
Journal of Machine Learning Research 10 (2009) 207-244 Submitted 12/07; Revised 9/08; Published 2/09

Distance Metric Learning for Large Margin
Nearest Neighbor Classification

Kilian Q. Weinberger KILIAN @YAHOO-INC.COM

Yahoo! Research
2821 Mission College Blvd
Santa Clara, CA 9505

Lawrence K. Saul SAUL@CS.UCSD.EDU

Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive, Mail Code 0404
La Jolla, CA 92093-0404

Editor: Sam Roweis

Abstract
The accuracy ofk-nearest neighbor (kNN) classification depends significantly on the metric used
to compute distances between different examples. In this paper, we show how to learn a Maha-
lanobis distance metric for kNN classification from labeledexamples. The Mahalanobis metric
can equivalently be viewed as a global linear transformation of the input space that precedes kNN
classification using Euclidean distances. In our approach,the metric is trained with the goal that
thek-nearest neighbors always belong to the same class while examples from different classes are
separated by a large margin. As in support vector machines (SVMs), the margin criterion leads to a
convex optimization based on the hinge loss. Unlike learning in SVMs, however, our approach re-
quires no modification or extension for problems in multiway(as opposed to binary) classification.
In our framework, the Mahalanobis distance metric is obtained as the solution to a semidefinite
program. On several data sets of varying size and difficulty,we find that metrics trained in this
way lead to significant improvements in kNN classification. Sometimes these results can be further
improved by clustering the training examples and learning an individual metric within each cluster.
We show how to learn and combine these local metrics in a globally integrated manner.

Keywords: convex optimization, semi-definite programming, Mahalanobis distance, metric learn-
ing, multi-class classification, support vector machines

1. Introduction

One of the oldest and simplest methods for pattern classification is thek-nearest neighbors (kNN)
rule (Cover and Hart, 1967). The kNN rule classifies each unlabeled example by the majority
label of itsk-nearest neighbors in the training set. Despite its simplicity, the kNN rule often yields
competitive results and in certain domains, when cleverly combined with prior knowledge, it has
significantly advanced the state-of-the-art (Belongie et al., 2002; Simardet al., 1993).

By the very nature of its decision rule, the performance of kNN classification depends crucially
on the way that distances are computed between different examples. Whenno prior knowledge
is available, most implementations of kNN compute simple Euclidean distances (assuming the ex-
amples are represented as vector inputs). Unfortunately, Euclidean distances ignore any statistical

c©2009 Kilian Q. Weinberger and Lawrence Saul.

WEINBERGER ANDSAUL

regularities that might be estimated from a large training set of labeled examples. Ideally, one would
like to adapt the distance metric to the application at hand. Suppose, for example, that we are using
kNN to classify images of faces by age and gender. It can hardly be optimal to use the same distance
metric for age and gender classification, even if in both tasks, distances are computed between the
same sets of extracted features (e.g., pixels, color histograms).

Motivated by these issues, a number of researchers have demonstratedthat kNN classification
can be greatly improved by learning an appropriate distance metric from labeled examples (Chopra
et al., 2005; Goldberger et al., 2005; Shalev-Shwartz et al., 2004; Shental et al., 2002). This is
the so-called problem ofdistance metric learning. Recently, it has been shown that even a simple
linear transformation of the input features can lead to significant improvements in kNN classification
(Goldberger et al., 2005; Shalev-Shwartz et al., 2004). Our work builds in a novel direction on the
success of these previous approaches.

In this paper, we show how to learn a Mahalanobis distance metric for kNN classification. The
algorithm that we propose was described at a high level in earlier work (Weinberger et al., 2006)
and later extended in terms of scalability and accuracy (Weinberger and Saul, 2008). Intuitively, the
algorithm is based on the simple observation that the kNN decision rule will correctly classify an ex-
ample if itsk-nearest neighbors share the same label. The algorithm attempts to increase the number
of training examples with this property by learning a linear transformation of theinput space that
precedes kNN classification using Euclidean distances. The linear transformation is derived by min-
imizing a loss function that consists of two terms. The first term penalizes largedistances between
examples in the same class that are desired ask-nearest neighbors, while the second term penalizes
small distances between examples with non-matching labels. Minimizing these terms yields a linear
transformation of the input space that increases the number of training examples whosek-nearest
neighbors have matching labels. The Euclidean distances in the transformedspace can equivalently
be viewed as Mahalanobis distances in the original space. We exploit this equivalence to cast the
problem of distance metric learning as a problem in convex optimization.

Our approach is largely inspired by recent work on neighborhood component analysis (Gold-
berger et al., 2005) and metric learning in energy-based models (Chopra et al., 2005). Despite
similar goals, however, our method differs significantly in the proposed optimization. We formulate
the problem of distance metric learning as an instance of semidefinite programming. Thus, the op-
timization is convex, and its global minimum can be efficiently computed. There have been other
studies in distance metric learning based on eigenvalue problems (Shental etal., 2002; De Bie et al.,
2003) and semidefinite programming (Globerson and Roweis, 2006; Shalev-Shwartz et al., 2004;
Xing et al., 2002). These previous approaches, however, essentiallyattempt to learn distance metrics
that cluster togetherall similarly labeled inputs, even those that are notk-nearest neighbors. This
objective is far more difficult to achieve than what we propose. Moreover, it does not leverage the
full power of kNN classification, whose accuracy does not require that all similarly labeled inputs
be tightly clustered.

There are many parallels between our method and classification by supportvector machines
(SVMs)—most notably, a convex objective function based on the hinge loss, and the potential to
work in nonlinear feature spaces by using the “kernel trick”. In light ofthese parallels, we describe
our approach aslarge margin nearest neighbor(LMNN) classification. Our framework can be
viewed as the logical counterpart to SVMs in which kNN classification replaces linear classification.

Our framework contrasts with classification by SVMs, however, in one intriguing respect: it
requires no modification for multiclass problems. Extensions of SVMs to multiclassproblems typi-

208

DISTANCE METRIC LEARNING

cally involve combining the results of many binary classifiers, or they requireadditional machinery
that is elegant but non-trivial (Crammer and Singer, 2001). In both cases the training time scales at
least linearly in the number of classes. By contrast, our framework has noexplicit dependence on
the number of classes.

We also show how to extend our framework to learn multiple Mahalanobis metrics,each of
them associated with a different class label and/or region of the input space. The multiple metrics
are trained simultaneously by minimizing a single loss function. While the loss function couples
metrics in different parts of the input space, the optimization remains an instance of semidefinite
programming. The globally integrated training of local distance metrics distinguishes our approach
from earlier work on discriminant adaptive kNN classification (Hastie and Tibshirani, 1996)

Our paper is organized as follows. Section 2 introduces the general problem of distance metric
learning forkNN classification and reviews previous approaches that motivated our work. Section 3
describes our model for LMNN classification and formulates the required optimization as an in-
stance of semidefinite programming. Section 4 presents experimental results on several data sets.
Section 5 discusses several extensions to LMNN classification, including iterative re-estimation of
target neighbors, locally adaptive Mahalanobis metrics in different partsof the input space, and
“kernelization” of the basic algorithm. Section 6 describes faster implementations for training and
testing in LMNN classification using ball trees. Section 7 concludes by summarizing our main con-
tributions and sketching several directions of ongoing research. Finally, appendix A describes the
special-purpose solver that we implemented for large scale problems in LMNNclassification.

2. Background

In this section, we introduce the general problem of distance metric learning(section 2.1) and review
a number of previously studied approaches. Broadly speaking, these approaches fall into three
categories: eigenvector methods based on second-order statistics (section 2.2), convex optimizations
over the space of positive semidefinite matrices (section 2.3), and fully supervised algorithms that
directly attempt to optimizekNN classification error (section 2.4) .

2.1 Distance Metric Learning

We begin by reviewing some basic terminology. A mappingD : X ×X → ℜ+
0 over a vector spaceX

is called ametric if for all vectors∀~xi ,~x j ,~xk ∈ X , it satisfies the properties:

1. D(~xi ,~x j)+D(~x j ,~xk) ≥ D(~xi ,~xk) (triangular inequality).

2. D(~xi ,~x j) ≥ 0 (non-negativity).

3. D(~xi ,~x j) = D(~x j ,~xi) (symmetry).

4. D(~xi ,~x j) = 0 ⇐⇒ ~xi =~x j (distinguishability).

Strictly speaking, if a mapping satisfies the first three properties but not thefourth, it is called a
pseudometric. However, to simplify the discussion in what follows, we will often refer to pseudo-
metrics as metrics, pointing out the distinction only when necessary.

We obtain a family of metrics overX by computing Euclidean distances after performing a
linear transformation~x′ = L~x. These metrics compute squared distances as:

DL (~xi ,~x j) = ‖L(~xi −~x j)‖2
2, (1)

209

WEINBERGER ANDSAUL

where the linear transformation in Eq. (1) is parameterized by the matrixL . It is simple to show
that Eq. (1) defines a valid metric ifL is full rank and a valid pseudometric otherwise.

It is common to express squared distances under the metric in Eq. (1) in terms of the square
matrix:

M = L⊤L . (2)

Any matrixM formed in this way from a real-valued matrixL is guaranteed to be positive semidefi-
nite (i.e., to have no negative eigenvalues). In terms of the matrixM , we denote squared distances by

DM (~xi ,~x j) = (~xi −~x j)
⊤M(~xi −~x j), (3)

and we refer to pseudometrics of this form asMahalanobis metrics. Originally, this term was
used to describe the quadratic forms in Gaussian distributions, where the matrix M played the role
of the inverse covariance matrix. Here we allowM to denote any positive semidefinite matrix.
The distances in Eq. (1) and Eq. (3) can be viewed as generalizations ofEuclidean distances. In
particular, Euclidean distances are recovered by settingM to be equal to the identity matrix.

A Mahalanobis distance metric can be parameterized in terms of the matrixL or the matrixM .
Note that the matrixL uniquely defines the matrixM , while the matrixM definesL up to rotation
(which does not affect the computation of distances). This equivalencesuggests two different ap-
proaches to distance metric learning. In particular, we can either estimate a linear transformationL ,
or we can estimate a positive semidefinite matrixM . Note that in the first approach, the optimiza-
tion is unconstrained, while in the second approach, it is important to enforce the constraint that
the matrixM is positive semidefinite. Though generally more complicated to solve a constrained
optimization, this second approach has certain advantages that we explorein later sections.

Many researchers have proposed ways to estimate Mahalanobis distancemetrics for the purpose
of computing distances inkNN classification. In particular, let{(~xi ,yi)}n

i=1 denote a training set of
n labeled examples with inputs~xi ∈ ℜd and discrete (but not necessarily binary) class labelsyi ∈
{1,2, . . . ,C}. ForkNN classification, one seeks a linear transformation such that nearest neighbors
computed from the distances in Eq. (1) share the same class labels. We review several previous
approaches to this problem in the following section.

2.2 Eigenvector Methods

Eigenvector methods have been widely used to discover informative linear transformations of the
input space. As discussed in section 2.1, these linear transformations canbe viewed as inducing a
Mahalanobis distance metric. Popular eigenvector methods for linear preprocessing are principal
component analysis, linear discriminant analysis, and relevant component analysis. These methods
differ in the way that they use labeled or unlabeled data to derive linear transformations of the input
space. These methods can also be “kernelized” to work in a nonlinear feature space (M̈uller et al.,
2001; Scḧolkopf et al., 1998; Tsang et al., 2005), though we do not discuss suchformulations here.

2.2.1 PRINCIPAL COMPONENTANALYSIS

We briefly review principal component analysis (PCA) (Jolliffe, 1986) inthe context of distance
metric learning. Essentially, PCA computes the linear transformation~xi → L~xi that projects the
training inputs {~xi}n

i=1 into a variance-maximizing subspace. The variance of the projected inputs

210

DISTANCE METRIC LEARNING

can be written in terms of the covariance matrix:

C =
1
n

n

∑
i=1

(~xi −~µ)⊤(~xi −~µ),

where~µ= 1
n ∑i~xi denotes the sample mean. The linear transformationL is chosen to maximize the

variance of the projected inputs, subject to the constraint thatL defines a projection matrix. In terms
of the input covariance matrix, the required optimization is given by:

max
L

Tr(L⊤CL) subject to:LL⊤ = I . (4)

The optimization in Eq. (4) has a closed-form solution; the standard convention equates the rows
of L with the leading eigenvectors of the covariance matrix. IfL is a rectangular matrix, the linear
transformation projects the inputs into a lower dimensional subspace. IfL is a square matrix, then
the transformation does not reduce the dimensionality, but this solution still serves to rotate and
re-order the input coordinates by their respective variances.

Note that PCA operates in an unsupervised setting without using the class labels of training
inputs to derive informative linear projections. Nevertheless, PCA still hascertain useful properties
as a form of linear preprocessing forkNN classification. For example, PCA can be used for “de-
noising”: projecting out the components of the bottom eigenvectors often reduceskNN error rate.
PCA can also be used to accelerate neighbor nearest computations in largedata sets. The linear
preprocessing from PCA can significantly reduce the amount of computation either by explicitly
reducing the dimensionality of the inputs, or simply by re-ordering the input coordinates in terms
of their variance (as discussed further in section 6).

2.2.2 LINEAR DISCRIMINANT ANALYSIS

We briefly review linear discriminant analysis (LDA) (Fisher, 1936) in the context of distance metric
learning. LetΩc denote the set of indices of examples in thecth class (withyi = c). Essentially,
LDA computes the linear projection~xi → L~xi that maximizes the amount of between-class variance
relative to the amount of within-class variance. These variances are computed from the between-
class and within-class covariance matrices, defined by:

Cb =
1
C

C

∑
c=1

~µc~µ
⊤
c , (5)

Cw =
1
n

C

∑
c=1

∑
i∈Ωc

(~xi −~µc)(~xi −~µc)
⊤,

where~µc denotes the sample mean of thecth class; we also assume that the data is globally centered.
The linear transformationL is chosen to maximize the ratio of between-class to within-class vari-
ance, subject to the constraint thatL defines a projection matrix. In terms of the above covariance
matrices, the required optimization is given by:

max
L

Tr

(

L⊤CbL
L⊤CwL

)

subject to:LL ⊤ = I . (6)

The optimization in Eq. (6) has a closed-form solution; the standard convention equates the rows
of L with the leading eigenvectors ofC−1

w Cb.

211

WEINBERGER ANDSAUL

LDA is widely used as a form of linear preprocessing for pattern classification. Unlike PCA,
LDA operates in a supervised setting and uses the class labels of the inputs toderive informative
linear projections. Note that the between-class covariance matrixCb in Eq. (5) has at most rankC ,
whereC is the number of classes. Thus, up toC linear projections can be extracted from the
eigenvalue problem in LDA. Because these projections are based on second-order statistics, they
work well to separate classes whose conditional densities are multivariate Gaussian. When this
assumption does not hold, however, LDA may extract spurious featuresthat are not well suited to
kNN classification.

2.2.3 RELEVANT COMPONENTANALYSIS

Finally, we briefly review relevant component analysis (RCA) (Shental et al., 2002; Bar-Hillel et al.,
2006) in the context of distance metric learning. RCA is intermediate between PCA and LDA
in its use of labeled data. Specifically, RCA makes use of so-called “chunklet” information, or
subclass membership assignments. A chunklet is essentially a subset of a class. Inputs in the same
chunklet belong to the same class, but inputs in different chunklets do notnecessarily belong to
different classes. Essentially, RCA computes the linear projection~xi → L~xi that “whitens” the data
with respect to the averaged within-chunklet covariance matrix. In particular, let Ωℓ denote the
set of indices of examples in theℓth chunklet, and let~µℓ denote the mean of these examples. The
averaged within-chunklet covariance matrix is given by:

Cw =
1
n

L

∑
l=1

∑
i∈Ωl

(~xi −~µl)(~xi −~µl)
⊤.

RCA uses the linear transformation~xi → L~xi with L = C−1/2
w . This transformation acts to normalize

the within-chunklet variance. An unintended side effect of this transformation may be to amplify
noisy directions in the data. Thus, it is recommended to de-noise the data by PCA before computing
the within-chunklet covariance matrix.

2.3 Convex Optimization

Recall that the goal of distance metric learning can be stated in two ways: to learn a linear trans-
formation~xi → L~xi or, equivalently, to learn a Mahalanobis metricM = LL ⊤. It is possible to
formulate certain types of distance metric learning as convex optimizations overthe cone of pos-
itive semidefinite matricesM . In this section, we review two previous approaches based on this
idea.

2.3.1 MAHALANOBIS METRIC FORCLUSTERING

A convex objective function for distance metric learning was first proposed by Xing et al. (2002).
The goal of this work was to learn a Mahalanobis metric for clustering (MMC)with side-information.
MMC shares a similar goal as LDA: namely, to minimize the distances between similarlylabeled in-
puts while maximizing the distances between differently labeled inputs. MMC differs from LDA in
its formulation of distance metric learning as an convex optimization problem. In particular, whereas
LDA solves the eigenvalue problem in Eq. (6) to compute the linear transformation L , MMC solves
a convex optimization over the matrixM = L⊤L that directly represents the Mahalanobix metric
itself.

212

DISTANCE METRIC LEARNING

To state the optimization for MMC, it is helpful to introduce further notation. From the class
labelsyi , we define then×n binary association matrix with elementsyi j =1 if yi =y j andyi j =0
otherwise. In terms of this notation, MMC attempts to maximize the distances between pairs of
inputs with different labels (yi j = 0), while constraining the sum over squared distances of pairs of
similarly labeled inputs (yi j = 1). In particular, MMC solves the following optimization:

Maximize ∑i j (1−yi j)
√

DM (~xi ,~x j) subject to:

(1) ∑i j yi jDM (~xi ,~x j) ≤ 1

(2) M � 0.

The first constraint is required to make the problem feasible and bounded;the second constraint
enforces thatM is a positive semidefinite matrix. The overall optimization is convex. The square
root in the objective function ensures that MMC leads to generally different results than LDA.

MMC was designed to improve the performance of iterative clustering algorithms such ask-
means. In these algorithms, clusters are generally modeled as normal or unimodal distributions.
MMC builds on this assumption by attempting to minimize distances between all pairs of similarly
labeled inputs; this objective is only sensible for unimodal clusters. For this reason, however, MMC
is not especially appropriate as a form of distance metric learning forkNN classification. One of the
major strengths ofkNN classification is its non-parametric framework. Thus a different objective
for distance metric learning is needed to preserve this strength ofkNN classification—namely, that
it does not implicitly make parametric (or other limiting) assumptions about the input distributions.

2.3.2 ONLINE LEARNING OF MAHALANOBIS DISTANCES

Convex optimizations over the cone of positive semidefinite matrices have also been proposed for
perceptron-like approaches to distance metric learning. The PseudometricOnline Learning Algo-
rithm (POLA) (Shalev-Shwartz et al., 2004) combines ideas from convexoptimization and large
margin classification. Like LDA and MMC, POLA attempts to learn a metric that shrinks distances
between similarly labeled inputs and expands distances between differently labeled inputs. POLA
differs from LDA and MMC, however, in explicitly encouraging a finite margin that separates dif-
ferently labeled inputs. POLA was also conceived in an online setting.

The online version of POLA works as follows. At timet, the learning environment presents a
tuple (~xt ,~x′t ,yt), where the binary labelyt indicates whether the two inputs~xt and~x′t belong to the
same (yt =1) or different (yt =−1) classes. From streaming tuples of this form, POLA attempts to
learn a Mahalanobis metricM and a scalar thresholdb such that similarly labeled inputs areat most
a distance ofb−1 apart, while differently labeled inputs areat leasta distance ofb+1 apart. These
constraints can be expressed by the single inequality:

yt

[

b−
(

~xt −~x′t
)⊤M

(

~xt −~x′t
)

]

≥ 1. (7)

The distance metricM and thresholdb are updated after each tuple (~ut ,~vt ,yt) to correct any violation
of this inequality. In particular, the update computes a positive semidefinite matrixM that satisfies
(7). The required optimization can be performed by an alternating projectionalgorithm, similar to
the one described in appendix A. The algorithm extends naturally to problemswith more than two
classes.

213

WEINBERGER ANDSAUL

POLA can also be implemented on a data set of fixed size. In this setting, pairs of inputs are
repeatedly processed until no pair violates its margin constraints by more thansome constantβ > 0.
Moreover, as in perceptron learning, the number of iterations over the data set can be bounded above
(Shalev-Shwartz et al., 2004).

In many ways, POLA exhibits the same strengths and weaknesses as MMC. Both algorithms
are based on convex optimizations that do not have spurious local minima. Onthe other hand,
both algorithms make implicit assumptions about the distributions of inputs and classlabels. The
margin constraints enforced by POLA are designed to learn a distance metricunder which all pairs
of similarly labeled inputs are closer than all pairs of differently labeled inputs. This type of learning
may often be unrealizable, however, even in situations wherekNN classification is able to succeed.
For this reason, a different framework is required to learn distance metrics forkNN classification.

2.4 Neighborhood Component Analysis

Recently, Goldberger et al. (2005) considered how to learn a Mahalnobis distance metric especially
for kNN classification. They proposed a novel supervised learning algorithmknown asNeigh-
borhood Component Analysis(NCA). The algorithm computes the expected leave-one-out clas-
sification error from a stochastic variant ofkNN classification. The stochastic classifier uses a
Mahalanobis distance metric parameterized by the linear transformation~x→ L~x in Eqs. (1–3). The
algorithm attempts to estimate the linear transformationL that minimizes the expected classification
error when distances are computed in this way.

The stochastic classifier in NCA is used to label queries by the majority vote of nearby training
examples, but not necessarily thek nearest neighbors. In particular, for each query, the reference
examples in the training set are drawn from a softmax probability distribution that favors nearby
examples over faraway ones. The probability of drawing~x j as a reference example for~xi is given
by:

pi j =

{

exp(−‖Lxi−Lx j‖2)
∑k6=i exp(−‖Lxi−Lxk‖2)

if i 6= j

0 if i = j.
(8)

Note that there is no free parameterk for the number of nearest neighbors in this stochastic classifier.
Instead, the scale ofL determines the size of neighborhoods from which nearby training examples
are sampled. On average, though, this sampling procedure yields similar results as a deterministic
kNN classifier (for some value ofk) with the same Mahalanobis distance metric.

Under the softmax sampling scheme in Eq. (8), it is simple to compute the expected leave-one-
out classification error on the training examples. As in section 2.3.1, we define then×n binary
matrix with elementsyi j = 1 if yi = y j andyi j = 0 otherwise. The expected error computes the
fraction of training examples that are (on average) misclassified:

εNCA = 1− 1
n ∑

i j

pi j yi j . (9)

The error in Eq. (9) is a continuous, differentiable function of the linear transformationL used to
compute Mahalanobis distances in Eq. (8).

Note that the differentiability of Eq. (9) depends on the stochastic neighborhood assignment
of the NCA decision rule. By contrast, the leave-one-out error of a deterministic kNN classifier is
neither continuous nor differentiable in the parameters of the distance metric.For distance metric

214

DISTANCE METRIC LEARNING

learning, the differentiability of Eq. (9) is a key advantage of stochastic neighborhood assignment,
making it possible to minimize this error measure by gradient descent. It would be much more
difficult to minimize the leave-one-out error of its deterministic counterpart.

The objective function for NCA differs in one important respect from other algorithms reviewed
in this section. Though continuous and differentiable with respect to the parameters of the distance
metric, Eq. (9) is not convex, nor can it be minimized using eigenvector methods. Thus, the op-
timization in NCA can suffer from spurious local minima. In practice, the resultsof the learning
algorithm depend on the initialization of the distance metric.

The linear transformation in NCA can also be used to project the inputs into a lower dimensional
Euclidean space. Eqs. (8–9) remain valid whenL is a rectangular as opposed to square matrix.
Lower dimensional projections learned by NCA can be used to visualize class structure and/or to
acceleratekNN search.

Recently, Globerson and Roweis (2006) proposed a related model known as Metric Learning
by Collapsing Classes (MLCC). The goal of MLCC is to find a distance metric that (like LDA)
shrinks the within-class variance while maintaining the separation between different classes. MLCC
uses a similar rule as NCA for stochastic classification, so as to yield a differentiable objective
function. Compared to NCA, MLCC has both advantages and disadvantages for distance metric
learning. The main advantage is that distance metric learning in MLCC can be formulated as a
convex optimization over the space of positive semidefinite matrices. The main disadvantage is
that MLCC implicitly assumes that the examples in each class have a unimodal distribution. In
this sense, MLCC shares the same basic strengths and weaknesses of themethods described in
section 2.3.

3. Model

The model we propose for distance metric learning builds on the algorithms reviewed in section 2.
In common with all of them, we attempt to learn a Mahalanobis distance metric of the form in
Eqs. (1–3). Other key aspects of our model build on the particular strengths of individual ap-
proaches. As in MMC (see section 2.3.1), we formulate the parameter estimationin our model
as a convex optimization over the space of positive semidefinite matrices. As in POLA (see sec-
tion 2.3.2), we attempt to maximize the margin by which the model correctly classifies labeled
examples in the training set. Finally, as in NCA (see section 2.4), our model was conceived specif-
ically to learn a Mahalanobis distance metric that improves the accuracy ofkNN classification.
Indeed, the three essential ingredients of our model are (i) its convex loss function, (ii) its goal
of margin maximization, and (iii) the constraints on the distance metric imposed by accuratekNN
classification.

3.1 Intuition and Terminology

Our model is based on two simple intuitions (and idealizations) for robustkNN classification: first,
that each training input~xi should share the same labelyi as itsk nearest neighbors; second, that
training inputs with different labels should be widely separated. We attempt to learn a linear trans-
formation of the input space such that the training inputs satisfy these properties. In fact, these
objectives are neatly balanced by two competing terms in our model’s loss function. Specifically,
one term penalizes large distances between nearby inputs with the same label,while the other term

215

WEINBERGER ANDSAUL

penalizes small distances between inputs with different labels. To make precise these relative no-
tions of “large” and “small”, however, we first need to introduce some newterminology.

Learning in our framework requires auxiliary information beyond the labelyi of each input~xi in
the training set. Recall that the goal of learning is to estimate a distance metric under which each
input~xi hask nearest neighbors that share its same labelyi . We facilitate this goal by identifying
target neighborsfor each input~xi at the outset of learning. The target neighbors of~xi are those that
we desire to be closest to~xi ; in particular, we attempt to learn a linear transformation of the input
space such that the resulting nearest neighbors of~xi are indeed its target neighbors. We emphasize
that target neighbors are fixed a priori and do not change during the learning process. This step
significantly simplifies the learning process by specifying a priori which similarly labeled inputs to
cluster together. In many applications, there may be prior knowledge or auxiliary information (e.g.,
a similarity graph) that naturally identifies target neighbors. In the absenceof prior knowledge, the
simplest prescription is to compute thek nearest neighbors with the same class label, as determined
by Euclidean distance. This was done for all the experiments in this paper. We use the notationj i
to indicate that input~x j is a target neighbor of input~xi . Note that this relation is not symmetric:j i
does not implyi j.

ForkNN classification to succeed, the target neighbors of each input~xi should be closer than all
differently labeled inputs. In particular, for each input~xi , we can imagine the target neighbors as
establishing a perimeter that differently labeled inputs should not invade. Werefer to the differently
labeled inputs in the training set that invade this perimeter asimpostors; the goal of learning (roughly
speaking) is to minimize the number of impostors.

In fact, to increase the robustness ofkNN classification, we adopt an even more stringent goal
for learning—namely to maintain a large (finite) distance between impostors and the perimeters
established by target neighbors. By maintaining amarginof safety around thekNN decision bound-
aries, we ensure that the model is robust to small amounts of noise in the training inputs. This
robustness criterion also gives rise to the name of our approach:large margin nearest neighbor
(LMNN) classification.

In mathematical terms, impostors are defined by a simple inequality. For an input~xi with labelyi

and target neighbor~x j , an impostor is any input~xl with label~yl 6=~yi such that

‖L(~xi −~xl)‖2 ≤ ‖L(~xi −~x j)‖2 +1. (10)

In other words, an impostor~xl is any differently labeled input that invades the perimeter plus unit
margin defined by any target neighbor~x j of the input~xi .

Figure 1 illustrates the main idea behind LMNN classification. Before learning,a training input
has both target neighbors and impostors in its local neighborhood. Duringlearning, the impostors
are pushed outside the perimeter established by the target neighbors. After learning, there exists
a finite margin between the perimeter and the impostors. The figure shows the idealized scenario
wherekNN classification errors in the original input space are corrected by learning an appropriate
linear transformation.

3.2 Loss Function

With the intuition and terminology from the previous section, we can now construct a loss function
for LMNN classification. The loss function consists of two terms, one which acts topull target
neighbors closer together, and another which acts topushdifferently labeled examples further apart.

216

DISTANCE METRIC LEARNING

�xi�xi

margin

�xj

target neighbors

impostors
�xl

local neighborhood

Class 1

Class 3

Class 2

εpush

εpull

�xi�xi

margin

�xj

target neighbors

BEFORE AFTER

impostors

�xl

Figure 1: Schematic illustration of one input’s neighborhood before training(left) versus after train-
ing (right). The distance metric is optimized so that: (i) itsk=3 target neighbors lie within
a smaller radius after training; (ii) differently labeled inputs lie outside this smallerradius
by some finite margin. Arrows indicate the gradients on distances arising fromdifferent
terms in the cost function.

These two terms have competing effects, since the first is reduced by shrinking the distances between
examples while the second is generally reduced by magnifying them. We discuss each term in turn.

The first term in the loss function penalizes large distances between each input and its target
neighbors. In terms of the linear transformationL of the input space, the sum of these squared
distances is given by:

εpull(L)= ∑
j i

‖L(~xi−~x j)‖2. (11)

The gradient of this term generates a pulling force that attracts target neighbors in the linearly
transformed input space. It is important that Eq. (11) only penalizes large distances between inputs
and theirtarget neighbors; in particular, it does not penalize large distances between all similarly
labeled inputs. We purposefully do not penalize the latter because accurate kNN classification does
not require that all similarly labeled inputs be tightly clustered. Our approachis distinguished
in this way from many previous approaches to distance metric learning; see section 2. By only
penalizing large distances between neighbors, we build models that leverage the full power of kNN
classification.

The second term in the loss function penalizes small distances between differently labeled exam-
ples. In particular, the term penalizes violations of the inequality in Eq. (10).To simplify notation,
we introduce a new indicator variableyil =1 if and only ifyi =yl , andyil =0 otherwise. In terms of
this notation, the second term of the loss functionεpush is given by:

εpush(L)= ∑
i, j i

∑
l

(1−yil)
[

1+‖L(~xi−~x j)‖2−‖L(~xi−~xl)‖2]

+
(12)

where the term[z]+ = max(z,0) denotes the standard hinge loss. The hinge loss monitors the in-
equality in Eq. (10). If the inequality does not hold (i.e., the input~xl lies a safe distance away from
~xi), then its hinge loss has a negative argument and makes no contribution to theoverall loss func-

217

WEINBERGER ANDSAUL

tion. The (sub-)gradient of Eq. (12) generates a pushing force thatrepels imposters away from the
perimeter established by each example’sk nearest (similarly labeled) neighbors; see Fig. 1.

The choice of unit margin is an arbitrary convention that sets the scale for the linear transforma-
tion L (which enters every other term in the loss function). If a marginc>0 was enforced instead
of the unit margin, the loss function would be minimized by the same linear transformation up to an
overall scale factor

√
c.

Finally, we combine the two termsεpull(L) andεpush(L) into a single loss function for distance
metric learning. The two terms can have competing effects—to attract target neighbors on one hand,
to repel impostors on the other. A weighting parameterµ∈ [0,1] balances these goals:

ε(L) = (1−µ)εpull(L)+µεpush(L). (13)

Generally, the parameterµ can be tuned via cross validation, though in our experience, the results
from minimizing the loss function in Eq. (13) did not depend sensitively on the value ofµ. In
practice, the valueµ= 0.5 worked well.

The competing terms in Eq. (13) are analogous to those in the loss function forlearning in SVMs
(Scḧolkopf and Smola, 2002). In both loss functions, one term penalizes the norm of the “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear transformation
in the distance metric), while the other incurs the hinge loss. Just as the hinge loss in SVMs is only
triggered by examples near the decision boundary, the hinge loss in Eq. (13) is only triggered by
differently labeled examples that invade each other’s neighborhoods. Both loss functions in SVMs
and LMNN can be rewritten to depend on the input vectors only through theirinner products. Work-
ing with the inner product matrix directly allows the application of thekernel trick; see section 5.3.
Finally, as in SVMs, we can formulate the minimization of the loss function in Eq. (13) as a convex
optimization. This last point will be developed further in section 3.4.

Our framework for distance metric learning provides an alternative to the earlier approach of
NCA (Goldberger et al., 2005) described in section 2.4. We briefly compare the two approaches at
a high level. Both LMNN and NCA are designed to learn a Mahalanobis distance metric over the
input space that improveskNN classification at test time. Though test examples are not available
during training, the learning algorithms for LMNN and NCA are based on training in “simulated”
test conditions. Neither approach directly minimizes the leave-one-out error1 for kNN classification
over the training set. The leave-one-out error is a piecewise constant but non-smooth function of the
linear transformationL , making it difficult to minimize directly. NCA uses stochastic neighborhood
assignment to construct a smooth loss function, thus circumventing this problem. LMNN uses the
hinge loss to construct an upper bound on the leave-one-out error for kNN classification; this up-
per bound is continuous and similarly well behaved for standard gradient-based methods. In NCA,
it is not necessary to select a fixed numberk of target neighbors in advance of the optimization.
Because the objective function for NCA is not convex, however, the initial conditions for the Maha-
lanobis metric implicitly favor the preservation of certain neighborhoods overothers. By contrast,
in LMNN, the target neighborhoods must be explicitly specified. A potential advantage of LMNN
is that the required optimization can be formulated as an instance of semidefinite programming.

218

DISTANCE METRIC LEARNING

Input 6.9%

LMNN 3.7%

RCA 27.6%

NCA 3.3%

MCC 18.3%

LDA 49.0%

3-NN Test Error:

NCA

RCA
MCC

LDA

LMNN

Figure 2: A toy data set for distance metric learning, withn = 2000 data points sampled from
a bi-modal distribution. Within each mode, examples from two classes are distributed
in alternating vertical stripes. The figure shows the dominant axis extractedby several
different algorithms for distance metric learning. Only NCA and LMNN reduce the 1-NN
classification error on this data set; the other algorithms actually increase the error by
focusing on global versus local distances.

3.3 Local Versus Global Distances

We emphasize that the loss function for LMNN classification only penalizes large distances between
target neighbors as opposed to all examples in the same class. The toy data set in Fig. 2 illustrates
the potential advantages of this approach. The data was generated by samplingn=2000 data points
from two classes in a zebra striped pattern; additionally, the data for each class was generated in two
sets of stripes displaced by a large horizontal offset. As a result, this dataset has the property that
within-class variance is much larger in the horizontal direction than the vertical direction; however,
local class membership is much more reliably predicted by examples that are nearby in the vertical
direction.

Algorithms such as LMNN and NCA perform very differently on this data setthan algorithms
such as LDA, RCA, and MCC. In particular, LMNN and NCA adapt to the local striped structure
in the data set and learn distance metrics that significantly reduce thekNN error rate. By contrast,
LDA, RCA, and MCC attempt to shrink distances between all examples in the sameclass and
actually increase thekNN error rate as a result. Though this data set is especially contrived, it
illustrates in general the problems posed by classes with multimodal support. Such classes violate a
basic assumption behind metric learning algorithms that attempt to shrink global distances between
all similarly labeled examples.

1. This is the number of training examples thatwould havebeen mislabeled bykNN classification if their label was in
fact unknown.

219

WEINBERGER ANDSAUL

3.4 Convex Optimization

The loss function in Eq. (13) is not convex in the matrix elements of the linear transformationL .
To minimize this loss function, one straightforward approach is gradient descent in the elements
of L . However, such an approach is prone to being trapped in local minima. Theresults of this
form of gradient descent will depend in general on the initial estimates forL . Thus they may not be
reproducible across different problems and applications.

We can overcome these difficulties by reformulating the optimization of Eq. (13)as an instance
of semidefinite programming (Boyd and Vandenberghe, 2004). A semidefinite program (SDP) is
a linear program that incorporates an additional constraint on a symmetric matrix whose elements
are linear in the unknown variables. This additional constraint requires the matrix to be positive
semidefinite, or in other words, to only have nonnegative eigenvalues. This matrix constraint is
nonlinear but convex, so that the overall optimization remains convex. There exist provably efficient
algorithms to solve SDPs (with polynomial time convergence guarantees).

We begin by reformulating Eq. (13) as an optimization over positive semidefinitematrices.
Specifically, as described in Eq. (2), we work in terms of the new variableM = L⊤L . With this
change of variable, we can rewrite the squared distances that appear inthe loss function using
Eq. (3). Recall thatDM (~xi ,~x j) denotes the squared distance with respect to the Mahalanobis met-
ric M . As shown in section 2.1, this distance is equivalent to the Euclidean distanceafter the
mapping~xi → L~xi . Substituting Eq. (3) into Eq. (13), we obtain the loss function:

ε(M)=(1−µ) ∑
i, j i

DM (~xi ,~x j)+µ ∑
i, j i

∑
l

(1−yil) [1+DM (~xi ,~x j)−DM (~xi ,~xl)]+ . (14)

With this substitution, the loss function is now expressed over positive semidefinite matricesM � 0,
as opposed to real-valued matricesL . Note that the constraintM � 0 must be added to the opti-
mization to ensure that we learn a well-defined pseudometric.

The loss function in Eq. (14) is a piecewise linear, convex function of the elements in the matrix
M . In particular, the first term in the loss function (penalizing large distancesbetween target neigh-
bors) is linear in the elements ofM , while the second term (penalizing impostors) is derived from
the convex hinge loss. To formulate the optimization of Eq. (14) as an SDP, however, we need to
convert it into a more standard form.

An SDP is obtained by introducing slack variables which mimic the effect of the hinge loss. In
particular, we introduce nonnegative slack variables{ξi jl } for all triplets of target neighbors (j i)
and impostors~xl . The slack variableξi jl ≥0 is used to measure the amount by which the large margin
inequality in Eq. (10) is violated. Using the slack variables to monitor these marginviolations, we
obtain the SDP:

Minimize (1−µ)∑i, j i(~xi −~x j)
⊤M(~xi −~x j)+µ∑i, j i,l (1−yil)ξi jl subject to:

(1) (~xi −~xl)
⊤M(~xi −~xl)− (~xi −~x j)

⊤M(~xi −~x j) ≥ 1−ξi jl

(2) ξi jl ≥ 0

(3) M � 0.

While SDPs in this form can be solved by standard solver packages, general-purpose solvers
tend to scale poorly in the number of constraints. For this work, we implemented our own special-
purpose solver, exploiting the fact that most of the slack variables{ξi jl } never attain positive values.
The slack variables{ξi jl } are sparse because most inputs~xi and~xl are well separated relative to the

220

DISTANCE METRIC LEARNING

distance between~xi and any of its target neighbors~x j . Such triplets do not incur a positive hinge
loss, resulting in very fewactiveconstraints in the SDP. Thus, a great speedup can be achieved
by solving an SDP that only monitors a fraction of the margin constraints, then using the resulting
solution as a starting point for the actual SDP of interest.

Our solver was based on a combination of sub-gradient descent in both the matricesL andM ,
the latter used mainly to verify that we had reached the global minimum. We projected updates inM
back onto the positive semidefinite cone after each step. Alternating projection algorithms provably
converge (Vandenberghe and Boyd, 1996), and in this case our implementation2 worked much faster
than generic solvers. For a more detailed description of the solver please see appendix A.

3.5 Energy Based Classification

The matrixM that minimizes the loss function in Eq. (14) can be used as a Mahalanobis distance
metric for kNN classification. However, it is also possible to use the loss function directlyas a
so-called “energy-based” classifier. This use is inspired by previouswork on energy-based models
(Chopra et al., 2005).

Energy-based classification of a test example is done by considering it asan extra training ex-
ample and computing the loss function in Eq. (14) for every possible labelyt . In particular, for a test
example~xt with hypothetical labelyt , we locatek (similarly labeled) target neighbors (as determined
by Euclidean distance to~xt or other a priori considerations) and then compute both terms in Eq. (14)
given the already estimated Mahalanobis metricM . For the first term, we accumulate the squared
distances to thek target neighbors of~xt . For the second term, we accumulate the hinge loss over
all impostors (i.e., differently labeled examples) that invade the perimeter around~xt as determined
by its target neighbors; we also accumulate the hinge loss for differently labeled examples whose
perimeters are invaded by~xt . Finally, the test example is classified by the hypothetical label that
minimizes the combination of these terms:

yt = argminyt

{

(1−µ) ∑
j t

DM (~xt ,~x j)+µ ∑
j t,l

(1−ytl) [1+DM (~xt ,~x j)−DM (~xt ,~xl)]+

+µ ∑
i, j i

(1−yit) [1+DM (~xi ,~x j)−DM (~xi ,~xt)]+

}

. (15)

Note that the relationj t in this criterion depends on the value ofyt . As shown in Fig. 3, energy-
based classification with this assignment rule generally leads to further improvements in test error
rates. Often these improvements are significantly beyond those already achieved by adopting the
Mahalanobis distance metricM for kNN classification.

4. Results

We evaluated LMNN classification on nine data sets of varying size and difficulty. Some of these
data sets were derived from collections of images, speech, and text, yielding very high dimensional
inputs. In these cases, we used PCA to reduce the dimensionality of the inputsbefore training
LMNN classifiers. Pre-processing the inputs with PCA helped to reduce computation time and
avoid overfitting. Table 1 compares the different data sets in detail.

2. A matlab implementation is currently available athttp://www.weinbergerweb.net/Downloads/LMNN.html.

221

WEINBERGER ANDSAUL

!"#$

%"&$

!'"($

!)"!$

!("($

"$

%"&$

!+"%$

)"!$

("($

*"!$

%",$

!+")$

)")$
,"($

!")$

,"+$

!!"+$

!"!$

)"&$

!")$

)"*$

!)"($

("'$

)"%$

("($

!"*$

'"+$

("($

!",$

("($ ("($ ("!$ ("!$ ("($

("($

)"($

%"($

*"($

'"($

!("($

!)"($

!%"($

!*"($

!'"($

)("($

-./01$ 234350$)(.360$ /07231$ 8923:9;30$

!""#$%&'('()#*%%+%#

<;9$

2=9$

5;9$

2-..$

-<>2-..$

-->2-..$

0?-$

!"#$

#"%$

&'"!$

'"($

&)"*$

("!$

#"($

&("!$

*"+$
#"'$

*"+$

#",$

&("&$

*"%$
#"'$

&"%$

,"($

&*")$

#"#$

*"+$

&"%$
!"'$

&,"'$

#",$
"$

&"!$

,"&$

&!"'$

#")$ #"&$

&"!$

,"!$

'")$

,"#$

&*"!$

&"#$
!"%$

!!"&$

,"#$

&)"&$

)")$

*")$

&)")$

&*")$

!)")$

!*")$

-./01$ 234350$!).360$ /07231$ 8923:9;30$

!""#$%&'()#%**+*#

<;9$

2=9$

5;9$

2-..$

-<>2-..$

-->2-..$

0?-$

2-..$@3.35A8B$

Figure 3: Training and test results on the five largest data sets, preprocessed in different ways, and
using different variants ofkNN classification. We compared principal component analysis
(pca), linear discriminant analysis (lda), relevant component analysis (rca), large margin
nearest neighbor classification (lmnn), lmnn with multiple passes (mp-lmnn), lmnn with
multiple metrics (mm-lmnn), multi-class support vector machines (svm), lmnn classifica-
tion with the energy based decision rule (lmnn (energy)). All variations of lmnn, rca and
lda were applied after pre-processing with pca for general noise reduction. See text and
Table 1 for details. The lmnn results consistently outperform pca and lda. The multiple
metrics version of lmnn (mm-lmnn) is comparable with multiclass svm on most data sets
(with 20news and yaleFaces as only exceptions).

Experimental results were obtained by averaging over multiple runs on randomly generated
70/30 splits of each data set. This procedure was followed with two exceptions:no averaging was
done for the Isolet and MNIST data sets, which have pre-defined training/test splits. For all exper-
iments reported in this paper, the number of target neighborsk was set tok=3, and the weighting
parameterµ in Eqs. (14-15) was set toµ=0.5. Though we experimented with different settings, the
results from LMNN classification appeared fairly insensitive to the values of these parameters.

The main results on the five largest data sets are shown in Fig. 3. (See Table1 for a complete
listing of results, including those for various extensions of LMNN classification described in sec-
tion 5.) All training error rates reported are leave-one-out estimates. To break ties among different

222

DISTANCE METRIC LEARNING

classes from thekNN decision rule, we repeatedly reduced the neighborhood size, ultimately clas-
sifying (if necessary) by just thek=1 nearest neighbor. We begin by reporting overall trends, then
discuss the results on individual data sets in more detail.

The first general trend is that LMNN classification using Mahalanobis distances consistently
improves onkNN classification using Euclidean distances. In general, the Mahalanobis metrics
learned by semidefinite programming led to significant improvements inkNN classification, both in
training and testing.

A second general trend is that the energy-based decision rule described in section 3.5 leads
to further improvements over the (already improved) results fromkNN classification using Maha-
lanobis distances. In particular, better performance was observed on most of the large data sets. The
results are shown in Fig. 3.

A third general trend is that LMNN classification works better with PCA than LDA when
some form of dimensionality reduction is required for preprocessing. Table 1 shows the results of
LMNN classification on inputs whose dimensionality was reduced by LDA. Whilepre-processing
by LDA helps on some data sets (e.g., wine, yale faces), it generally leads toworse results than pre-
processing by PCA. On some data sets, moreover, it leads to drastically worse results (e.g., olivetti
faces, MNIST). Consequently we used PCA as a pre-processing stepfor all subsequent experiments
throughout this paper.

A fourth general trend is that LMNN classification yields larger improvementson larger data
sets. Though we do not have a formal analysis that accounts for this observation, we can provide
the following intuitive explanation. One crucial aspect of the optimization in LMNN classification
is the choice of thetarget neighbors. In all of our experiments, we chose the target neighbors based
on Euclidean distance in the input space (after dimensionality reduction by PCA or LDA). This
choice was a simple heuristic used in the absence of prior knowledge. However, the quality of this
choice presumably depends on the sample density of the data set. In particular, as the sample density
increases, we suspect that more reliable discriminative signals can be learned from target neighbors
chosen in this way. The experimental results bear this out.

Finally, we compare our results to those of competing methods. We take multi-classSVMs
(Crammer and Singer, 2001) as providing a fair representation of the state-of-the-art. On each data
set (except MNIST), we trained multi-class SVMs using linear, polynomial and RBF kernels and
chose the best kernel with cross validation. On MNIST, we used a non-homogeneous polynomial
kernel of degree four, which gave us our best results, as also reported in LeCun et al. (1995). The
results of the energy-based LMNN classifier are very close to those of state-of-the-art multi-class
SVMs: better on some data sets, worse on others. However, consistent improvement over multi-
class SVMs was obtained by a multiple-metric variant of LMNN, discussed in section 5.2. This
multi-metric extension outperformed SVMs on three of the five large data sets; see Fig. 3. On the
only data set with a large performance difference, 20-newsgroups, the multi-class SVMs benefited
from training in the originald = 20000 dimensional input space, whereas the LMNN classifiers
were trained only on the input’s leadingd=200 principal components. Based on these results, in
section 7, we suggest some applications that seem particularly well suited to LMNN classification,
though poorly suited to SVMs. These are applications with moderate input dimensionality, but large
numbers of classes.

To compare with previous work, we also evaluated RCA (Shental et al., 2002), LDA (Fisher,
1936) and NCA (Goldberger et al., 2005) on the same data sets. For NCA and RCA, we used the
code provided by the authors; however, the NCA code ran out of memoryon the larger data sets.

223

WEINBERGER ANDSAUL

Table 1 shows the results of all algorithms on small and larger data sets. LMNNoutperforms these
other methods for distance metric learning on the four largest data sets. In terms of running times,
RCA is by far the fastest method (since its projections can be computed in closed form), while
NCA is the slowest, mainly due to theO(n2) normalization of its softmax probability distributions.
Although the optimization in LMNN naively scales asO(n2), in practice it can be accelerated by
various efficiency measures: Appendix A discusses our semidefinite programming solver in detail.
We did also include the results of MCC (Xing et al., 2002); however, the code provided by the
authors could only handle a few of the small data sets. As shown in Table 1, on those data sets it
resulted in classification rates generally higher than NCA.

The results of experiments on particular data sets provide additional insightinto the performance
of LMNN classification versus competing methods. We give a more detailed overview of these
experiments in what follows.

4.1 Small Data Sets with Few Classes

The wine, iris, and bal data sets are small in size, with less than 500 training examples. Each of these
data sets has three classes. The data sets are available from the UCI Machine Learning Repository.3

On data sets of this size, a distance metric can be learned in a matter of seconds. The results in
Table 1 were averaged over 100 experiments with different random 70/30 splits of each data set.

On these data sets, LMNN classification improves on kNN classification with a Euclidean dis-
tance metric. These results could potentially be improved further with better measures against
overfitting (such as regularization). Table 1 also compares the results from LMNN classification to
other competing methods. Here, the results are somewhat variable; compared to NCA, RCA, LDA,
and multiclass SVMs, LMNN fares better in some cases, worse in others. We mainly report these
results to facilitate direct comparisons with previously published work. However, the small size of
these data sets makes it difficult to assess the significance of these results.Moreover, these data sets
do not represent the regime in which we expect LMNN classification to be most useful.

4.2 Face Recognition

The Olivetti face recognition data set4 contains 400 grayscale images of 40 subjects in 10 differ-
ent poses. We downsampled the images to 38× 31 pixels and used PCA to further reduce the
dimensionality, projecting the images into the subspace spanned by the first 200 eigenfaces (Turk
and Pentland, 1991). Training and test sets were created by randomly sampling 7 images of each
subject for training and 3 images for testing. The task involved 40-way classification—essentially,
recognizing a face from an unseen pose. Table 1 shows the improvementsdue to LMNN classi-
fication. Fig. 4 illustrates the improvements more graphically by showing how thek= 3 nearest
neighbors change as a result of learning a Mahalanobis metric. (Although the algorithm operated
on downsampled, projected images, for clarity the figure shows the originalimages.)

The (extended) Yale face data set containsn = 2414 frontal images of 38 subjects. For each
subject, there are 64 images taken under extreme illumination conditions. (A fewsubjects are
represented with fewer images.) As for the Olivetti data set, we preprocessed the images by down-
sampling and projecting them onto their leading 200 principal components. To reduce the impact of
the very high variance in illumination, we followed the standard practice of discarding the leading 5

3. Available athttp://www.ics.uci.edu/\simmlearn/MLRepository.html.
4. Available athttp://www.uk.research.att.com/facedatabase.html.

224

DISTANCE METRIC LEARNING

eigenvectors. Results from LMNN classification were averaged over 10runs of 70/30 splits. Each
split was obtained by randomly selecting 45 images of each subject for training and 19 images for
testing. This protocol ensured that the training examples were evenly distributed across the rela-
tively large number of classes. To guard against overfitting, we employeda validation set consisting
of 30% of the training data and stopped the training early when the lowest classification error on the
validation set was reached. On this data set, Fig. 3 shows that the LMNN metricoutperforms the
Euclidean metric and even improves on multiclass SVMs. (Particularly effective on this data set,
though, is the simple strategy of LDA.)

Test Image:

Impostor under Euclidean

3-NN, that was moved out of

the neighborhood under the

learned Mahalanobis metric.

Correct class member that

became one of the 3-NN

under the learned

Mahalanobis metric.

Figure 4: Test images from the Olivetti face recognition data set (top row). The middle row shows
images from the same class that were among the 3-NN under the learned Mahalanobis
metric (after training) but not among the original 3-NN under the Euclidean metric (before
training). The bottom row shows impostors under the Euclidean metric that were no
longer inside the local neighborhoods under the Mahalanobis metric.

4.3 Spoken Letter Recognition

The Isolet data set from the UCI Machine Learning Repository contains 6238 examples and 26
classes corresponding to letters of the alphabet. We reduced the input dimensionality (originally at
617) by projecting the data onto its leading 172 principal components—enough to account for 95%
of its total variance. On this data set, Dietterich and Bakiri report test error rates of 4.2% using
nonlinear backpropagation networks with 26 output units (one per class)and 3.3% using nonlinear
backpropagation networks with a 30-bit error correcting code (Dietterich and Bakiri, 1995). LMNN
with energy-based classification obtains a test error rate of 3.4%.

4.4 Letter Recognition

The letter recognition data set was also taken from the UCI Machine Learning Repository. It con-
tains randomly distorted images of the 26 letters in the English alphabet in 20 different fonts. The
features consist of 16 attributes, such as height, width, correlations of axes and others.5 It is inter-

5. Full details on the data set can be found athttp://www.ics.uci.edu/\simmlearn/databases/
letter-recognition/letter-recognition.names.

225

WEINBERGER ANDSAUL

esting that LMNN with energy-based classification significantly outperformsother variants ofkNN
classification on this data set.

Test Image:

Nearest neighbor

before training:

Nearest neighbor

after training:

Test Image:

Nearest neighbor

before training:

Nearest neighbor

after training:

Test Image:

Nearest neighbor

before training:

Nearest neighbor

after training:

Test Image:

Nearest neighbor

before training:

Nearest neighbor

after training:

Test image:

Nearest neighbor
after training:

Nearest neighbor
before training:

Test image:

Nearest neighbor
after training:

Nearest neighbor
before training:

Figure 5: Images from the MNIST data set, along with nearest neighbors before and after training.

4.5 Text Categorization

The 20-newsgroups data set consists of posted articles from 20 newsgroups, with roughly 1000
articles per newsgroup. We used the 18828-version of the data set6 in which cross-postings are
removed and some headers stripped out. The data set was tokenized usingthe rainbow package
(McCallum, 1996). Each article was initially represented by a word-count vector for the 20,000 most
common words in the vocabulary. These word-count vectors were then reduced in dimensionality
by projecting them onto their leading 200 principal components. The results inFig. 3 were obtained
by averaging over 10 runs with 70/30 splits for training and test data. The best result for LMMN
on this data set improved significantly overkNN classification using Euclidean distances and PCA
(with 14.98% versus 48.57% and 18.22% test error rates). LMNN was outperformed by multiclass
SVM (Crammer and Singer, 2001), which obtained a 8.0% test error rate using a linear kernel and
20000 dimensional inputs.7

4.6 Handwritten Digit Recognition

The MNIST data set of handwritten digits8 has been extensively benchmarked (LeCun et al., 1995).
We deskewed the original 28×28 grayscale images, then reduced their dimensionality by projecting
them onto their leading 164 principal components (enough to capture 95% ofthe data’s overall

6. Available athttp://people.csail.mit.edu/jrennie/20Newsgroups/.
7. Results vary from previous work (Weinberger et al., 2006) due to different pre-processing.
8. Available athttp://yann.lecun.com/exdb/mnist/.

226

DISTANCE METRIC LEARNING

Benchmark test error rates

smaller data setslarger data sets

statistics mnist letters 20news isolet yFaces

inputs 70000 20000 18827 7797 2414

features 784 16 20000 617 8064

reduced dimensions 164 16 200 172 300

training examples 60000 14000 13179 6238 1690

testing examples 10000 6000 5648 1559 724

classes 10 26 20 26 38

of train/test splits 1 10 10 1 10

% validation 0 0 0 0 30

kNN

Euclidean 2.12 4.68 48.57 8.98 29.19

PCA 2.43 4.68 18.22 8.60 10.79

LDA 6.16 4.63 16.15 5.90 4.80

RCA 5.93 4.34 16.06 5.71 4.83

MCC N/A N/A N/A N/A N/A

NCA N/A N/A N/A N/A N/A

LMNN

PCA 1.72 3.60 14.98 4.36 5.90

LDA 6.16 3.61 16.98 5.84 5.08

LMNN (energy) 1.37 2.67 22.09 3.40 10.11

LMNN (multiple passes) 1.69 2.80 13.83 4.30 5.52

LMNN (multiple metrics) 1.18 3.06 12.82 4.04 4.05

solver statistics

CPU time (1M) 3h 25m 2m 70m 20m 8m

CPU time (MM) 8h 43m 14m 74m 84m 14m

active constraints (1M) 540037 135715 676482 64396 86994

active constraints (MM) 305114 18588 101803 135832 30135

multiclass SVM 1.20 3.21 8.04 3.40 15.22

bal oFaces wine iris

535 400 152 128

4 200 13 4

4 200 13 4

375 280 106 90

161 120 46 38

3 40 3 3

100 100 100 100

0 30 0 30

18.33 6.03 25.00 4.87

18.33 2.80 25.00 4.87

10.82 10.01 2.17 4.00

12.31 10.02 2.28 3.71

15.66 15.91 30.96 3.55

5.33 2.60 28.67 4.32

11.16 3.28 8.72 4.37

10.84 40.72 2.11 3.79

9.14 3.16 7.67 3.68

5.86 4.83 7.59 4.26

10.72 3.11 8.72 4.66

6s 66s 14s 2s

8s 149s 16s 5s

41522 3843 10194 574

31717 70 748 1548

1.92 1.90 22.24 3.45

Table 1: Results and statistics from all experiments. The data sets are sortedby largest to small-
est from left to right. The table shows data statistics and error rates from different vari-
ants of LMNN training (single-pass, multi-pass, multi-metric), testing (kNN decision rule,
energy-based classification), and preprocessing (PCA, LDA). Results from RCA, NCA
and multiclass support vector machines (SVMs) are also provided for comparison. See
section 5 for discussion of multi-pass and multi-metric LMNN training.

227

WEINBERGER ANDSAUL

!"#$%

!"$&%

'"!(%

!"$)%

!"*#%

!"#*%

!"$*%

!"#)%

!"##%

!"#(%

!"+!%

!"+,%

!"$!%

!"$,%

!"*!%

!"*,%

!"#!%

!"#,%

'"!!%

'"!,%

'"'!%

-./01%2+!34% 567680%2'(34%)!.690%2'&34% /0:561%2$34% ;<56=<>60%2'"$34%

18</./.?%2@AA4%

160B.?%2@AA4%

standard LMNN

relative classification error with multiple runs of LMNN
re
la
ti
v
e
 c
la
s
s
ifi
c
a
ti
o
n
 e
rr
o
r

Figure 6: The relative change of the 3-NN classification error after multipleruns of LMNN over a
single run of LMNN.

variance). Energy-based LMNN classification yielded a test error rateat 1.4%, cutting the baseline
kNN error rate by over one-third. Other comparable benchmarks (LeCunet al., 1995) (not exploiting
additional prior knowledge) include multilayer neural nets at 1.6% and SVMsat 1.2%. Fig. 5
shows some digits whose nearest neighbor changed as a result of learning, from a mismatch using
Euclidean distances to a match using Mahalanobis distances. Table 1 revealsthat the LMNN error
can be further reduced by learning a different distance metric for eachdigit class. This is discussed
further in section 5.2.

5. Extensions

In this section, we investigate four extensions designed to improve LMNN classification. Section 5.1
examines the impact of multiple consecutive applications of LMNN on one data set. Section 5.2
shows how to learn multiple (locally linear) metrics instead of a single global metric.Section 5.3
discusses how to “kernelize” the algorithm for LMNN classification and reviews complementary
work by Torresani and Lee (2007). Finally, section 5.4 investigates the use of LMNN as a method
for supervised dimensionality reduction.

5.1 Multi-pass LMNN

One potential weakness of LMNN is that target neighbors must be a priorispecified. In the ab-
sence of prior knowledge, a default choice is to use Euclidean distancesto determine target nearest
neighbors. While the target nearest neighbors are fixed during learning, however, the actual nearest
neighbors may change as a result of the linear transformation of the input space. These changes
suggest an iterative approach, in which the Mahalanobis distances learned in one application (or
“pass”) of LMNN are used to determine the target nearest neighbors in asubsequent run of the al-
gorithm. More formally, letL p be the transformation matrix obtained from thepth pass of LMNN.
For the(p+1)th pass, we can assign target neighbors using the Euclidean distance metric after the
linear transformation~xi → L pL p−1...L1L0~xi (with L0 = I).

To evaluate this approach, we performed multiple passes of LMNN on all the data sets from
Table 1. The parameterk was set tok = 3. Figure 6 shows the relative improvements inkNN classi-

228

DISTANCE METRIC LEARNING

1 Metric:

1-nn error: 100%

3 Metrics:

1-nn error: 0%

2 Metrics:

1-nn error: 21%

Figure 7: A synthetic data set to illustrate the potential of multiple metrics. The data set consists
of inputs sampled from two concentric circles, each of which defines a different class
membership. LMNN training was used to estimate one global metric, as well as multiple
local metrics.Left: a single linear metric cannot model the non-linear decision boundary.
The leave-one-out (LOO) error is 100%.Middle: if the data set is divided into two
clusters (by k-means), and a local metric learned within each cluster, the error rate drops
drastically. Right: the use of three metrics reduces the LOO-error on the training set to
zero. The principal directions of individual distance metrics are indicatedby arrows.

fication error rates on the five largest data sets. (Here, a value of one indicates that multiple passes
of LMNN did not change the error rate, while a value less than one indicatesan improvement.)
On these data sets, multiple passes of LMMN were generally helpful, sometimes significantly im-
proving the results. On smaller data sets, though, the multi-pass strategy seemed prone to overfit.
Table 1 shows the absolute results on all data sets from multiple passes of LMNN (indicated by
MP-LMNN).

A better strategy for choosing target neighbors remains an open question. This aspect of LMNN
classification differs significantly from NCA, which does not require the choice of target neighbors.
In fact, NCA also determines the effective neighborhood size as part ofits optimization. On the
other hand, the optimization in NCA is not convex; as such, the initial conditionsimplicitly specify
a basin of attraction that determines the final result. In LMNN classification, the target neighbors
are fixed in order to obtain a convex optimization. This trade-off is reminiscent of other convex
relaxations of computationally hard problems in machine learning.

5.2 Multi-metric LMNN

On some data sets, a global linear transformation of the input space may not be sufficiently powerful
to improvekNN classification. Figure 7 shows an example of a synthetic data set for which a single
metric is not sufficient. The data set consists of inputs sampled from two concentric circles, each
of which defines a different class membership. Global linear transformations cannot improve the
accuracy of kNN classification of this data set. In general, highly nonlinear multiclass decision
boundaries may not be well modeled by a single Mahalanobis distance metric.

229

WEINBERGER ANDSAUL

In these situations, one useful extension of LMNN is to learn multiple locally linear transforma-
tions instead of a single global linear transformation. In this section, we showhow to learn different
Mahalanobis distance metrics for different examples in the input space. The idea of learning locally
linear distance metrics for kNN classification is at least a decade old (Hastie and Tibshirani, 1996).
It has also been explored more recently in the context of metric learning forsemi-supervised clus-
tering (Bilenko et al., 2004). The novelty of our approach lies in learning these metrics specifically
to maximize the margin of correct kNN classification. As a first step, we partitionthe training data
into disjoint clusters usingk-means, spectral clustering (Shi and Malik, 2000), or label information.
(In our experience, the latter seems to work best.) We then learn a Mahalanobis distance metric for
each cluster. While the training procedure couples the distance metrics in different clusters, the op-
timization remains a convex problem in semidefinite programming. The globally integrated training
of local distance metrics also distinguishes our approach from earlier work (Hastie and Tibshirani,
1996).

Before developing this idea more formally, we first illustrate its potential in a toy setting—
namely, on the data set in Fig. 7. For this data set, LMNN training was used to estimate one global
metric, as well as multiple local metrics (as described below). Cluster boundaries in the input space
were determined by thek-means algorithm. We measured the leave-one-out (LOO) training error
(with k = 1 nearest neighbors) after learning one, two and three metrics. With one metric, the error
was 100%; with two metrics, it dropped to 21%; finally, with three metrics, it vanished altogether.
The figure illustrates how the multiple metrics adapt to the local structure of the class decision
boundaries.

In order to learn different Mahalanobis metrics in different parts of the input space, we minimize
a variation of the objective function in Eq. (14). We denote the different metrics by M1, . . . ,M c,
wherec is the number of clusters. If we partition the training examples by their class labels, then
c also coincides with the number of classes; this was done for the remaining experiments in this
section. In this case, as the cluster that contains~xi is indexed by its labelyi , we can refer to its
metric asM yi . We further define the cluster-dependent distance between two vectors~xi and~x j as:

D̂(~xi ,~x j) = (~xi −~x j)
⊤M y j (~xi −~x j). (16)

Note that this cluster-dependent measure of distanceD̂(~xi ,~x j) is not symmetric with respect to its
input arguments. In a slight abuse of terminology, however, we will continue to refer to Eq. (16)
as a distance metric; the symmetry is not required for its use inkNN classification. To learn these
metrics from data, we solve a modified version of the original SDP:

Minimize (1−µ)∑i, j i(~xi −~x j)
⊤M y j (~xi −~x j)+µ∑ j i,l (1−yil)ξi jl

subject to:

(1) (~xi −~xl)
⊤M yl (~xi −~xl)− (~xi −~x j)

⊤M y j (~xi −~x j) ≥ 1−ξi jl

(2) ξi jl ≥ 0

(3) M i � 0 for i = 1, . . . ,c.

Note that all the matricesM i are learned simultaneously by solving a single SDP. This ap-
proach ensures the consistency of distance computations in different clusters: for example, the
distance from a test example to training examples with different labels. The integrated learning
of different metrics is necessary to calibrate these distances on the same scale; if the metrics were

230

DISTANCE METRIC LEARNING

learned independently, then the distances computed by different metrics could not be meaningfully
compared—obviously, a crucial requirement forkNN classification.

zeros

ones

twos

fours

Figure 8: Multiple local distance metrics learned for a data set consisting of handwritten digitsfour,
two, oneandzero.

Fig. 8 illustrates the multiple metrics learned from an image data set of four different hand-
written digits: zero, one, four, andtwo. The plot shows the first two principal components of the
data. Only these principal components were used in training in order to yield an easily visualized
solution. The solution can be visualized by illustrating the metrics as ellipsoids centered at the class
means. The ellipsoids show the effect on a unit circle of each local linear transformation learned by
LMNN. The line inside each ellipsoid indicates its principal axis.

We experimented with this multi-metric version of LMNN on all of the data sets from section 4.
To avoid overfitting, we held out 30% of each data set’s training examples and used them as a
validation set. We learned one metric per class. To speed up training, we initialized the multi-metric
optimization by setting each class-dependent metric to the solution from LMNN classification with
a single global distance metric. Table 1 reports the error rates and other results from all these
experiments (under “MM-LMNN”). The training times for MM-LMNN include the time required
to compute the initial metric settings from the optimization in Eq. (14).

Fig. 9 shows the relative improvement in 3-NN classification error rates from multi-metric
LMNN over standard LMNN on the five largest data sets. The multiple metrics variant improves
over standard LMNN on every data set. The best result occurs on the MNIST handwritten digits
data set, where MM-LMNN obtained a 1.18% kNN classification error rate, slightly outperform-
ing multi-class SVMs. However, the improvement from multi-metric LMNN is not as consistently
observed when the energy-based decision rule is used for classification.

231

WEINBERGER ANDSAUL

!"!#$

!"%%$

!"&#$

!"!!$

!"%&$

!"'($

!")*$!")'$
!"(#$

!"'($

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

("!!#

)*+,-#.&!/0# 12324,#.(%/0# $!*25,#.(6/0# +,712-#.8/0# 9:12;:<2,#.("8/0#

-4:+*+*=#.>??0#

-2,@*=#.>??0#

relative classification error with multiple metrics

standard LMNN

re
la
ti
v
e
 c
la
s
s
ifi
c
a
ti
o
n
 e
rr
o
r

Figure 9: Relative improvement ink−NN classification error rates using multiple metrics over error
rates using a single metric.

5.3 Kernel Version

LMNN can also be extended by using kernel methods (Schölkopf and Smola, 2002) to work in
a nonlinear feature space, as opposed to the original input space. Theidea of learning a kernel
matrix has been explored in other contexts (Kwok and Tsang, 2003; Lanckriet et al., 2004; Varma
and Ray, 2007), particularly large margin classification by support vector machines. This idea for
LMNN has been investigated in detail by Torresani and Lee (2007). The“kernel trick” is used to
map the inputs~xi into higher (possibly infinite) dimensional feature vectorsΦ(~xi). To avoid the
computational cost of working directly with these feature vectors, they areonly accessed through
their inner products, which are pre-computed and stored in the kernel matrix:

K i j = Φ(~xi)
⊤Φ(~x j).

Note how in Eq. (14), the inputs~xi are only accessed in terms of the distances in Eq. (3). Torresani
and Lee (2007) considered Mahalanobis metrics of the formM = ∑lmA lmΦ(~xl)Φ(~xm)⊤, where the
matrix A is constrained to be positive semidefinite. They showed that the gradient ofEq. (14) with
respect to the matrixA can be written entirely in terms of the elements of the kernel matrix. Thus,
a “kernelized” version of LMNN can be implemented efficiently in the same way as kernel PCA
(Scḧolkopf et al., 1998), without ever working directly in the high dimensional feature space.

Torresani and Lee (2007) show that the kernelized version of LMNN can lead to significant
further improvements, but at the cost of increased computation. The increased computation is due
to the size of the matrix that must be learned in this setting: the matrixA hasO(n2) elements instead
of O(d2). (However, the kernel version could require less computation in applications wheren< d.)
More details on the kernelized version of LMNN can be found in their paper.

5.4 Dimensionality Reduction

Often it is useful to generate low dimensional representations of high dimensional data. These rep-
resentations can be used to visualize the data and/or to accelerate algorithms whose time complexity

232

DISTANCE METRIC LEARNING

scales with the input dimensionality. In section 6, for example, we will investigatehow to accel-
erate thekNN search in LMNN classification by mapping the training data into a low dimensional
subspace.

Low dimensional representations of inputs can be derived from the lineartransformation~xi →
L~xi in LMNN classification. This can be done in two ways. The first way is to project thetrans-
formedinputs onto their leading principal components. Note that if the inputs are whitened prior to
optimizing Eq. (13), then these principal components are given simply by the leading eigenvectors
of the square matrixL . Another way to derive low dimensional representations is to build this goal
explicitly into the optimization for LMNN classification. In particular, we can attemptto minimize
Eq. (13) with respect toL (rather than with respect toM = L⊤L) and constrainL to be rectangular
of sizer ×d, wherer is the desired output dimensionality (presumed to be much smaller than the
input dimensionality,d). The optimization in terms ofL is not convex, but in practice (Torresani and
Lee, 2007), it does not appear to suffer from very poor local minima. In the following section, we
use and compare both these methods to build efficient tree data structures for LMNN classification.

6. Metric Trees

One inherent disadvantage ofkNN search is its relatively high computational complexity at test
time. The simplest brute-force way to locate a test example’s nearest neighbors is to compute its
distance to all the training examples. Such a naı̈ve implementation has a test time-complexity of
O(nd), wheren is the number of training examples, andd is the input dimensionality.

One way to acceleratekNN search is to rotate the input space such that the coordinate axes are
aligned with the data’s principal components. Such a rotation sorts the input coordinates by de-
creasing variance; see Section 2.2.1. This ordering can be used to prune unnecessary computations
in kNN search. In particular, for any test example, a nearest neighbor query consists of computing
the distance to each training example and comparing this distance to thek closest examples already
located. The distance computation to a particular training example can be aborted upon determin-
ing that it lies further away than thek closest examples already located. When the coordinate axes
are aligned with the principal components, this determination can often be made after examining
just a few of the leading, load-bearing dimensions. We have used this optimization in our baseline
implementation ofkNN search.

Generally there are two major approaches to gain additional speed-ups. The first approach is
to reduce the input dimensionalityd. The Johnson-Lindenstrauss Lemma (Dasgupta and Gupta,
1999) states thatn points can be mapped into a space of dimensionalityO(log(n)

ε2) such that the
distances between any two points changes only by a factor of(1± ε). Thus we can often reduce
the dimensionality of the input data without distorting the nearest neighbor relations. (Note also
that for kNN classification, we may tolerate inexact nearest neighbor computations if they do not
lead to significant errors in classification.) The second approach to speed upkNN search is to build
a sophisticated tree-based data structure for storing training examples. Such a data structure can
reduce the nearest neighbor test time complexity in practice toO(d logn) (Beygelzimer et al., 2006).
This latter method works best for low dimensional data. Fig. 10 compares a baseline implementation
of kNN search versus one based on ball trees (Liu et al., 2005; Omohundro, 1987). Note how the
speed-up from the ball trees is magnified by dimensionality reduction of the inputs.

233

WEINBERGER ANDSAUL

!"#$%

"!#&%

&#'%

(#)% !#)% *#)% *#!% +#,% +#&%

)#$%

*#(% +#&% +#+% +#+% "#,% "#,% "#)% "#)%

$#$%

"$#$%

+$#$%

*$#$%

!$#$%

($#$%

"$% "(% +$% +(% *$% *(% !$% !(% ($%

-.//%01223%*455%

-.32/672%*455%

3-NN Classification with Ball Tree Data Structure
R
el
a
ti
v
e
S
p
ee
d
u
p

Dimensionality

Figure 10: Relative speed-up for 3NN classification obtained from different orthogonal projections
of MNIST handwritten digits onto their leading principal components. For these exper-
iments, thed = 784 dimensional inputs from the raw images were projected onto the
number of principal components shown on the x-axis. The figure comparesthe speed-
ups when ball trees are used (blue) versus when ball trees are not used (red) in the lower
dimensional space. Note how the gains from ball trees diminish with increasingdimen-
sionality. All the NN computations in these experiments were accelerated by aligning
the coordinate axes along principal components, as described in section 6.

In this section, we explore the use of ball trees for LMNN classification anddimensionality re-
duction. We find that ball trees can be used for both faster training and testing of LMNN classifiers.

6.1 Review of Ball Trees

Several authors have proposed tree-based data structures to speedup kNN search. Examples are
kd-trees (Friedman et al., 1977), ball trees (Liu et al., 2005; Omohundro, 1987) and cover-trees
(Beygelzimer et al., 2006). All these data structures exploit the same idea: topartition the input
space data into hierarchically nested bounding regions. The bounding regions are set up to guarantee
that the distance from a test example to a training example inside the bounding region is at least as
large as the distance from the test example’s to the region’s boundary. Thus, for each test example,
the training examples inside the bounding region can be ruled out ask nearest neighbors ifk training
examples have already been found that are closer than the region’s boundary. In this case, the
kNN search can proceed without explicitly computing the distances to training examples in the
bounding region. This “pruning” of distance computations often leads to a significant speedup in
kNN computation time.

We experimented with ball trees (Liu et al., 2005), in which the bounding regions are hyper-
spheres. Fig. 11 illustrates the basic idea behind ball trees. If a setS of training examples is
encapsulated inside a ball with center~c and radiusr, such that∀~x ∈ S : ‖~x−~c‖ ≤ r, then for any
test example~xt we can bound the distance to any training example inside the ball by the following
expression:

∀~xi ∈ S ‖~xt −~xi‖ ≥ max(‖~xt −~c‖2− r,0). (17)

Ball trees exploit this inequality to build a hierarchical data structure. The data structure is based

234

DISTANCE METRIC LEARNING

�xt

�c r ‖�xt − �c‖ − r

‖�xt − �xi‖�xi

�xj

‖�xt − �xj‖

Figure 11: The basic idea behind ball trees: for any training example~xi inside the ball we can bound
the distance‖~xt −~xi‖2 from below using (17). If another training example~x j outsider
the ball is already known to be closer than this bound to the test example~xt , then the
training examples inside the ball can be ruled out as nearest neighbors.

on recursively splitting the training examples into two disjoint sets. The sets areencapsulated by
hyperspheres (or “balls”) which may be partially overlapping. The training examples are recursively
divided into smaller and smaller sets until no leaf set contains more than some predefined number
of examples.

From this hierarchical data structure, thek-nearest neighbors of a test example can be found by
a standard depth-first tree-based search. Recall that each node in the tree has an associated hyper-
sphere that encloses the training examples stored by its descendants. ThekNN search proceeds by
traversing the tree and computing a test example’s distance to the center of each node’s hypersphere.
The tree is traversed by greedily descending sub-trees in order of this distance. Before descending
a subtree, however, Eq. (17) is checked to determine whether training examples in the subtree lie
further away than the currently estimatedk-nearest neighbors. If this is true, the sub-tree is pruned
from the search without further computation. When a leaf node is reached, all the training examples
at the leaf node are compared to the currently estimatedk-nearest neighbors, and the estimates are
updated as necessary. Note that ball trees support exact queries for kNN search.

As pointed out earlier, and as illustrated by Fig. 10, ball trees yield the largest gains inkNN
search time for low dimensional data. When the data is high dimensional, the search is plagued
by the so-called “curse of dimensionality” (Indyk and Motwani, 1998). Inparticular, the distances
between high dimensional points tend to be more uniform, thereby reducing theopportunities for
pruning subtrees in the depth-first search.

6.2 Ball Trees for LMNN Training

The most computationally intensive part of LMNN training is computing the gradient of the penalty
for margin violations in Eq. (12). The gradient computation requires a search over all pairs of
differently labeled examples to determine if any of them are “impostors” (see section 3.1) that incur
margin violations. The solver described in appendix A reduces the number of these searches by
maintaining an active list of previous margin violations. Nevertheless, this search scalesO(n2d),
which is very computationally intensive for large data sets.

Ball trees can be used to further speed up the search for impostors. Recall how impostors were
defined in section 3.1. For any training example~xi , and for any similarly labeled example~x j that

235

WEINBERGER ANDSAUL

!"#$

!"%$

!"&$

!"'$
!"($

!")$!")$
!"*$!"*$

!"+$

!"*$

!"($

!"&$

!"%$

*"+$

!+$!'$ *+$ *'$)+$)'$ (+$ ('$ '+$

!
"
#$
%
&
"
'(
)
"
"
*
+
)
'

,-."/(-0/$#-12'

3-/*-/4'$5%&"'6-/4"'#0(("('7-16'8$##'19""('

Figure 12: The relative speed-up obtained using ball trees to search for margin violations. The
speed-up was measured on the MNIST data set of handwritten digits, with inputs of
varying dimensionality derived from PCA. Note how the gains from ball trees diminish
with increasing input dimensionality.

is one of its targetk-nearest neighbors (withj i), the impostors consist of all differently labeled
examples~xl (with yil = 0) that satisfy Eq. (10). Ball trees can be used to search for all training
examples that meet this criterion. As in their use forkNN search, many subtrees in the depth-first
search for impostors can be pruned: if for some ball the lower bound distances between examples
is already greater than the right hand side of Eq. (10), then all the examples stored in the subtree
can be ruled out as impostors. Note that for each training example~xi , we only need to search for
impostors among other training examples~xl that have a different class label (withyil = 0). Thus,
we build one ball tree data structure per class and perform a separate search for impostors in each
class.

Fig. 12 shows the relative speed-up when ball trees are used to searchfor margin violations
in LMNN classification. The figure shows results from experiments with the MNIST images of
handwritten digits. For these experiments, the images were projected into subspaces of varying
dimensionality using PCA. The gains from ball trees in this context are significant, though not as
dramatic as those in Fig. 10 for simplekNN search. The lesser gains for LMNN classification can be
attributed to the minimum enforced margin of unit distance, which sometimes causesa high number
of sub-trees to be traversed. This effect is controlled by the relative magnitude of the unit margin; it
can be partially offset by scaling the input data by a constant factor before training.

6.3 Ball Trees for LMNN Testing

Ball trees can also be used to acceleratekNN search at test time. We have observed earlier, though,
that the speed-up from ball trees diminishes quickly as the input dimensionalityincreases; see
Fig. 10. If very fastkNN classification using ball trees is desired on a large data set, then often
it is necessary to work with a lower dimensional representation of the trainingexamples.

The most commonly used methods for dimensionality reduction in ball trees are random pro-
jections and PCA. Neither of these methods, however, is especially gearedto preserve the accuracy
of kNN classification. There is an inherent trade-off between dimensionality reduction and nearest

236

DISTANCE METRIC LEARNING

1.841.811.81.791.821.76

2.09

2.38

1.5

2

2.5

3

3.5

4

15 20 25 30 35 40 45 50

pca

lmnn (sq)

lmnn (rec)

baseline

Input Dimensionality

C
la

ss
if

ic
a
ti

o
n

 E
rr

o
r

in
 %

9x 6x 5x 4x 3x 3x 3x

(2.33)

3-NN classification after dimensionality reduction

ball tree

speedup
15x

Figure 13: Graph ofkNN classification error (withk = 3) on different low dimensional representa-
tions of the MNIST data set; see text for details. The speed-up from ball-trees is shown
at the top of the graph.

neighbor preservation. Nearest neighbor relationships can change when the training examples are
projected into a lower dimensional space, resulting in significantly worsekNN classification.

In this section, we explore how the distance metric learned for LMNN classification can be used
for more effective dimensionality reduction in ball trees. In section 5.4, we described two different
ways to derive low dimensional representations for LMNN classification. The first computed a
low-rank approximation to the (generally full rank) matrixL ; the second directly learned a low-
rank rectangular matrixL by optimizing the non-convex loss function in Eq. (13). For shorthand,
we refer to these approaches for dimensionality reduction as LMNN-S andLMNN-R, denoting
whether a square (S) or rectangular (R) matrix is learned to minimize the LMNN cost function.
Fig. 13 shows the results ofkNN classification from both these methods on the MNIST data set of
handwritten digits. For these experiments, the raw MNIST images (of size 28× 28) were projected
onto their 350 leading principal components before any training for LMNN classification. Also
shown in the figure are the results from further dimensionality reduction using PCA, as well as
the baselinekNN error rate in the original (high dimensional) input space. The square matrix in
LMNN-S was of size 350×350, and for dimensionality reduction, the data was projected onto the
r leading eigenvectors of linear transformationL . The rectangular matrix in LMNN-R was of size
r ×350, wherer varied from 15 to 50. The speed-up from ball trees is shown at the top ofthe graph.
The amount of speed-up depends significantly on the amount of dimensionality reduction, but very
little on the particular method of dimensionality reduction.

The results show that LMNN can be used effectively for dimensionality reduction. For example,
LMNN-R achieves akNN test error rate of 2.38% in 15 dimensions, only slightly higher than the
baseline error rate of 2.33% in the original input space. In this space, moreover, ball trees yield a
15x speedup over baselinekNN search. In 25 dimensions, the LMNN-R error rate drops further to
1.76% while still yielding a 5.7x speed-up. Of the three methods compared in Fig. 13, LMNN-R is
the most effective. In fact, though working in many fewer dimensions, LMNN-R obtains results very
close to the best results reported in section 4. It is interesting that LMNN-R outperforms LMNN-S,
though (as expected) their results converge as the rectangular matrix in LMNN-R becomes more

237

WEINBERGER ANDSAUL

square. These results show that aggressive dimensionality reduction can be combined with highly
accuratekNN classification.

7. Discussion

In this paper, we have introduced a new framework for large margin nearest neighbor (LMNN)
classification. From labeled training examples, we have shown how to learn aMahalanobis dis-
tance metric forkNN classification. The required optimization was formulated as an instance of
semidefinite programming. Our framework makes no parametric assumptions about the structure or
distribution of the data and scales naturally to problems with large number of classes. On multiple
data sets, we have demonstrated that we can significantly improve the accuracy of kNN classifica-
tion by learning a metric in this way. We have also shown that an alternative energy-based decision
rule typically leads to further improvements over traditionalkNN classification.

Beyond the basic framework for LMNN classification, we described several useful and comple-
mentary extensions. These included: iterative re-estimation of target neighbor assignments, globally
integrated learning of multiple locally linear metrics, kernel methods for LMNN classification, low-
rank distance metrics for dimensionality reduction, and ball trees for more efficient gradient com-
putations (in training) andkNN search (in testing). These extensions can be adapted and combined
to meet the demands of particular applications. For example, to build a highly accurate classifier
without regard to the actual computation at test time, our results suggest to train multiple locally
linear metrics. At the other extreme, to build akNN classifier that is as fast as possible at test time,
our results suggest to combine low-rank distance metrics with ball trees.

Taken as a whole, our results demonstrate the promise and widespread applicability of LMNN
classification. Perhaps the greatest promise lies in problems with very large numbers of classes, such
as face and identity recognition. The number of classes in these problems can be in the hundreds,
thousands, or more. Nearest neighbor methods handle this regime more transparently than other
leading methods, such as SVMs. The ideas behind LMNN classification havealso been extended by
others in various ways (Torresani and Lee, 2007; Kumar et al., 2007). In the appendix, we describe
a simple solver that scales well to problems with tens of thousands of examples.A MATLAB
implementation of the algorithm is also freely available with this paper.

Future work will concentrate on several open problems. The improved performance with mul-
tiple metrics suggests that LMNN classification could benefit from even more adaptive transfor-
mations of the input space. It would also be useful to study LMMN classification in the semi-
supervised, transductive setting, where only a few labeled inputs are available for training but the
unlabeled test set is known in advance. Finally, for many real-world applications in computer vision
and information retrieval, the data sets can be much larger than the ones we have studied. For very
large data sets, our current implementation for LMNN does not scale as wellas simpler eigenvector
methods such as PCA, LDA, and RCA. It remains an interesting challenge to scale LMNN to even
larger data sets with millions or more training examples.

238

DISTANCE METRIC LEARNING

Acknowledgments

We especially thank John C. Blitzer for his many suggestions to improve the algorithm and his
generous help with various data sets. We also thank Koby Crammer for many useful comments and
suggestions. This work was supported by NSF Award 0238323.

Appendix A. Solver

We implemented our own special-purpose solver for large-scale problems inLMNN classification.
Our solver was designed to exploit the particular structure of the cost function in Eq. (13). The solver
iteratively re-estimates the Mahalanobis distance metric as it attempts to minimize the cost function
for LMNN classification. The amount of computation is minimized by careful book-keeping from
one iteration to the next. The speed-ups from these optimizations enabled us towork comfortably
on data sets with up ton=60,000 training examples.

Our solver implements an iterative sub-gradient projection method to optimize Eq.(14) in terms
of the positive semidefinite matrixM . We refer to the Mahalanobis distance metric at thetth iteration
asM t and to its squared Mahalanobis distance in Eq. (3) asDt . At each iteration, the optimization
takes a step along the sub-gradient to reduce the loss function and then projectsM t onto the feasible
set. In our case, the feasible set is the cone of all positive semidefinite matricesS+. The following
sections derive the gradient and describe the projection ontoS+.

It is worth emphasizing that although we can phrase the optimization of Eq. (14) as a semidef-
inite program (by introducing nonnegative slack variables to model the hinge loss), in practice our
large-scale solver works directly to minimize Eq. (14). The hinge losses thatappear in this loss
function are not differentiable at all points. Nevertheless, because theloss function is convex, we
can compute its sub-gradient and use standard hill-climbing algorithms to find its minimum. It
has been shown that such sub-gradient methods converge to the correct solution, provided that the
gradient step-size is sufficiently small (Boyd and Vandenberghe, 2004).

A.1 Gradient Computation

The gradient computation can be done most efficiently by careful book-keeping from one iteration
to the next. As simplifying notation, letCi j =(~xi −~x j)(~xi −~x j)

⊤. It is straightforward to express the
distances, as defined in Eq. (3), in terms of this notation. In particular, at the tth iteration, we have
Dt(~xi ,~x j) = tr(M tCi j). Consequently, we can rewrite the loss function in Eq. (14) as:

ε(M t) = (1−µ) ∑
i, j i

tr(M tCi j)+µ ∑
j i,l

(1−yil) [1+ tr(M tCi j)−tr(M tCil)]+ (18)

Note that Eq. (18) is piecewise linear with respect toM t . Let us define a set of triplesN t , such that
(i, j, l) ∈ N t if and only if the indices(i, j, l) trigger the hinge loss in the second part of Eq. (18).
With this definition, we can write the gradientGt of ε(M t) as:

Gt =
∂ε
M t

= (1−µ) ∑
i, j i

Ci j +µ ∑
(i, j,l)∈N t

(Ci j −Cil) .

Computing the gradient requires computing the outer products inCi j ; it thus scales quadratically in
the input dimensionality. As the setNt is potentially very large, a naı̈ve computation of the gradient

239

WEINBERGER ANDSAUL

would be extremely expensive. However, we can exploit the fact that thegradient contribution from
each active triplet(i, j, l) does not depend on the degree of its margin violation. Thus, the changes
in the gradient from one iteration to the next are determined entirely by the differences between
the setsNt andNt+1. We can use this fact to derive an extremely efficient update that relates the
gradientGt+1 at iterationt + 1 from the gradientGt at iterationt. The update simply subtracts
the contributions from triples that are no longer active and adds the contributions of those that just
became active:

Gt+1 = Gt −µ ∑
(i, j,l)∈Nt−Nt+1

(Ci j −Cil)+µ ∑
(i, j,l)∈Nt+1−Nt

(Ci j −Cil) . (19)

For small gradient step sizes, the setNt changes very little from one iteration to the next. In this
case, computing the right hand side of Eq. (19) is extremely fast.

To accelerate the solver even further, we adopt an active set method. Note that computing the
setNt at each iteration requires checking every triplet(i, j, l) with j i for a potential margin
violation. This computation scales asO(nd2 + kn2d), making it impractical for large data sets. To
avoid this computational burden, we exploit the fact that the great majority oftriples do not incur
margin violations: in particular, for each training example, only a very small fraction of differently
labeled examples typically lie nearby in the input space. Consequently, a useful approximation is to
check only a subset of likely triples for margin violations per gradient computation. We initialize
the training procedure by checking all triples and maintaining an active list ofthose with margin
violations; however, a full re-check is only made every 10-20 iterations,depending on fluctuations
of the setNt . For intermediate iterations, we only check for margin violations from among those
active triples accumulated over previous iterations. When the optimization converges, we verify that
the working setNt does contain all active triples that incur margin violations. This final check is
needed to ensure convergence to the correct minimum. If the check is not satisfied, the optimization
restarts with the newly expanded active set.

A.2 Projection

The minimization of Eq. (18) must enforce the constraint that the matrixM t remains positive semi-
definite. To enforce this constraint, we projectM t onto the cone of all positive semidefinite matrices
S+ after each gradient step. This projection is computed from the diagonalization of M t . Let
M t = V∆V⊤ denote the eigendecomposition ofM t , whereV is the orthonormal matrix of eigen-
vectors and∆ is the diagonal matrix of corresponding eigenvalues. We can further decompose
∆ = ∆−+∆+, where∆+ =max(∆,0) contains all the positive eigenvalues and∆−=min(∆,0) con-
tains all the negative eigenvalues. The projection ofM t onto the cone of positive semidefinite
matrices is given by:

PS (M t)=V∆+V⊤. (20)

The projection effectively truncates any negative eigenvalues from thegradient step, setting them
equal to zero.

A.3 Algorithm

Our gradient projection algorithm combined the update rules for the gradient in Eq. (19) and the
projection in Eq. (20). A simplified pseudo-code implementation is shown in Algorithm 1. We
denote the gradient step-size byα > 0. In practice, it worked best to start with a small value of

240

DISTANCE METRIC LEARNING

α. Then, at each iteration, we increasedα by a factor of 1.01 if the loss function decreased and
decreasedα by a factor of 0.5 if the loss function increased.

Algorithm 1 A simple gradient projection pseudo-code implementation.
1: M0 := I {Initialize with the identity matrix}
2: t :=0{Initialize counter}
3: N (0),N0 := {}{Initialize active sets}
4: G0 := (1−µ)∑i, j i Ci j{Initialize gradient}
5: while (not converged)do
6: if mod(t,someconstant) = 0 ∨ (almost converged){we usedsomeconstant=10} then
7: computeNt+1 exactly
8: N (t+1) :=N (t) ∪ Nt+1{Update active set}
9: else

10: computeNt+1 ≈Nt+1∩N (t){ Only search active set}
11: N (t+1) :=N (t) {Keep active set untouched}
12: end if
13: Gt+1 := Gt −µ∑(i, j,l)∈Nt−Nt+1

(Ci j −Cil)+µ∑(i, j,l)∈Nt+1−Nt
(Ci j −Cil)

14: M t+1 := PS (M t −αGt+1){Take gradient step and project onto SDP cone}
15: t := t +1
16: end while
17: OutputM t

References

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a Mahalanobis metric from equiva-
lence constraints.Journal of Machine Learning Research, 6(1):937–965, 2006.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (4):509–522, 2002.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. InProceedings of
the Twenty Third International Conference on Machine Learning, pages 97–104, Pittsburgh, PA,
2006.

M. Bilenko, S. Basu, and R.J. Mooney. Integrating constraints and metric learning in semi-
supervised clustering. InProceedings of the Twenty First International Conference on Machine
Learning (ICML-04), pages 839–846, Banff, Canada, 2004.

S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similiarty metric discriminatively, with application
to face verification. InProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR-05), pages 349–356, San Diego, CA, 2005.

T. Cover and P. Hart. Nearest neighbor pattern classification. InIEEE Transactions in Information
Theory, IT-13, pages 21–27, 1967.

241

WEINBERGER ANDSAUL

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines.Journal of Machine Learning Research, 2:265–292, 2001.

S. Dasgupta and A. Gupta. An elementary proof of the Johnson-Lindenstrauss lemma. Technical
Report 99–006, International Computer Science Institute, UC Berkeley,1999.

T. De Bie, M. Momma, and N. Cristianini. Efficiently Learning the Metric with Side-Information.
Lecture Notes in Computer Science, pages 175–189, 2003.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output
codes. InJournal of Artificial Intelligence Research, volume 2, pages 263–286, 1995.

R. A. Fisher. The use of multiple measures in taxonomic problems.Annals of Eugenics, 7:179–188,
1936.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic
expected time.ACM Transactions on Mathematical Software, 3(3):209–226, 1977.

A. Globerson and S. T. Roweis. Metric learning by collapsing classes. InAdvances in Neural
Information Processing Systems 18, 2006.

J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components analysis.
In L. K. Saul, Y. Weiss, and L. Bottou, editors,Advances in Neural Information Processing
Systems 17, pages 513–520, Cambridge, MA, 2005. MIT Press.

T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI), 18:607–616, 1996.

P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimen-
sionality. Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
604–613, 1998.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

M. P. Kumar, P. H. S. Torr, and A. Zisserman. An invariant large margin nearest neighbour classifier.
In Proceedings of the Eleventh IEEE International Conference on Computer Vision (ICCV-07),
pages 1–8, Rio de Janeiro, Brazil, 2007.

J.T. Kwok and I.W. Tsang. Learning with idealized kernels. InProceedings of the Twentieth Inter-
national Conference on Machine Learning (ICML-03), pages 400–407, Washington, D.C., 2003.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semidefinite programming.Journal of Machine Learning Research, 5:27–72, 2004.

Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I. Guyon, U. Muller,
E. Sackinger, P. Simard, and V. Vapnik. A comparison of learning algorithms for handwritten
digit recognition. In F. Fogelman and P. Gallinari, editors,Proceedings of the 1995 International
Conference on Artificial Neural Networks (ICANN-95), pages 53–60, Paris, 1995.

242

DISTANCE METRIC LEARNING

T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of practicalapproximate nearest neigh-
bor algorithms. In L. K. Saul, Y. Weiss, and L. Bottou, editors,Advances in Neural Information
Processing Systems 17, pages 825–832. MIT Press, Cambridge, MA, 2005.

A. Kachites McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classifica-
tion and clustering. http://www.cs.cmu.edu/ mccallum/bow, 1996.

K.-R. Müller, S. Mika, G. R̈asch, K. Tsuda, and B. Schökopf. An introduction to kernel-based
learning algorithms.IEEE Transactions on Neural Networks, 12(2):181–201, 2001.

S. Omohundro. Efficient algorithms with neural network behavior.Complex Systems, 1:273–347,
1987.

B. Scḧolkopf and A. J. Smola.Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

B. Scḧolkopf, A. J. Smola, and K.-R. M̈uller. Nonlinear component analysis as a kernel eigenvalue
problem.Neural Computation, 10:1299–1319, 1998.

S. Shalev-Shwartz, Y. Singer, and A. Y. Ng. Online and batch learning of pseudo-metrics. InPro-
ceedings of the Twenty First International Conference on Machine Learning (ICML-04), pages
94–101, Banff, Canada, 2004.

N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant component
analysis. InProceedings of the Seventh European Conference on Computer Vision (ECCV-02),
volume 4, pages 776–792, London, UK, 2002. Springer-Verlag.

J. Shi and J. Malik. Normalized cuts and image segmentation.IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), pages 888–905, August 2000.

P. Y. Simard, Y. LeCun, and J. Decker. Efficient pattern recognition using a new transformation dis-
tance. In S. Hanson, J. Cowan, and L. Giles, editors,Advances in Neural Information Processing
Systems 6, pages 50–58, San Mateo, CA, 1993. Morgan Kaufman.

L. Torresani and K.C. Lee. Large margin component analysis. In B. Schölkopf, J. Platt, and T. Hof-
mann, editors,Advances in Neural Information Processing Systems 19, pages 1385–1392. MIT
Press, Cambridge, MA, 2007.

I.W. Tsang, P.M. Cheung, and J.T. Kwok. Kernel relevant componentanalysis for distance met-
ric learning. InProceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN-05), volume 2, pages 954–959, Montreal, Canada, 2005.

M. Turk and A. Pentland. Eigenfaces for recognition.Journal of Cognitive Neuroscience, 3(1):
71–86, 1991.

L. Vandenberghe and S. P. Boyd. Semidefinite programming.SIAM Review, 38(1):49–95, March
1996.

M. Varma and D. Ray. Learning the discriminative power-invariance trade-off. In Proceedings of
the Eleventh IEEE International Conference on Computer Vision (ICCV-07), pages 1–8, 2007.

243

WEINBERGER ANDSAUL

K. Q. Weinberger and L. K. Saul. Fast solvers and efficient implementations for distance metric
learning. InProceedings of the Twenty Fifth International Conference on Machine learning,
pages 1160–1167, Helsinki, Finland, 2008.

K. Q. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor
classification. In Y. Weiss, B. Schölkopf, and J. Platt, editors,Advances in Neural Information
Processing Systems 18, pages 1473–1480. MIT Press, Cambridge, MA, 2006.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to
clustering with side-information. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems 14, pages 521–528, Cambridge, MA, 2002.
MIT Press.

244

