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delineating the absolute indigeneity of amino acids in fossils. 
As AMS techniques are refined to handle smaller samples, it 
may also become possible to date individual amino acid enan
tiomers by the 14C method. If one enantiomer is entirely derived 
from the other by racemization during diagenesis, the individual 
D- and L-enantiomers for a given amino acid should have 
identical 14C ages. 

Older, more poorly preserved fossils may not always prove 
amenable to the determination of amino acid indigeneity by the 
stable isotope method, as the prospects for complete replace
ment of indigenous amino acids with non-indigenous amino 
acids increases with time. As non-indigenous amino acids 
undergo racemization, the enantiomers may have identical 
isotopic compositions and still not be related to the original 
organisms. Such a circumstance may, however, become easier 
to recognize as more information becomes available concerning 
the distribution and stable isotopic composition of the amino 
acid constituents of modern representatives of fossil organisms. 
Also, AMS dates on individual amino acid enantiomers may, 
in some cases, help to clarify indigeneity problems, in particular 
when stratigraphic controls can be used to estimate a general 
age range for the fossil in question. 

Finally, the development of techniques for determining the 
stable isotopic composition of amino acid enantiomers may 
enable us to establish whether non-racemic amino acids in some 
carbonaceous meteorites27 are indigenous, or result in part from 
terrestrial contamination. 
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We describe a new learning procedure, back-propagation, for 
networks of neurone-like units. The procedure repeatedly adjusts 
the weights of the connections in the network so as to minimize a 
measure of the difference between the actual output vector of the 
net and the desired output vector. As a result of the weight 
adjustments, internal 'hidden' units which are not part of the input 
or output come to represent important features of the task domain, 
and the regularities in the task are captured by the interactions 
of these units. The ability to create useful new features distin
guishes back-propagation from earlier, simpler methods such as 
the perceptron-convergence procedure1

• 

There have been many attempts to design self-organizing 
neural networks. The aim is to find a powerful synaptic 
modification rule that will allow an arbitrarily connected neural 
network to develop an internal structure that is appropriate for 
a particular task domain. The task is specified by giving the 
desired state vector of the output units for each state vector of 
the input units. If the input units are directly connected to the 
output units it is relatively easy to find learning rules that 
iteratively adjust the relative strengths of the connections so as 
to progressively reduce the difference between the actual and 
desired output vectors2

• Learning becomes more interesting but 
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more difficult when we introduce hidden units whose actual or 
desired states are not specified by the task. (In perceptrons, 
there are 'feature analysers' between the input and output that 
are not true hidden units because their input connections are 
fixed by hand, so their states are completely determined by the 
input vector: they do not learn representations.) The learning 
procedure must decide under what circumstances the hidden 
units should be active in order to help achieve the desired 
input-output behaviour. This amounts to deciding what these 
units should represent. We demonstrate that a general purpose 
and relatively simple procedure is powerful enough to construct 
appropriate internal representations. 

The simplest form of the learning procedure is for layered 
networks which have a layer of input units at the bottom; any 
number of intermediate layers; and a layer of output units at 
the top. Connections within a layer or from higher to lower 
layers are forbidden, but connections can skip intermediate 
layers. An input vector is presented to the network by setting 
the states of the input units. Then the states of the units in each 
layer are determined by applying equations (1) and (2) to the 
connections coming from lower layers. All units within a layer 
have their states set in parallel, but different layers have their 
states set sequentially, starting at the bottom and working 
upwards until the states of the output units are determined. 

The total input, xi, to unitj is a linear function of the outputs, 
Yi, of the units that are connected to j and of the weights, wii• 

on these connections 

(1) 

Units can be given biases by introducing an extra input to each 
unit which always has a value of 1. The weight on this extra 
input is called the bias and is equivalent to a threshold of the 
opposite sign. It can be treated just like the other weights. 

A unit has a real-valued output, Yi, which is a non-linear 
function of its total input 

(2) 
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Fig. 1 A network that has learned to detect mirror symmetry in 
the input vector. The numbers on the arcs are weights and the 
numbers inside the nodes are biases. The learning required 1,425 
sweeps through the set of 64 possible input vectors, with the weights 
being adjusted on the basis of the accumulated gradient after each 
sweep. The values of the parameters in equation (9) were e = 0.1 
and a= 0.9. The initial weights were random and were uniformly 
distributed between -0.3 and 0.3. The key property of this solution 
is that for a given hidden unit, weights that are symmetric about 
the middle of the input vector are equal in magnitude and opposite 
in sign. So if a symmetrical pattern is presented, both hidden units 
will receive a net input of 0 from the input units, and, because the 
hidden units have a negative bias, both will be off. In this case the 
output unit, having a positive bias, will be on. Note that the weights 
on each side of the midpoint are in the ratio 1 : 2: 4. This ensures 
that each of the eight patterns that can occur above the midpoint 
sends a unique activation sum to each hidden unit, so the only 
pattern below the midpoint that can exactly balance this sum is 
the symmetrical one. For all non-symmetrical patterns, both hidden 
units will receive non-zero activations from the input units. The 
two hidden units have identical patterns of weights but with 
opposite signs, so for every non-symmetric pattern one hidden unit 

will come on and suppress the output unit. 

It is not necessary to use exactly the functions given in equations 
(1) and (2). Any input-output function which has a bounded 
derivative will do. However, the use of a linear function for 
combining the inputs to a unit before applying the nonlinearity 
greatly simplifies the learning procedure. 

The aim is to find a set of weights that ensure that for each 
input vector the output vector produced by the network is the 
same as (or sufficiently close to) the desired output vector. If 
there is a fixed, finite set of input-output cases, the total error 
in the performance of the network with a particular set of weights 
can be computed by comparing the actual and desired output 
vectors for every case. The total error, E, is defined as 

E =½2: L (Yj,c-dj,c)2 (3) 
C j 

where c is an index over cases (input-output pairs), j is an 
index over output units, y is the actual state of an output unit 
and d is its desired state. To minimize E by gradient descent 
it is necessary to compute the partial derivative of E with respect 
to each weight in the network. This is simply the sum of the 
partial derivatives for each of the input-output cases, For a 
given case, the partial derivatives of the error with respect to 
each weight are computed in two passes. We have already 
described the forward pass in which the units in each layer have 
their states determined by the input they receive from units in 
lower layers using equations (1) and (2). The backward pass 
which propagates derivatives from the top layer back to the 
bottom one is more complicated. 
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Fig. 2 Two isomorphic family trees. The information can be 
expressed as a set of triples of the form (person !)(relationship) 
(person 2), where the possible relationships are {father, mother, 
husband, wife, son, daughter, uncle, aunt, brother, sister, nephew, 
niece}. A layered net can be said to 'know' these triples if it can 
produce the third term of each triple when given the first two. The 
first two terms are encoded by activating two of the input units, 
and the network must then complete the proposition by activating 

the output unit that represents the third term. 

Fig. 3 Activity levels in a five-layer network after it has learned. 
The bottom layer has 24 input units on the left for representing 
(person 1) and 12 input units on the right for representing the 
relationship. The white squares inside these two groups show the 
activity levels of the units. There is one active unit in the first group 
representing Colin and one in the second group representing the 
relationship 'has-aunt'. Each of the two input groups is totally 
connected to its own group of 6 units in the second layer. These 
groups learn to encode people and relationships as distributed 
patterns of activity. The second layer is totally connected to the 
central layer of 12 units, and these are connected to the penultimate 
layer of 6 units. The activity in the penultimate layer must activate 
the correct output units, each of which stands for a particular 
(person 2). In this case, there are two correct answers (marked by 
black dots) because Colin has two aunts. Both the input units and 
the output units are laid out spatially with the English people in 

one row and the isomorphic Italians immediately below. 

The backward pass starts by computing aE/ay for each of 
the output units. Differentiating equation (3) for a particular 
case, c, and suppressing the index c gives 

aE/ay,=y,-d, (4) 

We can then apply the chain rule to compute aE/ax, 

aE/axi =aE/ayi·dy/dxi 
Differentiating equation (2) to get the value of dyi/ dx, and 
substituting gives 

(5) 

This means that we know how a change in the total input x to 
an output unit will affect the error. But this total input is just a 
linear function of the states of the lower level units and it is 
also a linear function of the weights on the connections, so it 
is easy to compute how the error will be affected by changing 
these states and weights. For a weight w,;, from i to j the 
derivative is 

aE/aw,; =aE/ax,·axi/aw,; 
=iJE/ax,· Y; (6) 

and for the output of the i'h unit the contribution to aE/ay; 
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Fig. 4 The weights from the 24 input units that represent people 
to the 6 units in the second layer that learn distributed representa
tions of people. White rectangles, excitatory weights; black rec
tangles, inhibitory weights; area of the rectangle encodes the mag
nitude of the weight. The weights from the 12 English people are 
in the top row of each unit. Unit 1 is primarily concerned with the 
distinction between English and Italian and most of the other units 
ignore this distinction. This means that the representation of an 
English person is very similar to the representation of their Italian 
equivalent. The network is making use of the isomorphism between 
the two family trees to allow it to share structure and it will therefore 
tend to generalize sensibly from one tree to the other. Unit 2 
encodes which generation a person belongs to, and unit 6 encodes 
which branch of the family they come from. The features captured 
by the hidden units are not at all explicit in the input and output 
encodings, since these use a separate unit for each person. Because 
the hidden features capture the underlying structure of the task 
domain, the network generalizes correctly to the four triples on 
which it was not trained. We trained the network for 1500 sweeps, 
using e = 0.005 and a = 0.5 for the first 20 sweeps and E = 0.01 and 
a = 0.9 for the remaining sweeps. To make it easier to interpret 
the weights we introduced 'weight-decay' by decrementing every 
weight by 0.2 % after each weight change. After prolonged learning, 
the decay was balanced by aE I aw, so the final magnitude of each 
weight indicates its usefulness in reducing the error. To prevent 
the network needing large weights to drive the outputs to 1 or 0, 
the error was considered to be zero if output units that should be 
on had activities above 0.8 and output units that should be off had 

activities below 0.2. 

A set of 
corresponding 

weights 

Fig. S A synchronous iterative net that is run for three iterations 
and the equivalent layered net. Each time-step in the recurrent net 
corresponds to a layer in the layered net. The learning procedure 
for layered nets can be mapped into a learning procedure for 
iterative nets. Two complications arise in performing this mapping: 
first, in a layered net the output levels of the units in the intermedi
ate layers during the forward pass are required for performing the 
backward pass (see equations (5) and (6)). So in an iterative net 
it is necessary to store the history of output states of each unit. 
Second, for a layered net to be equivalent to an iterative net, 
corresponding weights between different layers must have the same 
value. To preserve this property, we average i!E/aw for all the 
weights in each set of corresponding weights and then change each 
weight in the set by an amount proportional to this average gradient. 
With these two provisos, the learning procedure can be applied 
directly to iterative nets. These nets can then either learn to perform 

iterative searches or learn sequential structures4
• 

3 

resulting from the effect of i on j is simply 

aE/avaxjjayj =a-E/axj· wji 

so taking into account all the connections emanating from unit 
i we have 

(7) 

We have now seen how to compute aE/ay for any unit in the 
penultimate layer when given aE/ay for all units in the last 
layer. We can therefore repeat this procedure to compute this 
term for successively earlier layers, computing aE / aw for the 
weights as we go. 

One way of using aE / aw is to change the weights after every 
input-output case. This has the advantage that no separate 
memory is required for the derivatives. An alternative scheme, 
which we used in the research reported here, is to accumulate 
aE/aw over all the input-output cases before changing the 
weights. The simplest version of gradient descent is to change 
each weight by an amount proportional to the accumulated 
aE/aw 

A.w=-eaE/aw (8) 

This method does not converge as rapidly as methods which 
make use of the second derivatives, but it is much simpler and 
can easily be implemented by local computations in parallel 
hardware. It can be significantly improved, without sacrificing 
the simplicity and locality, by using an acceleration method in 
which the current gradient is used to modify the velocity of the 
point in weight space instead of its position 

A. w(t) = -eaEjaw(t) + aA.w(t -1) (9) 

where t is incremented by 1 for each sweep through the whole 
set of input-output cases, and a is an exponential decay factor 
between O and 1 that determines the relative contribution of the 
current gradient and earlier gradients to the weight change. 

To break symmetry we start with small random weights. 
Variants on the learning procedure have been discovered 
independently by David Parker (personal communication) and 
by Yann Le Cun3. 

One simple task that cannot be done by just connecting the 
input units to the output units is the detection of symmetry. To 
detect whether the binary activity levels of a one-dimensional 
array of input units are symmetrical about the centre point, it 
is essential to use an intermediate layer because the activity in 
an individual input unit, considered alone, provides no evidence 
about the symmetry or non-symmetry of the whole input vector, 
so simply adding up the evidence from the individual input 
units is insufficient. (A more formal proof that intermediate 
units are required is given in ref. 2.) The learning procedure 
discovered an elegant solution using just two intermediate units, 
as shown in Fig. 1. 

Another interesting task is to store the information in the two 
family trees (Fig. 2). Figure 3 shows the network we used, and 
Fig. 4 shows the 'receptive fields' of some of the hidden units 
after the network was trained on 100 of the 104 possible triples. 

So far, we have only dealt with layered, feed-forward 
networks. The equivalence between layered networks and recur
rent networks that are run iteratively is shown in Fig. 5. 

The most obvious drawback of the learning procedure is that 
the error-surface may contain local minima so that gradient 
descent is not guaranteed to find a global minimum. However, 
experience with many tasks shows that the network very rarely 
gets stuck in poor local minima that are significantly worse than 
the global minimum. We have only encountered this undesirable 
behaviour in networks that have just enough connections to 
perform the task. Adding a few more connections creates extra 
dimensions in weight-space and these dimensions provide paths 
around the barriers that create poor local minima in the lower 
dimensional subspaces. 
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The learning procedure, in its current form, is not a plausible 
model of learning in brains. However, applying the procedure 
to various tasks shows that interesting internal representations 
can be constructed by gradient descent in weight-space, and 
this suggests that it is worth looking for more biologically 
plausible ways of doing gradient descent in neural networks. 
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Bilateral amblyopia after a short 
period of reverse occlusion in kittens 
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The majority of neurones in the visual cortex of both adult cats 
and kittens can be excited by visual stimulation of either eye. 
Nevertheless, if one eye is deprived of patterned vision early in 
life, most cortical cells can only be activated by visual stimuli 
presented to the nondeprived eye and behaviourally the deprived 
eye is apparently useless1

'
2

, Although the consequences of 
monocular deprivation can be severe, they can in many circum
stances be rapidly reversed with the early implementation of reverse 
occlusion which forces the use of the initially deprived eye3

•
4

• 

However, by itself reverse occlusion does not restore a normal 
distribution of cortical occular dominance3 and only promotes 
visual recovery in one eye5

•
6

• In an effort to find a procedure that 
might restore good binocular vision, we have examined the effects 
on acuity and cortical ocular dominance of a short, but physiologi
cally optimal period of reverse occlusion, followed by a period of 
binocular vision beginning at 7.5 weeks of age. Surprisingly, despite 
the early introduction of binocular vision, both eyes attained 
acuities that were only approximately 1/3 of normal acuity levels. 
Despite the severe bilateral amblyopia, cortical ocular dominance 
appeared similar to that of normal cats. This is the first demonstra
tion of severe bilateral amblyopia following consecutive periods 
of monocular occlusion. 

Nine kittens were used, of which eight were monocularly 
deprived by eyelid suture from about the time of natural eye 
opening (6 to 11 days) until 5 weeks of age, at which time the 
initially deprived eye was opened and the other eye was sutured 
closed for 18 days. Physiological recordings from area 17 were 
made from one normal control and from five monocularly
deprived kittens, one immediately after reverse occlusion (as a 
control); the remaining four after a further 4 weeks at least 
(range 4-8 weeks) of normal binocular vision. Grating acuity 
thresholds were determined for both eyes of a further three 
kittens (subjected to the same regime-monocular deprivation, 
18 days reverse suturing, followed by normal binocular vision) 
by use of a jumping stand5

•
7

• None of the kittens tested 
behaviourally were examined physiologically. Single unit 
recordings were made in area 17 of the anaesthetized, paralysed 
kittens ( one normal, five experimental) with glass coated 
platinum-iridium electrodes. Anaesthesia was induced by 

• Present address: School of Optometry, Univen1ity of California, Berkeley, California 94720, 
USA. 
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Fig. 1. Changes in visual acuity during the period of binocular 
vision for two kittens (C155 and Cl64) that were previously 
monocularly deprived until 5 weeks of age, and then reverse 
occluded for 18 days. e, Acuity of the initially deprived eye; 0, 

acuity of the initially nondeprived eye. 

intravenous pentothal and maintained by artificial respiration 
with 70% N20 and 30% 0 2 supplemented with intravenous 
Nembutal; EEG, EKG, body temperature, and expired CO2 

levels were monitored.The eyes were brought to focus on a 
tangent screen 137 cm distant from the kitten using contact 
lenses with 3 mm artificial pupils. Single units were recorded 
along one long penetration in area 17 down the medial bank of 
the postlateral gyrus in each hemisphere, always beginning in 
the hemisphere contralateral to the initially open eye. Receptive 
fields were sampled according to established procedures8

, every 
100 µm along the penetration in a cortical region corresponding 
to the horizontal meridian of visual space. All units were located 
within 15° of the area centralis, with the majority within 5°. 

The longitudinal changes in visual acuity of both eyes follow
ing introduction of binocular vision are shown in Fig. 1 for two 
representative kittens. At the end of 18 days of reverse occlusion 
the vision of the initially deprived eye had recovered to only 
rudimentary levels (1-2.5 cycles per degree) while at the same 
time the initially nondeprived eye had been rendered blind. 
During the subsequent period of binocular visual exposure the 
vision of both eyes improved slightly, but only to a very limited 
extent (to between 1.7 and 3.4 cycles per degree). The results 
from the third animal were very similar. After more than 2 
months of binocular exposure the acuities of the initially 
deprived and nondeprived eyes were respectively, 2.54 and 3.35 
cycles per degree. Surprisingly, after 2 months of binocular 
vision, the acuity of both eyes of these animals remained at 
about one-third to one-half of normal levels6

• Although the 
initially deprived eye was opened at the peak of the sensitive 
period (5 weeks of age) and the initially nondeprived eye was 
closed for a relatively brief period of time (18 days), this depriva
tion regimen had a devastiating and permanent effect upon the 
visual acuity of both eyes. 
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