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Math for ML
Week 5.2: Bias, Variance, and Statistical Estimators



Logistics & Announcements



Lesson Overview

Law of Large Numbers. The LLN allows us to move from probability to statistics (reasoning about an 
unknown data generating process using data from that process). 

Statistical estimators. We define a statistical estimator, which is a function of a collection of random variables 
(data) aimed at giving a “best guess” at some unknown quantity from some probability distribution. 

Bias, variance, and MSE. Two important properties of statistical estimators are their bias and variance, which 
are measures of how good the estimator is at guessing the target. These form the estimator’s MSE. 

Stochastic gradient descent (SGD). Gradient descent needs to take a gradient over all  training examples, 
which may be large; SGD estimates the gradient to speed up the process. 

Statistical analysis of OLS risk. We analyze the risk of OLS — how well it’s expected to do on future examples 
drawn from the same distribution it was trained on.

n



Lesson Overview
Big Picture: Least Squares
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https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html


Law of Large Numbers 
Theorem and Statistical Estimation 101



Statistical Estimation
Intuition

In probability theory, we assumed we knew some data generating process (as a distribution) 
, and we analyzed observed data under that process. 

. 

Statistics can be thought of as the “reverse of probability.” We see some data and we try to 
make inferences about the process that generated the data. 

 

Underlying fact: collecting more and more data gives us sharper conclusions!

ℙx

ℙx ⟹ x1, …, xn

x1, …, xn ⟹ ℙx



Law of Large Numbers
Intuition

Averages of a large number of random samples converge to their mean. 

Example. The average die roll after many trials is expected to be close to 3.5.



Independence
Independent and identically distributed (i.i.d.)

A collection of random variables  are independent and identically distributed (i.i.d.) if 
their joint distribution can be factored entirely: 

 

and all the  have the same distribution. 

Very common assumption in ML!

X1, …, Xn

pX1,…,Xn
(x1, …, xn) =

n

∏
i=1

pXi
(xi)

Xi



Law of Large Numbers
Theorem Statement

Theorem (Weak Law of Large Numbers). Let  be independent and identically 
distributed (i.i.d.) random variables with finite mean . Their sample average is 

. 

Then, for any , the sample average converges to the true mean: 

. 

This type of convergence is also called convergence in probability.

X1, …, Xn
μ := 𝔼[Xi]

Xn :=
1
n

n

∑
i=1

Xi

ϵ > 0

lim
n→∞

ℙ ( |Xn − μ | < ϵ) = 1

e.g.  is result of die toss   
from the same die
Xi i If i.i.d. then all have same mean.

Probability is over the joint distribution of all X1, …, Xn

This “kicks in” when  gets very large.n



Markov’s Inequality
Intuition

Suppose we have a village where the average 
salary is $2 (say). We ask: 

What fraction of villagers makes $10 or more? 

Without knowing anything else, Markov’s 
Inequality says: 

. 

No more than 20% can have more than $10. 
Otherwise, we must have a higher average!

ℙ(X ≥ 10) ≤ 2/10 = 0.2



Markov’s Inequality
Statement

Theorem (Markov’s Inequality). If  is any 
nonnegative RV with expectation , then for 
any , 

 . 

X
𝔼[X]

α > 0

ℙ(X ≥ α) ≤
𝔼[X]

α



Markov’s Inequality
Proof

Theorem (Markov’s Inequality). If  is any 
nonnegative RV with expectation , then for 
any , 

 . 

Proof. Let  be the indicator RV of the 
event “ .” Then: 

 is always true. 

Take expectation of both sides, divide by .

X
𝔼[X]

α > 0

ℙ(X ≥ α) ≤
𝔼[X]

α

1{X ≥ α}
X ≥ α

X ≥ α1{X ≥ α}

α



Chebyshev’s Inequality
Statement

Theorem (Chebyshev’s Inequality). Let  be 
any arbitrary random variable, and let 

 and . Then, 

 

X

μ := 𝔼[X] σ2 = Var(X)

ℙ( |X − μ | ≥ α) ≤
σ2

α2
.



Chebyshev’s Inequality
Statement and Proof

 

Proof.  Apply Markov’s inequality to the random 
variable : 

 

ℙ( |X − μ | ≥ α) ≤
σ2

α2
.

|X − μ |2

ℙ( |X − μ | ≥ α) = ℙ( |X − μ |2 ≥ α2) ≤
𝔼[(X − μ)2]

α2
=

σ2

α2
.



Law of Large Numbers
Proof

Let  be i.i.d. with their sample average denoted as . 

LLN: Then, for any , . 

Proof (simplified version with ). 

Assuming , apply Chebyshev’s inequality to : 

.

X1, …, Xn Xn :=
1
n

n

∑
i=1

Xi

ϵ > 0 lim
n→∞

ℙ ( |Xn − μ | < ϵ) = 1

σ2 < ∞

σ2 < ∞ Xn

ℙ( |Xn − μ | > ϵ) ≤
Var(Xn)

ϵ2
=

σ2

nϵ2



Sample Average
Definition

For i.i.d. random variables , their sample average/sample mean/empirical mean is: 

. 

LLN justifies our “frequentist” view of probability!

X1, …, Xn

Xn :=
1
n

n

∑
i=1

Xi



Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin toss, with 
 for tails and  for heads.  Clearly, . 

Suppose we independently toss  coins, obtaining RVs . 

 

Law of large numbers states that for any , no matter how small: 

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn

Xn :=
1
n

n

∑
i=1

Xi =  average frequency of heads

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1



Law of Large Numbers
Example: Mean Estimator for Coins

We can quantify this more exactly with Chebyshev’s inequality: 

 

Therefore, using Chebyshev’s inequality: 

Var(Xn) =
σ2

n
=

1
4n

ℙ(0.4 ≤ Xn ≤ 0.6) = ℙ( |Xn − μ | ≤ 0.1)
= 1 − ℙ( |Xn − μ | > 0.1)

≥ 1 −
1

4n(0.1)2
= 1 −

25
n



Law of Large Numbers
Example: Mean Estimator for Coins

Law of large numbers states that for any , no 
matter how small:  

 

Chebyshev’s Inequality says:  

. 

So, for  flips, the probability that frequency of 
Heads is between  and  is at least .

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1

ℙ(0.4 ≤ Xn ≤ 0.6) ≥ 1 −
25
n

n = 100
0.4 0.6 0.75



Empirical Covariance Matrix
In machine learning

Suppose we draw  examples  a distribution over … 

 a random vector of  random variables. 

Arrange them into a matrix , where  are the rows.  

Then, if each  is centered (i.e. ), the empirical covariance matrix is: 

. 

A property of the a specific observed dataset, .

n x1, …xn ∼ ℙx ℝd

xi = (x1, x2, …, xd) d

X ∈ ℝn×d x⊤
i

xi 𝔼[xi] = 0

Σ̂n :=
1
n

X⊤X ∈ ℝd×d

x1, …, xn



Empirical Covariance Matrix
Law of Large Numbers

Suppose  is an observed data matrix where  are the rows, drawn i.i.d. from . 

By the law of large numbers,  

, as . 

Useful fact: . 

The empirical covariance matrix is a approaches the true covariance matrix with more data!

X ∈ ℝn×d xi ∈ ℝd ℙx

Σ̂n :=
1
n

X⊤X → Σ = 𝔼[xx⊤] = Var(x) n → ∞

Σ̂−1
n = (X⊤X)−1 ∼

1
n

Σ−1



Empirical Covariance Matrix
Law of Large Numbers

, as . Σ̂n :=
1
n

X⊤X → Σ = 𝔼[xx⊤] = Var(x) n → ∞



Empirical Covariance Matrix
Law of Large Numbers

, as . Σ̂n :=
1
n

X⊤X → Σ = 𝔼[xx⊤] = Var(x) n → ∞

https://samuel-deng.github.io/math4ml_su25/assets/figs/cov_pos_3d.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/cov_zero_3d.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/cov_neg_3d.html


Empirical Covariance Matrix
Law of Large Numbers

https://samuel-deng.github.io/math4ml_su25/assets/figs/cov_pos_3d.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/cov_zero_3d.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/cov_neg_3d.html


Statistical Estimation
Intuition

Make some assumptions about data that we’re to 
collect. (i.i.d. assumption). 

Collect as much data as we can about the 
phenomenon. (  coin flips). 

Use the data to derive characteristics (statistics) about 
how data were generated (the true mean ) 

via some estimator.  

( )

n = 100

𝔼[Xi] = 0.5

Xn =
1
n

n

∑
i=1

Xi



Generalization
Intuition

Statistics/statistical inference involves drawing conclusions about data we’ve already seen. 

Generalization is a big concern in ML — we want to describe unseen data well. 

If the future data comes from the same distribution as our past data, then we can hope to 
generalize by describing our past data well!

x yNature



Random error model
Our main assumption on ℙx,y

, where  and  is independent of . 

, where  is a random vector. 

yi = x⊤
i w* + ϵi 𝔼[ϵi] = 0 ϵi xi

y = Xw* + ϵ ϵ ∈ ℝn

x yNature
ℙx,y



Statistical Estimators 
Definition and examples



Statistical Estimator
Intuition

A (statistical) estimator is a “best guess” at some (unknown) quantity of interest (the estimand) 
using observed data. 

The quantity doesn’t have to be a single number; it could be, for example, a fixed vector, 
matrix, or function.

x yNature

θ* θ*
xNature



Statistical Estimator
Definition

Let  be  i.i.d. random variables drawn from some distribution  with parameter . 

An estimator  of some fixed, unknown parameter  is some function of : 

. 

Defined similarly for random vectors. 

Importantly: statistical estimators are functions of RVs, so they are themselves RVs!

X1, …, Xn n ℙX θ

̂θn θ X1, …, Xn

̂θn = g(X1, …, Xn)



Statistical Estimator
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin toss, with 
 for tails and  for heads. Clearly, . 

Suppose we independently toss  coins, obtaining i.i.d. RVs . 

Estimand: . 

Estimator: .

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi

xNature



Statistical Estimator
Example: Estimating coin flip

Example. Let  be a random variable denoting 
the outcome of a single fair coin toss, with 

 for tails and  for heads. Clearly, 
. 

Suppose we independently toss  coins, 
obtaining i.i.d. RVs . 

Estimand: . 

Estimator: .

Xi

Xi = 0 Xi = 1
μ := 𝔼[Xi] = 1/2

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Estimating coin flip

Example. Let  be a random variable denoting 
the outcome of a single fair coin toss, with 

 for tails and  for heads. Clearly, 
. 

Suppose we independently toss  coins, 
obtaining i.i.d. RVs . 

Estimand: . 

Estimator: .

Xi

Xi = 0 Xi = 1
μ := 𝔼[Xi] = 1/2

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Estimating coin flip

Example. Let  be a random variable denoting 
the outcome of a single fair coin toss, with 

 for tails and  for heads. Clearly, 
. 

Suppose we independently toss  coins, 
obtaining i.i.d. RVs . 

Estimand: . 

Estimator: .

Xi

Xi = 0 Xi = 1
μ := 𝔼[Xi] = 1/2

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Variance Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin toss, with 
 for tails and  for heads. Clearly, . 

Suppose we independently toss  coins, obtaining i.i.d. RVs . 

Estimand: . 

Estimator:  (biased sample variance).

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn

θ = Var(Xi) = (1/2)(1 − 1/2) = 1/4

̂θn = S2
n :=

1
n

n

∑
i=1

(Xi − Xn)2

xNature



Statistical Estimator
Example: Variance Estimator for Coins

Example. Let  be a random variable denoting the outcome of a single fair coin toss, with 
 for tails and  for heads. Clearly, . 

Suppose we independently toss  coins, obtaining i.i.d. RVs . 

Estimand: . 

Estimator:  (unbiased sample variance).

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

n X1, …, Xn

θ = Var(Xi) = (1/2)(1 − 1/2) = 1/4

̂θn = s2
n :=

1
n − 1

n

∑
i=1

(Xi − Xn)2

xNature



Statistical Estimator
Example: Variance Estimation

Example. Let  be a random variable denoting the 
outcome of a single fair coin toss, with  for 
tails and  for heads. Clearly, . 

Suppose we independently toss  coins, obtaining 
i.i.d. RVs . 

Estimand: . 

Estimator:  (unbiased 

sample variance).

Xi
Xi = 0

Xi = 1 μ := 𝔼[Xi] = 1/2

n
X1, …, Xn

θ = Var(Xi) = (1/2)(1 − 1/2) = 1/4

̂θn = s2
n :=

1
n − 1

n

∑
i=1

(Xi − Xn)2



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable denoting the face after tossing a six-sided fair die. 
Clearly, . 

Suppose we independently roll  dice, obtaining RVs . 

Estimand: . 

Estimator: .

Xi
μ := 𝔼[Xi] = 3.5

n X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi

xNature



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable denoting 
the face after tossing a six-sided fair die. Clearly, 

. 

Suppose we independently roll  dice, obtaining 
RVs . 

Estimand: . 

Estimator: .

Xi

μ := 𝔼[Xi] = 3.5

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable denoting 
the face after tossing a six-sided fair die. Clearly, 

. 

Suppose we independently roll  dice, obtaining 
RVs . 

Estimand: . 

Estimator: .

Xi

μ := 𝔼[Xi] = 3.5

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable denoting the 
face after tossing a six-sided fair die. Clearly, 

. 

Suppose we independently roll  dice, obtaining 
RVs . 

Estimand: . 

Estimator: . 

Estimator is itself a random variable!

Xi

μ := 𝔼[Xi] = 3.5

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: Mean Estimator for Dice

Example. Let  be a random variable denoting the 
face after tossing a six-sided fair die. Clearly, 

. 

Suppose we independently roll  dice, obtaining 
RVs . 

Estimand: . 

Estimator: . 

Estimator is itself a random variable!

Xi

μ := 𝔼[Xi] = 3.5

n
X1, …, Xn

θ = μ

̂θn = Xn :=
1
n

n

∑
i=1

Xi



Statistical Estimator
Example: OLS Estimator

Example. Let  be i.i.d. samples from the joint distribution  that 
follows the error model:   

,  

where  and  is a random variable with  independent from . 

Estimand: . 

Estimator: 

(x1, y1)…, (xn, yn) ∈ ℝd × ℝ ℙx,y

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 x*

θ = w*

̂θn = ŵOLS = (X⊤X)−1X⊤y

x yNature

θ*

By LLN: , the true covariance.(X⊤X)−1 ∼
1
n

Σ−1



Statistical Estimator
Example: OLS Estimator

Example. Let  be i.i.d. 
samples from the joint distribution  that follows 
the error model:   

,  

where  and  is a random variable with 
 independent from . 

Estimand: . 

Estimator: 

(x1, y1)…, (xn, yn) ∈ ℝd × ℝ
ℙx,y

y = x⊤w* + ϵ

w* ∈ ℝd ϵ
𝔼[ϵ] = 0 x*

θ = w*

̂θn = ŵOLS = (X⊤X)−1X⊤y
−4

−3

−2

−1

0

1

2

3

4

5

https://samuel-deng.github.io/math4ml_su25/assets/figs/2d_regression.html


Statistical Estimator
Example: Ridge Regression Estimator

Example. Let  be i.i.d. samples from the joint distribution  that 
follows the error model:   

,  

where  and  is a random variable with  independent from . 

Estimand: . 

Estimator:  where  is the regularization parameter.

(x1, y1)…, (xn, yn) ∈ ℝd × ℝ ℙx,y

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 x*

θ = w*

̂θn = ŵridge = (X⊤X + γI)−1X⊤y γ > 0

x yNature

θ*



Statistical Estimators 
Variance and bias



Statistical Estimator
Random Variables

Remember that statistical estimators are random variables! 

Below, the PMF and CDF of mean estimator  of  dice rolls .Xn n = 25 X1, …, X25



Bias of Estimators
Intuition

The bias of an estimator is “how far off” it is from its estimand.



Bias of Estimators
Definition

Let  be an estimator for the estimand . The bias of  is defined as: 

. 

We say that an estimator is unbiased if .

̂θn θ ̂θn

Bias( ̂θn) := 𝔼[ ̂θn] − θ

𝔼[ ̂θn] = θ



Bias of Estimators
Examples of Estimators

Example. Consider i.i.d. random variables  with mean .  

Suppose we are estimating the mean, .  

What’s the bias of the estimator ? 

What’s the bias of the estimator ? 

What’s the bias of the estimator ?

X1, …, Xn μ := 𝔼[Xi]

θ = μ

̂θn = 1

̂θn = Xn

̂θn =
1
n

n

∑
i=1

Xi



Variance of Estimators
Intuition

The variance of an estimator is simply its variance, as a random variable. This is the “spread” of 
the estimates from the whatever the estimator’s mean is.



Variance of Estimators
Definition

The variance of an estimator  is simply its variance, as a random variable: 

. 

The standard error of an estimator is simply its standard deviation: 

. 

Notice: The variance of an estimator does not concern its estimand (unlike bias).

̂θn

Var( ̂θn) = 𝔼[( ̂θn − 𝔼[ ̂θn])2] = 𝔼[( ̂θn)2] − 𝔼[ ̂θn]2

se( ̂θn) := Var( ̂θn)



Variance of Estimators
Examples of Estimators

Example. Consider i.i.d. random variables  with mean .  

Suppose we are estimating the mean, .  

What’s the variance of the estimator ? 

What’s the variance of the estimator ? 

What’s the variance of the estimator ?

X1, …, Xn μ := 𝔼[Xi]

θ = μ

̂θn = 1

̂θn = Xn

̂θn =
1
n

n

∑
i=1

Xi



Random error model
Our main assumption on ℙx,y

, where  and  is independent of . 

, where  is a random vector. 

yi = x⊤
i w* + ϵi 𝔼[ϵi] = 0 ϵi xi

y = Xw* + ϵ ϵ ∈ ℝn

x yNature
ℙx,y



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 

, 

where  and  is a random variable with  and , independent of . Let 
 and  by drawing  random examples  from .  

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and . 

Variance:  and 

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n (xi, yi) ℙx,y

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]



Bias and Variance of OLS
Corollaries from Theorem

Under the error model  the OLS estimator  has the following 
statistical properties conditional on : 

Expectation: . 

Variance: . 

By law of total probability/tower rule, this implies that 

 

y = x⊤w* + ϵ ŵ = (X⊤X)−1X⊤y
X

𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] = (X⊤X)−1σ2

Bias(ŵ) = 0

Var(ŵ) = σ2𝔼[(X⊤X)−1]
These are a vector and a matrix, respectively.



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 

, in the usual random error model. 

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and , so . 

Variance:  and .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w* Bias(ŵ) = 0

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]

By LLN: , the true covariance.(X⊤X)−1 ∼
1
n

Σ−1



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 

, in the usual random error model. 

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and , so . 

Variance:  and .

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w* Bias(ŵ) = 0

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]



Bias vs. Variance of Estimators
Summary

For a scalar estimator  of an unknown scalar 
estimand , its bias and variance are: 

 

.

̂θn
θ

Bias( ̂θn) := 𝔼[ ̂θn] − θ

Var( ̂θn) = 𝔼[( ̂θn − 𝔼[ ̂θn])2]



Mean Squared Error 
Bias-Variance Tradeoff



Mean Squared Error
Intuition

Intuitively, the best kind of estimator  should have 
low bias and low variance. 

And it shouldn’t be “too far” from the estimate, in a 
distance sense.

̂θn



Mean Squared Error
Definition

The mean squared error of a scalar estimator  of a scalar estimand  is: 

. 

This is a common assessment of the quality of an estimator.

̂θn θ

MSE( ̂θn) := 𝔼[( ̂θn − θ)2]



Bias-Variance Decomposition
Theorem Statement

Theorem (Bias-Variance Decomposition of MSE). Let  be a scalar estimator of some scalar 
estimand . The bias-variance decomposition of the mean squared error of  is: 

.

̂θn
θ ̂θn

MSE( ̂θn) = 𝔼[( ̂θn − θ)2] = Bias( ̂θn)2 + Var( ̂θn)



Bias-Variance Decomposition
Theorem Statement

Theorem (Bias-Variance Decomposition of MSE). 
Let  be a scalar estimator of some scalar 
estimand . The bias-variance decomposition of 
the mean squared error of  is: 

.

̂θn
θ

̂θn

MSE( ̂θn) = 𝔼[( ̂θn − θ)2] = Bias( ̂θn)2 + Var( ̂θn)



Bias-Variance Decomposition
Proof (Scalar Version)

Want to show:  

Let . Then: 

 

 

𝔼[( ̂θn − θ)2] = Bias( ̂θn)2 + Var( ̂θn)

θn := 𝔼[ ̂θn]

𝔼[( ̂θn − θ)2] = 𝔼[( ̂θn − θn + θn − θ)2]

= 𝔼[( ̂θn − θn)2] + 2(θn − θ)𝔼[( ̂θn − θn)] + 𝔼[(θn − θ)2]

= (θn − θ)2 + 𝔼[( ̂θn − θn)2]

= (𝔼[ ̂θn] − θ)2 + 𝔼[( ̂θn − θn)2] = Bias( ̂θn)2 + Var( ̂θn)

Add and subtract what you need to calculate variance.

Notice what is random and non-random.



Bias-Variance Decomposition
Theorem Statement (General)

Theorem (Bias-Variance Decomposition of MSE). Let  be an estimator of some 
estimand . The bias-variance decomposition of the mean squared error of  is: 

, 

where  and .

̂θn ∈ ℝd

θ ∈ ℝd ̂θn

MSE( ̂θn) = 𝔼[∥ ̂θn − θ∥2] = Bias( ̂θn)2 + tr(Var( ̂θn))

Bias( ̂θn) = ∥𝔼[ ̂θn] − θ∥ tr(Var( ̂θn)) = 𝔼[∥ ̂θ − 𝔼[ ̂θ]∥2]
Sum of diagonal entries of covariance matrix!



Trace
Definition

For any square matrix , the trace of , denoted , is the sum of its diagonal: 

. 

For any scalar, . 

For any quadratic form  where  and , 

.

A ∈ ℝd×d A tr(A)

tr(A) =
d

∑
i=1

Aii = A11 + … + Add

a = a⊤ = tr(a)

x⊤Ax x ∈ ℝd A ∈ ℝd×d

x⊤Ax = tr(x⊤Ax) = tr(xx⊤A) = tr(Axx⊤)



Bias-Variance Decomposition
Example: Coin Flip Mean Estimator

Example. Let  be a random variable denoting the outcome of a single fair coin toss, with 
 for tails and  for heads. Clearly, . 

What is the mean squared error of ? 

 

 

Xi
Xi = 0 Xi = 1 μ := 𝔼[Xi] = 1/2

Xn :=
1
n

n

∑
i=1

Xi

MSE(Xn) = Bias(Xn)2 + Var(Xn)

Bias(Xn) = 0

Var(Xn) =
1
4n



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 

, in the usual random error model. 

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and , so . 

Variance:  and . 

Parameter MSE:  = 

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w* Bias(ŵ) = 0

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = σ2𝔼[tr((X⊤X)−1)]



Bias-Variance Decomposition
Theorem Statement

Theorem (Bias-Variance Decomposition of MSE). 
Let  be an estimator of some estimand . The 
bias-variance decomposition of the mean squared 
error of  is: 

.

̂θn θ

̂θn

MSE( ̂θn) = 𝔼[∥ ̂θn − θ∥2] = Bias( ̂θn)2 + tr(Var( ̂θn))



Bias vs. Variance 
Stochastic Gradient Descent



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  : 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η∇f(w(t−1))

w(T) f(w(T))



Gradient Descent
Algorithm for OLS

Make an initial guess . 

For  

Compute: .

w0

t = 1,2,3,…

wt ← wt−1 − 2ηX⊤ (Xw − y)

descent start

Computationally expensive, 
depends on entire dataset.

https://samuel-deng.github.io/assets/lec/running_example.html


Stochastic Gradient Descent (SGD)
Intuition

In general, the objective function we do gradient descent on typically looks like: 

 

Let us consider the average in this case. For OLS, adding the  out front, we have: 

. 

When we take a gradient, we take it over the entire dataset (all  examples): 

.

f(w) =
1
n

n

∑
i=1

ℓ(w, (xi, yi))

1/n

f(w) =
1
n

∥Xw − y∥2 =
1
n

n

∑
i=1

(w⊤xi − yi)2

n

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2



Stochastic Gradient Descent (SGD)
Intuition

When we take a gradient, we take it over the entire dataset (all  examples): 

. 

Idea: What if we just randomly sampled an example  uniformly from  and only took 
the gradient with respect to that example? 

  

n

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2

i {1,…, n}

i ∼ Unif([n]) ⟹ ∇w(w⊤xi − yi)2



Stochastic Gradient Descent (SGD)
Intuition

In stochastic gradient descent we replace the gradient over the entire dataset 

  with an estimator of the gradient: . 

Single-sample SGD: Sample a single example  uniformly from  and take the gradient:  

. 

Minibatch SGD: Sample batch of  examples uniformly from all -subsets of : 

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2 ̂∇f(w)

i 1,…, n

̂∇f(w) = ∇w(w⊤xi − yi)2

k B = {i1, …, ik} k 1,…, n

̂∇f(w) = ∇w
1
k

k

∑
j=1

(w⊤xij − yij)
2



Gradient Estimator
Unbiased Estimate of the Gradient

Let’s try to find the statistical properties of the gradient estimator… 

Estimand: . 

Estimator: Sample a single example  uniformly from  and take the gradient:  

. 

Bias: The randomness is over the uniform sample, so: 

 

∇f(w) =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2

i 1,…, n

̂∇f(w) = ∇w(w⊤xi − yi)2

𝔼[ ̂∇f(w)] =
n

∑
i=1

1
n

∇w(w⊤xi − yi)2 =
1
n

n

∑
i=1

∇w(w⊤xi − yi)2 ⟹ Bias( ̂∇f(w)) = 0

That’s exactly what we’re 
estimating!



Stochastic Gradient Descent
Single-sample SGD for OLS

x1-axis x2-axis f(x1, x2)-axis descent start

Make an initial guess . 

For  

Choose  uniformly at random. 

Compute: . 

w0

t = 1,2,3,…

i ∼ [n]

wt ← wt−1 − η∇w(w⊤xi − yi)2

Estimator of the gradient.

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html


Stochastic Gradient Descent
Single-sample SGD for OLS

x1-axis x2-axis f(x1, x2)-axis descent start

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

descent start

0.5

1

1.5

2

2.5

3

3.5

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html


Stochastic Gradient Descent
Minibatch SGD

x1-axis x2-axis f(x1, x2)-axis descent start

Make an initial guess . 

For  

Sample  indices  uniformly. 

Compute: 

. 

w0

t = 1,2,3,…

k B = {i1, …, ik}

wt ← wt−1 − η∇w
1
k

k

∑
j=1

(w⊤xij − yij)
2

Estimator of the gradient.
Still unbiased, but improves the variance!

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html


Stochastic Gradient Descent
Minibatch SGD

x1-axis x2-axis f(x1, x2)-axis descent start

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

descent start

0.5

1

1.5

2

2.5

3

3.5

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html


Bias vs. Variance 
Ridge Regression



Least Squares
OLS Theorem

Theorem (Ordinary Least Squares). Let  and 
. Let  be the least squares minimizer: 

 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d

y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y
x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Least Squares
Ridge Regression

Our goal will now be to minimize two objectives: 

 and . 

Writing this as an optimization problem: 

 

where  is a fixed tuning parameter.  

This optimization problem is known as ridge/Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2



Least Squares
Ridge Regression

Our goal will now be to minimize two objectives: 

 and . 

Writing this as an optimization problem: 

 

where  is a fixed tuning parameter.  

This optimization problem is known as ridge/
Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html


Least Squares
Ridge Regression

Our goal will now be to minimize two objectives: 

 and . 

Writing this as an optimization problem: 

 

where  is a fixed tuning parameter.  

This optimization problem is known as ridge/
Tikhonov/ -regularized regression.

∥Xw − y∥2 ∥w∥2

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

γ > 0

ℓ2
−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

unconstrained min. constrained min.

0

5

10

15

20

25

30

For bigger , bigger “constraint” ball!γ



Ridge Regression
Property: PSD to PD matrices

 

How do we solve this using the first and second order conditions? 

Property (Perturbing PSD matrices). Let  be a positive semidefinite matrix. Then, for 
any , the matrix  is positive definite. 

Proof. Let  be any vector.  

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

A ∈ ℝd×d

γ > 0 A + γI

v ∈ ℝd v⊤(A + γI)v = v⊤(Av + γv) = v⊤Av + γv⊤v

= v⊤Av
⏟

≥0

+ γ∥v∥2

>0 unless v=0.



Ridge Regression
First-order conditions

 

Take the gradient and set to : 

 

 

By property (perturbing PSD matrices),  is PD, so: 

.

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

0

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2γw

2X⊤Xw − 2X⊤y + 2γw = 0 ⟹ (X⊤X + γI)w = X⊤y

X⊤X + γI

w* = (X⊤X + γI)−1X⊤y



Least Squares
Solving ridge regression

 

Candidate minimizer: . 

Gradient:  

Taking the Hessian, 

, which is positive definite.  

Sufficient condition for optimality applies!

minimize
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

w* = (X⊤X + γI)−1X⊤y

∇w∥Xw − y∥2 + ∇w∥w∥2 = 2X⊤Xw − 2X⊤y + 2γw

∇2f(w) = X⊤X + γI



Ridge Regression
Theorem

Theorem (Ridge Regression). Let , , and . Then, 

 

has the form: 

 . 

To get predictions : 

. 

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y



Least Squares
Comparison with ridge solution

Theorem (Ridge Regression). Let , 
, and . Then, the ridge minimizer: 

 

has the form: 

 . 

To get predictions : 

. 

X ∈ ℝn×d

y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

Theorem (Ordinary Least Squares). Let 
 and . Let  be the least 

squares minimizer: 

 

If  and , then: 

 . 

To get predictions : 

.

X ∈ ℝn×d y ∈ ℝn ŵ ∈ ℝd

ŵ = arg min
w∈ℝd

∥Xw − y∥2

n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X)−1X⊤y



Random error model
Our main assumption on ℙx,y

, where  and  is independent of . 

, where  is a random vector. 

yi = x⊤
i w* + ϵi 𝔼[ϵi] = 0 ϵi xi

y = Xw* + ϵ ϵ ∈ ℝn

x yNature
ℙx,y



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 

, in the usual random error model. 

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and , so . 

Variance:  and . 

Parameter MSE:  = 

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w* Bias(ŵ) = 0

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = σ2𝔼[tr((X⊤X)−1)]



Mean Squared Error (MSE)
Analysis for Least Squares

For , the mean squared error is: 

 =  

by the bias-variance decomposition because .

ŵ = (X⊤X)−1X⊤y

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = σ2𝔼[tr((X⊤X)−1)]

Bias(ŵ) = 0



Mean Squared Error (MSE)
Eigendecomposition analysis

We know that  (the covariance matrix) is PSD, so it is diagonalizable: 

 

The inverse of the diagonal matrix : 

, so if  is small,  might blow up! 

X⊤X

X⊤X = VΛV⊤ ⟹ (X⊤X)−1 = V⊤Λ−1V .

Λ−1

Λ−1 =
1/λ1 … 0

⋮ ⋱ ⋮
0 … 1/λd

λi 𝔼[tr((X⊤X)−1)]



Mean Squared Error (MSE)
Analysis for Ridge Regression

For , the mean squared error is: 

 =  

 

ŵ = (X⊤X + γI)−1X⊤y

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = Bias(ŵ)2 + tr(Var(ŵ))

Bias(ŵ)2 = ∥𝔼[ŵ] − w*∥2 = ∥((X⊤X + γI)−1X⊤X − I)w*∥2

Var(ŵ) = σ2tr [𝔼 [(X⊤X + γI)−1X⊤X(X⊤X + γI)−1]]



Error in Ridge Regression
Eigendecomposition perspective

Ridge weights: . 

We know that  is positive semidefinite, so it is diagonalizable: 

 

The inverse of the diagonal matrix : 

, so  entries are never bigger than ! 

ŵ = (X⊤X + γI)−1X⊤y

X⊤X

X⊤X + γI = VΛV⊤ + V(γI)V⊤ ⟹ (X⊤X + γI)−1 = V⊤(Λ + γI)−1V .

(Λ + γI)−1

(Λ + γI)−1 =

1
λ1 + γ … 0

⋮ ⋱ ⋮
0 … 1

λd + γ

1
λi + γ

1
γ



Least Squares
Ridge Regression
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For lower , smaller “constraint” ball: higher bias 
but lower variance!

γ

Theorem (Ridge Regression). Let 
, , and . Then, 

 

has the form: 

 . 

To get predictions : 

. 

X ∈ ℝn×d y ∈ ℝn γ > 0

ŵ = arg min
w∈ℝd

∥Xw − y∥2 + γ∥w∥2

ŵ = (X⊤X + γI)−1X⊤y

ŷ ∈ ℝn

ŷ = Xŵ = X(X⊤X + γI)−1X⊤y

x1-axis x2-axis f(x1, x2)-axis unconstrained min. constrained min.

https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html


Regression 
Statistical analysis of risk



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 

, in the usual random error model. 

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and , so . 

Variance:  and . 

Parameter MSE:  = 

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w* Bias(ŵ) = 0

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = σ2𝔼[tr((X⊤X)−1)]

Almost what we want! This is a measure of “distance to ” but not its accuracy on a new example.w*



Regression
Setup, with randomness

Ultimate goal: Find  that generalizes on a new : 

 

Intermediary goal: Find  that does well on the training samples: 

 =   

This is what we’ve been doing!

̂f(x) := ŵ⊤x (x0, y0) ∼ ℙx,y

R( ̂f ) := R(ŵ) = 𝔼[(ŵ⊤x − y)2]

̂f(x) := ŵ⊤x

R̂( ̂f ) := R(ŵ) =
1
n

n

∑
i=1

(ŵ⊤xi − yi)2 1
n

∥Xŵ − y∥2

Note that this is different from the MSE!



Regression
Risk vs. MSE

This risk is how well  does on average on a new example with respect to squared error: 

 

This mean squared error (MSE) is how “far”  is from  on average: 

 =  

Conjecture: If , then maybe risk is just MSE plus “unavoidable randomness?”

ŵ

R(ŵ) = 𝔼[(ŵ⊤x − y)2]

ŵ w

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = σ2𝔼[tr((X⊤X)−1)]

y = x⊤w + ϵ



Statistical Analysis of Risk
Theorem Statement

Theorem (Risk of OLS). Let  be a joint distribution  defined by the error model: 

, 

where  and  is a random variable with  and , independent of . 
Suppose we construct a random matrix  and random vector  by drawing  
random examples  from  and  is the true covariance. 

Then, the OLS estimator  has risk: 

.

ℙx,y ℝd × ℝ

y = x⊤w* + ϵ

w* ∈ ℝd ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2 x
X ∈ ℝn×d y ∈ ℝn n

(xi, yi) ℙx,y Σ = 𝔼[x⊤x] = Var(x) ∈ ℝd×d

ŵ = (X⊤X)−1X⊤y

R(ŵ) = 𝔼[(ŵ⊤x − y)2] = σ2 + σ2𝔼[tr(Σ(X⊤X)−1)] ≈ σ2 +
σ2d
n

Notice similarity to MSE!This is “unavoidable” randomness from !ϵ
LLN:  as .(X⊤X)−1 ≈

1
n

Σ−1 n → ∞



Risk of OLS
 and d = 1 d = 2
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https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html


Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 
, in the usual random error model. 

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and , so . 

Variance:  and . 

Parameter MSE:  =  

Risk (w.r.t. squared error): .

ℙx,y ℝd × ℝ
y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w* Bias(ŵ) = 0

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = σ2𝔼[tr((X⊤X)−1)]

R(ŵ) = 𝔼[(ŵ⊤x − y)2] = σ2 + σ2𝔼[tr(Σ(X⊤X)−1)] ≈ σ2 +
σ2d
n



Recap 



Lesson Overview

Law of Large Numbers. The LLN allows us to move from probability to statistics (reasoning about an 
unknown data generating process using data from that process). 

Statistical estimators. We define a statistical estimator, which is a function of a collection of random variables 
(data) aimed at giving a “best guess” at some unknown quantity from some probability distribution. 

Bias, variance, and MSE. Two important properties of statistical estimators are their bias and variance, which 
are measures of how good the estimator is at guessing the target. These form the estimator’s MSE. 

Stochastic gradient descent (SGD). Gradient descent needs to take a gradient over all  training examples, 
which may be large; SGD estimates the gradient to speed up the process. 

Statistical analysis of OLS risk. We analyze the risk of OLS — how well it’s expected to do on future examples 
drawn from the same distribution it was trained on.

n



Lesson Overview
Big Picture: Least Squares
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https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html

