla f(\mathbf{x}_{t-1})\|^{2} \right)$$

$$= \frac{(\mathbf{x}_{t-1} - \mathbf{x}^{*})^{\top} \nabla f(\mathbf{x}_{t-1})}{2\beta} - \frac{1}{2\beta} \|\nabla f(\mathbf{x}_{t-1})\|^{2} \ge f(\mathbf{x}_{t-1}) - f(\mathbf{x}^{*}) + f(\mathbf{x}_{t}) - f(\mathbf{x}_{t-1})$$

$$\ge f(\mathbf{x}_{t-1}) - f(\mathbf{x}^{*})$$

$$= f(\mathbf{x}_{t}) - f(\mathbf{x}^{*})$$

 $\mathbf{x}^* \|^2 - \|\mathbf{x}_T - \mathbf{x}^* \|^2$, after *T* iterations of GD.

Gradient Descent Step 5: Lower bound drop in potential

$$\operatorname{Goal}: f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^*\| \right)$$

The "drop in potential" is at least $f(\mathbf{x}_t) - f(\mathbf{x}^*)$.

 $\Phi(\mathbf{x}_{t-1}) - \Phi(\mathbf{x}_{t-1}) = \Phi(\mathbf{x}_{t-1}) \Phi(\mathbf{x}_{t-1}$

This means our potential always drops by a positive amount if we're not yet at the minimum!

 $||\mathbf{x}^*||^2 - ||\mathbf{x}_T - \mathbf{x}^*||^2$, after *T* iterations of GD.

$$(\mathbf{x}_t) \ge f(\mathbf{x}_t) - f(\mathbf{x}^*)$$

Gradient Descent Step 6: Sum up and telesecope

Goal: $f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \|\mathbf{x}_T - \mathbf{x}^*\|^2 \right)$, after T iterations of GD. $\sum_{t=1}^{T} \Phi(\mathbf{x}_{t-1}) - \Phi$ Simplify the left-hand side $\Phi(\mathbf{x}_0) - \Phi(\mathbf{x}_T) \ge \sum_{t=1}^{r} f(\mathbf{x}_t) - f(\mathbf{x}^*)$ by telescoping sum. Simplify the right-hand side $\Phi(\mathbf{x}_0) - \Phi(\mathbf{x}_T) \ge \sum_{t=1}^{t} f(\mathbf{x}_t) - f(\mathbf{x}^*) \ge T(f(\mathbf{x}_T) - f(\mathbf{x}^*))$ by bounding $f(\mathbf{x}_t) \ge f(\mathbf{x}_T)$.

By the definit

tion of potential
$$\Phi(\mathbf{x}) = \frac{\beta}{2} \|\mathbf{x} - \mathbf{x}^*\|^2$$
, we proved our claim:
 $\frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^*\| - \|\mathbf{x}_T - \mathbf{x}^*\|^2 \right) \ge f(\mathbf{x}_T) - f(\mathbf{x}^*).$

$$\Phi(\mathbf{x}_t) \ge \sum_{t=1}^T f(\mathbf{x}_t) - f(\mathbf{x}^*)$$

Gradient Descent Theorem 2: GD on convex, smooth functions

Theorem (Convergence of GD for smooth, convex functions). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a \mathscr{C}^2, β

If we run gradient desce

nt with step size
$$\eta = \frac{1}{\beta}$$
 and initial point $\mathbf{x}_0 \in \mathbb{R}^d$,
 $f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \frac{\beta}{2T} \left(\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \|\mathbf{x}_T - \mathbf{x}^*\|^2 \right)$,

after T iterations of our algorithm.

Gradient descent always eventually reaches minimum for convex functions!

-smooth, and convex function. Let \mathbf{x}^* be the global min. of f, i.e. $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^d$.

Gradient Descent and OLS "Uniting" our two main stories

Gradient Descent and OLS Verifying OLS fits our theorem

We just need to $f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$ to be \mathscr{C}^2 , β -smooth, and convex.

- 1. \mathscr{C}^2 . Hessian is $\nabla^2 f(\mathbf{w}) = 2\mathbf{X}^\top \mathbf{X}$.
- 2. β -smooth. Recall the definition: $\lambda_{\max}(\nabla^2 f(\mathbf{x})) \leq \beta$. Satisfied as long as:
- 3. Convex. Can use definition, first-order definition, or second-order definitions.

 $\lambda_{\max}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) \leq \beta/2.$

Gradient Descent and OLS Uniting our two stories

Theorem (GD applied to OLS). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$ be fixed. Let the maximum eigenvalue λ_{\max} of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ satisfy $\lambda_{\max} \leq \beta/2$. Let \mathbf{w}^* be a (global) minimizer of $f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$, satisfying: $\|\mathbf{X}\mathbf{w}^* - \mathbf{y}\|^2 \le \|\mathbf{X}\|$

After T iterations of gradient descent with step size $\eta = 1/\beta$ and initial point $\mathbf{w}_0 \in \mathbb{R}^d$:

$$\|\mathbf{X}\mathbf{w}_{T} - \mathbf{y}\|^{2} - \|\mathbf{X}\mathbf{w}^{*} - \mathbf{y}\|^{2} \le \frac{\beta}{2T} \left(\|\mathbf{w}_{0} - \mathbf{w}^{*}\|^{2} - \|\mathbf{w}_{T} - \mathbf{w}^{*}\|^{2}\right).$$

$$\mathbf{W} - \mathbf{y} \|^2$$
 for all $\mathbf{w} \in \mathbb{R}^d$.

Gradient Descent Algorithm for OLS

What does gradient descent look like for OLS? Recall the objective function and its gradient: $f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$

 $\nabla f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y}$

Gradient Descent Algorithm for OLS

Make an initial guess \mathbf{w}_0 .

For t = 1, 2, 3, ...

Compute: $\mathbf{w}_t \leftarrow \mathbf{w}_{t-1} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y}).$

$\nabla f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y}$, so the gradient descent algorithm for OLS is:

Gradient Descent Algorithm for OLS

Make an initial guess \mathbf{w}_0 .

For t = 1, 2, 3, ...

Compute: $\mathbf{w}_t \leftarrow \mathbf{w}_{t-1} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y}).$

Gradient Descent Synthetic Dataset (T = 0)

 $\mathbf{w}_{t} \leftarrow \mathbf{w}_{t-1} - 2\eta \mathbf{X}^{\mathsf{T}} \left(\mathbf{X} \mathbf{w} - \mathbf{y} \right)$

Gradient Descent Synthetic Dataset (T = 5)

$$-2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

 $\mathbf{w}_t \leftarrow \mathbf{w}_{t-1}$

 w_1

Gradient Descent Synthetic Dataset (T = 30)

 $\mathbf{w}_t \leftarrow \mathbf{w}_{t-1} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y})$

Solving OLS iteratively vs. analytically Why use GD instead of the normal equations?

Solving the normal equations directly $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ takes $O(d^2n + d^3)$ operations.

Running gradient descent $\mathbf{w}_t \leftarrow \mathbf{w}_{t-1} - 2\eta \mathbf{X}^{\top} (\mathbf{X}\mathbf{w} - \mathbf{y})$ for T steps takes

O(Tdn) operations.

Recap

Lesson Overview

completely in the set.

the function.

local optima are global optima.

Gradient descent for convex problems. GD on convex functions is guaranteed to find a global min.

Gradient descent for OLS. We unite the two stories of this class and analyze GD applied to OLS!

- **Convexity.** A property of sets and functions that affords us a lot of nice "linearity-like" properties.
- **Convex set.** A convex is a set that has no holes. The line segment between any two points lies
- Convex function. A function that is bowl-shaped. Between any two points, the line segment is above
- Convex optimization. Optimization problems with convex objectives and convex constraint sets. All

Lesson Overview Big Picture: Least Squares

Lesson Overview

Big Picture: Gradient Descent

