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Math for ML
Week 4.2: Basics of Convex Optimization



Logistics & Announcements



Lesson Overview

Convexity. A property of sets and functions that affords us a lot of nice “linearity-like” properties. 

Convex set. A convex is a set that has no holes. The line segment between any two points lies 
completely in the set. 

Convex function. A function that is bowl-shaped. Between any two points, the line segment is above 
the function. 

Convex optimization. Optimization problems with convex objectives and convex constraint sets. All 
local optima are global optima. 

Gradient descent for convex problems. GD on convex functions is guaranteed to find a global min. 

Gradient descent for OLS. We unite the two stories of this class and analyze GD applied to OLS!



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis (1, 1)
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html


Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html
https://samuel-deng.github.io/assets/lec/running_example.html


Convex Optimization 
Motivation



Motivation
Components of an optimization problem

 

 is the objective function.  is the constraint/feasible set. 

 is an optimal solution (global minimum) if 

. 

The optimal value is . Our goal is to find  and . 

Note: to maximize , just minimize . So we’ll only focus on minimization problems.

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f : ℝd → ℝ 𝒞 ⊆ ℝd

x*

x* ∈ 𝒞 and f(x*) ≤ f(x), for all x ∈ 𝒞

f(x*) x* f(x*)

f(x) −f(x)



Global Minima
Local vs. global minima
Last lesson, we only developed methods for finding local optima.
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Types of Minima
Big picture
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Global minima could be either 
unconstrained local minima or 
constrained local minima.  

Without , global minima are just 
an unconstrained local minima. 

With , global minima may lie on 
the boundary of the constraint set. 

Find local minima, then test!

𝒞

𝒞



Convexity
Non-example ( )d = 1

Functions that have many “hills/
valleys” are deceptive. 

Local minima look like global minima 
when we’re sufficiently close.
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Convexity
Non-example ( )d = 2

Functions that have many “hills/valleys” are 
deceptive.  

Local minima look like global minima when 
we’re sufficiently close.

descent start

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html


Convexity
Example ( )d = 1

A convex function is a function that is “bowl-
shaped.”  

Their local minima are global minima.
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Convexity
Example ( )d = 2

A convex function is a function that is “bowl-
shaped.”  

Their local minima are global minima.

descent start

https://samuel-deng.github.io/assets/lec/running_example.html


Convexity
Example ( )d = 2

A convex function is a function that is “bowl-
shaped.”  

Their local minima are global minima. 

Goal: We will use gradient descent to solve 
convex optimization problems!

descent start

https://samuel-deng.github.io/assets/lec/running_example.html


Convex Optimization Problem
Definition

A convex optimization problem (also known as convex program) is an optimization problem: 

 

where  is a convex function and  is a convex set. 

 is “bowl-shaped” and  has “no holes” or “gaps”

minimize f(x)
subject to x ∈ 𝒞

f(x) 𝒞

f(x) 𝒞



Convexity
Line segments

Line segments are very important to the study of convexity. 

For any two points , the line segment between  and  is the set of points: 

 

Sometimes, we’ll denote the line segment as . 

x, y ∈ ℝd x y

[x, y] := {(1 − α)x + αy : α ∈ [0,1]}

[x, y]



Convexity
Line segments

Example. Line segment between  and . x = 1 y = 3



Convexity
Line segments

Example. Line segment between  and . x = (1,1) y = (2,3)



Convex Sets 
Intuition, Definition, and “Algebra”



Convex Sets
Idea

A convex set is a “set with no holes or gaps.” 

We can draw a line between any two points and stay inside the set.



Convex Sets
Definition

A set  is a convex set if, for any , the point  for .  

That is, the line segment between any two points is completely in .

S ⊆ ℝd x, y ∈ S (1 − α)x + αy ∈ S α ∈ [0,1]

S



Examples of Convex Sets
ℝd

Why is  a convex set?ℝd



Examples of Convex Sets
Line

Perhaps the most basic nontrivial example of a convex set is a line.  

For any two points , the line passing through  and  is the set of all points 

, 

for any .

x, y ∈ ℝd x y

(1 − α)x + αy

α ∈ ℝ



Examples of Convex Sets
Hyperplane

A hyperplane is the set of points 

, 

where  and  are fixed, and . 

Why is this convex?

{x ∈ ℝd : w⊤x = b}

w ∈ ℝd b ∈ ℝ w ≠ 0



Examples of Convex Sets
Halfspace

A halfspace is the set of points 

, 

where  and  are fixed, and . 

Why is this convex?

{x ∈ ℝd : w⊤x ≤ b}

w ∈ ℝd b ∈ ℝ w ≠ 0



Examples of Convex Sets
Neighborhoods

The neighborhood centered at  with radius  is the set: 

 

Why is this convex?

c ∈ ℝd δ > 0

Bδ(c) := {x ∈ ℝd : ∥x − c∥ ≤ δ} .



Closure of Convex Sets
The “Algebra” of Convex Sets

We can combine convex sets by using operations that preserve convexity: 

Intersection. The intersection of (possibly infinite) convex sets is convex. 

Scalar multiplication. If  is a convex set, then so is  

 for . 

Translation. If  is a convex set, then so is 

 for any . 

See Boyd and Vandenberghe Section 2.3 for reference and more rules.

C ⊆ ℝd

αC := {αx : x ∈ C} α ∈ ℝ

C ⊆ ℝd

C + a := {x + a ∈ ℝd : x ∈ C} a ∈ ℝd



Convex Functions 
Intuition, Definition, and “Algebra”



Convex Function
Idea

A convex function is a function that is “bowl-shaped.” 

All line segments through any two points lie above the function. 

If differentiable, all tangents are below the function.



Convex Function
Definition

A function  is a convex function if, for any , and for any scalar  with ,  

 

That is, the (secant) line segment between any two points lies above the function. 

Concave functions are negative convex functions.

f : ℝd → ℝ x, y ∈ ℝd α ∈ ℝ 0 ≤ α ≤ 1

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .



Convex Function
Definition
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A function  is a convex function if, for any , 
and for any scalar  with ,  

 

That is, the (secant) line segment between any two points lies 
above the function. 

Concave functions are negative convex functions.

f : ℝd → ℝ x, y ∈ ℝd

α ∈ ℝ 0 ≤ α ≤ 1

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .



Convex Function
Definition

A function  is a convex function if, for any , 
and for any scalar  with ,  

 

That is, the (secant) line segment between any two points lies 
above the function. 

Concave functions are negative convex functions.

f : ℝd → ℝ x, y ∈ ℝd

α ∈ ℝ 0 ≤ α ≤ 1

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html


Convex Functions
First-Order Definition of Convexity

A differentiable function  is a convex function if, for any , 

 

The linearization at any  lies below the function.

f : ℝd → ℝ x, y ∈ ℝd

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .

x



Convex Functions
First-Order Definition of Convexity
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A differentiable function  is a convex 
function if, for any , 

 

The linearization at any  lies below the function.

f : ℝd → ℝ
x, y ∈ ℝd

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .

x



Convex Functions
First-Order Definition of Convexity

A differentiable function  is a convex function 
if, for any , 

 

The linearization at any  lies below the function.

f : ℝd → ℝ
x, y ∈ ℝd

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .

x

x1-axis x2-axis f(x1, x2)-axis (1, 1)

https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def2.html


Convex Functions
Second-Order Definition of Convexity

A twice-differentiable function  is a convex function if, for any , the Hessian 
 is positive semidefinite: 

 for all . 

The function has a nonnegative “second derivative.”

f : ℝd → ℝ x ∈ ℝd

∇2
x f(x)

d⊤ ∇2
x f(x)d ≥ 0 d ∈ ℝd



Convex Functions
Three characterizations

 

 

If differentiable:  

 

If twice-differentiable:  for all .

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) .

f(y) ≥ f(x) + ∇x f(x)⊤(y − x) .

d⊤ ∇2
x f(x)d ≥ 0 d ∈ ℝd

−3 −2 −1 0 1 2 3 4 5−3

−2

−1

0

1

2

3

4

5

−3 −2 −1 0 1 2 3 4 5−3

−2

−1

0

1

2

3

4

5



Examples of Convex Functions
Quadratic Functions

Always keep this canonical “bowl-shaped” example  in mind: f : ℝ → ℝ

f(x) = x2



Examples of Convex Functions
Quadratic Forms

More generally, always keep quadratic forms  in mind: 

 for symmetric  matrix .

f : ℝd → ℝ

f(x) = x⊤Ax d × d A



Examples of Convex Functions
Affine Functions

Let  be some vector and let  be some scalar.  

.

w ∈ ℝd b ∈ ℝ

f(x) := w⊤x + b



Examples of Convex Functions
Other examples of convex functions on ℝ

Exponential.  is convex for any . 

Powers.  is convex on  for any  or , and concave for  

Powers of absolute values.  is convex on , for any  

Logarithm.  is concave on . 

Negative entropy.  is convex on , or convex on  if we define .

eax a ∈ ℝ

xa (0,∞) a ≥ 1 a ≤ 0 0 ≤ a ≤ 1.

|x |p ℝ p ≥ 1.

log x (0,∞)

x log x (0,∞) [0,∞) 0 log 0 := 0



Examples of Convex Functions
Other examples of convex functions on ℝd

Norms. Any norm  on  is convex. This includes the Euclidean/  norm: 

 

Max function. The function  is convex. 

Log-sum-exp. The function  is convex.

∥ ⋅ ∥ ℝd ℓ2

∥x∥2 :=
d

∑
i=1

x2
i

f(x) := max{x1, …, xd}

f(x) := log (ex1 + … + exd)



Closure of Convex Functions
The “Algebra” of Convex Functions

We can also combine convex functions with operations that preserve convexity: 

Nonnegative weighted sum. If   convex, then  is convex.  

Extends to infinite sums and integrals. 

Pre-composition with affine function. If  is convex, so is . 

Maximum. If  are convex, then  is convex. 

Extends to pointwise supremum. 

See Boyd and Vandenberghe Section 3.2 for comprehensive reference.

f1, …, fn g(x) := λ1 f1(x) + … + λn fn(x)

f f(Ax + b)

f1, …, fn g(x) := max{f1(x), …, fn(x)}



Verifying Convexity
In order of preference…

To verify that  is convex: 

1. Construct function from known convex functions (e.g. exponential, affine, etc.) and closure 
properties. 

2. If differentiable/twice-differentiable: Use first-order or second-order equivalent definitions 
of convexity. 

3. Restrict to a line:  is convex if and only if, for every , if the function 
 is convex for . 

4. Directly verify using the definition of convexity: .

f : ℝd → ℝ

f : C → ℝ x, y ∈ C
g(α) := f(αx + (1 − α)y) α ∈ [0,1]

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)



Convex Optimization 
Local minima are global minima



Convex Optimization
Optimality condition

 

where  is a convex function and  is a convex set.  

The most important property of these optimization problems is: 

All local minima are global minima!

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f 𝒞



Convex Optimization
Optimality condition
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where  is a convex function and  is a convex set.  

The most important property of these 
optimization problems is: 

All local minima are global minima!

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f 𝒞



Convex Optimization
Optimality condition

 

where  is a convex function and  is a convex set.  

The most important property of these optimization 
problems is: 

All local minima are global minima!

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

f 𝒞

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html


Convex Optimization
Main Optimality Theorem

Theorem (Optimality for convex optimization). For a convex function  and a convex 
set , consider the optimization problem: 

 

Then, if  is a local minimum, it must also be a global minimum: 

 for all .

f : ℝd → ℝ
𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

x* ∈ C

f(x*) ≤ f(x) x ∈ 𝒞



Convex Optimization
Step 1: Use definition of local minimum

Goal:  for all . 

Because  is a local minimum, there is a neighborhood  around  such that  

 for all . 

This allows us to move in all (feasible) directions from . 

f(x*) ≤ f(x) x ∈ 𝒞

x* Bδ(x*) x*

f(x*) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x*)

x*

x*
δ



Convex Optimization
Step 2: Consider line segment to another point

Goal:  for all . 

From Step 1,  for all . 

Choose any , not necessarily in , and consider the line segment  defined by: 

. 

f(x*) ≤ f(x) x ∈ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x*)

y ∈ 𝒞 Bδ(x*) [x*, y]

[x*, y] := {(1 − α)x* + αy : α ∈ [0,1]}

x*
δ

y



Convex Optimization
Step 3: Take a small step in line segment direction

Goal:  for all . 

From Step 1, we got a neighborhood,  for all .  

From Step 2, we got the line segment: 

. 

For  (sufficiently small), we’re still in the neighborhood, so: 

.

f(x*) ≤ f(x) x ∈ 𝒞

f(x*) ≤ f(x) x ∈ 𝒞 ∩ Bδ(x*)

[x*, y] := {(1 − α)x* + αy : α ∈ [0,1]}

α < δ

f(x*) ≤ f((1 − α)x* + αy)
x*

δ

y

x* α



Convex Optimization
Step 4: Use convexity to extrapolate outside of the neighborhood

Goal:  for all . 

For  (sufficiently small), we’re still in the neighborhood, so: 

. 

Using the definition of convexity, 

 

Rearranging, we get: 

, where we chose  arbitrarily.

f(x*) ≤ f(x) x ∈ 𝒞

α < δ

f(x*) ≤ f((1 − α)x* + αy)

f(x*) ≤ f((1 − α)x* + αy)
≤ (1 − α)f(x*) + αf(y)

f(x*) ≤ f(y) y ∈ 𝒞

x*
δ

y

x* α



Convex Optimization
Main Optimality Theorem

Theorem (Optimality for convex optimization). For a 
convex function  and a convex set 

, consider the optimization problem: 

 

Then, if  is a local minimum, it must also be a 
global minimum: 

 for all .

f : ℝd → ℝ
𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

x* ∈ C

f(x*) ≤ f(x) x ∈ 𝒞

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html


Convex Optimization
Optimality Theorem for Differentiable Functions

Theorem (Optimality for convex optimization for differentiable functions). For a convex, 
differentiable function  and a convex set   

 

Then,  is a global minimum if and only if: 

 for all .

f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

x* ∈ 𝒞

∇f(x*)⊤(x − x*) ≥ 0 x ∈ 𝒞



Convex Optimization
Optimality Theorem for Differentiable Functions

Theorem (Optimality for convex optimization for 
differentiable functions). For a convex, differentiable 
function  and a convex set   

 

Then,  is a global minimum if and only if: 

 for all .

f : ℝd → ℝ 𝒞 ⊆ ℝd

minimize
x∈ℝd

f(x)

subject to x ∈ 𝒞

x* ∈ 𝒞

∇f(x*)⊤(x − x*) ≥ 0 x ∈ 𝒞
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Gradient Descent and Convexity 
Theorem Statement and Proof



Types of Minima
Big picture
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global minWe want to find global minima. 

Global minima could be either 
unconstrained local minima or 
constrained local minima.  

Without , global minima are just 
an unconstrained local minima. 

With , global minima may lie on 
the boundary of the constraint set. 

Often hard to do analytically!

𝒞
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Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  : 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))



Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If  and is -smooth, then with , for any , 

.

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2



Gradient Descent
Behavior for  “Bowl-shaped” Functionsd = 1
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Gradient Descent
Behavior for  “Bowl-shaped” Functionsd = 2

descent start descent start

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html


Gradient Descent
Behavior for  “Bowl-shaped” Functionsd = 2

descent start descent start

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html
https://samuel-deng.github.io/assets/lec/running_example.html


Gradient Descent
Theorem 1: Descent Lemma (Formal)

Theorem (Descent Lemma). If  and is -smooth, then with , for any , 

. 

This theorem does NOT guarantee that we’ll reach a global minimum!

f ∈ 𝒞2 β η = 1/β w ∈ ℝd

f(w − η∇f(w)) ≤ f(w) −
1

2β
∥∇f(w)∥2



Gradient Descent
Theorem 2: GD on convex, smooth functions

Theorem (Convergence of GD for smooth, convex functions). Let  be a , 
-smooth, and convex function. Let  be the global min. of , i.e.  for all .  

If we run gradient descent with step size  and initial point , 

, 

after  iterations of our algorithm.

f : ℝd → ℝ 𝒞2 β
x* f f(x*) ≤ f(x) x ∈ ℝd

η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)
T



Gradient Descent
Theorem 2: GD on convex, smooth functions

 f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html


Gradient Descent
Theorem 2: GD on convex, smooth functions

 f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)

descent start descent start

https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_diffx0.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_diffx0.html


Gradient Descent
Proof of GD Theorem for Convex, -smooth functionsβ

We want to show: 

, after  iterations of GD. 

Descent lemma. For any iteration , 

. 

First-order definition of convexity. For any ,  

.

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

t = 1,2,…, T

f(xt−1) ≤ f(xt) −
1

2β
∥∇f(xt)∥2

x, y ∈ ℝd

∇f(x)⊤(y − x) + f(x) ≤ f(y)



Gradient Descent
Step 1: Define “potential function”

Goal: , after  iterations of GD. 

Fix the optimal . Consider the “potential” function : 

. 

This tracks our distance from the minimum, . At , our potential is: 

, where we chose .

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

x* ∈ ℝd Φ : ℝd → ℝ

Φ(x) =
1
2η

∥x − x*∥2

x* xt−1

Φ(xt−1) =
β
2

∥xt−1 − x*∥2 η = 1/β



Gradient Descent
Step 2: Analyze drop in potential from  to xt−1 xt

Goal: , after  iterations of GD. 

Make sure that the the potential “drops” by a positive amount in each step: . 

Analyze this quantity, plugging in the GD step: . 

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

Φ(xt−1) − Φ(xt) ≥ 0

xt = xt−1 −
1
β

∇f(xt−1)

Φ(xt−1) − Φ(xt) =
β
2

∥xt−1 − x*∥2 −
β
2

∥xt−1 −
1
β

∇f(xt−1) − x*∥2

=
β
2

∥xt−1 − x*∥2 −
β
2 (∥xt−1 − x*∥2 −

2
β

(xt−1 − x*)⊤ ∇f(xt−1) +
1
β2

∥∇f(xt−1)∥2)
= (xt−1 − x*)⊤ ∇f(xt−1) −

1
2β

∥∇f(xt−1)∥2.



Gradient Descent
Step 3: Deal with  using first-order def. of convexity(xt−1 − x*)⊤ ∇f(xt−1)

Goal: , after  iterations of GD. 

For any  and ,  

. 

Rearranging, we get a lower bound: 

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

xt−1 ∈ ℝd x* ∈ ℝd

∇f(xt−1)⊤(x* − xt−1) + f(xt−1) ≤ f(x*)

∇f(xt−1)⊤(xt−1 − x*) ≥ f(xt−1) − f(x*)



Gradient Descent
Step 2: Analyze drop in potential from  to xt−1 xt

Goal: , after  iterations of GD. 

Make sure that the the potential “drops” by a positive amount in each step: . 

Analyze this quantity, plugging in the GD step: . 

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

Φ(xt−1) − Φ(xt) ≥ 0

xt = xt−1 −
1
β

∇f(xt−1)

Φ(xt−1) − Φ(xt) =
β
2

∥xt−1 − x*∥2 −
β
2

∥xt−1 −
1
β

∇f(xt−1) − x*∥2

=
β
2

∥xt−1 − x*∥2 −
β
2 (∥xt−1 − x*∥2 −

2
β

(xt−1 − x*)⊤ ∇f(xt−1) +
1
β2

∥∇f(xt−1)∥2)
= (xt−1 − x*)⊤ ∇f(xt−1) −

1
2β

∥∇f(xt−1)∥2.

≥ f(xt−1) − f(x*)



Gradient Descent
Step 4: Deal with  using descent lemma(1/2β)∥∇f(xt−1)∥2

Goal: , after  iterations of GD. 

By descent lemma for -smooth functions: 

 

Rearranging, we can lower bound: 

.

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

β

f(xt−1) ≤ f(xt) −
1

2β
∥∇f(xt)∥2

−
1

2β
∥∇f(xt)∥2 ≥ f(xt) − f(xt−1)



Gradient Descent
Step 5: Lower bound drop in potential

Goal: , after  iterations of GD. 

Make sure that the the potential “drops” by a positive amount in each step: . 

Analyze this quantity, plugging in the GD step: . 

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

Φ(xt−1) − Φ(xt) ≥ 0

xt = xt−1 −
1
β

∇f(xt−1)

Φ(xt−1) − Φ(xt) =
β
2

∥xt−1 − x*∥2 −
β
2

∥xt−1 −
1
β

∇f(xt−1) − x*∥2

=
β
2

∥xt−1 − x*∥2 −
β
2 (∥xt−1 − x*∥2 −

2
β

(xt−1 − x*)⊤ ∇f(xt−1) +
1
β2

∥∇f(xt−1)∥2)
= (xt−1 − x*)⊤ ∇f(xt−1) −

1
2β

∥∇f(xt−1)∥2 ≥ f(xt−1) − f(x*) + f(xt) − f(xt−1)

≥ f(xt−1) − f(x*) ≥ f(xt) − f(xt−1) = f(xt) − f(x*)



Gradient Descent
Step 5: Lower bound drop in potential

Goal: , after  iterations of GD. 

The “drop in potential” is at least . 

 

This means our potential always drops by a positive amount if we’re not yet at the minimum!

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

f(xt) − f(x*)

Φ(xt−1) − Φ(xt) ≥ f(xt) − f(x*)



Gradient Descent
Step 6: Sum up and telesecope

Goal: , after  iterations of GD. 

 

Simplify the left-hand side  by telescoping sum. 

Simplify the right-hand side  by bounding . 

By the definition of potential , we proved our claim: 

.

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2) T

T

∑
t=1

Φ(xt−1) − Φ(xt) ≥
T

∑
t=1

f(xt) − f(x*)

Φ(x0) − Φ(xT) ≥
T

∑
t=1

f(xt) − f(x*)

Φ(x0) − Φ(xT) ≥
T

∑
t=1

f(xt) − f(x*) ≥ T( f(xT) − f(x*)) f(xt) ≥ f(xT)

Φ(x) =
β
2

∥x − x*∥2

β
2T (∥x0 − x*∥ − ∥xT − x*∥2) ≥ f(xT) − f(x*)



Gradient Descent
Theorem 2: GD on convex, smooth functions

Theorem (Convergence of GD for smooth, convex functions). Let  be a , 
-smooth, and convex function. Let  be the global min. of , i.e.  for all .  

If we run gradient descent with step size  and initial point , 

, 

after  iterations of our algorithm. 

Gradient descent always eventually reaches minimum for convex functions!

f : ℝd → ℝ 𝒞2 β
x* f f(x*) ≤ f(x) x ∈ ℝd

η =
1
β

x0 ∈ ℝd

f(xT) − f(x*) ≤
β

2T (∥x0 − x*∥2 − ∥xT − x*∥2)
T



Gradient Descent and OLS 
“Uniting” our two main stories



Gradient Descent and OLS
Verifying OLS fits our theorem

We just need to  to be , -smooth, and convex. 

1. . Hessian is . 

2. -smooth. Recall the definition: Satisfied as long as: 

. 

3. Convex. Can use definition, first-order definition, or second-order definitions.

f(w) = ∥Xw − y∥2 𝒞2 β

𝒞2 ∇2f(w) = 2X⊤X

β λmax(∇2f(x)) ≤ β .

λmax(X⊤X) ≤ β/2



Gradient Descent and OLS
Uniting our two stories

Theorem (GD applied to OLS). Let  and  be fixed. Let the maximum eigenvalue 
 of  satisfy  Let  be a (global) minimizer of , satisfying:  

 for all .  

After  iterations of gradient descent with step size  and initial point : 

X ∈ ℝn×d y ∈ ℝn

λmax X⊤X λmax ≤ β/2. w* f(w) = ∥Xw − y∥2

∥Xw* − y∥2 ≤ ∥Xw − y∥2 w ∈ ℝd

T η = 1/β w0 ∈ ℝd

∥XwT − y∥2 − ∥Xw* − y∥2 ≤
β

2T (∥w0 − w*∥2 − ∥wT − w*∥2) .



Gradient Descent
Algorithm for OLS

What does gradient descent look like for OLS? Recall the objective function and its gradient: 

 f(w) = ∥Xw − y∥2 = w⊤X⊤Xw − 2w⊤X⊤y + y⊤y

∇f(w) = 2X⊤Xw − 2X⊤y



Gradient Descent
Algorithm for OLS

, so the gradient descent algorithm for OLS is: 

Make an initial guess . 

For  

Compute: .

∇f(w) = 2X⊤Xw − 2X⊤y

w0

t = 1,2,3,…

wt ← wt−1 − 2ηX⊤ (Xw − y)



Gradient Descent
Algorithm for OLS

Make an initial guess . 

For  

Compute: .

w0

t = 1,2,3,…

wt ← wt−1 − 2ηX⊤ (Xw − y)

descent start

https://samuel-deng.github.io/assets/lec/running_example.html


Gradient Descent
Synthetic Dataset ( )T = 0

wt ← wt−1 − 2ηX⊤ (Xw − y)
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https://samuel-deng.github.io/math4ml_su25/assets/figs/linreg_gd_plane_T0.html


Gradient Descent
Synthetic Dataset ( )T = 5

wt ← wt−1 − 2ηX⊤ (Xw − y)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

40

60

80

100

120

140

160

180

200

https://samuel-deng.github.io/math4ml_su25/assets/figs/linreg_gd_plane_T5.html


Gradient Descent
Synthetic Dataset ( )T = 30

wt ← wt−1 − 2ηX⊤ (Xw − y)
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https://samuel-deng.github.io/math4ml_su25/assets/figs/linreg_gd_plane_T30.html


Solving OLS iteratively vs. analytically
Why use GD instead of the normal equations?

Solving the normal equations directly  takes 

 operations. 

Running gradient descent  for  steps takes 

 operations. 

ŵ = (X⊤X)−1X⊤y

O(d2n + d3)

wt ← wt−1 − 2ηX⊤ (Xw − y) T

O(Tdn)



Recap 



Lesson Overview

Convexity. A property of sets and functions that affords us a lot of nice “linearity-like” properties. 

Convex set. A convex is a set that has no holes. The line segment between any two points lies 
completely in the set. 

Convex function. A function that is bowl-shaped. Between any two points, the line segment is above 
the function. 

Convex optimization. Optimization problems with convex objectives and convex constraint sets. All 
local optima are global optima. 

Gradient descent for convex problems. GD on convex functions is guaranteed to find a global min. 

Gradient descent for OLS. We unite the two stories of this class and analyze GD applied to OLS!



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis (1, 1)
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html


Lesson Overview
Big Picture: Gradient Descent

descent start descent start

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html
https://samuel-deng.github.io/assets/lec/running_example.html

