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Week 6.2: Multivariate Gaussian Distribution



Logistics & Announcements



Lesson Overview

OLS under Gaussian Error Model. The distribution of  under the Gaussian error model is 
itself multivariate normal. 

Multivariate Gaussian/Normal (MVN) Distribution PDF. We define the multivariate Gaussian/normal 
distribution and study some simple examples. 

Factorization of the Multivariate Gaussian. We see that a multivariate Gaussian with a diagonal covariance 
matrix factors into independent Gaussians. 

Geometry of the Multivariate Gaussian. We study the geometry of the multivariate Gaussian through its level 
curves and discover the it is ellipsoidal, with axes determined by the eigenvectors/eigenvalues of the 
covariance matrix. 

Affine Transformations of the Multivariate Gaussian. We establish that any multivariate Gaussian is just an 
affine transformation away from the standard multivariate Gaussian.

ŵ = (X⊤X)−1X⊤y



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/ols_distribution_d2.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html


OLS under Gaussian Errors 
Intuition and Definition



Random error model
Adding Gaussian assumption on ϵ

, where  and  is independent of . 

, where  is a Gaussian random vector with covariance matrix . 

We can think of  as the randomness from the “unexplained” errors in modeling the 
relationship of  to  with a linear model . Possibly very complex!

yi = x⊤
i w* + ϵi ϵi ∼ N(0,σ2) ϵi xi

y = Xw* + ϵ ϵ ∈ ℝn Var(ϵ) = σ2I

ϵ
y x w* ∈ ℝd

x yNature
ℙx,y



OLS and MLE
Theorem Statement

Theorem (OLS and MLE). Suppose that 
 are i.i.d. samples in  

with conditional distribution  defined by: 

, 

where  and each  is independent. 
Let  and  contain all the i.i.d. 
samples. Then, the maximum likelihood estimate 
(MLE)  of the parameter  is given by the 
OLS estimator: 

.

(x1, y1), …, (xn, yn) ℝd × ℝ
ℙy∣x

yi = x⊤
i w* + ϵ

ϵi ∼ N(0,σ2) ϵi
X ∈ ℝn×d y ∈ ℝn

ŵMLE w*

ŵMLE = (X⊤X)−1X⊤y



Statistics of OLS
Theorem

Theorem (Statistical properties of OLS). Let  be a joint distribution  such that 
, in the usual random error model. 

Then, the OLS estimator  has the following statistical properties: 

Expectation:  and , so . 

Variance:  and . 

Parameter MSE:  =  

Risk (w.r.t. squared error): .

ℙx,y ℝd × ℝ
y = x⊤w* + ϵ

ŵ = (X⊤X)−1X⊤y

𝔼[ŵ ∣ X] = w* 𝔼[ŵ] = w* Bias(ŵ) = 0

Var[ŵ ∣ X] = (X⊤X)−1σ2 Var[ŵ] = σ2𝔼[(X⊤X)−1]

MSE(ŵ) 𝔼[∥ŵ − w*∥2] = σ2𝔼[tr((X⊤X)−1)]

R(ŵ) = 𝔼[(ŵ⊤x − y)2] = σ2 + σ2𝔼[tr(Σ(X⊤X)−1)] ≈ σ2 +
σ2d
n

What if we assume Gaussian errors here?



Random error model
Adding Gaussian assumption on ϵ

, where  and  is independent of . 

, where  is a Gaussian random vector with covariance matrix . 

We can think of  as the randomness from the “unexplained” errors in modeling the 
relationship of  to  with a linear model . Possibly very complex!

yi = x⊤
i w* + ϵi ϵi ∼ N(0,σ2) ϵi xi

y = Xw* + ϵ ϵ ∈ ℝn Var(ϵ) = σ2I

ϵ
y x w* ∈ ℝd

x yNature
ℙx,y



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ? 

In matrix-vector form, our Gaussian error model looks like: 

, 

where , , and  where . Condition on . We can rewrite  as: 

ŵ = (X⊤X)−1X⊤y

y = Xw* + ϵ

y ∈ ℝn X ∈ ℝn×d ϵ ∈ ℝn ϵi ∼ N(0,σ2) X ŵ

ŵ = (X⊤X)−1X⊤ (Xw* + ϵ)
= (X⊤X)−1X⊤Xw* + (X⊤X)−1X⊤ϵ
= w* + (X⊤X)−1X⊤ϵ



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ? 

Therefore,  can be expressed as: 

. 

With  fixed, this is a function of the random vector . 

We will show: If  is a Gaussian random vector, then all affine transformations  
(where  and ) of  are also Gaussian random vectors. 

Therefore: .

ŵ = (X⊤X)−1X⊤y

ŵ

ŵ = w* + (X⊤X)−1X⊤ϵ

X ϵ ∈ ℝn

x ∈ ℝn Ax + b
A ∈ ℝd×n b ∈ ℝd x

ŵ ∼ N(𝔼[ŵ ∣ X], Var(ŵ ∣ X))



Statistics of OLS
Under Gaussian Error Model

Question: What is the distribution of ? 

So  is multivariate Gaussian: . 

What’s ? Because  and  is fixed, . 

What’s , the covariance matrix? Already showed: . 

Therefore, .

ŵ = (X⊤X)−1X⊤y

ŵ ŵ ∼ N(𝔼[ŵ ∣ X], Var(ŵ ∣ X))

𝔼[ŵ ∣ X] 𝔼[ϵ ∣ X] = 0 w* 𝔼[ŵ ∣ X] = w*

Var[ŵ ∣ X] Var[ŵ ∣ X] = (X⊤X)−1σ2

ŵ ∼ N(w*, (X⊤X)−1σ2)



Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under Gaussian errors). Let  be a joint distribution 
 defined by the error model: , where  and  is a random variable 

with  and , independent of , with each . 

Suppose we construct a random matrix  and random vector  by drawing  iid 
examples  from . Then, the OLS estimator  has a multivariate 
Gaussian distribution: 

.

ℙx,y
ℝd × ℝ y = x⊤w* + ϵ w* ∈ ℝd ϵ

𝔼[ϵ] = 0 Var(ϵ) = σ2 x ϵ ∼ N(0,σ2)

X ∈ ℝn×d y ∈ ℝn n
(xi, yi) ℙx,y ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)



Statistics of OLS
Theorem Statement
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Theorem (Statistical properties of OLS under 
Gaussian errors). Let  be a joint distribution 

 defined by the Gaussian random error 
model. 

Then, the OLS estimator  has a 
multivariate Gaussian distribution: 

.

ℙx,y
ℝd × ℝ

ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)



Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under Gaussian 
errors). Let  be a joint distribution  defined 
by the error model: , where  and 
 is a random variable with  and , 

independent of , with each . 

Suppose we construct a random matrix  and 
random vector  by drawing  iid examples 

 from . Then, the OLS estimator 
 has a multivariate Gaussian 

distribution: 

.

ℙx,y ℝd × ℝ
y = x⊤w* + ϵ w* ∈ ℝd

ϵ 𝔼[ϵ] = 0 Var(ϵ) = σ2

x ϵ ∼ N(0,σ2)

X ∈ ℝn×d

y ∈ ℝn n
(xi, yi) ℙx,y
ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)



Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under 
Gaussian errors). Let  be a joint distribution 

 defined by the Gaussian random error 
model. 

Then, the OLS estimator  has 
a multivariate Gaussian distribution: 

.

ℙx,y
ℝd × ℝ

ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)
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https://samuel-deng.github.io/math4ml_su25/assets/figs/regression_noise.html


Statistics of OLS
Theorem Statement

Theorem (Statistical properties of OLS under 
Gaussian errors). Let  be a joint distribution 

 defined by the Gaussian random error 
model. 

Then, the OLS estimator  has 
a multivariate Gaussian distribution: 

.

ℙx,y
ℝd × ℝ

ŵ = (X⊤X)−1X⊤y

ŵ ∼ N(w*, σ2(X⊤X)−1)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/ols_distribution_d2.html


Single-variable Gaussian 
Review and Intuition



The Gaussian Distribution
Intuition and Shape

The Gaussian/Normal distribution with parameters  and  has a “bell-shaped” PDF centered 
at  and “spread” depending on the parameter . 

μ σ
μ σ



The Gaussian Distribution
Standard Gaussian Definition

A RV  has a standard Gaussian/Normal distribution denoted  if it has PDF: 

, for all . 

This random variable has mean  and variance . 

Traditionally, standard Gaussians are denoted with , PDF , and CDF .

Z Z ∼ N(0,1)

pZ(z) =
1

2π
e−z2/2 z ∈ ℝ

𝔼[Z] = 0 Var(Z) = 1

Z ϕ(z) Φ(z)



The Gaussian Distribution
General Definition

A random variable  has a Gaussian/Normal distribution with parameters  and , denoted 
 if it has PDF: 

, for all . 

This random variable has mean  and variance .

X μ σ
X ∼ N(μ, σ2)

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2} x ∈ ℝ

𝔼[X] = μ Var(X) = σ2



PDF of the Gaussian
Intuition

 pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}



PDF of the Gaussian
Intuition

 

The argument of  is a quadratic function: 

. 

The coefficient doesn’t depend on ; it’s a 
normalizing constant: 

.

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}
exp( ⋅ )

−
1

2σ2
(x − μ)2

x

1

σ 2π



Multivariate Gaussian 
Intuition and Definition



Single-variable to Multivariable
Comparison

 

 is a quadratic form. 

 is a normalizing constant. 

p(x) =
1

det(Σ)1/2(2π)n/2
exp {−

1
2

(x − μ)⊤Σ−1(x − μ)}
1
2

(x − μ)⊤Σ−1(x − μ)

1
det(Σ)1/2(2π)n/2

 

 is a quadratic function. 

 is a normalizing constant. 

pX(x) =
1

σ 2π
exp {−

1
2σ2

(x − μ)2}
−

1
2σ2

(x − μ)2

1

σ 2π



Single-variable to Multivariable
Comparison

 

 is a quadratic form. 

 is positive definite,  is also positive definite. 

Therefore, . 

Therefore, .

p(x) =
1

det(Σ)1/2(2π)n/2
exp {−

1
2

(x − μ)⊤Σ−1(x − μ)}
1
2

(x − μ)⊤Σ−1(x − μ)

Σ Σ−1

(x − μ)⊤Σ−1(x − μ) > 0

1
2

(x − μ)⊤Σ−1(x − μ) < 0

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html


Multivariate Gaussian
Definition

A random vector  has the multivariate Gaussian/Normal distribution, 
denoted  if it has the density: 

 

where  is the determinant of , a positive definite matrix covariance matrix, and 
 is the mean .

x = (x1, …, xd) ∈ ℝd

x ∼ N(μ, Σ)

p(x) =
1

det(Σ)1/2(2π)n/2
exp {−

1
2

(x − μ)⊤Σ−1(x − μ)}
det(Σ) Σ ∈ ℝd×d

μ ∈ ℝd 𝔼[x]



Standard Multivariate Gaussian
Definition

A random vector  has the standard multivariate Gaussian/Normal 
distribution, denoted  if it has the density: 

.

x = (z1, …, zd) ∈ ℝd

x ∼ N(0, I)

p(z) =
1

(2π)n/2
exp {−

1
2

z⊤z}



Standard Multivariate Gaussian
Definition

x1-axis x2-axis f(x1, x2)-axis

A random vector  has the 
standard multivariate Gaussian/Normal distribution, 
denoted  if it has the density: 

.

x = (z1, …, zd) ∈ ℝd

x ∼ N(0, I)

p(z) =
1

(2π)n/2
exp {−

1
2

z⊤z}

https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_I.html


Multivariate Gaussian
Example: N(0, I)
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https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_I.html


Multivariate Gaussian
Example: N(0, I)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_I.html


Multivariate Gaussian
Example: N(0, Σ)

x1-axis x2-axis f(x1, x2)-axis

−4 −2 0 2 4

−4

−2

0

2

4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_Diag.html


Multivariate Gaussian
Example: N(0, Σ)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_Diag.html


Multivariate Gaussian
Example: N(μ, Σ)

x1-axis x2-axis f(x1, x2)-axis
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https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_Sig_mu.html


Multivariate Gaussian
Example: N(μ, Σ)

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_Sig_mu.html


Multivariate Gaussian 
Diagonal Covariance and Factorization



Covariance of the MVN
Simple  Cased = 2

Consider the  case where  is diagonal: 

. 

What does the MVN density look like? 

d = 2 Σ ∈ ℝ2×2

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]

p(x) =
1

2πdet(Σ)1/2
exp −

1
2 [x1 − μ1

x2 − μ2]
⊤

[σ2
1 0

0 σ2
2]

−1

[x1 − μ1
x2 − μ2]



Determinant of  Matrix2 × 2
Quick Definition

For a matrix  written as 

, 

the determinant of  is the scalar quantity: 

.

A ∈ ℝ2×2

A = [a11 a12
a21 a22]

A

det(A) = a11a22 − a12a21



Determinant of Covariance Matrix
Applied to MVN

For a covariance matrix  written as 

, 

the determinant of  is the scalar quantity: 

.

Σ ∈ ℝ2×2

Σ = [σ2
1 0

0 σ2
2]

Σ

det(Σ) = σ2
1σ2

2



Covariance of the MVN
Simple  Cased = 2

. 

What does the MVN density look like? 

 

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]

p(x) =
1

2πdet(Σ)1/2
exp −

1
2 [x1 − μ1

x2 − μ2]
⊤

[σ2
1 0

0 σ2
2]

−1

[x1 − μ1
x2 − μ2]

⟹ p(x) =
1

2πσ1σ2
exp −

1
2 [x1 − μ1

x2 − μ2]
⊤

[1/σ2
1 0

0 1/σ2
2] [x1 − μ1

x2 − μ2]



Covariance of the MVN
Simple  Cased = 2

 

Multiplying out the quadratic form… 

⟹ p(x) =
1

2πσ1σ2
exp −

1
2 [x1 − μ1

x2 − μ2]
⊤

[1/σ2
1 0

0 1/σ2
2] [x1 − μ1

x2 − μ2]

⟹ p(x) =
1

2πσ1σ2
exp (−

1
2σ2

1
(x1 − μ1)2 −

1
2σ2

2
(x2 − μ2)2)

=
1

σ1 2π
exp (−

1
2σ2

1
(x1 − μ1)2) ⋅

1

σ2 2π
exp (−

1
2σ2

2
(x2 − μ2)2)



Covariance of the MVN
Simple  Cased = 2

 

But this is just the product of two independent Gaussians! 

, where  and .

⟹ p(x) =
1

2πσ1σ2
exp (−

1
2σ2

1
(x1 − μ1)2 −

1
2σ2

2
(x2 − μ2)2)

=
1

σ1 2π
exp (−

1
2σ2

1
(x1 − μ1)2) ⋅

1

σ2 2π
exp (−

1
2σ2

2
(x2 − μ2)2)

p(x) = p(x1) ⋅ p(x2) x1 ∼ N(μ1, σ2
1) x2 ∼ N(μ2, σ2

2)



Factorization of the MVN
Theorem Statement

Theorem (Factorization of MVN). Let  be a multivariate Gaussian 
random vector, where  is a diagonal matrix and . Then, each 
coordinate  of  is an independent single-variable Gaussian random variable, with: 

, 

and the PDF of  factorizes into  marginal single-variable Gaussian PDFs: 

.

x = (x1, …, xd) ∼ N(μ, Σ)
Σ = diag(σ2

1 , …, σ2
d) μ = (μ1, …, μd)

xi x

xi ∼ N(μi, σ2
i )

x d

p(x) =
d

∏
i=1

1

σi 2π
exp (−

1
2σ2

i
(xi − μi)2)



Factorization of the MVN
Theorem Statement

x1
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Theorem (Factorization of MVN). Let  
be a multivariate Gaussian random vector, where 

 is a diagonal matrix and . 
Then, each coordinate  of  is an independent single-
variable Gaussian random variable, with: 

, 

and the PDF of  factorizes into  marginal single-variable 
Gaussian PDFs: 

.

x = (x1, …, xd) ∼ N(μ, Σ)

Σ = diag(σ2
1 , …, σ2

d) μ = (μ1, …, μd)
xi x

xi ∼ N(μi, σ2
i )

x d

p(x) =
d

∏
i=1

1

σi 2π
exp (−

1
2σ2

i
(xi − μi)2)



Multivariate Gaussian 
Contours and Geometry



Level Curves
Intuition and Definition

For a function , the level curves or isocontours of  at  is the set of the form: 

. 

f : ℝd → ℝ f c ∈ ℝ

Lf(c) := {x ∈ ℝd : f(x) = c}
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Geometry of MVN
Simple  Cased = 2

 

 

What are the level curves at some ?  

Solve for: .

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]

p(x) =
1

2πσ1σ2
exp (−

1
2σ2

1
(x1 − μ1)2 −

1
2σ2

2
(x2 − μ2)2)
c

p(x) = c



Geometry of MVN
Simple  Cased = 2

 

 

Using some algebra, we can show that  when… 

, where .

x = [x1
x2] μ = [μ1

μ2] Σ = [σ2
1 0

0 σ2
2]

p(x) =
1

2πσ1σ2
exp (−

1
2σ2

1
(x1 − μ1)2 −

1
2σ2

2
(x2 − μ2)2)

p(x) = c

1 = ( x1 − μ1

r1 )
2

+ ( x2 − μ2

r2 )
2

ri = 2σ2
i log ( 1

2πcσ1σ2 )



Geometry of MVN
Simple  Cased = 2

Therefore, for , the simple bivariate MVN has ellipse-shaped level curves: 

, where . 

c ∈ ℝ

1 = ( x1 − μ1

r1 )
2

+ ( x2 − μ2

r2 )
2

ri = σi 2 log ( 1
2πcσ1σ2 )
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Geometry of MVN
Simple  Cased = 2

Therefore, for , the simple bivariate MVN has ellipse-shaped level curves: 

, where . 

For a diagonal matrix , the eigenvalues are just  and  and the standard basis 
vectors  and  are eigenvectors!

c ∈ ℝ

1 = ( x1 − μ1

r1 )
2

+ ( x2 − μ2

r2 )
2

ri = σi 2 log ( 1
2πcσ1σ2 )

Σ = diag(σ2
1 , σ2

2) σ1 σ2
e1 e2



Geometry of MVN
General Case

For positive definite , the associated quadratic form  looks like a bowl/ellipsoid with: 

Axes in the direction of the eigenvectors of . 

Axis lengths proportional to the inverse square roots of the eigenvalues of : 

 

A x⊤Ax

Σ

A

r1 ∝
1
λ1

, …, rd ∝
1
λd



Geometry of MVN
General Case

The quadratic form in the MVN exponent: 

. 

Center of the ellipsoid is at . 

Axes in the direction of the eigenvectors of . 

Axis lengths proportional to inverse square roots of the 
eigenvalues of , or sq. roots of the eigenvalues of . 

, and  are eigenvalues of .

−
1
2

(x − μ)⊤Σ−1(x − μ)

μ

Σ−1

Σ−1 Σ

r1 ∝ λ1, …, rd ∝ λd λ1, …, λd Σ

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_Sig_mu.html


Geometry of MVN
General Case
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The quadratic form in the MVN exponent: 

. 

Center of the ellipsoid is at . 

Axes in the direction of the eigenvectors of . 

Axis lengths proportional to inverse square roots of the 
eigenvalues of , or sq. roots of the eigenvalues of . 

, and  are eigenvalues of .

−
1
2

(x − μ)⊤Σ−1(x − μ)

μ

Σ−1

Σ−1 Σ

r1 ∝ λ1, …, rd ∝ λd λ1, …, λd Σ



Geometry of MVN
General Case

The quadratic form in the MVN exponent: 

. 

Center of the ellipsoid is at . 

Axes in the direction of the eigenvectors of . 

Axis lengths proportional to inverse square roots of the 
eigenvalues of , or sq. roots of the eigenvalues of . 

, and  are eigenvalues of .

−
1
2

(x − μ)⊤Σ−1(x − μ)

μ

Σ−1

Σ−1 Σ

r1 ∝ λ1, …, rd ∝ λd λ1, …, λd Σ



Multivariate Gaussian 
Linear Transformations



Diagonal Covariance Matrices
Why they’re nice

If  is MVN with diagonal covariance matrix 

, 

the eigenvectors are  (the principal axes of the ellipsoid), 

the eigenvalues are  (the squared axes lengths), 

the PDF factorizes:  where  is the PDF of .

x ∼ N(μ, Σ)

Σ =
σ2

1 … 0
0 ⋱ 0
0 … σ2

d

e1, …, ed

σ2
1 , …, σ2

d

p(x) = pxi
(s) pxi

(s) xi ∼ N(μi, σ2
i )



Diagonal Covariance Matrices
Why they’re nice

If  is MVN with diagonal covariance matrix 

, 

the eigenvectors are  (the principal axes of the 
ellipsoid), 

the eigenvalues are  (the squared axes lengths), 

the PDF factorizes:  where  is the PDF of 
.

x ∼ N(μ, Σ)

Σ =
σ2

1 … 0
0 ⋱ 0
0 … σ2

d

e1, …, ed

σ2
1 , …, σ2

d

p(x) = pxi
(s) pxi

(s)
xi ∼ N(μi, σ2

i )

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/mvn_Diag.html


Diagonal Covariance Matrices
Why they’re nice
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If  is MVN with diagonal covariance matrix 

, 

the eigenvectors are  (the principal axes of the 
ellipsoid), 

the eigenvalues are  (the squared axes lengths), 

the PDF factorizes:  where  is the PDF of 
.

x ∼ N(μ, Σ)

Σ =
σ2

1 … 0
0 ⋱ 0
0 … σ2

d

e1, …, ed

σ2
1 , …, σ2

d

p(x) = pxi
(s) pxi

(s)
xi ∼ N(μi, σ2

i )



Random Vectors
Variance and Covariance Matrix

The variance of a random vector generalizes to the covariance matrix 

 

In general, . 

In this class, a random vector’s variance is its covariance: 

Σ = 𝔼[(X − 𝔼[X])(X − 𝔼[X])⊤] =

Var(X1) Cov(X1, X2) … Cov(X1, Xn)
Cov(X2, X1) Var(X2) … Cov(X2, Xn)

⋮ ⋮ ⋱ ⋮
Cov(Xn, X1) Cov(Xn, X2) … Var(Xn)

Σi,j = Cov(Xi, Xj)

Var(x) := Σ = 𝔼[(X − 𝔼[X])(X − 𝔼[X])⊤]



Nondiagonal MVN Covariance
Connection to Diagonal Covariance MVNs

Theorem (Nondiagonal MVNs). Let  for  and positive definite matrix . 
Then, there exists a matrix  such that , and if  

, 

then .

x ∼ N(μ, Σ) μ ∈ ℝd Σ ∈ ℝd×d

A ∈ ℝd×d AA⊤ = Σ

z = A−1 (x − μ)
z ∼ N(0,I)



Nondiagonal MVN Covariance
Connection to Diagonal Covariance MVNs

Theorem (Nondiagonal MVNs). Let  for  and positive definite matrix . 
Then, there exists a matrix  such that , and if  

, 

then . 

Analogue of single-variable fact:  gets “standardized” by taking . 

Interpretation: Any multivariate Gaussian random vector  is the result of applying a linear 
transformation and translation (affine transformation):  to a collection of  independent 
standard normal random variables .

x ∼ N(μ, Σ) μ ∈ ℝd Σ ∈ ℝd×d

A ∈ ℝd×d AA⊤ = Σ

z = A−1 (x − μ)
z ∼ N(0,I)

X ∼ N(μ, σ2) Z =
X − μ

σ

x
X = Az d

z = (z1, …, zd)



Nondiagonal MVN Covariance
Connection to Diagonal Covariance MVNs

Theorem (Nondiagonal MVNs). Let  
for  and positive definite matrix 

. Then, there exists a matrix  
such that , and if  

, 

then .

x ∼ N(μ, Σ)
μ ∈ ℝd

Σ ∈ ℝd×d A ∈ ℝd×d

AA⊤ = Σ

z = A−1 (x − μ)
z ∼ N(0,I)
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Multivariate Gaussian 
Other Basic Properties



Other Properties of MVN
Linear Combinations

Theorem (Linear Combinations of MVNs). Let  be an MVN random vector. 

Let .  if and only if any linear combination  has a single-variable 
Gaussian distribution, . 

Let . The affine transformation is distributed as MVN: . 

x ∼ N(μ, Σ)

b ∈ ℝd x ∼ N(μ, Σ) b⊤x
b⊤x ∼ N(b⊤μ, b⊤Σb)

A ∈ ℝn×d Ax + b ∼ N(Aμ + b, AΣA⊤)



Other Properties of MVN
Linear Combinations

Theorem (Independence). Let  be an MVN random vector, written . 
Then,  and  are independent if and only if .  

Also, if  and  are all pairwise independent for , the set of random variables  are 
completely independent.

x ∼ N(μ, Σ) x = (x1, …, xd)
xi xj Σij = 0

xi xj i ≠ j x1, …, xd



Other Properties of MVN
Marginal and Conditional Distributions

Let  be multivariate normal, partitioned into parts: 

, where  and . 

Also partition  into 

, where  and , 

and  into 

, where , , etc.

x ∼ N(μ, Σ)

x = (x1, x2) x1 ∈ ℝk x2 ∈ ℝd−k

μ

μ = (μ1, μ2) μ1 ∈ ℝk μ2 ∈ ℝd−k

Σ ∈ ℝd×d

Σ = [Σ11 Σ12
Σ21 Σ22] Σ11 ∈ ℝk×k Σ21 ∈ ℝ(d−k)×k



Other Properties of MVN
Marginal Distributions

Theorem (Marginal Distributions). Let  be an 
MVN random vector, partitioned: 

, where  and . 

, where  and , 

, where , , etc. 

Then,  and  are multivariate 
Gaussians.

x ∼ N(μ, Σ)

x = (x1, x2) x1 ∈ ℝk x2 ∈ ℝd−k

μ = (μ1, μ2) μ1 ∈ ℝk μ2 ∈ ℝd−k

Σ = [Σ11 Σ12
Σ21 Σ22] Σ11 ∈ ℝk×k Σ21 ∈ ℝ(d−k)×k

x1 ∼ N(μ1, Σ11) x2 ∼ N(μ2, Σ22) x1
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Other Properties of MVN
Conditional Distributions

Theorem (Conditional Distributions). Let  be an MVN 
random vector, partitioned: 

, where  and . 

, where  and , 

, where , , etc. 

Then, the conditional distribution of  is multivariate 
Gaussian with: 

 .

x ∼ N(μ, Σ)

x = (x1, x2) x1 ∈ ℝk x2 ∈ ℝd−k

μ = (μ1, μ2) μ1 ∈ ℝk μ2 ∈ ℝd−k

Σ = [Σ11 Σ12
Σ21 Σ22] Σ11 ∈ ℝk×k Σ21 ∈ ℝ(d−k)×k

x1 ∣ x2

x1 ∣ x2 ∼ N(μ1 + Σ12Σ−1
22 (x2 − μ2), Σ11 − Σ12Σ−1

22 Σ21)

x1
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Recap 



Lesson Overview

OLS under Gaussian Error Model. The distribution of  under the Gaussian error model is 
itself multivariate normal. 

Multivariate Gaussian/Normal (MVN) Distribution PDF. We define the multivariate Gaussian/normal 
distribution and study some simple examples. 

Factorization of the Multivariate Gaussian. We see that a multivariate Gaussian with a diagonal covariance 
matrix factors into independent Gaussians. 

Geometry of the Multivariate Gaussian. We study the geometry of the multivariate Gaussian through its level 
curves and discover the it is ellipsoidal, with axes determined by the eigenvectors/eigenvalues of the 
covariance matrix. 

Affine Transformations of the Multivariate Gaussian. We establish that any multivariate Gaussian is just an 
affine transformation away from the standard multivariate Gaussian.

ŵ = (X⊤X)−1X⊤y



Lesson Overview
Big Picture: Least Squares

x1-axis x2-axis f(x1, x2)-axis

https://samuel-deng.github.io/math4ml_su25/assets/figs/ols_distribution_d2.html


Lesson Overview
Big Picture: Gradient Descent

x1-axis x2-axis f(x1, x2)-axis descent start x1-axis x2-axis f(x1, x2)-axis descent start

https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html

