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Abstract

We give a probabilistic interpretation of canonical correlation (CCA) analysis as a latent
variable model for two Gaussian random vectors. Our interpretation is similar to the prob-
abilistic interpretation of principal component analysis (Tipping and Bishop, 1999, Roweis,
1998). In addition, we can interpret Fisher linear discriminant analysis (LDA) as CCA between
appropriately defined vectors.

1 Introduction

Data analysis tools such as principal component analysis (PCA), linear discriminant analysis (LDA)
and canonical correlation analysis (CCA) are widely used for purposes such as dimensionality reduc-
tion or visualization (Hotelling, 1936, Anderson, 1984, Hastie et al., 2001). In this paper, we provide
a probabilistic interpretation of CCA and LDA in terms of graphical models. Such a probabilistic
interpretation deepens the understanding of CCA and LDA as model-based methods, enables the
use of local CCA models as components of a larger probabilistic model, and suggests generalization
of CCA and LDA to members of the exponential family other than the Gaussian distribution.

In Section 2, we review the probabilistic interpretation of PCA, while in Section 3, we present the
probabilistic interpretation of CCA and LDA, with proofs presented in Section 4. In Section 5, we
provide a probabilistic interpretation of LDA.
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Figure 1: Graphical model for factor analysis.

2 Review: probabilistic interpretation of PCA

It was shown by Tipping and Bishop (1999) that PCA can be seen as the maximum likelihood solution
of a factor analysis model with isotropic covariance matrix. More precisely, let x = (x1, . . . , xn)
denote n i.i.d. observations of an m-dimensional random vector, where xj = (xj

1, . . . , x
j
m) denotes

the j-th observation. The sample mean µ̃ and sample covariance matrix Σ̃ are defined as::

µ̃ =
1

n

n∑

j=1

xj and Σ̃ =
1

n

n∑

j=1

(xj − µ̃)(xj − µ̃)>.

PCA is concerned with finding a linear transformation A ∈ R
d×m that makes the data uncorrelated

with marginal unit variances. The linear transformation is equal to A = RΛ
−1/2
d Ud, where the

d column vectors in the m × d matrix Ud are the d principal eigenvectors of Σ̃, corresponding to
eigenvalues λ1 > · · · > λd and Λd is a d × d diagonal matrix with diagonal λ1, . . . , λd . The matrix
R is an arbitrary d × d orthogonal matrix.

Tipping and Bishop (1999) proved the following theorem:

Theorem 1 The maximum likelihood estimates of the parameters W , µ and σ2 of the following
model (see the graphical model in Figure 1):

z ∼ N (0, Id)

x|z ∼ N (Wz + µ, σ2Im), σ > 0, W ∈ R
md

are

µ̂ = µ̃, Ŵ = Ud(Λd − σ2I)1/2R, σ̂2 =
1

m − d

m∑

i=d+1

λi (1)

where the d column vectors in the m×d matrix Ud are the d principal eigenvectors of Σ̃, corresponding
to eigenvalues λ1, . . . , λd in the d×d diagonal matrix Λd. R is an arbitrary d×d orthogonal matrix.

The posterior expectation of z given x is an affine function of x; with ML estimates for the param-
eters, we have:

E(z|x) = R>(Λd − σ2I)1/2Λ−1
d U>

d (x − µ̃).

This yields the same linear subspace as PCA, and the projections are the same (up to rotation) if
the discarded eigenvalues are zero.

3 Probabilistic interpretation of CCA

3.1 Definition of CCA

Given a random vector x, principal component analysis (PCA) is concerned with finding a linear
transformation such that the components of the transformed vector are uncorrelated. Thus PCA di-
agonalizes the covariance matrix of x. Similarly, given two random vectors, x1 and x2, of dimension
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m1 and m2, canonical correlation analysis (CCA) is concerned with finding a pair of linear transfor-
mations such that one component within each set of transformed variables is correlated with a single
component in the other set. The correlation matrix between x1 and x2 is reduced to a block diagonal

matrix with blocks of size two, where each block is of the form

(
1 ρi

ρi 1

)
, potentially padded with

the identity matrix if m1 6= m2. The nonnegative numbers ρi, at most p = min{m1,m2} of which
are nonzero, are called the canonical correlations and are usually ordered from largest to smallest.

We let Σ̃ =

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
denote the m × m (where m = m1 + m2) sample covariance ma-

trix obtained from data x
j
1, x

j
2, j = 1, . . . , n. It is defined by blocks according to the parti-

tion m = m1 + m2. The canonical pairs of directions (u1i, u2i), i = 1, . . . ,m, are equal to

(u1i, u2i) = ((Σ̃11)
−1/2v1i, (Σ̃22)

−1/2v2i), where (v1i, v2i) is a pair of left-right singular vectors of

(Σ̃11)
−1/2Σ̃12(Σ̃22)

−1/2, with singular value the canonical correlation ρi for i = 1 . . . , p, and 0, for
i > p. In this note, we assume that the p = min{m1,m2} canonical correlations are distinct and
nonzero, so that the normalized singular vectors are unique, up to a sign change 1. We also assume
that the sample covariance matrix Σ̃ is invertible. If U1 = (u11, . . . , u1m) and U2 = (u21, . . . , u2m),

then we have U>
1 Σ̃11U1 = Im, U>

2 Σ̃22U2 = Im, U>
2 Σ̃21U1 = P , where P is a m2 × m1 diagonal

matrix with canonical correlations on the diagonal.2

Note that due to the equivalence of the singular value decomposition of a rectangular matrix M and

the eigen-decomposition of the matrix

(
0 M

M> 0

)
the CCA direction can also be obtained by

the following generalized eigenvalue problem:

(
0 Σ̃12

Σ̃21 0

)(
ξ1

ξ2

)
= ρ

(
Σ̃11 0

0 Σ̃22

)(
ξ1

ξ2

)
. (2)

In the next section, we show that the canonical directions emerge when fitting a certain latent
variable model.

3.2 Latent variable interpretation

In this section, we look a the model depicted in Figure 2 and show that maximum likelihood esti-
mation leads to the canonical correlation directions.

Theorem 2 The maximum likelihood estimates of the parameters W1,W2, Ψ1,Ψ2, µ1, µ2 for the
model defined in Figure 2 and by

z ∼ N (0, Id), min{m1,m2} > d > 1

x1|z ∼ N (W1z + µ1,Ψ1), W1 ∈ R
m1×d,Ψ1 < 0

x2|z ∼ N (W2z + µ2,Ψ2), W2 ∈ R
m2×d,Ψ2 < 0

1The assumption of distinctness of the singular values is made to simplify the notations and the proof in Section 4,

since with distinct singular values, canonical directions are uniquely defined. An extension of the result with coalescing

eigenvalues is straightforward.
2A rectangular diagonal matrix is defined as having nonzero elements only for equal row and column indices.
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Figure 2: Graphical model for canonical correlation analysis.

are

Ŵ1 = Σ̃11U1dM1

Ŵ2 = Σ̃22U2dM2

Ψ̂1 = Σ̃11 − Ŵ1Ŵ
>

1

Ψ̂2 = Σ̃22 − Ŵ2Ŵ
>

2

µ̂1 = µ̃1

µ̂2 = µ̃2

where M1,M2 ∈ R
d×d are arbitrary matrices such that M1M

>
2 = Pd and the spectral norms of

M1 and M2 are smaller than one, and the i-th columns of U1d and U2d are the first d canonical
directions, and Pd is the diagonal matrix of the first d canonical correlations.

The posterior expectations and variances of z given x1 and x2 are:

E(z|x1) = M>

1 U>

1d(x1 − µ1)

E(z|x2) = M>

2 U>

2d(x2 − µ2)

var(z|x1) = I − M1M
>

1

var(z|x2) = I − M2M
>

2

E(z|x1, x2) =

(
M1

M2

)>(
(I − P 2

d )−1 (I − P 2
d )−1Pd

(I − P 2
d )−1Pd (I − P 2

d )−1

)(
U>

1d(x1 − µ1)
U>

2d(x2 − µ2)

)

var(z|x1, x2) = I −

(
M1

M2

)>(
(I − P 2

d )−1 (I − P 2
d )−1Pd

(I − P 2
d )−1Pd (I − P 2

d )−1

)(
M1

M2

)

Whatever M1 and M2 are, the d-dimensional subspaces of R
m1 and R

m2 where x1 and x2 are
projected while computing posterior expectations E(z|x1) and E(z|x2) are the same as the ones for
CCA.

Note that among all solutions, the solutions that minimizes − log |Ψ| = − log |Ψ1| − log |Ψ2| (i.e.,
maximizes the conditional entropy of x given z), are such that M1 = M2 = M is a square root of

Pd, i.e., M = P
1/2
d R, where R is a rotation matrix of size d, and the solutions are then:

Ŵ1 = Σ̃11U1dP
1/2
d R

Ŵ2 = Σ̃22U2dP
1/2
d R

4



4 Proof Theorem 2

The proof follows along the lines of the proof of Tipping and Bishop (1999): we first show that station-
ary points of the likelihood are combinations of canonical directions and then that the canonical cor-
relations must be largest for the maximum likelihood estimates. The marginal mean and covariance

matrix of x = (x1, x2) under our model are µ =

(
µ1

µ2

)
and Σ =

(
W1W

>
1 + Ψ1 W1W

>
2

W2W
>
1 W2W

>
2 + Ψ2

)
.

The negative log likelihood of the data are equal to (with |A| denoting the determinant of a square
matrix A):

`1 =
(m1 + m2)n

2
log 2π +

n

2
log |Σ| +

1

2

n∑

j=1

tr Σ−1(xj − µ)(xj − µ)>

=
(m1 + m2)n

2
log 2π +

n

2
log |Σ| +

1

2

n∑

j=1

(
tr Σ−1xjx

>

j − 2x>

j Σ−1µ
)

+
n

2
µ>Σ−1µ

=
(m1 + m2)n

2
log 2π +

n

2
log |Σ| +

n

2
tr Σ−1(Σ̃ − µ̃µ̃>) − nµ̃>Σ−1µ +

n

2
µ>Σ−1µ

=
(m1 + m2)n

2
log 2π +

n

2
log |Σ| +

n

2
tr Σ−1Σ̃ +

n

2
(µ̃ − µ)>Σ−1(µ̃ − µ)

We first maximize with respect to µ, which yields a maximum at µ = µ̃ (the sample mean). Plugging
back into the log likelihood, we obtain the following profile negative log likelihood:

`2 =
(m1 + m2)n

2
log 2π +

n

2
log |Σ| +

n

2
tr Σ−1Σ̃

with Σ = WW> + Ψ, if we define W =

(
W1

W2

)
and Ψ =

(
Ψ1 0
0 Ψ2

)
.

The value of the negative log likelihood is infinite if the covariance model Σ = WW> + Ψ is non-
invertible, thus we can restrict ourselves to Σ � 0. Stationary points of the likelihood are defined
by the following equations (obtained by computing derivatives):

(Σ−1 − Σ−1Σ̃Σ−1)W = 0 (3)

(Σ−1 − Σ−1Σ̃Σ−1)11 = 0 (4)

(Σ−1 − Σ−1Σ̃Σ−1)22 = 0 (5)

where Eq. (3) is obtained by differentiating with respect to W = (W1,W2), Eq. (4) is obtained by
differentiating with respect to Ψ1 and where Eq. (5) is obtained by differentiating with respect to
Ψ2. A11 denotes the upper left block (of size m1 × m1) of A, and similarly for A22.

We now assume that we have a stationary point (W,Ψ1,Ψ2) of the log likelihood. We have the
following lemmas:

Lemma 1 Σ̃ < WW>.

Proof Since Σ is invertible, Eq. (3) implies

W = Σ̃(WW> + Ψ)−1, (6)

which implies by right-multiplication by W>Ψ−1/2:

W̃W̃> = Φ−1/2Σ̃Φ−1/2(W̃W̃> + I)−1W̃W̃>,
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where W̃ = Ψ−1/2W . If we let ASA> denote the eigenvalue decomposition of W̃W̃>, with A>A = I

and S diagonal, then this implies:

Σ̃ = Φ1/2A(S + I)A>Φ1/2
< Φ1/2ASA>Φ1/2 = WW>

Lemma 2 Σ̃Σ−1 = (Σ̃ − WW>)Ψ−1.

Proof By the matrix inversion lemma, we have

Σ−1 = Ψ−1 − Ψ−1W (I + W>Ψ−1W )−1W>Ψ−1

and
Σ−1W = Ψ−1W (I + W>Ψ−1W )−1.

Thus,

Σ̃Σ−1 = Σ̃Ψ−1 − Σ̃Ψ−1W (I + W>Ψ−1W )W>Ψ−1

= Σ̃Ψ−1 − Σ̃Σ−1W>Ψ−1

= Σ̃Ψ−1 − WW>Ψ−1 by Eq. (6).

Lemma 3 Ψ(Σ−1 − Σ−1Σ̃Σ−1)Ψ = Ψ − (Σ̃ − WW>).

Proof We have:

Σ−1Σ̃Σ−1 = Σ−1(Σ̃ − WW>)Ψ−1 by Lemma 2

=
[
(Σ̃ − WW>)Ψ−1

]>
Ψ−1 − Σ−1WW>Ψ−1 by Lemma 2

= Ψ−1Σ̃Ψ−1 − Ψ−1WW>Ψ−1 − Σ−1(WW> + Ψ − Ψ)Ψ−1

= Ψ−1Σ̃Ψ−1 − Ψ−1WW>Ψ−1 − Ψ−1 + Σ−1

which implies the lemma.

Lemma 4 Ψ1 = Σ̃11 − W1W
>
1 < 0, and Ψ2 = Σ̃2 − W2W

>
2 < 0.

Proof Taking the first diagonal block of the previous lemma, we obtain:

Ψ1(Σ
−1 − Σ−1Σ̃Σ−1)11Ψ1 = Ψ1 − (Σ̃11 − W1W

>

1 )

By Eq. (4), we get Ψ1 − (Σ̃11 −W1W
>
1 ), i.e., Ψ1 − Σ̃11 −W1W

>
1 . The matrix is positive semidefinite

by Lemma 1. The proof is the same for Ψ2.
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Lemma 5

W = (Σ̃ − WW>)

(
(Σ̃11 − W1W

>
1 )−1 0

0 (Σ̃22 − W2W
>
2 )−1

)
W.

Proof Simply plug the expressions for Ψ1 and Ψ2 in Lemma 4 into Lemma 2.

Lemma 6 Let Σ
−1/2
11 W1 = A1S1B

>
1 and Σ

−1/2
22 W2 = A2S2B

>
2 be the singular value decompositions

of Σ
−1/2
11 W1 and Σ

−1/2
22 W2, where A1 and A2 are m2 × d matrices with orthonormal columns, where

B1 and B2 are d × d orthogonal matrices, and where S1 and S2 are d × d diagonal matrices. Let
C̃12 = (Σ̃11)

−1/2Σ̃12(Σ̃11)
−1/2. We then have:

C̃12A2 = A1S1B
>

1 B2S2 (7)

C̃>

12A1 = A2S2B
>

2 B1S1 (8)

C̃>

12C̃12A2 = A2S2B
>

2 B1S
2
1B>

1 B2S2 (9)

Proof Lemma 5 can be rewritten using the singular value decomposition as follows:
(

A1S1B
>
1

A2S2B
>
2

)
=

(
I − A1S

2
1A>

1 C̃12 − A1S1B
>
1 B2S2A

>
2

C̃21 − A2S2B
>
2 B1S1A

>
1 I − A2S

2
2A>

2

)

×

(
I − A1S

2
1A>

1 0
0 I − A2S

2
2A>

2

)−1(
A1S1B

>
1

A2S2B
>
2

)

Considering the first block we obtain:

A1S1B
>

1 = A1S1B
>

1 + (I − A1S
2
1A>

1 )−1(C̃12 − A1S1B
>

1 B2S2A
>

2 )(I − A2S
2
2A>

2 )−1

which implies Eq. (7). Eq. (8) can be obtained using the second block, while Eq. (9) is implied by
Eq. (7) and Eq. (8).

We can now rewrite the likelihood `2 for a stationary point:

`3 =
(m1 + m2)n

2
log 2π +

n

2
log

∣∣∣∣∣
Σ̃11 W1W

>
2

W2W
>
1 Σ̃22

∣∣∣∣∣+
n

2
tr

(
Σ̃11 W1W

>
2

W2W
>
1 Σ̃22

)−1

Σ̃

Using the Schur complement lemma for determinants, we obtain:

`3 =
(m1 + m2)n

2
log 2π +

n

2
log |Σ̃11| +

n

2
log |Σ̃22|

+
n

2
log |I − (Σ̃22)

−1/2W2W
>

1 (Σ̃11)
−1W1W

>

2 (Σ̃11)
−1/2| +

n

2
(m1 + m2)

=
(m1 + m2)n

2
log 2πe +

n

2
log |Σ̃11| +

n

2
log |Σ̃22| +

n

2
log |I − A2S2B

>

2 B1S
2
1B>

1 B2S2A
>

2 |

=
(m1 + m2)n

2
log 2πe +

n

2
log |Σ̃11| +

n

2
log |Σ̃22|

+
n

2
log |I − A2A

>

2 + A2(I − S2B
>

2 B1S
2
1B>

1 B2S2)A
>

2 |

=
(m1 + m2)n

2
log 2πe +

n

2
log |Σ̃11| +

n

2
log |Σ̃22| +

n

2
log |I − S2B

>

2 B1S
2
1B>

1 B2S2|

=
(m1 + m2)n

2
log 2πe +

n

2
log |Σ̃11| +

n

2
log |Σ̃22| +

n

2
log |I − A>

2 C̃>

12C̃12A2|
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The term log |I−A>
2 C̃>

12C̃12A2|, for A2 an m2×d matrix with orthonormal columns, is lower bounded

by
∑d

i=1 log(1 − ρ2
i ) where {ρi}

d
i=1 are the d largest canonical correlations, and there is equality if

and only if A2 = V2dR2, where R2 is an arbitrary d × d orthogonal matrix and the columns of V2d

are the d largest singular vector of C̃12.

The minimum of the likelihood is thus (m1+m2)n
2 log 2πe+ n

2 log |Σ̃11|+
n
2 log |Σ̃22|+

n
2

∑
i log(1−ρ2

i ).

The singular value decomposition of (Σ̃11)
−1/2Σ̃12(Σ̃22)

−1/2 is (Σ̃11)
−1/2Σ̃12(Σ̃22)

−1/2 = V1PV >
2 ,

where V1 is m1 × m1 orthonormal, where P is an m1 × m2 diagonal matrix (recall our earlier
definition of a diagonal rectangular matrix), and where V2 is an m2 ×m2 orthogonal matrix. We let
V1d and V2d denote the first d singular vectors and let Pd denote the diagonal matrix of the largest
d canonical correlations.

The minimum is attained at all points such that A1 = V1dR1, A2 = V2dR2, where R1 and R2 are
d × d orthogonal matrices. Plugging into the stationary equations Eq. (7) and Eq. (8), we get:

V1PV >

2 V2dR2 = V1dR1S1B
>

1 B2S2

V2P
>V >

1 V1dR1 = V2dR2S2B
>

2 B1S1

and left-multiplying the first equation by V >

1d, and the second equation by V >

2d, and right-multiplying
by R>

2 and R>
1 , we obtain

Pd = R1S1B
>

1 B2S2R
>

2

P>

d = R2S2B
>

2 B1S1R
>

1

Maximum likelihood solutions are therefore of the form

W1 = (Σ̃11)
1/2V1dM1 = Σ̃11U1dM1

W2 = (Σ̃22)
1/2V2dM2 = Σ̃22U2dM2

where M1 ∈ R
d×d and M2 ∈ R

d×d are such that M1M
>
2 = Pd and the spectral norms of M1 and

M2 are smaller than one (so that Ψ1 < 0 and Ψ2 < 0). The matrices U1d and U2d are composed of
the first canonical directions.

4.1 EM algorithm

The EM algorithm provides a general framework for fitting the parameters of latent variable mod-
els (Dempster et al., 1977). In particular, our latent variable formulation of CCA readily yields the
following EM update equations:

Wt+1 = Σ̃Ψ−1
t WtMt(Mt + MtW

>

t Ψ−1
t Σ̃Ψ−1

t WtMt)
−1

Ψt+1 =

(
(Σ̃ − Σ̃Ψ−1

t WtMtW
>
t+1)11 0

0 (Σ̃ − Σ̃Ψ−1
t WtMtW

>
t+1)22

)

where Mt = (I + W>
t Ψ−1

t Wt)
−1.

The EM algorithm always converges to a solution of the form described above, where the specific
solution that is found among solutions of this form depends on the initialization.

8
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Figure 3: Alternative graphical model for canonical correlation analysis.

4.2 CCA, maximum likelihood and low-rank approximation

Comparing the theorem for PCA of Tipping and Bishop (1999) with the analogous theorem for
CCA that we have provided in Theorem 2, we see that for PCA the maximum likelihood covariance
matrix has the form “rank d + constant × identity” and is obtained from the principal component
directions, whereas for CCA the maximum likelihood joint covariance matrix is such that the cross-
covariance matrix has rank d and is obtained from the canonical correlation directions. The following
theorem makes this precise:

Theorem 3 If the sample joint covariance matrix has full rank and the canonical correlations are
distinct, then the maximum likelihood covariance matrix with rank d cross-covariance is

(
Σ̃11 Σ̃11U1dPdU

>

2dΣ̃22

Σ̃22U2dPdU
>

1dΣ̃11 Σ̃22

)

Proof The theorem follows from the fact that any covariance matrix of rank d, can be written in

the form

(
W1W

>
1 + Ψ1 W1W

>
2

W2W
>
1 W2W

>
2 + Ψ2

)
.

4.3 Alternative model

In this section, we consider a different model than in Figure 2, but which also leads to the canonical
directions when maximum likelihood is performed. The graphical model is shown in Figure 3. We
have the following theorem:

Theorem 4 The maximum likelihood estimates of the parameters W1,W2,Ψ1,Ψ2,µ1, µ2, Φ1,Φ2 for
the model defined by (see Figure 3):

y ∼ N (0, Id), min{m1,m2} > d > 1

z1|y ∼ N (y,Φ1), Φ1 < 0

z2|y ∼ N (y,Φ2), Φ2 < 0

x1|z1 ∼ N (W1z1 + µ1,Ψ1), W1 ∈ R
m1×d,Ψ1 < 0

x2|z2 ∼ N (W2z2 + µ2,Ψ2), W2 ∈ R
m2×d,Ψ2 < 0

9



are such that

W1 = Σ̃11U1dM1

W2 = Σ̃22U2dM2

Ψ1 + W1Φ1W
>

1 = Σ̃11 − W1W
>

1

Ψ2 + W2Φ1W
>

2 = Σ̃22 − W2W
>

2

µ1 = µ̃1

µ2 = µ̃2

where M1 ∈ R
d×d and M2 ∈ R

d×d are such that M1M
>
2 = Pd and the spectral norms of M1 and M2

are smaller than one, and the i-th columns of U1d and U2d are the first d canonical directions, and
Pd is the diagonal matrix of the first d canonical correlations.

Proof The joint covariance of the data under model is:

(
W1W

>
1 + Ψ1 + W1Φ1W

>
1 W1W

>
2

W2W
>
1 W2W

>
2 + Ψ2 + W2Φ2W

>
2

)
,

and the result follows from the previous theorem.

The maximum likelihood estimates such that the conditional variance Ψ1 and Ψ2 are minimal are
of the form:

W1 = Σ̃11U1dM1

W2 = Σ̃22U2dM2

Ψ1 = Σ̃11 − Σ̃
1/2
11 V1dV

>

1dΣ̃
1/2
11 = Σ̃11 − U1dU

>

1d

Ψ2 = Σ̃22 − Σ̃
1/2
22 V2dV

>

2dΣ̃
1/2
22 = Σ̃22 − U2dU

>

2d

Φ1 = M−1
1 M−>

1 − I

Φ2 = M−1
2 M−>

2 − I

µ1 = µ̃1

µ2 = µ̃2.

For those estimates, we have the following posterior expectations:

E(z1|x1) = M−1
1 U>

1d(x1 − µ1)

E(z2|x2) = M−1
2 U>

2d(x2 − µ2).

5 LDA as CCA

Given random vectors y1, . . . , yj ∈ R
p and labels t1, . . . , tj ∈ {1, . . . , k}, Fisher linear discriminant

analysis is a dimensionality reduction technique that works as follows: partition the data into the
k classes, compute the means mi ∈ R

p and covariance matrices Si ∈ R
p×p of the data in each

class, i = 1, . . . , k, define ni = #{j, tj = i} as the number of data points belonging to class i, let

10



πi = ni

n , i = 1, . . . , k and let M = (m1, . . . ,mk) ∈ R
p×k. Define the “within-class covariance matrix”

SW =
∑

i πiSi, and the “between-class covariance matrix” SB = M(diag(π) − ππ>)M>. Finally,
solve the generalized eigenvalue problem SBα = λSW α.

We now define two random vectors as follows: x1 = y ∈ R
p, and x2 ∈ R

k, defined as (x2)i = 1 if and
only if t = i. A short calculation shows that the joint sample covariance matrix of x1, x2 is equal to

Σ̃ =

(
SW + SB M(diag(π) − ππ>)

(diag(π) − ππ>)M> diag(π) − ππ>

)

and thus CCA aims to find singular vectors of C̃12 = Σ̃
−1/2
11 Σ̃12Σ̃

−1/2
11 , which is equivalent as finding

eigenvectors of

C̃12C̃
>

12 = Σ̃
−1/2
11 Σ̃12Σ̃

−1
11 Σ̃12Σ̃

−1/2
11

= (SW + SB)−1/2M(diag(π) − ππ>)M>(SW + SB)−1/2

= (SW + SB)−1/2SB(SW + SB)−1/2

which is itself equivalent to solving the generalized eigenvalue problem SBβ = λ(SW + SB)β, i.e.,
SBβ = λ

1−λSW β. This shows that LDA for (y, t) is equivalent to CCA for (x1, x2).

6 Conclusion

We have presented a probabilistic interpretation of canonical correlation analysis that is analogous
to the probabilistic interpretation of PCA. This interpretation adds to the understanding of CCA
as a model-based method and makes it easier to include CCA models as components of larger
probabilistic models.
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