Math for ML Week 6.2: Multivariate Gaussian Distribution

By: Samuel Deng

Logistics & Announcements

Lesson Overview

OLS under Gaussian Error Model. The distribution of $\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ under the Gaussian error model is itself multivariate normal.

Multivariate Gaussian/Normal (MVN) Distribution PDF. We define the multivariate Gaussian/normal distribution and study some simple examples.

Factorization of the Multivariate Gaussian. We see that a multivariate Gaussian with a diagonal covariance matrix factors into independent Gaussians.

Geometry of the Multivariate Gaussian. We study the geometry of the multivariate Gaussian through its level curves and discover the it is ellipsoidal, with axes determined by the eigenvectors/eigenvalues of the covariance matrix.

Affine Transformations of the Multivariate Gaussian. We establish that any multivariate Gaussian is just an affine transformation away from the standard multivariate Gaussian.

Lesson Overview

Big Picture: Least Squares

6

Lesson Overview

Big Picture: Gradient Descent

OLS under Gaussian Errors Intuition and Definition

Random error model Adding Gaussian assumption on ϵ

$$y_i = \mathbf{x}_i^{\mathsf{T}} \mathbf{w}^* + \epsilon_i$$
, where $\epsilon_i \sim I$

We can think of ϵ as the randomness from the "unexplained" errors in modeling the relationship of y to x with a linear model $\mathbf{w}^* \in \mathbb{R}^d$. Possibly very complex!

$N(0,\sigma^2)$ and ϵ_i is independent of \mathbf{x}_i .

 $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$, where $\epsilon \in \mathbb{R}^n$ is a Gaussian random vector with covariance matrix $\operatorname{Var}(\epsilon) = \sigma^2 \mathbf{I}$.

OLS and MLE Theorem Statement

Theorem (OLS and MLE). Suppose that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are i.i.d. samples in $\mathbb{R}^d \times \mathbb{R}$ with conditional distribution $\mathbb{P}_{y|\mathbf{x}}$ defined by:

$$y_i = \mathbf{x}_i^{\mathsf{T}} \mathbf{w}^* + \epsilon,$$

where $\epsilon_i \sim N(0, \sigma^2)$ and each ϵ_i is independent. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$ contain all the i.i.d. samples. Then, the maximum likelihood estimate (MLE) $\hat{\mathbf{w}}_{MLE}$ of the parameter \mathbf{w}^* is given by the OLS estimator:

$$\hat{\mathbf{w}}_{MLE} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Statistics of OLS Theorem

Theorem (Statistical properties of OLS). Let $\mathbb{P}_{\mathbf{x},y}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ such that $y = \mathbf{x}^T \mathbf{w}^* + \epsilon$, in the usual random error model. What if we assume Gaussian errors here?

Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has the following statistical properties:

Expectation: $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^{T}$

Variance: $Var[\hat{w} | X] = (X^{T}X)$

Parameter MSE: $MSE(\hat{w}) =$

Risk (w.r.t. squared error): $R(\hat{\mathbf{w}}) = \mathbb{E}[(\hat{\mathbf{w}}^{\top})]$

* and
$$\mathbb{E}[\hat{\mathbf{w}}] = \mathbf{w}^*$$
, so $\mathrm{Bias}(\hat{\mathbf{w}}) = \mathbf{0}$.

$$\mathbf{X})^{-1}\sigma^2 \text{ and } \operatorname{Var}[\hat{\mathbf{w}}] = \sigma^2 \mathbb{E}[(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}].$$

$$\mathbb{E}[\|\hat{\mathbf{w}} - \mathbf{w}^*\|^2] = \sigma^2 \mathbb{E}[\operatorname{tr}((\mathbf{X}^\top \mathbf{X})^{-1})]$$

$$[\mathbf{x} - \mathbf{y})^2] = \sigma^2 + \sigma^2 \mathbb{E}[\operatorname{tr}(\mathbf{\Sigma}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1})] \approx \sigma^2 + \frac{\sigma^2 d}{n}.$$

Random error model Adding Gaussian assumption on ϵ

$$y_i = \mathbf{x}_i^{\mathsf{T}} \mathbf{w}^* + \epsilon_i$$
, where $\epsilon_i \sim I$

We can think of ϵ as the randomness from the "unexplained" errors in modeling the relationship of y to x with a linear model $\mathbf{w}^* \in \mathbb{R}^d$. Possibly very complex!

$N(0,\sigma^2)$ and ϵ_i is independent of \mathbf{x}_i .

 $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$, where $\epsilon \in \mathbb{R}^n$ is a Gaussian random vector with covariance matrix $\operatorname{Var}(\epsilon) = \sigma^2 \mathbf{I}$.

Statistics of OLS **Under Gaussian Error Model**

In matrix-vector form, our Gaussian error model looks like:

 $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w}^{*} + \epsilon)$ $= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$ $= \mathbf{w}^* + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon}$

- **Question:** What is the distribution of $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

 - $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$
- where $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{X} \in \mathbb{R}^{n \times d}$, and $\epsilon \in \mathbb{R}^n$ where $\epsilon_i \sim N(0, \sigma^2)$. Condition on \mathbf{X} . We can rewrite $\hat{\mathbf{w}}$ as:

Statistics of OLS **Under Gaussian Error Model**

Therefore, $\hat{\mathbf{w}}$ can be expressed as:

With **X** fixed, this is a function of the random vector $\epsilon \in \mathbb{R}^n$.

We will show: If $\mathbf{x} \in \mathbb{R}^n$ is a Gaussian random vector, then all affine transformations $\mathbf{A}\mathbf{x} + \mathbf{b}$ (where $\mathbf{A} \in \mathbb{R}^{d \times n}$ and $\mathbf{b} \in \mathbb{R}^{d}$) of \mathbf{x} are also Gaussian random vectors.

Question: What is the distribution of $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

 $\hat{\mathbf{w}} = \mathbf{w}^* + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \epsilon.$

Therefore: $\hat{\mathbf{w}} \sim N(\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}], \operatorname{Var}(\hat{\mathbf{w}} \mid \mathbf{X})).$

Statistics of OLS **Under Gaussian Error Model**

What's $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}]$? Because $\mathbb{E}[\epsilon \mid \mathbf{X}] = \mathbf{0}$ and \mathbf{w}^* is fixed, $\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}] = \mathbf{w}^*$.

What's Var[$\hat{\mathbf{w}} \mid \mathbf{X}$], the covariance matrix? Already showed: Var[$\hat{\mathbf{w}} \mid \mathbf{X}$] = $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^{2}$.

- **Question:** What is the distribution of $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?
- So $\hat{\mathbf{w}}$ is multivariate Gaussian: $\hat{\mathbf{w}} \sim N(\mathbb{E}[\hat{\mathbf{w}} \mid \mathbf{X}], \operatorname{Var}(\hat{\mathbf{w}} \mid \mathbf{X})).$

 - Therefore, $\hat{\mathbf{w}} \sim N(\mathbf{w}^*, (\mathbf{X}^\top \mathbf{X})^{-1}\sigma^2)$.

Theorem (Statistical properties of OLS under Gaussian errors). Let $\mathbb{P}_{\mathbf{x},v}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the error model: $y = \mathbf{x}^\top \mathbf{w}^* + \epsilon$, where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $Var(\epsilon) = \sigma^2$, independent of **x**, with each $\epsilon \sim N(0, \sigma^2)$.

Suppose we construct a random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $\mathbf{y} \in \mathbb{R}^n$ by drawing n iid examples (\mathbf{x}_i, y_i) from $\mathbb{P}_{\mathbf{x}, y}$. Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$ has a multivariate Gaussian distribution:

 $\hat{\mathbf{w}} \sim N(\mathbf{w}^*, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}).$

Theorem (Statistical properties of OLS under Gaussian errors). Let $\mathbb{P}_{\mathbf{x},y}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the Gaussian random error model.

Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has a multivariate Gaussian distribution:

$$\hat{\mathbf{w}} \sim N(\mathbf{w}^*, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}).$$

Theorem (Statistical properties of OLS under Gaussian errors). Let $\mathbb{P}_{\mathbf{x},y}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the error model: $y = \mathbf{x}^T \mathbf{w}^* + \epsilon$, where $\mathbf{w}^* \in \mathbb{R}^d$ and ϵ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\operatorname{Var}(\epsilon) = \sigma^2$, independent of \mathbf{x} , with each $\epsilon \sim N(0, \sigma^2)$.

Suppose we construct a random matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and random vector $\mathbf{y} \in \mathbb{R}^{n}$ by drawing *n* iid examples (\mathbf{x}_{i}, y_{i}) from $\mathbb{P}_{\mathbf{x}, y}$. Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has a multivariate Gaussian distribution:

$$\hat{\mathbf{w}} \sim N(\mathbf{w}^*, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}).$$

Theorem (Statistical properties of OLS under Gaussian errors). Let $\mathbb{P}_{\mathbf{x},y}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the Gaussian random error model.

Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has a multivariate Gaussian distribution:

$$\hat{\mathbf{w}} \sim N(\mathbf{w}^*, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}).$$

Theorem (Statistical properties of OLS under Gaussian errors). Let $\mathbb{P}_{\mathbf{x},y}$ be a joint distribution $\mathbb{R}^d \times \mathbb{R}$ defined by the Gaussian random error model.

Then, the OLS estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ has a multivariate Gaussian distribution:

$$\hat{\mathbf{w}} \sim N(\mathbf{w}^*, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}).$$

Single-variable Gaussian Review and Intuition

The Gaussian Distribution Intuition and Shape

The Gaussian/Normal distribution with parameters μ and σ has a "bell-shaped" PDF centered at μ and "spread" depending on the parameter σ .

The Gaussian Distribution **Standard Gaussian Definition**

A RV Z has a <u>standard Gaussian/Normal distribution</u> denoted $Z \sim N(0,1)$ if it has PDF:

This random variable has mean $\mathbb{E}[Z] = 0$ and variance Var(Z) = 1.

Traditionally, standard Gaussians are denoted with Z, PDF $\phi(z)$, and CDF $\Phi(z)$.

- $p_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \text{ for all } z \in \mathbb{R}.$

The Gaussian Distribution **General Definition**

 $X \sim N(\mu, \sigma^2)$ if it has PDF:

$$p_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}, \text{ for all } x \in \mathbb{R}.$$

This random variable has mean $\mathbb{E}[X] = \mu$ and variance $Var(X) = \sigma^2$.

A random variable X has a Gaussian/Normal distribution with parameters μ and σ , denoted

PDF of the Gaussian

$$p_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

PDF of the Gaussian Intuition

$$p_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

The argument of $exp(\cdot)$ is a quadratic function:

$$-\frac{1}{2\sigma^2}(x-\mu)^2.$$

The coefficient doesn't depend on *x*; it's a normalizing constant:

$$\frac{1}{\sigma\sqrt{2\pi}}.$$

Multivariate Gaussian

Single-variable to Multivariable Comparison

$$p_{X}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right\} \qquad p(\mathbf{x}) = \frac{1}{\det(\Sigma)^{1/2}(2\pi)^{n/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu)^{$$

Single-variable to Multivariable Comparison

$$p(\mathbf{x}) = \frac{1}{\det(\Sigma)^{1/2}(2\pi)^{n/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu)\right\}$$
$$\frac{1}{2}(\mathbf{x}-\mu)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu) \text{ is a quadratic for}$$
$$\Sigma \text{ is positive definite, } \Sigma^{-1} \text{ is also positive}$$
$$\text{Therefore, } (\mathbf{x}-\mu)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu) >$$
$$\text{Therefore, } \frac{1}{2}(\mathbf{x}-\mu)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu) <$$

Multivariate Gaussian Definition

A random vector $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$ has the <u>multivariate Gaussian/Normal distribution</u>, denoted $\mathbf{x} \sim N(\mu, \Sigma)$ if it has the density:

$$p(\mathbf{x}) = \frac{1}{\det(\Sigma)^{1/2} (2\pi)^{n/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$

where det(Σ) is the determinant of $\Sigma \in \mathbb{R}^{d \times d}$, a positive definite matrix covariance matrix, and $\mu \in \mathbb{R}^d$ is the mean $\mathbb{E}[\mathbf{x}]$.

Standard Multivariate Gaussian Definition

A random vector $\mathbf{x} = (z_1, ..., z_d) \in \mathbb{R}^d$ has the standard multivariate Gaussian/Normal <u>distribution</u>, denoted $\mathbf{x} \sim N(\mathbf{0}, \mathbf{I})$ if it has the density:

 $p(\mathbf{z}) = \frac{1}{(2\pi)^{n/2}}$

$$\frac{1}{n/2}\exp\left\{-\frac{1}{2}\mathbf{z}^{\mathsf{T}}\mathbf{z}\right\}.$$

Standard Multivariate Gaussian Definition

A random vector $\mathbf{x} = (z_1, ..., z_d) \in \mathbb{R}^d$ has the standard multivariate Gaussian/Normal distribution, denoted $\mathbf{x} \sim N(\mathbf{0}, \mathbf{I})$ if it has the density:

$$p(\mathbf{z}) = \frac{1}{(2\pi)^{n/2}} \exp\left\{-\frac{1}{2}\mathbf{z}^{\mathsf{T}}\mathbf{z}\right\}$$

Multivariate Gaussian Example: N(0, I)

Multivariate Gaussian Example: N(0, I)

Multivariate Gaussian Example: $N(\mathbf{0}, \Sigma)$

Multivariate Gaussian Example: $N(\mathbf{0}, \Sigma)$

Multivariate Gaussian Example: $N(\mu, \Sigma)$

Multivariate Gaussian Example: $N(\mu, \Sigma)$

Multivariate Gaussian Diagonal Covariance and Factorization

Consider the d = 2 case where $\Sigma \in \mathbb{R}^{2 \times 2}$ is diagonal:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mu =$$

What does the MVN density look like?

$$p(\mathbf{x}) = \frac{1}{2\pi \det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^{\top} \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right)$$

$$\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}.$$

Determinant of 2×2 Matrix **Quick Definition**

For a matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ written as

the <u>determinant</u> of **A** is the scalar quantity:

 $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$

 $\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}.$

Determinant of Covariance Matrix Applied to MVN

For a covariance matrix $\Sigma \in \mathbb{R}^{2 \times 2}$ written as

the determinant of Σ is the scalar quantity:

 $\Sigma =$

$$\begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}'$$

 $\det(\Sigma) = \sigma_1^2 \sigma_2^2.$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mu =$$

$$p(\mathbf{x}) = \frac{1}{2\pi \det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^{\top} \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right)$$
$$\implies p(\mathbf{x}) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^{\top} \begin{bmatrix} 1/\sigma_1^2 & 0 \\ 0 & 1/\sigma_2^2 \end{bmatrix} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right)$$

$$\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}.$$

What does the MVN density look like?

$$\implies p(\mathbf{x}) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1/\sigma_1^2 & 0 \\ 0 & 1/\sigma_2^2 \end{bmatrix} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right)$$

Multiplying out the quadratic form...

$$\implies p(\mathbf{x}) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2 - \frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$$
$$= \frac{1}{\sigma_1\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right) \cdot \frac{1}{\sigma_2\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$$

$$\implies p(\mathbf{x}) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2 - \frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$$
$$= \frac{1}{\sigma_1\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right) \cdot \frac{1}{\sigma_2\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$$

But this is just the product of two independent Gaussians!

 $p(\mathbf{x}) = p(x_1) \cdot p(x_2)$, where

$$x_1 \sim N(\mu_1, \sigma_1^2)$$
 and $x_2 \sim N(\mu_2, \sigma_2^2)$.

Factorization of the MVN Theorem Statement

Theorem (Factorization of MVN). Let $\mathbf{x} = (x_1, \dots, x_d) \sim N(\mu, \Sigma)$ be a multivariate Gaussian random vector, where $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix and $\mu = (\mu_1, \dots, \mu_d)$. Then, each coordinate x_i of x is an *independent* single-variable Gaussian random variable, with:

 $x_i \sim$

and the PDF of x factorizes into d marginal single-variable Gaussian PDFs:

$$p(\mathbf{x}) = \prod_{i=1}^{d} \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_i^2} (x_i - \mu_i)^2\right).$$

$$\sim N(\mu_i, \sigma_i^2)$$
,

Factorization of the MVN Theorem Statement

Theorem (Factorization of MVN). Let $\mathbf{x} = (x_1, \dots, x_d) \sim N(\mu, \Sigma)$ be a multivariate Gaussian random vector, where $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix and $\mu = (\mu_1, \dots, \mu_d)$. Then, each coordinate x_i of **x** is an *independent* singlevariable Gaussian random variable, with:

$$x_i \sim N(\mu_i, \sigma_i^2),$$

and the PDF of \mathbf{x} factorizes into d marginal single-variable Gaussian PDFs:

$$p(\mathbf{x}) = \prod_{i=1}^{d} \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_i^2}(x_i - \mu_i)^2\right)$$

Multivariate Gaussian Contours and Geometry

Level Curves Intuition and Definition

For a function $f : \mathbb{R}^d \to \mathbb{R}$, the <u>level curves</u> or <u>isocontours</u> of f at $c \in \mathbb{R}$ is the set of the form:

$L_f(c) := \{ \mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) = c \}.$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$
$$p(\mathbf{x}) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2 - \frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$$
What are the level curves at some c?

Solve for: $p(\mathbf{x}) = c$.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$
$$p(\mathbf{x}) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2 - \frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$$

Using some algebra, we can show that $p(\mathbf{x}) = c$ when...

$$1 = \left(\frac{x_1 - \mu_1}{r_1}\right)^2 + \left(\frac{x_2 - \mu_2}{r_2}\right)^2, \text{ where } r_i = \sqrt{2\sigma_i^2 \log\left(\frac{1}{2\pi c\sigma_1 \sigma_2}\right)}.$$

٠

Therefore, for $c \in \mathbb{R}$, the simple bivariate MVN has <u>ellipse-shaped</u> level curves:

$$1 = \left(\frac{x_1 - \mu_1}{r_1}\right)^2 + \left(\frac{x_2 - \mu_2}{r_2}\right)^2, \text{ where } r_i = \sigma_i \sqrt{2\log\left(\frac{1}{2\pi c\sigma_1 \sigma_2}\right)}$$

Therefore, for $c \in \mathbb{R}$, the simple bivariate MVN has <u>ellipse-shaped</u> level curves:

$$1 = \left(\frac{x_1 - \mu_1}{r_1}\right)^2 + \left(\frac{x_2 - \mu_2}{r_2}\right)^2, \text{ where } r_i = \sigma_i \sqrt{2\log\left(\frac{1}{2\pi c\sigma_1 \sigma_2}\right)}$$

vectors \mathbf{e}_1 and \mathbf{e}_2 are eigenvectors!

For a diagonal matrix $\Sigma = \text{diag}(\sigma_1^2, \sigma_2^2)$, the eigenvalues are just σ_1 and σ_2 and the standard basis

Geometry of MVN General Case

For positive definite **A**, the associated quadratic form $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$ looks like a bowl/ellipsoid with:

Axes in the direction of the eigenvectors of Σ .

Axis lengths proportional to the *inverse* square roots of the eigenvalues of A:

 $r_1 \propto \mathbf{V}$

$$\frac{1}{\sqrt{\lambda_1}}, \dots, r_d \propto \frac{1}{\sqrt{\lambda_d}}$$

Geometry of MVN **General Case**

The quadratic form in the MVN exponent:

$$-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}).$$

Center of the ellipsoid is at μ .

Axes in the direction of the eigenvectors of Σ^{-1} .

Axis lengths proportional to *inverse* square roots of the eigenvalues of Σ^{-1} , or sq. roots of the eigenvalues of Σ .

 $r_1 \propto \sqrt{\lambda_1}, \dots, r_d \propto \sqrt{\lambda_d}$, and $\lambda_1, \dots, \lambda_d$ are eigenvalues of Σ .

General Case

The quadratic form in the MVN exponent:

$$-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}).$$

Center of the ellipsoid is at μ .

Axes in the direction of the eigenvectors of Σ^{-1} .

Axis lengths proportional to *inverse* square roots of the eigenvalues of Σ^{-1} , or sq. roots of the eigenvalues of Σ .

 $r_1 \propto \sqrt{\lambda_1}, \dots, r_d \propto \sqrt{\lambda_d}$, and $\lambda_1, \dots, \lambda_d$ are eigenvalues of Σ .

General Case

The quadratic form in the MVN exponent:

$$-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}).$$

Center of the ellipsoid is at μ .

Axes in the direction of the eigenvectors of Σ^{-1} .

Axis lengths proportional to *inverse* square roots of the $_{-2}$ eigenvalues of Σ^{-1} , or sq. roots of the eigenvalues of Σ .

 $r_1 \propto \sqrt{\lambda_1}, \dots, r_d \propto \sqrt{\lambda_d}$, and $\lambda_1, \dots, \lambda_d$ are eigenvalues of Σ^{-4} .

Multivariate Gaussian Linear Transformations

Diagonal Covariance Matrices Why they're nice

If $\mathbf{x} \sim N(\mu, \Sigma)$ is MVN with *diagonal* covariance matrix

the eigenvectors are $\mathbf{e}_1, \ldots, \mathbf{e}_d$ (the principal axes of the ellipsoid),

the eigenvalues are $\sigma_1^2, \ldots, \sigma_d^2$ (the squared axes lengths),

the PDF factorizes: $p(\mathbf{x}) = p_{x_i}(s)$ where $p_{x_i}(s)$ is the PDF of $x_i \sim N(\mu_i, \sigma_i^2)$.

- $\Sigma = \begin{bmatrix} \sigma_1^2 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sigma_d^2 \end{bmatrix},$

Diagonal Covariance Matrices Why they're nice

If $\mathbf{x} \sim N(\mu, \Sigma)$ is MVN with *diagonal* covariance matrix

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sigma_d^2 \end{bmatrix},$$

the eigenvectors are $\mathbf{e}_1, \ldots, \mathbf{e}_d$ (the principal axes of the ellipsoid),

the eigenvalues are $\sigma_1^2, \ldots, \sigma_d^2$ (the squared axes lengths),

the PDF factorizes: $p(\mathbf{x}) = p_{x_i}(s)$ where $p_{x_i}(s)$ is the PDF of $x_i \sim N(\mu_i, \sigma_i^2)$.

Diagonal Covariance Matrices Why they're nice

If $\mathbf{x} \sim N(\mu, \Sigma)$ is MVN with *diagonal* covariance matrix

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sigma_d^2 \end{bmatrix},$$

the eigenvectors are $\mathbf{e}_1, \ldots, \mathbf{e}_d$ (the principal axes of the ellipsoid),

the eigenvalues are $\sigma_1^2, \ldots, \sigma_d^2$ (the squared axes lengths),

the PDF factorizes: $p(\mathbf{x}) = p_{x_i}(s)$ where $p_{x_i}(s)$ is the PDF of $x_i \sim N(\mu_i, \sigma_i^2)$.

Random Vectors Variance and Covariance Matrix

The variance of a random vector generalizes to the <u>covariance matrix</u>

In general, $\Sigma_{i,i} = \text{Cov}(X_i, X_j)$.

In this class, a random vector's variance *is* its covariance:

 $Var(\mathbf{x}) := \mathbf{\Sigma} = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\mathsf{T}}]$

 $\boldsymbol{\Sigma} = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\top}] = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \dots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \dots & \operatorname{Var}(X_n) \end{bmatrix}$

Nondiagonal MVN Covariance **Connection to Diagonal Covariance MVNs**

Then, there exists a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ such that $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \Sigma$, and if

 $\mathbf{Z} =$

then $\mathbf{z} \sim N(0,\mathbf{I})$.

Theorem (Nondiagonal MVNs). Let $\mathbf{x} \sim N(\mu, \Sigma)$ for $\mu \in \mathbb{R}^d$ and positive definite matrix $\Sigma \in \mathbb{R}^{d \times d}$.

$$\mathbf{A}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}\right),$$

Nondiagonal MVN Covariance **Connection to Diagonal Covariance MVNs**

Theorem (Nondiagonal MVNs). Let $\mathbf{x} \sim N(\mu, \Sigma)$ for $\mu \in \mathbb{R}^d$ and positive definite matrix $\Sigma \in \mathbb{R}^{d \times d}$. Then, there exists a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ such that $\mathbf{A}\mathbf{A}^{\top} = \Sigma$, and if

 $\mathbf{z} = \mathbf{A}^{-1} \left(\mathbf{x} - \boldsymbol{\mu} \right),$

then $\mathbf{z} \sim N(0,\mathbf{I})$.

Analogue of single-variable fact: $X \sim N(\mu, \sigma^2)$ gets "standardized" by taking $Z = \frac{X - \mu}{----}$. σ

standard normal random variables $\mathbf{z} = (z_1, \dots, z_d)$.

Interpretation: Any multivariate Gaussian random vector **x** is the result of applying a linear transformation and translation (*affine transformation*): $\mathbf{X} = \mathbf{A}\mathbf{z}$ to a collection of d independent

Nondiagonal MVN Covariance Connection to Diagonal Covariance MVNs

Theorem (Nondiagonal MVNs). Let $\mathbf{X} \sim N(\mu, \Sigma)$ for $\mu \in \mathbb{R}^d$ and positive definite matrix $\Sigma \in \mathbb{R}^{d \times d}$. Then, there exists a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ such that $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \Sigma$, and if

$$\mathbf{z} = \mathbf{A}^{-1} \left(\mathbf{x} - \boldsymbol{\mu} \right),$$

then $\mathbf{z} \sim N(0,\mathbf{I})$.

x1-axis x2-axis f(x1, x2)-axis

Multivariate Gaussian Other Basic Properties

Other Properties of MVN **Linear Combinations**

Theorem (Linear Combinations of MVNs). Let $\mathbf{x} \sim N(\mu, \Sigma)$ be an MVN random vector.

Gaussian distribution, $\mathbf{b}^{\mathsf{T}}\mathbf{x} \sim N(\mathbf{b}^{\mathsf{T}}\boldsymbol{\mu}, \mathbf{b}^{\mathsf{T}}\boldsymbol{\Sigma}\mathbf{b})$.

- Let $\mathbf{b} \in \mathbb{R}^d$. $\mathbf{x} \sim N(\mu, \Sigma)$ if and only if any linear combination $\mathbf{b}^{\mathsf{T}}\mathbf{x}$ has a single-variable
- Let $\mathbf{A} \in \mathbb{R}^{n \times d}$. The affine transformation is distributed as MVN: $\mathbf{A}\mathbf{x} + \mathbf{b} \sim N(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma\mathbf{A}^{\top})$.

Other Properties of MVN **Linear Combinations**

Then, x_i and x_j are independent if and only if $\Sigma_{ij} = 0$.

completely independent.

- Theorem (Independence). Let $\mathbf{x} \sim N(\mu, \Sigma)$ be an MVN random vector, written $\mathbf{x} = (x_1, \dots, x_d)$.
- Also, if x_i and x_j are all pairwise independent for $i \neq j$, the set of random variables x_1, \ldots, x_d are

Other Properties of MVN Marginal and Conditional Distributions

Let $\mathbf{x} \sim N(\mu, \Sigma)$ be multivariate normal, *partitioned* into parts:

 $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$, where $\mathbf{x}_1 \in \mathbb{R}^k$ and $\mathbf{x}_2 \in \mathbb{R}^{d-k}$.

Also partition μ into

 $\mu = (\mu_1, \mu_2)$, where $\mu_1 \in \mathbb{R}^k$ and $\mu_2 \in \mathbb{R}^{d-k}$,

and $\Sigma \in \mathbb{R}^{d \times d}$ into

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}, \text{ where }$$

 $\Sigma_{11} \in \mathbb{R}^{k \times k}$, $\Sigma_{21} \in \mathbb{R}^{(d-k) \times k}$, etc.

Other Properties of MVN Marginal Distributions

Theorem (Marginal Distributions). Let $\mathbf{x} \sim N(\mu, \Sigma)$ be an MVN random vector, partitioned:

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$$
, where $\mathbf{x}_1 \in \mathbb{R}^k$ and $\mathbf{x}_2 \in \mathbb{R}^{d-k}$.

$$\mu = (\mu_1, \mu_2)$$
, where $\mu_1 \in \mathbb{R}^k$ and $\mu_2 \in \mathbb{R}^{d-k}$,

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}, \text{ where } \Sigma_{11} \in \mathbb{R}^{k \times k}, \Sigma_{21} \in \mathbb{R}^{(d)}$$

Then, $\mathbf{x}_1 \sim N(\mu_1, \Sigma_{11})$ and $\mathbf{x}_2 \sim N(\mu_2, \Sigma_{22})$ are multivariate Gaussians.

Other Properties of MVN **Conditional Distributions**

Theorem (Conditional Distributions). Let $\mathbf{x} \sim N(\mu, \Sigma)$ be an MVN random vector, partitioned:

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2), \text{ where } \mathbf{x}_1 \in \mathbb{R}^k \text{ and } \mathbf{x}_2 \in \mathbb{R}^{d-k}.$$
$$\mu = (\mu_1, \mu_2), \text{ where } \mu_1 \in \mathbb{R}^k \text{ and } \mu_2 \in \mathbb{R}^{d-k},$$
$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}, \text{ where } \Sigma_{11} \in \mathbb{R}^{k \times k}, \Sigma$$

Then, the conditional distribution of $\mathbf{x}_1 \mid \mathbf{x}_2 \mid \mathbf{x}_2$ it ivariate Gaussian with:

$$\mathbf{x}_1 \mid \mathbf{x}_2 \sim N(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{x}_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})$$

Recap

Lesson Overview

OLS under Gaussian Error Model. The distribution of $\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ under the Gaussian error model is itself multivariate normal.

Multivariate Gaussian/Normal (MVN) Distribution PDF. We define the multivariate Gaussian/normal distribution and study some simple examples.

Factorization of the Multivariate Gaussian. We see that a multivariate Gaussian with a diagonal covariance matrix factors into independent Gaussians.

Geometry of the Multivariate Gaussian. We study the geometry of the multivariate Gaussian through its level curves and discover the it is ellipsoidal, with axes determined by the eigenvectors/eigenvalues of the covariance matrix.

Affine Transformations of the Multivariate Gaussian. We establish that any multivariate Gaussian is just an affine transformation away from the standard multivariate Gaussian.

Lesson Overview

Big Picture: Least Squares

6

Lesson Overview

Big Picture: Gradient Descent

