Math for ML



Lesson Overview
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Week 1.1

Vectors, matrices, and least squares regression



Vectors, matrices, and least squares regression

Big Picture: Least Squares

, ~and allowed
us to get (X'X)™! from rank(X"X) = rank(X)
sketching our first OLS theorem:

Theorem (OLS solution). It n > d and
rank(X) = d, then: w = (X'X) ' Xy.
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https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_1.html

Vectors, matrices, and least squares regression
Blg Picture: Gradlent Descent e

Using norm to rewrite the sum of squared residual
errors,

fow) =Y (whx, — )
=1

we got a function measuring how "badly” each w
does:

fiw) = | Xw —y||*

wi w2


https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html

Week 1.2

Bases, subspaces, and orthogonality



Bases, subspaces, and orthogonality

Big Picture: Least Squares

We formally defined a the
~and . This filled

in the gaps to get Theorem (invertibility of
X "X) and Theorem (Pythagorean Theorem).

Using our new notion of orthogonality, we
could simplity the OLS solution it we had an

ONB.

Theorem (OLS solution with ONB). It n > d and
rank(X) = dand U € R*?an ONB: w = U'y.
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https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html

Bases, subspaces, and orthogonallty
Blg Picture: Gradlent Descent i

Using norm to rewrite the sum of squared residual
errors,

T 2
fow) =) (w'x;— )
i=1 -z

we got a function measuring how "badly” each w
does:

fiw) = | Xw —y||*

wi w2


https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html

Week 2.1

Singular Value Decomposition



Singular Value Decomposition

Big Picture: Least Squares

We defined and
to solve the best-fitting 1D subspace problem,
leading to SVD:

— ] — ) — ] — ) LAY —y Ay —

X =UxV'

The SVD defined the which unified OLS:

Theorem (OLS solution with pseudoinverse). Let X € R™¢

have pseudoinverse X* € R Then: w = X™y. =

if n > d, then W minimizes || Xw — y||°. . N

It d > n,then w is the exact solution Xw =y with min. norm.



https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/basis.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/3d_svd.html

Singular Value Decomposition
Blg PiCture: Gradient Descent 8BS o

Using norm to rewrite the sum of squared residual
errors,

fw) =) (wW'x;—y)?
=1

we got a function measuring how "badly” each w
does:

fiw) = | Xw —y||*

wi w2


https://samuel-deng.github.io/math4ml_su25/story_gd/gd1_1.html

Week 2.2

EFigendecomposition and PSD Matrices



Eigendecomposition and PSD Matrices
Big Picture: Least Squares
N

We detined and of square =
matrices. When a square matrix is

X = VAV'

The tells us that symmetric
matrices are diagonalizable.

One example of a symmetric matrix is X' X, so we
did a rudimentary eigenvector/eigenvalue analysis

of (X'X)" X"y in the error model:

y = Xw* + €.



https://samuel-deng.github.io/math4ml_su25/story_ls/ls1_2.html

Eigendecomposition and PSD Matrices
Big Picture: Gradient Descent

Defined an important class of square,
symmetric matrices,

PSD matrices are always associated with s . /.\

functions called

f(x) 1= x'AX,

which look “bowl” or “envelope” shaped.


https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_gd.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_gd.html

Week 3.1

Differentiation and vector calculus



Differentiation and vector calculus

Big Picture: Least Squares

The , and are
summarized with the and

Using analogy to single variable calculus x /<

optimization, we treated

fiw) = | Xw —y]||*

as a function to optimize and proved the same S
theorem, from a calculus/optimization perspective.

Theorem (OLS solution). If n > d and rank(X) = d,
then: w = (X'X) ' X'y.



https://samuel-deng.github.io/math4ml_su25/assets/figs/pd_ls.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/psd_ls.html

Differentiation and vector calculus
Blg Picture: Gradient Descent ......................................................................................

The gradient points in the direction of steepest -
ascent. This lets us write out the algorithm for
gradient descent:

W, < W, —nVAW,._).

wi © 0 w2


https://samuel-deng.github.io/math4ml_su25/assets/figs/nonconvex_surface_gd.html

Week 3.2

|inearization and Taylor series



Linearization and Taylor series

Big Picture: Least Squares

We discussed ~a main motivation
for the techniques of multivariable calculus:

J(x) = f(xg) + Vf (X())T(X — X))

This is a “part” of the of a function.
We quantified the approximation error of a
Taylor series through

The error term in the first-order Taylor expansion
was a function of the , which is always a

symmetric matrix for €~ functions.



https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_tangentplane.html

Linearization and Taylor series
Big Picture: Gradient Descent

and of the
allowed us to analyze the ftirst-order
Taylor approximation to get our first GD
theorem:

Theorem (Descent Lemma). If f € €? and is p
smooth, then with # = 1/8, for any w € R¢,

1
fow = n VW) < fiw) = 5 IV Aw)||%. "


https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/running_example_etabig.html

Week 4.1

Optimization and the Lagrangian



Optimization and the Lagrangian

Big Picture: Least Squares

minimize f(x)
xeR¢

subject to X € €

Gave the necessary conditions for unconstrained
local minima, filled in gaps in OLS proof.

Defined the Lagrangian L(X, 4), which helped us
solve constrained optimization problems by
“unconstraining.”

Two constrained problems related to OLS:
1. Least norm solution. w = X™y. A

2. Ridge regression. w = (X'X + yI)~ X'y


https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/constrained3d_l2.html

Optimization and the Lagrangian
Big Picture: Gradient Descent
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Classified the types of minima we can hope for :- >y
in an optimization problem: ,) ‘
: , and

We want but GD and the 5 : o
descent lemma only says something about | 5
getting to the local minima.

f(z)

I |
flw = VW) < fw) = IV AW N



https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html
https://samuel-deng.github.io/assets/lec/running_example.html

Week 4.2

Basics of convex optimization



Basics of convex optimization

Big Picture: Least Squares

of functions and sets. Convex functions
. ‘\\/
satisty:

flax + (1 —a)y) < af(x) + (1 —a)f(y).
fy) 2 f(x) + V, f(x) ' (y = x).
V2£(X) is positive semidefinite.

The key property we proved is that for convex
functions, all local minima are global minima.

We verified that the OLS objective is convex: 2

f(w) = || Xw — y||? is convex.



https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/convex3d_def2.html

Basics of convex optimization
Big Picture: Gradient Descent

Assured that for functions, all local minima are
global minima, we proved global convergence for GD:

Theorem (Convergence of GD for smooth, convex
functions).

J(xp) — f(x*) < % (IIxg = x*[1> = [Ix7 — x*||?),

(g VW3

after T iterations of our algorithm.

As a corollary, we were able to unite the two stories of A :
our course and apply GD to OLS to get:

p
IXwz—ylI* = [Xw* — y||* < T (Ilwg = WH[I* = [lwy — w¥||%) .


https://samuel-deng.github.io/assets/lec/running_example.html
https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd_alt.html

Week 5.1
Probability Theory, Models, and Data



Probability Theory, Models, and Data

Big Picture: Least Squares

X —> —>y
Defined and
Random variables come with a and a
Most important stats: and

Random vector variances are given in a
. This framework allowed us to define the

y = Xw* + ¢, where E[e] = 0 and ¢ i.i.d. and indep. of X. :

Now, W = (X"X)"'X "y is a random variable with

Expectation: E[w] = w*. ’ .

Variance: Var[w] = o°E[(X"X)7!]. o ’



https://samuel-deng.github.io/math4ml_su25/assets/figs/2d_regression.html

Probability Theory, Models, and Data

Big Picture: Least Squares

X—» —>)

Proot of OLS expectation and variance relied
neavily on conditioning.

The of a random

variable can be thought of as a "best guess” at

a random variable given the information of an z
event or another random variable.

-[X | A], forA C Q.

“[X| Y], forY: Q — R.


https://samuel-deng.github.io/math4ml_su25/assets/figs/2d_regression.html

Week 5.2

L aw of large numbers and statistical estimators



Law of large numbers and statistical estimators

Big Picture: Least Squares

The of i.i.d. random variables:

X = % i X.. .
i=1

proved the
sample averages approach true means.

Sample average is a of the mean.

Estimators have and connected through the

of

We tfound that OLS, as a random variable and estimator of w* a
is unbiased, has variance Var[W] = ¢’E[(X'X)"!], and

2

d

R(W) = E[(W'xy — y)*] = 6 + 6—.
n

|
mOr{JA


https://samuel-deng.github.io/math4ml_su24/assets/figs/2d_regression_test.html

Law of large numbers and statistical estimators
Big Picture: Gradient Descent

We closed the story of gradient descent with -
instead of 2 ‘ /],\

taking the gradient over all the samples
(X{,¥1), ..., (X, y,), we used an : N o

of the gradient:

i \\ / s s 1 2his b descont @ st

Estimand: VA(w) =— ) V, (w'x; - y)’ S

) W l |

=1 .

Estimator: Sample a single example i uniformly L s
from 1,...,n and take the gradient: o5

V/f(;) = VW(WTXi — yi)z-


https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch1.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/sgd_batch10.html

Week 6.1

Central Limit Theorem, Distributions, and MLE



Central Limit Theorem, Distributions, and MLE

Big Picture: Least Squares

We introduced the Gaussian distribution, and we

motivated its importance by the Central Limit Theorem.

The Gaussian distribution is just one of many “named
distributions” that model common phenomena.

When we have a guess at a parametrized model or
generating our i.i.d. data (X, y¢), ..., (X,, ¥,), an
alternative perspective on our problem of finding a
good model is maximum likelihood estimation (MLE).

This let us prove that, under the Gaussian error model,
maximizing the likelihood for the conditional

distribution y | X again gives us back the OLS estimator:

W, = arg max L (w) = (X' X)Xy
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Week 6.2

Multivariate Gaussian Distribution



Multivariate Gaussian Distribution

Big Picture: Least Squares

0.40
0.35
0.30
0.25

We found that, under the the <

<
< 0.20

distribution of the OLS estimator itself is

0.10

0.05

0.00 =

w ~ N(w*, 6*(X'X)™) T

This motivated our study for the MVN distribution,
which has properties:

1. Factorization under diagonal covariance.

2. Ellipsoidal geometry from eigendecomposition.

3. Affine transformations bridge standard MVN and
general MVN.


https://samuel-deng.github.io/math4ml_su25/assets/figs/ols_distribution_d2.html
https://samuel-deng.github.io/math4ml_su25/assets/figs/2d_regression.html

What about the rest ot ML?
OLS and GD as a "Home Base”



What about the rest of ML?
OLS and GD as a “Home Base”

THIS 1S YOUR MACHINE LEARNING SYSTEM?

| YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT

A — THE ANSLIERS ON THE OTHER SIDE.
W = (XTX) 1}(1'y |
WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE DNTIL
THEY START (OOKING RIGHT.

W, < W,_; —nVAW,_;)




Extension 1: Nonlinear Models
Feature transtformations



Nonlinear Models

Feature Transformations

Now, consider the following nonlinear function, ¢ : B* — R?
d(z1, 22) = (23, 7172, 73).
Because (-, -) takes inputs in B?, we can feed it each row (sample) in our data matrix. This

allows us to “transform” our data matrix to a new data matrix, X" € [R**® by applying ¢(-.-)
row by row. By doing so, we are constructing 3 new features from the d = 2 old features.

. -

Problem 4(e) [4 points] Find the transformed data matrix X’ € [R°*? obtained by
applying ¢(-, -) to each of the 5 rows. Find w € R” by least squares regression on X'
and the original y. Also compute the sum of squared residuals error of your solution,
err(w) (you should find that, now, err(w) = 0). You may use numpy or any other

It turns out that the true relationship between y; and x; = (z,,, z;2) for the data in (14) is
actually:

2
-

Y = T + 2T — T forallie n]. (16)

By finding the feature transformation ¢(-.-) above, we turned a problem with a nonlinear
relationship into a problem where a linear model is again useful (and, in fact. perfectly fits
X'). We are back in our ideal scenario in Equation (12). but there now exists some w* € R?
such that

yi = (W) | o(x;).



Nonlinear Models

Neural Networks

hidden layers
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Fxtension 2: Loss Functions
Beyond squared loss



Loss Functions
Beyond Squared Loss



Extension 3: Algorithms
Beyond gradient descent



Algorithms

Beyond Gradient Descent



Extension 4: Learning Theory
Other issues in generalization



Learning Theory

Other issues in generalization



Thank you for listening!

Hope you enjoyed the class :)




