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Math for ML
Week 6.1: Central Limit Theorem, Distributions, and the MLE



Logistics & Announcements



Lesson Overview

Gaussian Distribution.  We define perhaps the most important “named” probability distribution, the 
Gaussian/“Normal” distribution, and go over some key properties. 

Central Limit Theorem. We state and prove the central limit theorem, the statement that the sample average 
of many independent random variables converges in distribution to the Gaussian. It doesn’t matter what 
distribution those random variables take! 

“Named” Distributions. We review other common “named” distributions for discrete and continuous 
random variables. 

Maximum likelihood estimation. We define maximum likelihood estimation (MLE), a statistical/probabalistic 
perspective towards finding a well-generalizing model for data. 

MLE and OLS. We explore the connection between MLE and OLS by defining the Gaussian error model. In 
this model, MLE and OLS correspond exactly, motivating our optimization problem another way.



Lesson Overview
Big Picture: Least Squares



Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html


Probability Distributions 
Review and Connection to Random Variables



Probability Spaces
Putting everything together

The sample space is the set of all possible outcomes: 

. 

The event space ( -algebra) is some collection of events: 

 

The probability measure is how we measure the “mass” of events: 

 for . 

A random variable on  is a function  
associating outcomes  to numbers in : 

Ω = {HH, TH, HT, TT}

σ

𝒜 = {∅, {HH}, {TT}, …, {HH, HT, TH, TT}}

ℙ(ω) = 1/4 ω ∈ Ω

(Ω, 𝒜, ℙ) X : Ω → ℝ
ω ∈ Ω ℝ

X(ω) = # of heads in ω

0

ℝ



Random Variables
Discrete Base Measure

0

ℝ

The probability measure is how we 
measure the “mass” of events (subsets). 

The measure assigning outcomes as 
equally likely in a discrete space is: 

 for . 

Random variables “distribute” this mass 
over all of ! 

ℙ(ω) = 1/ |Ω | = 1/4 ω ∈ Ω

ℝ



Random Variables
“Uncountable” Base Measure

The probability measure is how we 
measure the “mass” of events (subsets). 

The measure assigning outcomes as 
equally likely in uncountable  is: 

 for . 

Random variables “distribute” this mass 
over all of ! 

ℝ

ℙ([a, b]) = |b − a | [a, b] ⊆ ℝ

ℝ

0

ℝ

0

Ω = ℝ



Random Variables
Connection to distributions

So a random variable  describes a way of “distributing” mass from  to . 

If  is finite, this distribution is described by a probability mass function. 

If  is uncountably infinite, this distribution is described by a probability density function.

X : Ω → ℝ Ω ℝ

Ω

Ω

0

ℝ

0

ℝ

0

Ω = ℝ



The Gaussian Distribution 
Definition and Properties



The Gaussian Distribution
Intuition and Shape

The Gaussian/Normal distribution with parameters  and  has a “bell-shaped” PDF centered 
at  and “spread” depending on the parameter . 

μ σ
μ σ



The Gaussian Distribution
Standard Gaussian Definition

A RV  has a standard Gaussian/Normal distribution denoted  if it has PDF: 

, for all . 

This random variable has mean  and variance . 

Traditionally, standard Gaussians are denoted with , PDF , and CDF .

Z Z ∼ N(0,1)

pZ(z) =
1

2π
e−z2/2 z ∈ ℝ

𝔼[Z] = 0 Var(Z) = 1

Z ϕ(z) Φ(z)



The Gaussian Distribution
General Definition

A random variable  has a Gaussian/Normal distribution with parameters  and , denoted 
 if it has PDF: 

, for all . 

This random variable has mean  and variance .

X μ σ
X ∼ N(μ, σ2)

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2} x ∈ ℝ

𝔼[X] = μ Var(X) = σ2



The Gaussian Distribution
Properties of Gaussians

Standardization. If , then . As a result: 

 

Standard to general. If , then . 

Sums of Gaussians. If  for  are independent, then 

.

X ∼ N(μ, σ2) Z = (X − μ)/σ ∼ N(0,1)

ℙ(a < X < b) = ℙ ( a − μ
σ

< Z <
b − μ

σ )
= Φ ( b − μ

σ ) − Φ ( a − μ
σ )

Z ∼ N(0,1) X = μ + σZ ∼ N(μ, σ2)

Xi ∼ N(μi, σ2
i ) i = 1,…, n

n

∑
i=1

Xi ∼ N (
n

∑
i=1

μi,
n

∑
i=1

σ2
i )



Central Limit Theorem 
Intuition and Simulations



Statistical Estimation
Intuition

In probability theory, we assumed we knew some data generating process (as a distribution) 
, and we analyzed observed data under that process. 

. 

Statistics can be thought of as the “reverse process.” We see some data and we try to make 
inferences about the process that generated the data. 

 

In order to do so, we need to formalize the notion that “collecting a lot of data” gives us a peek 
at the underlying process!

ℙx

ℙx ⟹ x1, …, xn

x1, …, xn ⟹ ℙx



Law of Large Numbers
Theorem Statement

Theorem (Weak Law of Large Numbers). Let  be independent and identically 
distributed (i.i.d.) random variables with finite mean . Let their sample average be 
denoted as 

. 

Then, for any , 

.

X1, …, Xn
μ := 𝔼[Xi]

Xn :=
1
n

n

∑
i=1

Xi

ϵ > 0

lim
n→∞

ℙ ( |Xn − μ | < ϵ) = 1



Law of Large Numbers
Example: Mean Estimator for Coins

Example. Let  be a random variable denoting the 
outcome of a single fair coin toss, with  for tails and 

 for heads. Clearly, . 

Law of large numbers states that for any , no matter 
how small: 

 

But can we say something more about the distribution of 
the random variable ?

Xi
Xi = 0

Xi = 1 μ := 𝔼[Xi] = 1/2

ϵ > 0

lim
n→∞

ℙ( |Xn − 1/2 | < ϵ) = 1

Xn



Central Limit Theorem
Intuition



Central Limit Theorem
Experiment: Coin Tosses



Central Limit Theorem
Experiment: Coin Tosses



Central Limit Theorem
Experiment: Coin Tosses



Central Limit Theorem
Experiment: Die Rolls



Central Limit Theorem
Experiment: Die Rolls



Central Limit Theorem
Experiment: Die Rolls



Central Limit Theorem
Experiment: Drawing uniform real value



Central Limit Theorem
Experiment: Drawing uniform real value



Central Limit Theorem
Experiment: Drawing uniform real value



Convergence and MGFs 
Tools for CLT Proof



Moment Generating Function
Intuition

The moment generating function (MGF) packs all the “moment” information of a random 
variable  into the Taylor-expandable function . 

 

 

X etX

eX = 1 + X +
X2

2
+

X3

3!
+ …

etX = 1 + tX +
t2X2

2
+

t3X3

3!
+ …

𝔼[etX] = 1 + t𝔼[X] + t2 𝔼[X2]
2

+ t3 𝔼[X3]
3!

+ …



Moment Generating Function
Intuition
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The moment generating function (MGF) packs 
all the “moment” information of an RV  into the 
Taylor-expandable function . 

 

 

X
etX

eX = 1 + X +
X2

2
+

X3

3!
+ …

etX = 1 + tX +
t2X2

2
+

t3X3

3!
+ …

𝔼[etX] = 1 + t𝔼[X] + t2 𝔼[X2]
2

+ t3 𝔼[X3]
3!

+ …



Moment Generating Function
Definition

The moment generating function (MGF) of a random variable  is the function  defined: 

. 

If  is well-defined in an interval around , 

. 

Generally, the th derivative at  gives the th moment of :  

.

X MX : ℝ → ℝ

MX(t) := 𝔼[etX] = ∫ etxdFX(x)

MX t = 0

M′ X(0) = [ d
dt

𝔼[etX]]
t=0

= 𝔼 [ d
dt

etX]
t=0

= 𝔼[XetX]t=0 = 𝔼[X]

k t = 0 k X

M(k)(0) = 𝔼[Xk]



Moment Generating Function
Properties

Theorem (MGF characterizes distributions). Let  and  be random variables. If there exists some  
where  for all  in a neighborhood  around , then  and  have the same distribution: 

 and  for their CDFs  and . 

Theorem (MGF of Standard Normal). Let . The MGF of  exists and is given by: 

. 

Theorem (Sums of independent RVs). If  are independent random variables and , 

then  where  is the MGF of .

X Y δ ∈ ℝ
MX(t) = MY(t) t Bδ(0) 0 X Y

ℙX = ℙY FX(t) = FY(t) FX FY

Z ∼ N(0,1) Z

MZ(t) = et2/2

X1, …, Xn S =
n

∑
i=1

Xi

MS(t) =
n

∏
i=1

MXi
(t) MXi

(t) Xi



Central Limit Theorem 
Proof and Implications



Central Limit Theorem
Theorem Statement

Theorem (Central Limit Theorem). Let  be independent and identically distributed (i.i.d.) random variables with 
finite mean  and finite variance .  

Let their sample average be denoted as  and let their “standardized” average be: 

 

Then,  converge to  in distribution. That is, 

. 

Probability statements about  can be approximated using a Gaussian distribution!

X1, …, Xn
μ := 𝔼[Xi] σ2 := Var(Xi)

Xn :=
1
n

n

∑
i=1

Xi

Zn :=
Xn − μ

Var(Xn)
=

n(Xn − μ)
σ

Zn Z ∼ N(0,1)

lim
n→∞

ℙ(Zn ≤ z) = Φ(z) := ∫
z

−∞

1

2π
e−x2/2dx = ℙ(Z ≤ z)

Xn



Central Limit Theorem
Proof Sketch of CLT

Goal: Show the MGF of  approaches . 

Step 1: MGF property on sum of iid random variables to get an MGF for sample mean. 

Step 2: Second-order approximation of MGF using Taylor’s Theorem. 

Step 3: We have first and second order information (mean  and variance ), so plug 
into Taylor expansion. 

Step 4: Send  to show that Taylor’s Theorem remainder is small.

Zn := nXn/σ MZ(t) = et2/2

μ = 𝔼[X] σ2

n → ∞



The Gaussian Distribution
Properties of Gaussians

Standardization. If , then . As a result: 

 

Standard to general. If , then . 

Sums of Gaussians. If  for  are independent, then 

.

X ∼ N(μ, σ2) Z = (X − μ)/σ ∼ N(0,1)

ℙ(a < X < b) = ℙ ( a − μ
σ

< Z <
b − μ

σ )
= Φ ( b − μ

σ ) − Φ ( a − μ
σ )

Z ∼ N(0,1) X = μ + σZ ∼ N(μ, σ2)

Xi ∼ N(μi, σ2
i ) i = 1,…, n

n

∑
i=1

Xi ∼ N (
n

∑
i=1

μi,
n

∑
i=1

σ2
i )



Central Limit Theorem
Equivalent Approximations

For i.i.d. random variables , let: 

 

X1, …, Xn

Xn :=
1
n

n

∑
i=1

Xi

Zn :=
Xn − μ

Var(Xn)
=

n(Xn − μ)
σ

For large enough , the CLT statement allows 
the equivalent approximations… 

 

 

 

n

Xn ≈ N (μ,
σ2

n )
Xn − μ ≈ N (0,

σ2

n )
n(Xn − μ) ≈ N(0,σ2)

n(Xn − μ)
σ

≈ N(0,1)

⟹



Central Limit Theorem
Two Implications

 for large enough . 

This says three things: 

1. The mass of  centers to , the true mean of the i.i.d. random variables.  

2. The spread of draws from  gets smaller and smaller as  grows. 

3. The “shape” of this distribution is a bell-curve.

Xn ≈ N (μ,
σ2

n ) n

Xn μ

Xn n



Central Limit Theorem
Two Implications

 for large enough . 

This says three things: 

1. The mass of  centers to , the true mean of the 
i.i.d. random variables.  

2. The spread of draws from  gets smaller and 
smaller as  grows. 

3. The “shape” of this distribution is a bell-curve.

Xn ≈ N (μ,
σ2

n ) n

Xn μ

Xn
n



Central Limit Theorem
Two Implications

 for large enough . 

This says three things: 

1. The mass of  centers to , the true mean of the 
i.i.d. random variables.  

2. The spread of draws from  gets smaller and 
smaller as  grows. 

3. The “shape” of this distribution is a bell-curve.

Xn ≈ N (μ,
σ2

n ) n

Xn μ

Xn
n



Central Limit Theorem
Two Implications

 for large enough . 

This says three things: 

1. The mass of  centers to , the true mean of the 
i.i.d. random variables.  

2. The spread of draws from  gets smaller and 
smaller as  grows. 

3. The “shape” of this distribution is a bell-curve.

Xn ≈ N (μ,
σ2

n ) n

Xn μ

Xn
n



“Named” Distributions 
Discrete Examples



Discrete Distributions
Discrete Random Variables

A discrete random variable  takes on a finite or countably 
infinite number of values. 

CDF. . 

PMF.  and . 

PMF is the height of the “jump” of  at . 

PMF is nonnegative. 

PMF sums to . 

Expectation. .

X

FX(x) := ℙ(X ≤ x)

pX(x) = ℙ(X = x) ℙ(X ∈ A) = ∑
x∈A

ℙ(X = x)

FX x

1

𝔼(X) = ∑
x

xpX(x) = ∑
x

xℙ(X = x)

0

ℝ



Discrete Distributions
Discrete Random Variables

A discrete random variable  takes on a finite or countably 
infinite number of values. 

CDF. . 

PMF.  and . 

PMF is the height of the “jump” of  at . 

PMF is nonnegative. 

PMF sums to . 

Expectation. .

X

FX(x) := ℙ(X ≤ x)

pX(x) = ℙ(X = x) ℙ(X ∈ A) = ∑
x∈A

ℙ(X = x)

FX x

1

𝔼(X) = ∑
x

xpX(x) = ∑
x

xℙ(X = x)



The Point Mass Distribution
“Story” of the Distribution

A single point  has all the probability mass, every other point has zero mass. 

Example. Let  be a random variable putting all its mass on .

a ∈ ℝ

X a = 1



The Point Mass Distribution
Properties

 

Parameters: , the point mass. 

CDF:  

PMF:  

Mean: . 

Variance: . 

MGF: .

X ∼ δa

a ∈ ℝ

FX(x) = {0 x < a
1 x ≥ a

pX(x) = {1 x = a
0 x ≠ a

𝔼[X] = a

Var(X) = 0

MX(t) = eta



The Discrete Uniform Distribution
“Story” of the Distribution

Randomly choose an element in a finite set , with equal probability for each element. 

Example. Let  be the number on the roll of a fair, six-sided die.

S

X



The Discrete Uniform Distribution
Properties

 

Parameters: , the number of possible 
states, denoted . 

CDF:  

PMF:  

Mean: . 

Variance: . 

MGF: .

X ∼ Unif(k)

k ∈ ℕ
{1,2,…, k}

FX(x) =
⌊k⌋
n

pX(x) = {1/k x = 1,…, k
0 otherwise

𝔼[X] =
k + 1

2

Var(X) =
k2 − 1

12

MX(t) =
et(1 − ekt)
k(1 − et)



The Bernoulli Distribution
“Story” of the Distribution

Flip a coin that lands heads with probability  and tails with probability . 

Example. Let  denote the outcome of a presidential election with two candidates and a tie-
breaking mechanism, with  indicating Candidate A and  indicating Candidate B.

p 1 − p

X
1 0



The Bernoulli Distribution
Properties

 

Parameters: , the success 
probability. 

CDF:  

PMF:  

Mean: . 

Variance: . 

MGF: .

X ∼ Ber(p)

p ∈ [0,1]

FX(x) =
0 x < 0
1 − p 0 ≤ x < 1
1 x ≥ 1

pX(x) =
1 − p x = 0
p x = 1
0 otherwise

𝔼[X] = p

Var(X) = p(1 − p)

MX(t) = 1 − p + pet



The Binomial Distribution
“Story” of the Distribution

Flip  independent coins, each landing heads with probability  and tails with probability , 
and count the number of heads. 

Example. Consider an urn with  orange balls and  green balls. Let  count the total number 
of orange balls drawn after drawing  balls with replacement from the urn.

n p 1 − p

7 3 X
n = 10



The Binomial Distribution
Properties

 

Parameters: , the number 
of trials. , the success probability. 

CDF:  

PMF:  

Mean: . 

Variance: . 

MGF: .

X ∼ Bin(n, p)

n ∈ {0,1,2,…}
p ∈ [0,1]

FX(x) =
⌊x⌋

∑
i=0

(n
i ) pi(1 − p)n−i

pX(x) = (n
x) pk(1 − p)n−x

𝔼[X] = np

Var(X) = np(1 − p)

MX(t) = (1 − p + pet)n



The Geometric Distribution
“Story” of the Distribution

Flip coins, each landing heads with probability  and tails with probability , until you see 
your first head. How many trials occurred? 

Example. Let  be the number of rolls needed from repeatedly rolling a fair, six-sided die until 
 shows up.

p 1 − p

X
3



The Geometric Distribution
Properties

 

Parameters: , the success probability. 

CDF:  if ,  otherwise 

PMF:  

Mean: . 

Variance: . 

MGF:  for .

X ∼ Geom(p)

p ∈ [0,1]

FX(x) = 1 − (1 − p)⌊x⌋ x ≥ 1 0

pX(x) = {(1 − p)x−1p x ∈ {1,2,3,…, }
0 otherwise

𝔼[X] = 1/p

Var(X) =
1 − p

p2

MX(t) =
pet

1 − (1 − p)e2
t < − ln(1 − p)



The Poisson Distribution
“Story” of the Distribution

Count the number of rare, “memoryless” events in a fixed time interval, if the average number 
of events in that interval is . 

Example. Let  be the number of text messages you receive in a given hour if you receive an 
average of  messages per hour.  

Example. Let  count the number of times a raindrop hits a specific square inch in a minute, if 
that square inch receives an average of  drops per minute. 

Example. Let  count the number of V-2 missile impacts in Gravity’s Rainbow per kilometer 
squared per fortnight, where each  receives  hits per fortnight.

λ

X
λ = 3

X
λ = 10

X
km2 λ = 0.3



The Poisson Distribution
Properties

 

Parameters: , the success rate. 

CDF:  

PMF:  

Mean: . 

Variance: . 

MGF: .

X ∼ Pois(λ)

λ ∈ (0,∞)

FX(x) = e−λ
⌊x⌋

∑
j=0

λj

j!

pX(x) =
λke−λ

k!

𝔼[X] = λ

Var(X) = λ

MX(t) = exp(λ(et − 1))



“Named” Distributions 
Continuous Examples



Continuous Distributions
Continuous Random Variables

A continuous random variable  takes on an uncountably infinite 
number of values. The probability at any point  is . 

CDF. . 

PDF.  and . 

PDF is the derivative of . 

PDF is nonnegative and integrates to . 

PDF does not give probabilities at points. 

Expectation. .

X
x 0

FX(x) := ℙ(X ≤ x)

pX(x) = F′ (x) ℙ(X ∈ A) = ∫A
pX(x)dx

F

1

𝔼(X) = ∫
∞

−∞
xpX(x)dx

0

ℝ

0

Ω = ℝ



Continuous Distributions
Continuous Random Variables

A continuous random variable  takes on an uncountably infinite 
number of values. The probability at any point  is . 

CDF. . 

PDF.  and . 

PDF is the derivative of . 

PDF is nonnegative and integrates to . 

PDF does not give probabilities at points. 

Expectation. .

X
x 0

FX(x) := ℙ(X ≤ x)

pX(x) = F′ (x) ℙ(X ∈ A) = ∫A
pX(x)dx

F

1

𝔼(X) = ∫
∞

−∞
xpX(x)dx



The Uniform Distribution
“Story” of the Distribution

Draw a completely random number in the continuous interval from  to . 

Example. Let  be where you randomly break a stick of length  inches.

a b

X b = 20



The Uniform Distribution
Properties

 

Parameters: , the interval boundaries. 

CDF:  

PDF:  

Mean: . 

Variance: . 

MGF:  for  and .

X ∼ Unif(a, b)

−∞ < a < b < ∞

FX(x) =
0 x < a
x − a
b − a x ∈ [a, b]
1 x > b

pX(x) = {
1

b − a x ∈ [a, b]

0 otherwise

𝔼[X] =
1
2

(a + b)

Var(X) =
1
12

(b − a)2

MX(t) =
etb − eta

t(b − a)
t ≠ 0 MX(0) = 1



The Gaussian Distribution
“Story” of the Distribution

Draw a random number with probability distributed according to a “bell-shaped” curve. 

Example. Let  be the height of a human male.X



The Gaussian Distribution
Properties

 

Parameters:  and . 

CDF:  (no 

closed form) 

PDF:  

Mean: . 

Variance: . 

MGF: .

X ∼ N(μ, σ2)

μ ∈ ℝ σ2 ∈ ℝ>0

FX(x) = ∫
x

−∞
pX(x)dx = Φ ( x − μ

σ )
pX(x) =

1

2πσ2
e− (x − μ)2

2σ2

𝔼[X] = μ

Var(X) = σ2

MX(t) = exp(μt + σ2t2/2)



The Chi-squared Distribution
“Story” of the Distribution

Add up  independent, squared standard Gaussian random variables. 

Example. Let  be a random vector with independent entries  and 
. Then,  is a Chi-squared random variable with .

k

z = (z1, z2) z1 ∼ N(0,1)
z2 ∼ N(0,1) X = ∥z∥2 k = 2



The Chi-squared Distribution
Properties

 

Parameters: , the “degrees of freedom.” 

CDF:  (more complicated 
for ) 

PDF:  

Mean: . 

Variance: . 

MGF:  for .

X ∼ χ2(k)

k

FX(x; 2) = 1 − e−x/2

k ≠ 2

pX(x) =
xk/2−1e−x/2

2k/2 ∫∞
0 tk−1e−tdt

x > 0

0 otherwise

𝔼[X] = k

Var(X) = 2k

MX(t) = (1 − 2t)−k/2 t < 1/2



The Exponential Distribution
“Story” of the Distribution

The waiting time for a success in continuous time, where  is the rate at which successes arrive. 

Example. Let  be the time between receiving one text message and the next, where  is the 
rate of text messages per unit time.

λ

X λ



The Exponential Distribution
PDF, CDF, and MGF

 

Parameters: , the success rate. 

CDF:  

PDF:  

Mean: . 

Variance: . 

MGF:  for .

X ∼ Expo(λ)

λ > 0

FX(x) = 1 − e−λx

pX(x) = λe−λx

𝔼[X] = 1/λ

Var(X) = 1/λ2

MX(t) =
λ

λ − t
t < λ

With certain parameters, equivalent to Chi-squared with 2 degrees of freedom.



Maximum Likelihood Estimation 
Intuition and Definition



Statistical Estimator
Intuition

A (statistical) estimator is a “best guess” at some (unknown) quantity of interest (the estimand) 
using observed data. 

The quantity doesn’t have to be a single number; it could be, for example, a fixed vector, 
matrix, or function.

x yNature

θ* θ*
xNature



Statistical Estimator
Definition

Let  be  i.i.d. random variables drawn from some distribution  with parameter . 

An estimator  of some fixed, unknown parameter  is some function of : 

. 

Defined similarly for random vectors. 

Importantly: statistical estimators are functions of RVs, so they are themselves RVs!

X1, …, Xn n ℙX θ

̂θn θ X1, …, Xn

̂θn = g(X1, …, Xn)



Parametric Estimation vs. ERM
A different approach

Each row  for  is a random vector. Each  is a random variable. There exists 
an unknown joint distribution  over , where we draw: 

 iid. 

We then went on to minimize the empirical risk to get our model . 

. 

This uses no information about the distribution of the data (except iid)!

x⊤
i ∈ ℝd i ∈ [n] yi ∈ ℝ

ℙx,y ℝd × ℝ

(xi, yi) ∼ ℙx,y

f : ℝd → ℝ

R̂( f ) :=
1
n

n

∑
i=1

(yi − f(xi))2



Parametric Estimation
Intuition

Suppose we have a good guess at the distribution generating some i.i.d. data . 

“My data is probably generated from a Poisson distribution.” 

Then, we can restrict our attention to estimating a parametric model, a function  that 
depends on parameters  belonging to some parameter space . 

“Let’s estimate  in the PMF .” 

If our assumption is good, then a good estimate  of  might tell us everything we need to 
know about our data!

X1, …, Xn

p(x; θ)
θ = (θ1, …, θk) Θ ⊆ ℝk

λ ∈ ℝ p(x; λ) =
λke−λ

k!
̂θn θ



Parametric Estimation
Definition

A parametric model is a class of functions of the form: 

, 

where  is the parameter space and  are the model parameters.   

Example. The parameter space for the Gaussian distribution  is 

. 

Example. The parameter space for the Bernoulli distribution  is  

.

ℱ := {f(x; θ) : θ ∈ Θ}
Θ ⊆ ℝk θ = (θ1, …, θk)

N(μ, σ2)

Θ = {(μ, σ) : μ ∈ ℝ, σ > 0}

Ber(p)

Θ = {p : 0 ≤ p ≤ 1}



Maximum Likelihood Estimation
Intuition

One way to do parametric estimation given i.i.d. data  is maximum likelihood 
estimation. 

We assume that  are from a distribution with PDF  and parameter space . 

“Assume that the data come from a Gaussian with ” 

We consider the likelihood function which maps from parameters  to some positive number: 
the “likelihood” of those parameters explaining the data.

X1, …, Xn

X1, …, Xn p(x; θ) Θ ⊆ ℝk

p(x; μ, σ) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}

Θ



Maximum Likelihood Estimation
Intuition

One way to do parametric estimation given i.i.d. data 
 is maximum likelihood estimation. 

We assume that  are from a distribution with PDF 
 and parameter space . 

“Assume that the data come from a Gaussian with 

” 

We consider the likelihood function which maps from 
parameters  to some positive number: the “likelihood” of 
those parameters explaining the data.

X1, …, Xn

X1, …, Xn
p(x; θ) Θ ⊆ ℝk

p(x; μ, σ) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}

Θ



Maximum Likelihood Estimation
Intuition

One way to do parametric estimation given i.i.d. data  is maximum likelihood 
estimation. 

We assume that  are from a distribution with PDF  and parameter space . 

“Assume that the data come from a Poisson distribution with ” 

We consider the likelihood function which maps from parameters  to some positive number: 
the “likelihood” of those parameters explaining the data.

X1, …, Xn

X1, …, Xn p(x; θ) Θ ⊆ ℝk

pX(x) =
λke−λ

k!

Θ



Maximum Likelihood Estimation
Definition

Consider the parametric model 

. 

Let  be i.i.d. random variables (or random vectors ). The likelihood function is 
the function  defined by: 

. 

Note that  are fixed here, so this is just a function of . 

“How well does  describe my data ?”

ℱ := {f(x; θ) : θ ∈ Θ}
X1, …, Xn x1, …, xn

Ln : Θ → [0,∞)

Ln(θ) :=
n

∏
i=1

f(Xi; θ)

X1, …, Xn θ

θ X1, …, Xn



Maximum Likelihood Estimation
Why log-likelihood?

The log-likelihood function is the function defined by: 

. 

The maximum likelihood estimator  is the value of  that maximizes .  

. 

 

 is a monotonic function, so the maximizer of  corresponds to the maximizer of .

ℒn(θ) := log Ln(θ) =
n

∑
i=1

log f(Xi; θ)

̂θMLE θ Ln(θ)

̂θMLE = arg max
θ

Ln(θ) = arg max
θ

ℒn(θ)

̂θMLE = arg min
θ

− Ln(θ) = arg min
θ

− ℒn(θ)

log( ⋅ ) log f f



MLE for Bernoulli
Step 1: Write down likelihood function

Example. Suppose , so our parametric model is: 

 

. The unknown parameter  is . 

Likelihood function. The likelihood function is 

. 

Denote , and the likelihood function is: 

X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1} θ p

Ln(θ) = Ln(p) =
n

∏
i=1

f(Xi; p) =
n

∏
i=1

pXi(1 − p)1−Xi = p ∑n
i=1 Xi(1 − p)n−∑n

i=1 Xi

S :=
n

∑
i=1

Xi

Ln(p) = pS(1 − p)n−S



MLE for Bernoulli
Step 2: Simplify using log-likelihood

Example. Suppose , so our parametric model is: 

 

. The unknown parameter  is . 

Likelihood function. Denote , and the likelihood function is: 

 

Log-likelihood function. The log-likelihood is 

. Now optimize this with respect to !

X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1} θ p

S :=
n

∑
i=1

Xi

Ln(p) = pS(1 − p)n−S

ℒn(p) = S log p + (n − S)log(1 − p) p



MLE for Bernoulli
Step 3: Optimize log-likelihood using calculus

Example. Suppose , so our parametric model is: 

 

. The unknown parameter  is . 

Optimizing the negative log-likelihood. We need to solve the optimization problem: 

.  

First order condition: . 

Solving for , we get: .

X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1} θ p

minimize
p∈[0,1]

− ℒn(p) = − S log p + (S − n)log(1 − p)

∇pℒn(p) = −
S
p

−
S − n
1 − p

= 0

p ̂pMLE =
S
n

=
1
n

n

∑
i=1

Xi



Maximum Likelihood Estimation
Example: Bernoulli

Example. Suppose , so our 
parametric model is: 

 

. The unknown parameter  is . 

The likelihood function is: 

 

The maximum likelihood estimator of the estimand  is: 

.

X1, …, Xn ∼ Ber(p)

ℱ = {f(x; p) = px(1 − p)1−x : p ∈ [0,1]}
Θ = {p : 0 ≤ p ≤ 1} θ p

Ln(p) = p ∑n
i=1 Xi(1 − p)n−∑n

i=1 Xi

p

̂pMLE =
S
n

=
1
n

n

∑
i=1

Xi



Maximum Likelihood Estimation
Properties of the MLE

Under certain conditions on the statistical model with true parameter , the MLE is… 

Consistent. As , the MLE  satisfies . 

Equivariant. If  is the MLE of , then  is the MLE of . 

Asymptotically Normal. The random variable , where  is an estimate 
of the standard error. 

Asymptotically optimal. Among all “well-behaved” estimators, the MLE has the smallest 
variance when . 

θ

n → ∞ ̂θMLE ℙ[ | ̂θMLE − θ | > ϵ] → 0

̂θMLE θ g( ̂θMLE) g(θ)

( ̂θ − θ)/ ̂SE →D N(0,1) ̂SE

n → ∞



Gaussian Error Model 
Further assumption on regression model



Random error model
Our main assumption on ℙx,y

, where  and  is independent of  with variance . 

, where  is a random vector with covariance matrix . 

yi = x⊤
i w* + ϵi 𝔼[ϵi] = 0 ϵi xi Var(ϵi) = σ2

y = Xw* + ϵ ϵ ∈ ℝn Var(ϵ) = σ2I

x yNature
ℙx,y



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 
, in the usual random error model. 

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and , so . 

Variance:  and . 

Parameter MSE:  =  

Risk (w.r.t. squared error): .

ℙx,y ℝd × ℝ
y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w* Bias(ŵ) = 0

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = σ2𝔼[tr((X⊤X)−1)]

R(ŵ) = 𝔼[(ŵ⊤x − y)2] = σ2 + σ2𝔼[tr(Σ(X⊤X)−1)] ≈ σ2 +
σ2d
n



Random error model
Our main assumption on ℙx,y

, where  and  is independent of  with variance . 

, where  is a random vector with covariance matrix . 

We can think of  as the randomness from the “unexplained” errors in modeling the 
relationship of  to  with a linear model . Possibly very complex!

yi = x⊤
i w* + ϵi 𝔼[ϵi] = 0 ϵi xi Var(ϵi) = σ2

y = Xw* + ϵ ϵ ∈ ℝn Var(ϵ) = σ2I

ϵ
y x w* ∈ ℝd

x yNature
ℙx,y



Gaussian Error Model
Motivation

We can think of  as the randomness from the “unexplained” errors in modeling the 
relationship of  to  with a linear model . Possibly very complex! 

CLT: The distribution of the average of many random variables eventually looks Gaussian. 
Observable processes in Nature often arise from the sum of many “small contributions.”

ϵ
y x w* ∈ ℝd



Random error model
Adding Gaussian assumption on ϵ

, where  and  is independent of . 

, where  is a Gaussian random vector with covariance matrix . 

We can think of  as the randomness from the “unexplained” errors in modeling the 
relationship of  to  with a linear model . Possibly very complex!

yi = x⊤
i w* + ϵi ϵi ∼ N(0,σ2) ϵi xi

y = Xw* + ϵ ϵ ∈ ℝn Var(ϵ) = σ2I

ϵ
y x w* ∈ ℝd

x yNature
ℙx,y



Gaussian Error Model
 and  cased = 1 d = 2
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https://samuel-deng.github.io/math4ml_su24/assets/figs/regression_noise.html


OLS and MLE  
Equivalence under Gaussian errors



Random error model
Adding Gaussian assumption on ϵ

, where  and  is independent of . 

, where  is a Gaussian random vector with covariance matrix . 

We can think of  as the randomness from the “unexplained” errors in modeling the 
relationship of  to  with a linear model . Possibly very complex!

yi = x⊤
i w* + ϵi ϵi ∼ N(0,σ2) ϵi xi

y = Xw* + ϵ ϵ ∈ ℝn Var(ϵ) = σ2I

ϵ
y x w* ∈ ℝd

x yNature
ℙx,y



Problem Setup
Parametric Model

 

 with  and  all independent of  and each other. 

This defines a parametric model on the conditional distribution , with parameters
, with PDF: 

.

yi = x⊤
i w* + ϵi

ϵi ∼ N(0,σ2) 𝔼[ϵi] = 0 Var(ϵi) = σ2 x

ℙy∣x
θ = (w*, σ)

p(y ∣ x; w*, σ) =
1

σ 2π
exp {−(y − x⊤w*)2/2σ2}



Problem Setup
Log-Likelihood Function

Parametric model with parameters  and : 

. 

Given i.i.d. data , the likelihood function is given by: 

 

w* σ

p(y ∣ x; w*, σ) =
1

σ 2π
exp {−(y − x⊤w*)2/2σ2}

(x1, y1), …, (xn, yn)

Ln(w*, σ) =
n

∏
i=1

p(yi ∣ xi; w*, σ) = ( 1

σ 2π )
n n

∏
i=1

exp {−(yi − x⊤
i w*)2/2σ2}

ℒn(w*, σ) = log Ln(w*, σ) = n log ( 1

σ 2π ) −
n

∑
i=1

(yi − x⊤
i w*)2

2σ2



Finding the MLE
Solving the MLE Optimization Problem

The log-likelihood function is given by: 

 

We want to optimize and solve this for the estimand  (we don’t care about estimating ). To 
get , we solve the optimization problem: 

ℒn(w, σ) = log Ln(w, σ) = n log ( 1

σ 2π ) −
n

∑
i=1

(yi − x⊤
i w)2

2σ2

w σ
ŵMLE

maximize
w∈ℝd

ℒn(w) = n log ( 1

σ 2π ) −
n

∑
i=1

(yi − x⊤
i w)2

2σ2



Finding the MLE
Solving the MLE Optimization Problem

The log-likelihood function is given by: 

 

We want to optimize and solve this for the estimand  (we don’t care about estimating ). To 
get , we solve the optimization problem: 

ℒn(w, σ) = log Ln(w, σ) = n log ( 1

σ 2π ) −
n

∑
i=1

(yi − x⊤
i w)2

2σ2

w σ
ŵMLE

minimize
w∈ℝd

− ℒn(w) = − n log ( 1

σ 2π ) +
n

∑
i=1

(yi − x⊤
i w)2

2σ2



Finding the MLE
Solving the MLE Optimization Problem

. 

In matrix-vector form, this is the same as the optimization problem: 

. 

But  is just a constant, so this is equivalent to OLS! 

minimize
w∈ℝd

n

∑
i=1

(yi − x⊤
i w)2

2σ2
=

1
2σ2

n

∑
i=1

(yi − x⊤
i w)2

minimize
w∈ℝd

1
2σ2

∥Xw − y∥2

1/2σ2

minimize
w∈ℝd

∥Xw − y∥2



OLS and MLE
Theorem Statement

Theorem (OLS and MLE). Suppose that  are i.i.d. samples in  with 
conditional distribution  defined by: 

, 

where  and each  is independent. Let  and  contain all the i.i.d. 
samples. Then, the maximum likelihood estimate (MLE)  of the parameter  is given by 
the OLS estimator: 

.

(x1, y1), …, (xn, yn) ℝd × ℝ
ℙy∣x

yi = x⊤
i w* + ϵ

ϵi ∼ N(0,σ2) ϵi X ∈ ℝn×d y ∈ ℝn

ŵMLE w*

ŵMLE = (X⊤X)−1X⊤y



OLS and MLE
Theorem Statement

Theorem (OLS and MLE). Suppose that 
 are i.i.d. samples in  

with conditional distribution  defined by: 

, 

where  and each  is independent. 
Let  and  contain all the i.i.d. 
samples. Then, the maximum likelihood estimate 
(MLE)  of the parameter  is given by the 
OLS estimator: 

.

(x1, y1), …, (xn, yn) ℝd × ℝ
ℙy∣x

yi = x⊤
i w* + ϵ

ϵi ∼ N(0,σ2) ϵi
X ∈ ℝn×d y ∈ ℝn

ŵMLE w*

ŵMLE = (X⊤X)−1X⊤y



OLS and MLE
Theorem Statement

Theorem (OLS and MLE). Suppose that 
 are i.i.d. samples in  

with conditional distribution  defined by: 

, 

where  and each  is independent. 
Let  and  contain all the i.i.d. 
samples. Then, the maximum likelihood estimate 
(MLE)  of the parameter  is given by the 
OLS estimator: 

.

(x1, y1), …, (xn, yn) ℝd × ℝ
ℙy∣x

yi = x⊤
i w* + ϵ

ϵi ∼ N(0,σ2) ϵi
X ∈ ℝn×d y ∈ ℝn

ŵMLE w*

ŵMLE = (X⊤X)−1X⊤y



Recap 



Lesson Overview

Gaussian Distribution.  We define perhaps the most important “named” probability distribution, the 
Gaussian/“Normal” distribution, and go over some key properties. 

Central Limit Theorem. We state and prove the central limit theorem, the statement that the sample average 
of many independent random variables converges in distribution to the Gaussian. It doesn’t matter what 
distribution those random variables take! 

“Named” Distributions. We review other common “named” distributions for discrete and continuous 
random variables. 

Maximum likelihood estimation. We define maximum likelihood estimation (MLE), a statistical/probabalistic 
perspective towards finding a well-generalizing model for data. 

MLE and OLS. We explore the connection between MLE and OLS by defining the Gaussian error model. In 
this model, MLE and OLS correspond exactly, motivating our optimization problem another way.



Lesson Overview
Big Picture: Least Squares



Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html

