
EM Algorithms for PCA and SPCA

Sam Roweis·

Abstract
I present an expectation-maximization (EM) algorithm for principal
component analysis (PCA). The algorithm allows a few eigenvectors and
eigenvalues to be extracted from large collections of high dimensional
data. It is computationally very efficient in space and time. It also natu­
rally accommodates missing infonnation. I also introduce a new variant
of PC A called sensible principal component analysis (SPCA) which de­
fines a proper density model in the data space. Learning for SPCA is also
done with an EM algorithm. I report results on synthetic and real data
showing that these EM algorithms correctly and efficiently find the lead­
ing eigenvectors of the covariance of datasets in a few iterations using up
to hundreds of thousands of datapoints in thousands of dimensions.

1 Why EM for peA?

Principal component analysis (PCA) is a widely used dimensionality reduction technique in
data analysis. Its popularity comes from three important properties. First, it is the optimal
(in tenns of mean squared error) linear scheme for compressing a set of high dimensional
vectors into a set of lower dimensional vectors and then reconstructing. Second, the model
parameters can be computed directly from the data - for example by diagonalizing the
sample covariance. Third, compression and decompression are easy operations to perfonn
given the model parameters - they require only matrix multiplications.

Despite these attractive features however, PCA models have several shortcomings. One is
that naive methods for finding the principal component directions have trouble with high
dimensional data or large numbers of datapoints. Consider attempting to diagonalize the
sample covariance matrix of n vectors in a space of p dimensions when n and p are several
hundred or several thousand. Difficulties can arise both in the fonn of computational com­
plexity and also data scarcity. I Even computing the sample covariance itself is very costly,
requiring 0 (np2) operations. In general it is best to avoid altogether computing the sample

• rowei s@cns . cal tech. edu; Computation & Neural Systems, California Institute of Tech.
IOn the data scarcity front, we often do not have enough data in high dimensions for the sample

covariance to be of full rank and so we must be careful to employ techniques which do not require full
rank matrices. On the complexity front, direct diagonalization of a symmetric matrix thousands of
rows in size can be extremely costly since this operation is O(P3) for p x p inputs. Fortunately, several
techniques exist for efficient matrix diagonalization when only the first few leading eigenvectors and
eigerivalues are required (for example the power method [10] which is only O(p2».

EM Algorithms for PCA and SPCA 627

covariance explicitly. Methods such as the snap-shot algorithm [7] do this by assuming that
the eigenvectors being searched for are linear combinations of the datapoints; their com­
plexity is O(n3). In this note, I present a version of the expectation-maximization (EM)
algorithm [1] for learning the principal components of a dataset. The algorithm does not re­
quire computing the sample covariance and has a complexity limited by 0 (knp) operations
where k is the number of leading eigenvectors to be learned.

Another shortcoming of standard approaches to PCA is that it is not obvious how to deal
properly with missing data. Most of the methods discussed above cannot accommodate
missing values and so incomplete points must either be discarded or completed using a
variety of ad-hoc interpolation methods. On the other hand, the EM algorithm for PCA
enjoys all the benefits [4] of other EM algorithms in tenns of estimating the maximum
likelihood values for missing infonnation directly at each iteration.

Finally, the PCA model itself suffers from a critical flaw which is independent of the tech­
nique used to compute its parameters: it does not define a proper probability model in the
space of inputs. This is because the density is not nonnalized within the principal subspace.
In other words, if we perfonn PCA on some data and then ask how well new data are fit
by the model, the only criterion used is the squared distance of the new data from their
projections into the principal subspace. A datapoint far away from the training data but
nonetheless near the principal subspace will be assigned a high "pseudo-likelihood" or low
error. Similarly, it is not possible to generate "fantasy" data from a PCA model. In this note
I introduce a new model called sensible principal component analysis (SPCA), an obvious
modification of PC A, which does define a proper covariance structure in the data space. Its
parameters can also be learned with an EM algorithm, given below.

In summary, the methods developed in this paper provide three advantages. They allow
simple and efficient computation of a few eigenvectors and eigenvalues when working with
many datapoints in high dimensions. They permit this computation even in the presence of
missing data. On a real vision problem with missing infonnation, I have computed the 10
leading eigenvectors and eigenvalues of 217 points in 212 dimensions in a few hours using
MATLAB on a modest workstation. Finally, through a small variation, these methods allow
the computation not only of the principal subspace but of a complete Gaussian probabilistic
model which allows one to generate data and compute true likelihoods.

2 Whence EM for peA?

Principal component analysis can be viewed as a limiting case of a particular class of linear­
Gaussian models. The goal of such models is to capture the covariance structure of an ob­
served p-dimensional variable y using fewer than the p{p+ 1) /2 free parameters required in
a full covariance matrix. Linear-Gaussian models do this by assuming that y was produced
as a linear transfonnation of some k-dimensionallatent variable x plus additive Gaussian
noise. Denoting the transfonnation by the p x k matrix C, and the ~dimensional) noise
by v (with covariance matrix R) the generative model can be written as

y = Cx+v x-N{O,I) v-N(O,R) (la)

The latent or cause variables x are assumed to be independent and identically distributed
according to a unit variance spherical Gaussian. Since v are also independent and nonnal
distributed (and assumed independent of x), the model reduces to a single Gaussian model

2 All vectors are column vectors. To denote the transpose of a vector or matrix I use the notation
x T . The determinant of a matrix is denoted by IAI and matrix inversion by A -1. The zero matrix
is 0 and the identity matrix is I. The symbol", means "distributed according to". A multivariate
normal (Gaussian) distribution with mean JL and covariance matrix 1:: is written as N (JL, 1::). The
same Gaussian evaluated at the point x is denoted N (JL, 1::) Ix-

628 S. Roweis

for y which we can write explicitly:

y ",N (O,CCT + R) (lb)
In order to save parameters over the direct covariance representation in p-space, it is neces­
sary to choose k < p and also to restrict the covariance structure of the Gaussian noise v by
constraining the matrix R.3 For example, if the shape of the noise distribution is restricted
to be axis aligned (its covariance matrix is diagonal) the model is known asfactor analysis.

2.1 Inference and learning
There are two central problems of interest when working with the linear-Gaussian models
described above. The first problem is that of state inference or compression which asks:
given fixed model parameters C and R, what can be said about the unknown hidden states
x given some observations y? Since the datapoints are independent, we are interested in
the posterior probability P (xly) over a single hidden state given the corresponding single
observation. This can be easily computed by linear matrix projection and the resulting
density is itself Gaussian:

P(I) = P(Ylx)P(x) = N(Cx,R)lyN(O,I)lx
xy P(y) N(O,CCT+R)ly (2a)

P (xly) = N ((3y,I - (3C) Ix , (3 = CT(CCT + R)-l (2b)

from which we obtain not only the expected value (3y of the unknown state but also an
estimate of the uncertainty in this value in the form of the covariance 1- (3C. Computing
y from x (reconstruction) is also straightforward: P (ylx) = N (Cx, R) Iy. Finally,
computing the likelihood of any datapoint y is merely an evaluation under (1 b).

The second problem is that of learning, or parameter fitting which consists of identifying
the matrices C and R that make the model assign the highest likelihood to the observed
data. There are a family of EM algorithms to do this for the various cases of restrictions to
R but all follow a similar structure: they use the inference formula (2b) above in the e-step
to estimate the unknown state and then choose C and the restricted R in the m-step so as
to maximize the expected joint likelihood of the estimated x and the observed y.

2.2 Zero noise limit
Principal component analysis is a limiting case of the linear-Gaussian model as the covari­
ance of the noise v becomes infinitesimally small and equal in all directions. Mathemati­
cally, PCA is obtained by taking the limit R = limf~O d. This has the effect of making
the likelihood of a point y dominated solely by the squared distance between it and its re­
construction Cx. The directions of the columns of C which minimize this error are known
as the principal components. Inference now reduces t04 simple least squares projection:

P (xIY) = N ((3y,I - (3C) Ix , (3 = lim CT (CCT + d)-l (3a)
f~O

P (xly) = N ((CTC)-lCT y, 0) Ix = 6(x - (CTC)-lCT y) (3b)

Since the noise has become infinitesimal, the posterior over states collapses to a single
point and the covariance becomes zero.

3This restriction on R is not merely to save on parameters: the covariance of the observation noise
must be restricted in some way for the model to capture any interesting or informative projections in
the state x. If R were not restricted, the learning algorithm could simply choose C = 0 and then
set R to be the covariance of the data thus trivially achieving the maximum likelihood model by
explaining all of the structure in the data as noise. (Remember that since the model has reduced to a
single Gaussian distribution for y we can do no better than having the covariance of our model equal
the sample covariance of our data.)

4Recall that if C is p x k with p > k and is rank k then left multiplication by C T (CC T)-l
(which appears not to be well defined because (CCT) is not invertible) is exactly eqUivalent to left
multiplication by (C T C) -1 CT. The intuition is that even though CCT truly is not invertible, the
directions along which it is not invertible are exactly those which C T is about to project out.

EM Algorithms for PCA and SPCA 629

3 An EM algorithm for peA

The key observation of this note is that even though the principal components can be com­
puted explicitly, there is still an EM algorithm for learning them. It can be easily derived as
the zero noise limit of the standard algorithms (see for example [3, 2] and section 4 below)
by replacing the usual e-step with the projection above. The algorithm is:

• e-step:

• m-step:

x = (CTC)-lCTy
cnew = YXT(XXT)-l

where Y is a p x n matrix of all the observed data and X is a k x n matrix of the unknown
states. The columns of C will span the space of the first k principal components. (To com­
pute the corresponding eigenvectors and eigenvalues explicitly, the data can be projected
into this k-dimensional subspace and an ordered orthogonal basis for the covariance in the
subspace can be constructed.) Notice that the algorithm can be performed online using
only a single datapoint at a time and so its storage requirements are only O(kp) + O(k2).
The workings of the algorithm are illustrated graphically in figure 1 below.

~ 0

-I

- 2

,'I"

Gaussian Input Data

'. ';' :
. ~ , ":
(

. -, .
' .. ' ,.'"

-~3L --_'7'2-'-' --_~I -~o----c~--:------:
xl

~ 0

-I

-2

Non-Gaussian Input Data

" ~ '.
l.·.·

, I ', .

'.' . "

,,' I . , .

',:',

~3~---~2-----~I--~O~--~--~---

xl

Figure 1: Examples of iterations of the algorithm. The left panel shows the learning of the first
principal component of data drawn from a Gaussian distribution, while the right panel shows learning
on data from a non-Gaussian distribution. The dashed lines indicate the direction of the leading
eigenvector of the sample covariance. The dashed ellipse is the one standard deviation contour of
the sample covariance. The progress of the algorithm is indicated by the solid lines whose directions
indicate the guess of the eigenvector and whose lengths indicate the guess of the eigenvalue at each
iteration. The iterations are numbered; number 0 is the initial condition. Notice that the difficult
learning on the right does not get stuck in a local minimum, although it does take more than 20
iterations to converge which is unusual for Gaussian data (see figure 2).

The intuition behind the algorithm is as follows: guess an orientation for the principal
subspace. Fix the guessed subspace and project the data y into it to give the values of the
hidden states x. Now fix the values ofthe hidden states and choose the subspace orientation
which minimizes the squared reconstruction errors of the datapoints. For the simple two­
dimensional example above, I can give a physical analogy. Imagine that we have a rod
pinned at the origin which is free to rotate. Pick an orientation for the rod. Holding the
rod still, project every datapoint onto the rod, and attach each projected point to its original
point with a spring. Now release the rod. Repeat. The direction of the rod represents our
guess of the principal component of the dataset. The energy stored in the springs is the
reconstruction error we are trying to minimize.

3.1 Convergence and Complexity
The EM learning algorithm for peA amounts to an iterative procedure for finding the sub­
space spanned by the k leading eigenvectors without explicit computation of the sample

630 S. Roweis

covariance. It is attractive for small k because its complexity is limited by 0 (knp) per it­
eration and so depends only linearly on both the dimensionality of the data and the number
of points. Methods that explicitly compute the sample covariance matrix have complexities
limited by 0 (np2), while methods like the snap-shot method that form linear combinations
of the data must compute and diagonalize a matrix of all possible inner products between
points and thus are limited by O(n2p) complexity. The complexity scaling of the algorithm
compared to these methods is shown in figure 2 below. For each dimensionality, a ran­
dom covariance matrix E was generated5 and then lOp points were drawn from N (0, E).
The number of floating point operations required to find the first principal component was
recorded using MATLAB'S flops function. As expected, the EM algorithm scales more
favourably in cases where k is small and both p and n are large. If k ~ p ~ n (we want all
the eigenvectors) then all methods are O(p3).

The standard convergence proofs for EM [I] apply to this algorithm as well, so we can be
sure that it will always reach a local maximum of likelihood. Furthennore, Tipping and
Bishop have shown [8, 9] that the only stable local extremum is the global maximum at
which the true principal subspace is found; so it converges to the correct result. Another
possible concern is that the number of iterations required for convergence may scale with
p or n. To investigate this question, I have explicitly computed the leading eigenvector for
synthetic data sets (as above, with n = lOp) of varying dimension and recorded the number
of iterations of the EM algorithm required for the inner product of the eigendirection with
the current guess of the algorithm to be 0.999 or greater. Up to 450 dimensions (4500
datapoints), the number of iterations remains roughly constant with a mean of 3.6. The
ratios of the first k eigenvalues seem to be the critical parameters controlling the number of
iterations until convergence (For example, in figure I b this ratio was 1.0001.)

~~metbod
Sompli Covariance + Dill·
Smtple Covariance only

Convergence Behaviour

Figure 2: Time complexity and convergence behaviour of the algorithm. In all cases, the number
of datapoints n is 10 times the dimensionality p. For the left panel, the number of floating point
operations to find the leading eigenvector and eigenvalue were recorded. The EM algorithm was
always run for exactly 20 iterations. The cost shown for diagonalization of the sample covariance
uses the MATLAB functions cov and eigs. The snap-shot method is show to indicate scaling only;
one would not normally use it when n > p . In the right hand panel, convergence was investigated
by explicitly computing the leading eigenvector and then running the EM algorithm until the dot
product of its guess and the true eigendirection was 0.999 or more. The error bars show ± one
standard deviation across many runs. The dashed line shows the number of iterations used to produce
the EM algorithm curve ('+') in the left panel.

5First, an axis-aligned covariance is created with the p eigenvalues drawn at random from a uni­
form distribution in some positive range. Then (p - 1) points are drawn from a p-dimensional zero
mean spherical Gaussian and the axes are aligned in space using these points.

EM Algorithms for PCA and SPCA 631

3.2 Missing data

In the complete data setting, the values of the projections or hidden states x are viewed as
the "missing information" for EM. During the e-step we compute these values by projecting
the observed data into the current subspace. This minimizes the model error given the
observed data and the model parameters. However, if some of the input points are missing
certain coordinate values, we can easily estimate those values in the same fashion. Instead
of estimating only x as the value which minimizes the squared distance between the point
and its reconstruction we can generalize the e-step to:

• generalized e-step: For each (possibly incomplete) point y find the unique pair of
points x· and y. (such that x· lies in the current principal subspace and y. lies in
the subspace defined by the known information about y) which minimize the norm
IICx· - y·lI. Set the corresponding column of X to x* and the corresponding
column ofY to y •.

If y is complete, then y* = y and x* is found exactly as before. If not, then x* and y* are
the solution to a least squares problem and can be found by, for example, Q R factorization
of a particular constraint matrix. Using this generalized e-step I have found the leading
principal components for datasets in which every point is missing some coordinates.

4 Sensible Principal Component Analysis
If we require R to be a multiple €I of the identity matrix (in other words the covariance
ellipsoid of v is spherical) but do not take the limit as E --t 0 then we have a model which
I shall call sensible principal component analysis or SPCA. The columns of C are still
known as the principal components (it can be shown that they are the same as in regular
PC A) and we will call the scalar value E on the diagonal of R the global noise level. Note
that SPCA uses 1 + pk - k(k - 1)/2 free parameters to model the covariance. Once
again, inference is done with equation (2b). Notice however, that even though the principal
components found by SPCA are the same as those for PCA, the mean of the posterior is
not in general the same as the point given by the PCA projection (3b). Learning for SPCA
also uses an EM algorithm (given below).

Because it has afinite noise level E, SPCA defines a proper generative model and probability
distribution in the data space:

(4)

which makes it possible to generate data from or to evaluate the actual likelihood of new test
data under an SPCA model. Furthermore, this likelihood will be much lower for data far
from the training set even if they are near the principal subspace, unlike the reconstruction
error reported by a PCA model.

The EM algorithm for learning an SPCA model is:

• e-step: {3 = CT(CCT + d)-l J..Lx = (3Y :Ex = nI - n{3C + J..LxJ..L~
• m-step: cnew = Y J..L~:E-l Enew = trace[XXT - CJ..Lx yT]/n2

Two subtle points about complexity6 are important to notice; they show that learning for
SPCA also enjoys a complexity limited by 0 (knp) and not worse.

6 First, since d is diagonal, the inversion in the e-step can be performed efficiently using the
matrix inversion lemma: {CCT + d)-l = (I/f - C(I + CTC/f)-ICT /f2). Second, since we
are only taking the trace of the matrix in the m-step, we do not need to compute the fu\1 sample
covariance XXT but instead can compute only the variance along each coordinate.

632 S. Roweis

5 Relationships to previous methods
The EM algorithm for PCA, derived above using probabilistic arguments, is closely related
to two well know sets of algorithms. The first are power iteration methods for solving ma­
trix eigenvalue problems. Roughly speaking, these methods iteratively update their eigen­
vector estimates through repeated mUltiplication by the matrix to be diagonalized. In the
case of PCA, explicitly forming the sample covariance and multiplying by it to perform
such power iterations would be disastrous. However since the sample covariance is in fact
a sum of outer products of individual vectors, we can multiply by it efficiently without ever
computing it. In fact, the EM algorithm is exactly equivalent to performing power iterations
for finding C using this trick. Iterative methods for partial least squares (e.g. the NIPALS
algorithm) are doing the same trick for regression. Taking the singular value decomposition
(SVD) of the data matrix directly is a related way to find the principal subspace. If Lanc­
zos or Arnoldi methods are used to compute this SVD, the resulting iterations are similar
to those of the EM algorithm. Space prohibits detailed discussion of these sophisticated
methods, but two excellent general references are [5, 6]. The second class of methods are
the competitive learning methods for finding the principal subspace such as Sanger's and
Oja's rules. These methods enjoy the same storage and time complexities as the EM algo­
rithm; however their update steps reduce but do not minimize the cost and so they typically
need more iterations and require a learning rate parameter to be set by hand.

Acknowledgements
I would like to thank John Hopfield and my fellow graduate students for constant and excellent
feedback on these ideas. In particular I am grateful to Erik Winfree for significant contributions to the
missing data portion of this work, to Dawei Dong who provided image data to try as a real problem,
as well as to Carlos Brody, San joy Mahajan, and Maneesh Sahani. The work of Zoubin Ghahrarnani
and Geoff Hinton was an important motivation for this study. Chris Bishop and Mike Tipping are
pursuing independent but yet unpublished work on a virtually identical model. The comments of
three anonymous reviewers and many visitors to my poster improved this manuscript greatly.

References
[I] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society series B, 39: 1-38, 1977.

[2] B. S. Everitt. An Introducction to Latent Variable Models. Chapman and Hill, London, 1984.

[3] Zoubin Ghahramani and Geoffrey Hinton. The EM algorithm for mixtures of factor analyzers.
Technical Report CRG-TR -96-1 , Dept. of Computer Science, University of Toronto, Feb. 1997.

[4] Zoubin Ghahramani and Michael I. Jordan. Supervised learning from incomplete data via an
EM approach. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors, Advances in
Neural Information Processing Systems , volume 6, pages 120-127. Morgan Kaufmann, 1994.

[5] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, MD, USA, second edition, 1989.

[6] R. B. Lehoucq, D. C. Sorensen, and C. Yang. Arpack users' guide: Solution of large
scale eigenvalue problems with implicitly restarted Arnoldi methods. Technical Report
from http://www.caam.rice.edu/software/ARPACK/, Computational and Ap­
plied Mathematics, Rice University, October 1997.

[7] L. Sirovich. Turbulence and the dynamics of coherent structures. Quarterly Applied Mathemat­
ics, 45(3):561-590, 1987.

[8] Michael Tipping and Christopher Bishop. Mixtures of probabilistic principal component ana­
lyzers. Technical Report NCRG/97/003, Neural Computing Research Group, Aston University,
June 1997.

[9] Michael Tipping and Christopher Bishop. Probabilistic principal component analysis. Technical
Report NCRG/97/010, Neural Computing Research Group, Aston University, September 1997.

[10] J. H. Wilkinson. The AlgebraiC Eigenvalue Problem. Claredon Press, Oxford, England, 1965.

